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Abstract

In this article, we give an overview of Natural Language Generation (nlg) from an applied

system-building perspective. The article includes a discussion of when nlg techniques

should be used; suggestions for carrying out requirements analyses; and a description of

the basic nlg tasks of content determination, discourse planning, sentence aggregation,

lexicalization, referring expression generation, and linguistic realisation. Throughout, the

emphasis is on established techniques that can be used to build simple but practical

working systems now. We also provide pointers to techniques in the literature that are

appropriate for more complicated scenarios.

1 Introduction

Natural language generation (nlg) is the sub�eld of arti�cial intelligence and

computational linguistics that is concerned with the construction of computer sys-

tems that can produce understandable texts in English or other human languages

from some underlying non-linguistic representation of information.1 Natural lan-

guage generation systems combine knowledge about language and the application

1 Our focus here is on the production of text, but work in natural language generation is
also concerned with systems that can communicate using speech. Many of the techniques
we discuss here carry across to such systems; however, discussion of the particular prob-
lems that arise and the solutions that are appropriate in the production and synthesis
of human-like speech is beyond the scope of this article.
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domain to automatically produce documents, reports, explanations, help messages,

and other kinds of texts.

In this article, we look at nlg from an applied system-building perspective. We

describe the tasks that must be performed by a language generation system, and

discuss possible algorithms and supporting representations for performing each task.

We also suggest techniques, often based on corpus analysis, that can be used to

acquire the various kinds of knowledge needed in order to build such nlg systems.

Prior to consideration of these technical issues, we discuss when nlg technology is

likely to be appropriate, and when alternative or simpler techniques may provide a

more appropriate solution. Throughout, our focus is on the use of well-established

techniques that can be used to build simple but practical working systems today; we

also provide pointers to ideas in the research literature that are likely to be relevant

to the development of more sophisticated nlg systems in the future. Our intention

is that the overview we present here should be useful both for software developers

who are considering using nlg techniques in their systems, and for researchers

interested in developing applied nlg technology.

The article is structured as follows. Section 2 brie
y summarises some of the

many ways in which nlg can be used, and discusses when nlg is and is not appro-

priate. Section 3 discusses requirements analysis and system speci�cation. Section 4

surveys the di�erent tasks that nlg systems perform, and describes some of the

architectures that can be used to perform these tasks. Sections 5, 6, and 7 provide

a more detailed look at the system components in an architecture that distributes

these tasks across the three areas of text planning, sentence planning, and linguistic

realisation. Finally, Section 8 presents a summary and some concluding remarks,

and provides some pointers to the research literature on natural language genera-

tion.

2 Using Natural Language Generation

2.1 Applications of Natural Language Generation

The most common use of natural language generation technology is to create com-

puter systems that present information to people in a representation that they

�nd easy to comprehend. Internally, computer systems use representations which

are straightforward for them to manipulate, such as airline schedule databases, ac-

counting spreadsheets, expert system knowledge bases, grid-based simulations of

physical systems, and so forth. In many cases, however, these representations of in-

formation require a considerable amount of expertise to interpret. This means that

there is often a need for systems which can present such data in an understandable

form to non-expert users. When the best presentation of the data is in English,

Spanish, Chinese, or some other human language, nlg technology can be used to

construct the presentation system.

For example, nlg techniques can be used to:

� generate textual weather forecasts from representations of graphical weather

maps, as in (Goldberg et al. 1994);
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� summarise statistical data extracted from a database or spreadsheet, as in

(Iordanskaja et al. 1992);

� explain medical information in a patient-friendly way, as in (Buchanan et al.

1995; Cawsey et al. 1995);

� describe a chain of reasoning carried out by an expert system, as in (Swartout

1983); and

� produce answers to questions about an object described in a knowledge base,

as in (Reiter et al. 1995).

This list of possible uses is only indicative, and is by no means complete; many

other applications are described in the research literature.

nlg technology can also be used to build authoring aids, systems which help

people create routine documents. Many people spend large chunks of their time pro-

ducing documents, often in situations where they do not see document production

as their main responsibility. A doctor, for example, may spend a signi�cant part of

her day writing referral letters, discharge summaries, and other routine documents;

while a computer programmer may spend as much time writing text (code docu-

mentation, program logic descriptions, code walkthrough reviews, progress reports,

and so on) as writing code. Tools which help such people quickly produce good

documents may considerably enhance both productivity and morale.

Examples of using nlg as an authoring aid include:

� helping customer service representatives write letters for customers, as in

(Springer et al. 1991; Coch 1996);

� helping engineers produce management summaries of design paths they have

explored, as in (McKeown et al. 1994);

� helping personnel o�cers produce job descriptions, as in (Caldwell and Ko-

relsky 1994); and

� helping technical authors produce instructions for using software, as in (Paris

et al. 1995).

Again, this list is indicative only.

2.2 When are Natural Language Generation Techniques Appropriate?

Our concern in this article is with the development of practical nlg systems to

meet current real needs. In this context, one has to bear in mind that developing a

system based on nlg techniques is not always the best way to ful�l a client's needs.

For example, in some cases, the information that needs to be delivered may be best

presented graphically rather than textually. In other cases text is the best presen-

tation, but solutions based on the simple mail-merge facilities found in most word

processors may su�ce, and there may be no need to use more complex nlg tech-

niques. In still other cases the best solution is to hire a person to write documents

or to explain things to users. Which approach is most appropriate in any given cir-

cumstance depends on a number of factors including the type of information being

communicated, the amount of variation needed in the texts to be produced, and

the volume of text to be produced. We brie
y discuss some of these issues below.



4 Reiter and Dale

2.2.1 Text versus graphics

In many situations, pictures, schematic diagrams, maps, charts, and plots can be

used to communicate information more e�ectively or more e�ciently than text.

Software developers need to consider whether text, graphics, or some mixture of

the two is the best way to ful�l the user's information needs.

There are no hard and fast principles for deciding upon when information should

be presented textually, and when it should be presented graphically. It depends

on the type of information being communicated, and also on the expertise of the

people reading the generated texts. The papers collected in (Maybury 1993) are a

good source for further reading in this area, while (Kosslyn 1994) is a good general

study of what graphics can and cannot do.

From a practical perspective, a good way to determine whether text or graphics

should be used is to examine existing documents used to present the information.

This is not foolproof, of course, because there is no guarantee that the way things

happen to be done now is the best way possible. However, in many areas the task

of information presentation has become a well-developed art, and so it is worth

seeking out best practice in the area. In some cases the choice is dictated not by

which medium is most e�ective, but rather by legal requirements, convention, or

distribution constraints. For example, the use of graphics will not be an option if

the material is to be delivered via teletext or a slow Internet link.

2.2.2 Natural language generation versus mail-merge

Natural language generation techniques are not the only way to generate text on a

computer. Most operational software systems that generate text do so with the kind

of mail-merge technology found in Microsoft Word and other popular document

creation packages. While the simplest mail-merge systems just insert input data

into pre-de�ned slots in a template document, more complex mail-merge systems are

essentially programming languages that allow the output text to vary in arbitrary

ways depending on the input data.

From a theoretical perspective, there is no di�erence in the functionality that

can be implemented with nlg techniques and with complex mail-merge systems;

both are Turing-equivalent computational systems. Indeed, it can be argued that

mail-merge systems are a kind of nlg technology, being just one point on a scale

of complexity and sophistication with full-blown nlg techniques lying at the other

end of the scale.

From a practical perspective, we still have a very limited understanding of when

nlg techniques are and are not needed. However, various authors have pointed out

that

� nlg techniques can produce higher-quality texts than mail-merge, especially

in applications where there is a lot of variation in the output texts (Springer

et al. 1991; Coch 1996); and

� nlg systems can be easier to update in applications where it is necessary to
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regularly change the content or structure of the generated documents (Gold-

berg et al. 1994).

2.2.3 Natural language generation versus human authoring

Software systems are expensive to build, and developers need to demonstrate that

developing such a system is a better solution than hiring (and training) someone

to manually write the documents the nlg system is supposed to produce. A large

part of this decision is based on economics: is it cheaper to hire and train a person,

or to create and maintain the software? The economic decision will usually depend

largely on the volume of text produced. An nlg system which produces millions of

pages of text per year will be easier to justify as cost-e�ective than a system which

produces only hundreds of pages of text per year.

Cost is not the only factor, however. In some cases it is technically impossible

to generate the required texts with current nlg technology; in these cases, manual

production is the only option. On the other hand, in some cases nlg techniques

may be preferred over manual document creation because they increase accuracy

and reduce updating time, or because they guarantee conformance to standards

(Reiter et al. 1995).

3 Requirements Analysis and System Speci�cation

The �rst step in building any type of software system, including a natural lan-

guage generation system, is to perform a requirements analysis and, from this,

to produce an initial system speci�cation. We will not provide a survey of stan-

dard requirements analysis techniques here; these are covered in any good software

engineering textbook (see, for example, (Pressman 1994)). In general, software en-

gineering methodologies that stress iterative development and prototyping usually

work better for nlg systems than waterfall-type models. This is because the tech-

nology is still relatively immature, and hence it is di�cult to predict in advance all

the implications of requirements or design decisions.

In the rest of this section, we describe an approach to requirements analysis where

the developer uses a collection of example inputs and associated output texts to

describe to users the system she proposes to build. We believe that in most cases

it is easier to discuss functionality with users by showing such examples than by

discussing nlg in a more abstract way, especially since many users have no previous

experience with nlg technology. We call this collection of input and output data a

corpus, and this approach a corpus-based approach. A good corpus is also a

very useful resource for knowledge acquisition when speci�c nlg modules are being

designed, as will be discussed later in this paper. Note that while the corpora used

in many natural language analysis projects consist solely of collections of example

texts, corpora in nlg projects usually contain examples of system inputs as well as

examples of (corresponding) output texts.

There has been relatively little published in the research literature on the use of

corpora in building nlg systems, but see (McKeown et al. 1994) for a description of
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the use of a corpus in developing the plandoc system. Reiter et al. (1997) discuss

some problems with corpus-based approaches.

3.1 Assembling an Initial Corpus of Output Texts

The �rst step in carrying out a corpus-based requirements analysis is to create an

initial corpus of human-authored texts and, where appropriate, their associated

inputs. In the simplest case, the initial corpus can be created by using archived

examples of human-authored texts. A business letter corpus can be based on real

letters sent out in the past, for example; while a weather report corpus can be based

on real reports written in the past. As far as possible, the corpus should cover the

full range of texts expected to be produced by the nlg system: it should include

boundary and unusual cases as well as typical cases.

If no human-authored examples of the required texts currently exist, the best

strategy is often to ask domain experts to write examples of appropriate output

texts. For example, an initial corpus for a patient information system could be

created by asking doctors to write examples of good texts for speci�c patients that

they know. For subsequent analysis of these texts, it can be very useful to record

the expert `thinking aloud' while writing some of the texts, if he or she agrees to

this (see (Reiter et al. 1997)).

3.2 Creating a Target Text Corpus

In many cases, the nlg developer will want to modify the content of the initial

corpus. This can happen for many reasons, including the following:

� It may be technically impossible, or prohibitively expensive, to automatically

generate the texts in the initial corpus, often because the required input data

is not available in a usable form; this is discussed further in Section 3.3 below.

� The texts may appear suboptimal, and open to improvement. In such cases,

the nlg developer, who may have a better understanding of e�ective writ-

ing than some of the domain experts, may wish to suggest improvements to

the texts. This of course needs to be discussed with the users and domain

experts, especially since there may be domain-speci�c writing constraints or

conventions of which the nlg developer is not aware.

� Di�erent experts may suggest very di�erent texts corresponding to the same

input data. Con
icts between experts are, unfortunately, a common occur-

rence in many knowledge acquisition exercises. In many cases, con
icts can

be resolved simply by bringing them to the attention of the experts and ask-

ing them as a group to decide on what the best text is for the given input

data (Reiter et al. 1997).

The result of all these changes is a set of texts which characterises the output that

will be generated by the nlg system; we will refer to this as the target text

corpus.
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There are 20 trains each day from Aberdeen to Glasgow. The next train is the

Caledonian Express; it leaves Aberdeen at 10am. It is due to arrive in Glasgow at 1pm,

but arrival may be slightly delayed because of snow on the track near Stirling.

Thank you for considering rail travel.

Fig. 1. A Sample Required Output from a Rail Travel Information System

It can take a considerable amount of e�ort to build a target text corpus with

which both the developers and the users feel comfortable. However, this is time

well spent, and a good corpus makes it much easier to develop a good nlg system.

3.3 Analysing the Information Content of Corpus Texts

One important step in the creation of the target text corpus is the analysis of the

information content of the texts in the initial corpus. In particular, the developer

needs to identify parts of the human-authored corpus texts which convey informa-

tion which is not available to the nlg system.

In the remainder of this article, to make things concrete we will use a simple

example based on a rail travel information system.2 Suppose that the initial corpus

of human-generated texts contains the text shown in Figure 1, generated in response

to the inquiry When is the next train to Glasgow? Furthermore, assume that the

input data consists (in addition to the actual inquiry) of a train scheduling database

that lists departure and arrival times (both planned and predicted) of trains at all

stations in the network, and the name (if any) of each train.

Information-content analysis requires classifying each sentence or clause of a cor-

pus text into one of the following categories:

Unchanging Text: A textual fragment that is always present in the output texts.

An example of such a constituent in Figure 1 is the closing sentence Thank

you for considering rail travel.

Directly-Available Data: Text that presents information that is available di-

rectly in the input data or an associated database or knowledge base. Ex-

amples of such constituents in Figure 1 are the clauses The next train is the

Caledonian Express, it leaves Aberdeen at 10am, it is due to arrive in Glasgow

at 1pm and arrival may be slightly delayed.

Computable Data: Text that presents information that can be derived from the

input data via some computation or reasoning. An example of this in Fig-

ure 1 is There are 20 trains each day from Aberdeen to Glasgow; this can be

generated by selecting and counting appropriate records about train journeys

in the scheduling database.

2 This scenario, and the example we will use throughout this article, does not correspond
to a real-world case study; we have compressed a number of phenomena into a simple
example so that we can demonstrate a range of issues in the limited space available. Our
example is partially motivated by the growing commercial interest in spoken-dialogue
train-information systems (such as the system described in (Aust et al. 1995)), although
as mentioned earlier we will not address speech-related issues in this article.
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Unavailable Data: Text that presents information which is not present in or

derivable from the input data. An example of this in Figure 1 is because

of snow on the track near Stirling.

Unchanging text fragments are of course the easiest kind to generate; indeed they

can simply be inserted in the text as canned strings. Textual constituents that

present directly-available data texts pose no problems from an information per-

spective, although of course they present other di�culties for the nlg system. For

textual constituents that present computable data, a decision has to be made as to

whether the results are worth the cost involved, or whether the results fall into the

category of unjusti�ed `bells and whistles'.

Texts that present unavailable data texts cause the most problems. They are of

course impossible to generate: no matter how sophisticated an nlg system is, it

cannot include information in its output that is not present in its input. In our

experience, they are also, unfortunately, fairly common in human-authored texts.

There are a number of solutions in principle to the problem of unavailable data,

including making more information available to the nlg system, changing the target

text corpus to eliminate the a�ected parts of the texts, and (if the nlg system is

being used as an authoring aid for a human author) expecting the human to write

such texts. Which solution is best of course depends on the application in question.

4 The Architecture and Components of an NLG System

Once a target text corpus and other requirements analysis documents have been

produced, the developer can then start designing the nlg system. In Section 4.1

below, we enumerate the tasks that nlg systems perform; in Sections 4.2 and 4.3,

we go on to discuss possible architectures and representations for supporting these

tasks.

4.1 NLG Tasks

The task of a natural language generation system can be characterised as mapping

from some input data to an output text. However, as with most computational

processes, it is useful to decompose this task into a number of more �nely char-

acterised substeps. In the context of automatic text generation, the nature of this

decomposition is one of the major di�erences between nlg systems and systems

based on mail-merge technology.

There is room for debate as to what the appropriate subtasks in language genera-

tion should be. However, it is probably true to say that, within the natural language

generation community, a consensus has arisen that there are six basic kinds of ac-

tivity that need to be carried out in going all the way from input data to a �nal

output text. Note that this does not mean that an nlg system needs six modules;

most systems use a computational architecture where one module simultaneously

performs several tasks, as we discuss in Section 4.2 below.

These six basic activities are as follows.
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4.1.1 Content determination

Content Determination is the process of deciding what information should be

communicated in the text. We will describe this process as one of creating a set of

messages from the system's inputs or underlying data sources; these messages are

the data objects then used by the subsequent language generation processes. Both

the message-creation process and the form and content of the messages created

are highly application-dependent. Generally, the message creation process largely

consists of �ltering and summarising input data, and the messages created are

expressed in some formal language that labels and distinguishes what we might

think of as the entities, concepts and relations in the domain. We use these

terms here in a relatively intuitive fashion, best made clear by example:3 in our rail

travel information system, we can view speci�c trains, places and times as entities,

the property of being the next train as a concept, and notions such as departure

and arrival as relations between trains and times.

Some examples of messages corresponding to the text shown in Figure 1, together

with English glosses, are as follows.4

(1) a.

2
66666664

message-id: msg01

relation: IDENTITY

arguments:

2
4 arg1: NEXT-TRAIN

arg2: CALEDONIAN-EXPRESS

3
5

3
77777775

b. The next train is the Caledonian Express

(2) a.

2
6666666664

message-id: msg02

relation: DEPARTURE

arguments:

2
6664

departing-entity: CALEDONIAN-EXPRESS

departure-location: ABERDEEN

departure-time: 1000

3
7775

3
7777777775

b. The Caledonian Express leaves Aberdeen at 10am

3 From a philosophical point of view, much could be (and has been) written about the
ontological status of these categories. These issues are beyond the scope of the present
work.

4 Here, we represent each message as an attribute{value matrix. Each describes some
relation that holds between those entities or concepts speci�ed as the arguments of that
relation. Note that messages do not necessarily correspond one-to-one to sentences;
similarly, it is not necessarily the case that the domain entities, relations and concepts
that occur here will correspond one-to-one to lexical items in the resulting text.
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(3) a.

2
6666666666664

message-id: msg03

relation: NUMBER-OF-TRAINS-IN-PERIOD

arguments:

2
6666664

source: ABERDEEN

destination: GLASGOW

number: 20

period: DAILY

3
7777775

3
7777777777775

b. There are 20 trains each day from Aberdeen to Glasgow

4.1.2 Discourse planning

Discourse Planning is the process of imposing ordering and structure over the

set of messages to be conveyed. A text is not just a random collection of pieces

of information: the information is presented in some particular order, and there is

usually an underlying structure to the presentation. In the simplest possible terms,

this is akin to a story having a beginning, a middle and an end; but most documents

have much more discernible structure than this. Good structuring can make a text

much easier to read: that this is so can easily be demonstrated by trying to read a

version of a newspaper story where sentences and paragraphs have been randomly

reordered.

The result of discourse planning is usually a represented as a tree structure, along

the lines of that shown in Figure 2; here, the leaf nodes of the tree are individual

messages, and the internal nodes specify how messages are grouped together and

related to each other. The clustering decisions made in the tree will have an impact

on the determination of sentence and paragraph boundaries in the resulting text.

In some cases, the internal nodes also specify discourse relations between their

children: in this example, the NUMBER-OF-TRAINS-IN-PERIOD and IDENTITY

messages are placed in a sequence relationship, and the DEPARTURE message is

an taken to be an elaboration of the IDENTITY message. The notion of discourse

relations is discussed further in Section 5 below.

4.1.3 Sentence aggregation

Sentence Aggregation is the process of grouping messages together into sen-

tences. In our current example, sentence aggregation could combine the IDENTITY

and DEPARTURE messages into a single sentence, which would be realised as The

next train, which leaves at 10am, is the Caledonian Express.

Aggregation is not always necessary|eachmessage can be expressed in a separate

sentence|but in many cases good aggregation can signi�cantly enhance the 
uency

and readability of a text. In principle, aggregation techniques can be used to form

paragraphs and other higher-order structures as well as sentences; however, this is

a less well understood process, and will not be discussed further here.
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Fig. 2. An example Discourse Structure Tree

4.1.4 Lexicalization

Lexicalization is the process of deciding which speci�c words and phrases should

be chosen to express the domain concepts and relations which appear in the mes-

sages. This covers questions such as how the event represented in the DEPARTURE

message should be expressed: the words leave and depart are both possibilities.

In many cases lexicalization can be done trivially by hard-coding a speci�c word

or phrase for each domain concept or relation; for example, we might simply specify

that a DEPARTURE message should always be expressed by the word leave. In

some cases, however, 
uency can be improved by allowing the nlg system to vary

the words used to express a concept or relation, either to achieve variety or to

accommodate subtle pragmatic distinctions (for example, depart is perhaps more

formal than leave). Lexicalization is especially important, of course, when the nlg

system produces output texts in multiple languages.

4.1.5 Referring expression generation

Referring Expression Generation is the task of selecting words or phrases to

identify domain entities. For example, the text in Figure 1 uses the referring expres-

sions the Caledonian Express and it to refer to the domain entity CALEDONIAN-

EXPRESS.

Referring expression generation is closely related to lexicalization, since it is also

concerned with producing surface linguistic forms which identify domain elements.

However, unlike lexicalisation, referring expression generation is usually formalised

as a discrimination task, where the system needs to communicate su�cient infor-

mation to distinguish one domain entity from other domain entities. This generally

requires taking account of contextual factors, including in particular the content

of previous communications with the user (generally referred to as the discourse
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history). For example, whether or not it can be used to refer to CALEDONIAN-

EXPRESS depends on what other objects have been mentioned in previous sentences

in the text.

4.1.6 Linguistic realisation

Linguistic Realisation is the process of applying the rules of grammar to pro-

duce a text which is syntactically, morphologically, and orthographically correct.

For example, a linguistic realisation process may decide to express the NUMBER-

OF-TRAINS-IN-PERIOD message above as the following sentence:

(4) There are 20 trains each day from Aberdeen to Glasgow.

In this example, the syntactic component of the realiser has decided to add the

function words from and to to mark those parts of the sentence which specify

the train's source and destination; the morphological component has produced the

plural form trains of the root word train; and the orthographic component has

capitalised the �rst word of the sentence and added a full stop at the end of the

sentence.

4.2 NLG Architectures

There are many ways of building a system that performs the tasks we have just

described. The simplest approach is to build a separate module for each task, and

connect these modules via a one-way pipeline. In such an architecture, the content

determination module �rst decides on all the messages to be included in the text; the

discourse planning module then organises these messages into a discourse structure

tree; and so on. At the other extreme, we might not have separate modules at

all, but simply represent each task as a set of constraints or axioms, and put all

the constraints into a general constraint-solver or theorem-prover whose job is to

determine some solution that maximally satis�es the constraints; see Appelt (1985)

for an example of this approach.

From a pragmatic perspective the most common architecture in present-day ap-

plied nlg systems, and the one we will emphasize in this paper, is a three-stage

pipeline with the following stages:5

Text Planning: This stage combines the content determination and discourse

planning tasks described above. This re
ects the fact that in many real ap-

plications, it can be di�cult to separate these two activities.

Sentence Planning: This stage combines sentence aggregation, lexicalization, and

referring expression generation. This combination is not universally accepted

in the nlg �eld; for example, Matthiessen (1991) argues that lexicalisation

should be combined with linguistic realisation. Nevertheless, most applied

nlg systems have chosen to combine these three tasks into one stage, and

that is the approach we will take in this article.

5 See (Reiter 1994) for a discussion of the emerging consensus in nlg architectures.
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Fig. 3. The Architecture of a Natural Language Generation System

Linguistic Realisation: As described above, this task involves syntactic, mor-

phological, and orthographic processing.

Figure 3 diagrammatically shows the three-stage pipelined architecture.

4.3 Intermediate Representations

Once the overall architecture of an nlg system has been decided, the other main

design issue is how the inputs and outputs of the di�erent stages should be repre-

sented. The initial input to the system is, of course, application-dependent, and the

�nal output is text (perhaps with some logical or physical mark-up for presentation

purposes, such as html tags). However, the nlg developer must also specify what

internal representation is passed from the text planning stage to the sentence plan-

ning stage, and from the sentence planning stage to the linguistic realisation stage.

We will call the Text Planner output the Text Plan, and the Sentence Planner

output for any one sentence a Sentence Plan.

4.3.1 Text plans

Text plans are usually represented as trees whose leaf nodes specify individual

messages, and whose internal nodes show how messages are conceptually grouped

together. By gathering together related material, this grouping imposes constraints
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on the scope of subsequent sentence planning operations, and perhaps also on the

possible locations for paragraph boundaries. As we noted above, the text plan may

specify discourse relations between nodes.

There are a variety of ways of representing the messages that form a text plan's

leaf nodes, including logical formulae and templates. Probably the most common

strategy in current applied nlg systems is to represent messages in as similar a

form as possible to the representation used for sentence plans, which we turn to

below. For example, if the nlg system uses templates for sentence plans, it might

also use templates in the text plan leaf nodes. The templates in the text plan may

then contain parameters represented by pointers into the domain knowledge base,

whereas, when the sentence plans are constructed, these pointers will be replaced

by words or phrases.

4.3.2 Sentence plans

A wide variety of mechanisms and notations for sentence plans have been proposed

and used in the literature, of which the most common are probably templates and

what we might call abstract sentential representations.

Template systems represent sentences as boilerplate text and parameters that

need to be inserted into the boilerplate. Classic template systems simply insert the

parameter into the boilerplate without doing any further processing. Some newer

systems, however, perform limited linguistic processing as well (see, for example,

(Geldof and Van de Velde 1997)). For example, such systems may enforce number

agreement by choosing the appropriate morphological variant of a word; this typi-

cally requires adding some annotations or structure to the words in the boilerplate.

The other common way of representing sentences plans is to use an abstract rep-

resentation language which speci�es the content words (nouns, verbs, adjectives and

adverbs) of a sentence, and how they are related. We will refer to such representa-

tions here as abstract sentential representations. From the perspective of

linguistics, these usually convey information at a roughly similar level to the `deep

syntactic' representation in Mel'�cuk's meaning-text theory (Mel'�cuk 1988), as

discussed in Section 7.4; a number of other grammatical theories o�er not dissimilar

representational levels.

One of the most popular abstract representation languages for sentence plans

is spl (Sentence Planning Language) (Kasper 1989). The spl representation for

the sentence There are 20 trains each day from Aberdeen to Glasgow would be

something like that shown in Figure 4. The spl representation characterises the

sentence by means of a number of named attributes and their values, and allows

values themselves to consist of named attributes and their values. Note that spl

allows certain variations in the text to be easily speci�ed; for example, the future-

tense version of the sentence There will be 20 trains to Glasgow can be produced by

adding a single (:tense future) attribute{value pair to the spl shown in Figure 4.

The pros and cons of template versus abstract sentential representations are

further discussed below in Section 7.
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(S1/exist

:object (O1/train

:cardinality 20

:relations ((R1/period

:value daily)

(R2/source

:value Aberdeen)

(R3/destination

:value Glasgow))))

Fig. 4. An spl Expression

5 Text Planning

In this section, we describe in more detail the two tasks we take to be involved in the

process of text planning. Section 5.1 addresses the subtask of content determination;

and Section 5.2 addresses the subtask of discourse planning.

5.1 Content Determination

5.1.1 The task

Content Determination is the task of determining what information should be com-

municated in the text. As above, we will describe this process as one of creating

a set of messages from the system's input data and any databases or knowledge

bases that provide domain and background information. In many applications, con-

tent determination is also a�ected by a user model, which may specify (amongst

other things) the user's expertise level, the task he or she is trying to carry out,

and the previous interactions he or she has had with the nlg system; see (Reiter

et al. 1995) for an example of this.

It is hard to generalise about content determination because it is very dependent

on the details of the target application. A rail travel information system has a

very di�erent content determination module from a system that helps customer

service representatives write business letters. But one theme that is common to

many content determination systems is the need to �lter, summarise, and otherwise

process input data. To return again to our example of a rail travel information

service: suppose the user asks about trains from Aberdeen to Leeds, and there are

no trains listed in the database which stop in both of these points. In such a case

the system should not report that no such trains exist, but rather should search the

database for a sequence of two or more trains that will take the user from Aberdeen

to Leeds.

5.1.2 Deep reasoning approaches

Many researchers have suggested that content determination should be formalised

in terms of reasoning about what information users need to accomplish their goals.

For example, Allen and Perrault (1980) suggest that an nlg system should use plan
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recognition techniques to determine what plan the user is executing (for example,

a plan to go to Glasgow by train), and then analyse this plan to determine what

information the user needs to complete it (perhaps an indication of the departure

platform as well as the departure time). This information then becomes the content

of the generated response.

Because super�cially similar requests for information can be used in di�erent

situations to execute quite di�erent plans, plan recognition requires sophisticated

reasoning and a considerable amount of knowledge about the world and the user.

Although there is a considerable body of research literature on plan recognition,

at the time of writing we are not aware of any current applied nlg systems which

actually use this technique in deciding what to say.

5.1.3 Domain-speci�c approaches

Most current applied nlg systems base content determination on domain-speci�c

rules acquired from domain experts: this amounts to implementing rules of thumb

as to what information should be included in general categories of situations. The

results are somewhat less 
exible than the deep reasoning approaches described

above, and will sometimes produce less than perfect results. However, for practical

systems given the current state of the art, these approaches are much easier to

implement. They also have some other advantages, including the following:

� It is easy to accommodate bureaucratic and legal concerns that would oth-

erwise be di�cult to motivate from �rst principles. For example, in some

medical contexts it may be important for legal reasons to explicitly list all

possible side-e�ects of a drug, even if from the user's perspective a summary

statement such as One in a million patients taking this drug su�er severe side

e�ects would be adequate.

� Using domain-dependent methods, it is easier to produce computer-generated

documents that are similar to existing human-authored documents. This may

help users accept the nlg system; indeed, they may not even be aware that

the nlg system exists.

The process of working out rules for content determination is in many ways similar

to the kinds of knowledge acquisition (ka) task faced by the designer of an expert

system (see for example (Scott et al. 1991)), and most expert system ka techniques

can probably be adapted for this task. Perhaps the currently most popular technique

for acquiring content rules is to analyze texts in a corpus. One variant of this process

is to select some representative example texts from the target text corpus, and

perform the following operations:

1. Break each text down into its constituent sentences, and then break each

sentence down into a set of information-conveying phrases.

2. Relate each phrase to the source data, as described in Section 3.3.

3. Group phrases into classes of similar messages.

4. Characterise which classes of messages appear in which types of texts, and try

to determine the conditions under which messages appear. The result of this
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step might be a collection of rules of the form `a text of type t will contain a

message of type m under conditions c1; c2; : : : cn'.

5. Discuss this analysis with domain experts, and modify it accordingly. In some

cases, the analysis may suggest modifying the target text corpus as well as

the content rules.

6. When satis�ed with the analysis, repeat the process with a larger selection of

texts from the target text corpus.

Many of the details here (for example, determining what constitutes an `information-

conveying phrase') will depend on the circumstances of the particular application.

A very general point is that an essential component of successful knowledge ac-

quisition is becoming familiar with the domain and with the data (in this case, the

corpus). You are going to have to spend a considerable amount of time learning

about the domain, poring over and analysing the corpus, and discussing your ob-

servations with the domain experts via the process described above. The amount of

e�ort required should not be underestimated; however, there is no easy alternative

if your goal is to build a system that delivers appropriate results.

5.2 Discourse Planning

5.2.1 The task

Discourse planning is the task of structuring the messages produced by the content

determination process into a coherent text. In e�ect, while content determination

involves using knowledge about what information should be communicated (for

example, whether the departure time of the next train should be included in the

text to be generated), discourse planning uses knowledge about how these mes-

sages should be organised into a text (for example, the decision to start with a

summary and then to give information about speci�c trains, rather than the other

way around).

The output of the discourse planner is a text plan (Section 4.3.1), which is a tree

whose leaf nodes are messages, and whose internal nodes specify how these mes-

sages are conceptually grouped together. The text plan may also specify discourse

relations that hold between messages or groups of messages. These indicate how

the text fragments are related. For example, consider the following text:

(5) a. I like to collect old Fender guitars.

b. My favourite instrument is a 1951 Stratocaster.

Here, the second sentence is providing an example of the proposition expressed in

the �rst; we might say that a discourse relation of elaboration or exemplifi-

cation holds between the two sentences. On the other hand, consider an example

like the following:

(6) a. I like to collect old Fender guitars.

b. However, my favourite instrument is a 1991 Telecaster.

Here, we might say that a discourse relation of contrast or exception holds
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between the two sentences. Note that particular cue words are often used to signal

the particular discourse relations that reside in the text; for example, however is

commonly used to signal contrast. Discourse relations can hold between groups of

messages as well as individual messages. For example, a text might contain an entire

paragraph whose function is to provide evidence for some claim made earlier in

the text.

There is no consensus in the research literature on what speci�c discourse rela-

tions should be used in an nlg system. Probably the most commonly used set is

that suggested by Rhetorical Structure Theory (rst) (Mann and Thompson

1988), although many developers modify this set to cater for idiosyncrasies of their

particular domain and genre. For a general discussion of di�erent ways of classifying

discourse relations, see (Maier and Hovy 1993).

5.2.2 Planning-based approaches

In an ideal world, a discourse planner should be able to take an arbitrary assortment

of content messages and organise these into a coherent whole, perhaps with occa-

sional requests to the content determination process for additional messages that

might add to the text's coherence. A sizeable body of work, originating at the In-

formation Sciences Institute at the University of Southern California, has focused

on operationalising this idea by representing discourse relations using arti�cial-

intelligence-style planning operators, with preconditions that specify what needs to

be the case before the relation can be used, and e�ects that specify the impact on

the reader's beliefs of using the relation. A planning mechanism can then be used to

build up a discourse plan in a sophisticated way from the available messages given

some top level goal. See Hovy (1993) and Moore and Paris (1993) for descriptions

of systems that use this approach.

At present, we have only very limited understanding of the di�erent discourse

relations that can appear in texts, what the precise e�ect of these relations is, and

when they can be used. This fact, in combination with the computational expense of

planning-based approaches and the large amounts of knowledge they require, means

that approaches based on these ideas are not widely used in current real-world nlg

systems.

5.2.3 Schema-based approaches

Planning-based approaches of the kind just described hold out promise for the

development of very general text planning engines. However, for the development

of practical systems in limited domains, it is generally easier to adopt a somewhat

more domain-speci�c approach. It is often the case that the texts required of a

given application will conform in structure to a relatively small number of patterns.

These patterns can be determined by careful analysis of the target text corpus, and

by talking to domain experts. If a corpus-based approach is used to acquire both

content determination and discourse planning rules, it is natural to combine the

two knowledge acquisition e�orts. This combined process is very similar to that
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discussed in Section 5.1.3 above, except that you should analyse the structure of

texts (what order messages occur in, and what discourse relations or cue words

connect messages) as well as what messages they contain. Similarly, when obtaining

feedback from experts, you can ask for comments on text structure as well as

comments on what information should be included.

The most popular technique used to implement this kind of discourse planning

makes use of what are called schemas (McKeown 1985; Kittredge et al. 1991). Each

schema is a pattern that speci�es how a particular text plan should be constructed

using smaller schemas or atomic messages, and also the discourse relation that holds

between these constituents. For example, a text plan that provides a response to

the query When is the next train to x? might be constructed using the following

two schemas:

(7) a. Inform-Next-Train-Schema �!

Sequence(Message:NUMBER-OF-TRAINS-IN-PERIOD,

Next-Train-Information-Schema)

b. Next-Train-Information-Schema �!

Elaboration(Message:IDENTITY, Message:DEPARTURE)

A schema-based discourse planning mechanism can be started after the content

determination process has already decided what messages to include in the text.

It is more common, however, for the schema system to call the content determi-

nation system `on demand' whenever it needs a particular type of message. In the

above example, for instance, the nlg system might start by executing the Inform-

Next-Train-Schema, which would then request the construction of a NUMBER-OF-

TRAINS-IN-PERIOD message; once this has been retrieved, the subsequent call to

instantiate the Next-Train-Information-Schema will result in requests for an IDEN-

TITY message and a DEPARTURE message. In this way, content determination is

interleaved with discourse planning, with the discourse planning process in overall

control.

Most schema-based systems allow general programming constructs, such as local

variables and conditional tests, to be included in the schema. Indeed, schema lan-

guages can be thought of as special-purpose programming languages, and they are

often implemented as macro or class libraries on top of an underlying programming

language. To date, most nlg developers have created their own schema languages;

however, as experience in the construction of nlg systems grows, we may see the

development of standardised schema languages.

6 Sentence Planning

In this section, we describe in more detail the three tasks we take to be involved in

the process of sentence planning. Section 6.1 addresses the subtask of sentence ag-

gregation; Section 6.2 looks at lexicalization; and Section 6.3 addresses the subtask

of referring expression generation.
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6.1 Sentence Aggregation

6.1.1 The task

Sentence aggregation is the task of combining two or more messages into one sen-

tence. In terms of the representations we are using here, the sentence aggregation

process takes as input a tree-structured text plan whose leaf nodes are messages, and

produces as output a new text plan whose leaf nodes are combinations of messages

that will eventually be realised as sentences. The aggregation system must decide

both what messages to aggregate to form each sentence, and also what syntactic

mechanism should be used to combine the messages.

As a simple example of sentence aggregation, consider again the example in

Figure 2, where the text plan contains three messages, roughly corresponding to

the following three clauses:

(8) a. there are 20 trains each day from Aberdeen to Glasgow

b. the next train is the Caledonian Express

c. the Caledonian Express leaves at 10am

Given this input, a few (by no means all) possible aggregation strategies are:

1. No aggregation: realise each message as a single sentence. The resulting text,

assuming some process that performs pronominalization, will be as follows:

(9) There are 20 trains each day from Aberdeen to Glasgow. The next

train is the Caledonian Express. It leaves at 10am.

2. Combine the last two messages using a relative clause. This strategy pro-

duces either of the following texts, depending on where the relative clause is

attached:

(10) a. There are 20 trains each day from Aberdeen to Glasgow. The

next train is the Caledonian Express, which leaves at 10am.

b. There are 20 trains each day from Aberdeen to Glasgow. The

next train, which leaves at 10am, is the Caledonian Express.

3. Combine the �rst two messages with the conjunction and. This results in the

following text:

(11) There are 20 trains each day from Aberdeen to Glasgow, and the

next train is the Caledonian Express. It leaves at 10am.

4. Combine all three messages using a conjunction and a relative clause. This

results in the following text:

(12) There are 20 trains each day from Aberdeen to Glasgow, and the

next train is the Caledonian Express, which leaves at 10am.

Although aggregation does not change the information content of a text, it does

contribute to readability and 
uency: compare the �rst and second alternatives

above, for example.
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6.1.2 Types of sentence aggregation

There are several kinds of sentence-formation aggregation, including the following.

Simple conjunction: The simplest form of aggregation is to use a connective

such as and to produce a sentence plan which communicates more than one

message.

Ellipsis: If the two messages being aggregated have a common constituent, it may

be possible to elide the repeated constituent. For example, messages which

might be independently realised as John went to the bank and John deposited

$50 can be aggregated to produce a sentence plan that is realised as John

went to the bank and deposited $50. See (Quirk and Greenbaum 1972) for a

discussion of the types of ellipsis that are possible in English.

Set Formation: If the messages being grouped together are identical except for a

single constituent, it may be possible to replace these with a single sentence

plan that contains a conjunctive constituent. For example, three messages

that would otherwise be realised independently as John bought an apple, John

bought a banana and John bought a pear can be combined into a sentence plan

realised as John bought an apple, a banana and a pear. Sometimes there are

alternative, usually domain-dependent, ways of describing sets. For example,

instead of explicitly enumerating the set Sunday, Monday, Tuesday, Wednes-

day, Thursday, Friday, and Saturday, the set of elements could be replaced

by a single concept corresponding to the expression every day of the week.

Embedding: This involves embedding one clause as a constituent of another. Rel-

ative clauses (see Section 6.1.1 for examples) are perhaps the most common

form of embedding.

In some cases it may be necessary to add cue words such as also or as well to increase


uency where aggregation was possible but nevertheless was not performed; see

Dalianis and Hovy (1996).

6.1.3 Creating appropriate aggregation rules

The most di�cult aspect of aggregation is deciding which of the numerous potential

aggregations should be performed. Potential sources of aggregation rules include

psycholinguistic knowledge on reading comprehension, writing handbooks, and the

advice of experienced practitioners. Unfortunately the advice given in such sources

is often too vague to be directly computationally implementable.

An alternative approach to developing aggregation rules is to try to determine

what types of aggregation occur in a corpus, and then propose rules which result in

similar aggregations being performed by the nlg system. This has the advantage of

naturally incorporating sublanguage or genre constraints: for example, newspaper

articles typically have longer sentences than technical manuals.

One general constraint used by many aggregation modules is to only aggregate

nodes that are siblings in the text plan. Given the text plan in Figure 2, for ex-

ample, this would rule out the third and fourth possibilities in Section 6.1.1. A
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weaker version of this rule is to also allow all descendants of an internal node to be

aggregated; this would allow the fourth alternative, but still reject the third.

6.2 Lexicalization

6.2.1 The tasks of lexicalization and referring expression generation

Lexicalization and the generation of referring expressions are tasks which focus

on the problem of choosing which words should be used to pick out or describe

particular domain concepts or entities. For our present purposes, we will take the

view that lexicalization is the task of choosing words to express a concept or relation,

while referring expression generation is the task of choosing words to identify a

particular domain entity.

Consider the following message:

(13)

2
6666666664

message-id: msg02

relation: DEPARTURE

arguments:

2
6664

departing-entity: CALEDONIAN-EXPRESS

departure-location: ABERDEEN

departure-time: 1000

3
7775

3
7777777775

This message mentions one domain relation, DEPARTURE, and three domain en-

tities: the train CALEDONIAN-EXPRESS, the location ABERDEEN, and the time

1000. This message could be realised in a number of ways including the following:

� We could use the word departs for the DEPARTURE relation, the phrase The

Caledonian Express for CALEDONIAN-EXPRESS, the name Aberdeen for AB-

ERDEEN, and 10am for the time of departure. This would result in the fol-

lowing sentence:

(14) The Caledonian Express departs from Aberdeen at 10am.

� Alternatively, we could use the word leaves for DEPARTURE, the pronoun it

for CALEDONIAN-EXPRESS, the deictic expression here for ABERDEEN, and

the temporal expression in �ve minutes for the departure time. This would

result in the following sentence:

(15) It leaves here in �ve minutes.

As the above examples show, lexicalization involves �nding a word or phrase that

can communicate a concept such asDEPARTURE to the hearer, while the generation

of referring expressions involves �nding a noun phrase that identi�es an entity such

as CALEDONIAN-EXPRESS to the hearer in the current discourse context.

Like aggregation, good lexicalization and referring expression generation are es-

sential for producing texts that are 
uent and easily readable. A poorly lexicalized

text may still be understandable, but readers will need to work harder to extract

its meaning.

Although lexicalization and referring expression generation are related tasks, and



Building Applied Natural Language Generation Systems 23

in principle nlg systems should probably use an integrated algorithm which carries

out both tasks, in practice these tasks have generally been discussed separately in

the research literature. We return to the task of referring expression generation in

Section 6.3, and focus �rst on lexicalization.

6.2.2 Approaches to lexicalization

The most common model of lexicalization is one where the lexicalization module

converts an input graph whose primitives are domain concepts and relations into

an output graph whose primitives are words and syntactic relations. Lexicalization

researchers have developed powerful graph-rewriting algorithms which use general

`dictionaries' that relate domain primitives and linguistic primitives; see for example

(Nogier and Zock 1992; Stede 1996). The dictionaries usually allow a single domain

primitive to be mapped into a linguistic structure that includes multiple words (for

example, DEPARTURE might be mapped to is the departure time of). They also

allow a single word to correspond to a structure containing several domain entities

(for example, hCHILD(x) ^ FEMALE(x)i can be mapped to the single word girl).

Graph-rewriting lexical choice is most useful in multilingual generation, when the

same conceptual content must be expressed in di�erent languages. The technique

handles quite naturally some kinds of lexical divergences between languages. For

instance, the English sentence He swam across the river can be expressed in French

as Il a travers la rivi�ere a la nage (literally He crossed the river by swimming):6 these

two messages are informationally equivalent, but not word-for-word isomorphic.

These two sentences can be generated from a common input by a graph-rewriting

lexicalization system that has both French and English dictionaries.

Most monolingual nlg systems perform lexical choice using methods which have

their origins in the work of (Goldman 1975), who used decision trees to encode

simple choice rules that are used to vary how concepts are expressed according to

various factors. For example, decision trees can be used to perform the following

tasks:

� Select di�erent words to realise a domain primitive in order to add variety

to a text. For example, we may want to alternate between leave and depart

as realisations of DEPARTURE. This follows the common writing advice that

words should not be overused.

� Select di�erent words to realise a concept in di�erent context. For example,

the discourse relation contrast can be expressed with but within a sentence,

but is better expressed as however if it relates messages in di�erent sentences.

� Select di�erent words based on stylistic parameters. For example, the concept

MALE-PARENT is probably best realised as father in formal contexts, but

may be better realised as dad in some informal contexts.

6 This example is from (Stede 1996).
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6.3 Referring Expression Generation

Referring expression generation is most commonly viewed as a description task, with

the goal of including enough information in the description to enable the hearer to

unambiguously identify the target entity. The amount of information needed to

do this will depend on the current discourse context. For example, consider the

italicised phrases in the following text:

(16) The next train is the Caledonian Express. It leaves at 10am. Many tourist

guidebooks highly recommend this train.

Here, the entity CALEDONIAN-EXPRESS is initially referred to by name (the Cale-

donian Express), which is a standard way of introducing a named object into a

discourse. The second reference to CALEDONIAN-EXPRESS uses the pronoun it;

this is again a standard way of referring to an object which has been mentioned

recently. The �nal reference is a de�nite description (this train), which is a standard

way of referring to an entity when it has already been introduced, but where the

context rules out the use of a pronoun. Generating each form of reference raises

di�erent issues.

Initial Introduction: Relatively little research has been carried out on the gener-

ation of initial references to objects. Two common strategies are to simply give

the name of the object (if it has a name), as was done in the CALEDONIAN-

EXPRESS example above; and to describe the physical location of an object,

as in the wrench in the blue toolbox.

Pronouns: Pronoun use, and in particular, pronoun interpretation, has been ex-

tensively studied in the natural language processing literature. There is less

work on pronoun generation. From a practical perspective, a simple algorithm

that works surprisingly well in many cases is to use a pronoun to refer to an

entity if the entity was mentioned in the previous clause, and there is no other

entity in the previous clause that the pronoun could possibly refer to.7 This

is a fairly conservative algorithm, in the sense that it will not generate a pro-

noun in many cases where one could be used; but it has the advantage that

it does not often inappropriately insert a pronoun. Of course, in some cases

pronouns must be used for syntactic reasons; this is usually handled by the

linguistic realisation module.

De�nite Descriptions: More research has been done on generating de�nite de-

scriptions; see for example (Dale 1992; Dale and Reiter 1995). From a practical

perspective, a simple but useful algorithm is to begin by including in the de-

scription a base noun describing the object (for example, train), and then (if

necessary) add adjectives or other modi�ers to distinguish the target object

from all other objects mentioned in the discourse. For example, if the discourse

has just discussed the Caledonian Express and no other trains, then the train

7 Entities which might otherwise be considered potential referents can often be ruled out
on easily-computable grounds: for example, it is not generally used to refer to people,
and cannot be used to refer to plural entities.
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can be used to refer to the Caledonian Express. However, if the discourse has

also mentioned the 1015am train from Aberdeen to Edinburgh, then a de�nite

description for CALEDONIAN-EXPRESS should include extra information to

distinguish this from the other train; so, we might build the description the

Glasgow train. A corpus analysis can be used to determine which modi�ers

are most commonly added to de�nite descriptions in the application domain.

7 Linguistic Realisation

7.1 The Task

Linguistic realisation is the task of generating grammatically correct sentences to

communicate messages. From a knowledge perspective, the realiser is the module

where knowledge about the grammar of the natural language is encoded. Some

simple examples of this syntactic and morphological knowledge are as follows:

Rules about verb group formation: The earlier stages of the generation pro-

cess may simply specify a tense (for example, past, present, or future), an

overall sentential form (for example, question or imperative), a polarity (for

example, negated), and so forth. It is the job of the realiser to construct an

appropriate verb group based on all these parameters. For example, if the

basic message to be conveyed is concerned with the relationship between the

concept NEXT-TRAIN and the domain entity CALEDONIAN-EXPRESS, we

might have the following variants:

(17) a. Future Tense:

The next train will be the Caledonian Express.

b. Simple Present Tense, Negated:

The next train is not the Caledonian Express.

c. Past Tense, Question:

Was the [last] train the Caledonian Express?

Rules about agreement: English requires certain words to agree in grammatical

number (singular or plural); for example, we say A cat sleeps but Two cats

sleep. The realiser can automatically enforce these rules as it constructs a

sentence.

Rules about syntactically required pronominalisation: In some cases, syn-

tactic rules require pronouns to be used in sentences. For example, we say

John saw himself in the mirror rather than John saw John in the mirror if

the person John saw was John himself.

The above are a small sample of some of the `peculiarities' of English which a

realiser can take care of automatically. This enables the rest of the nlg system to

work with a much simpler and cleaner model of the language, unencumbered by

these details.

In the rest of this section, we will describe a few of the more popular approaches

to linguistic realisation. Space prohibits an exhaustive review of all approaches to

this task.
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7.2 Realisation as the Inverse of Parsing

The process of linguistic realisation is sometimes viewed as the inverse of the parsing

process found in natural language analysis systems. In a parsing system, a grammar

is used to map from a surface sentence to a representation of the semantic content

of that sentence. Under the inverse parsing model, the task of the realiser is to

go in the opposite direction; that is, the realiser takes as input a representation of

the semantic content of a sentence that is similar to the representations produced

as output by parsers, and produces from this as output a surface sentence that

expresses this semantic content.8 A number of algorithms have been proposed for

this task, of which the best known is the semantic-head-driven algorithm (Shieber

et al. 1990).

The inverse parsing approach in principle allows bi-directional grammars

to be constructed. These grammars are declarative formulations of the correspon-

dences between semantic structures and syntactic structures, which can be used

to produce mappings in either direction. Bi-directional grammars are theoretically

very elegant. They also have the practical advantage of making it easier to build

dialogue systems which can understand the same range of syntactic and lexical

phenomena that they are able to produce, which is likely to help users of such

systems.

However, there are problems with making the inverse parsing approach work in

practice. In particular, the approach assumes that the input to an nlg realiser is

similar to the output of a parser in a natural language analysis system. However,

the representations that are naturally produced by the pre-realisation stages of nlg

(that is, text planning and sentence planning), such as spl, are in fact quite di�erent

from the representations currently required by the post-parser components of most

natural language analysis systems. Busemann (1996) discusses this issue and other

problems with inverse parsing.

7.3 Systemic Grammars

A popular approach to linguistic realisation that does have its basis in natural

language generation research is motivated by systemic functional linguistics

(sfl) (Halliday 1985). As suggested by its name, sfl is primarily concerned with the

functions of language; a systemic functional grammar describes how the functions

may be mapped into or expressed by surface forms. This view is, not surprisingly,

very appropriate in the context of nlg.

Systemic grammar emphasises choice-making: the central task is not viewed as

the �nding of a chain of grammar rules which convert an input structure into a

sentence, but rather that of making a series of increasingly �ne-grained choices

8 A common terminological misperception is that generation is the inverse of parsing,
but as we have seen in this paper, generation involves very much more than this. If
we are to seek ways of comparing work in language generation and work in language
analysis, then nlg as a whole corresponds to a multi-level language analysis model that
culminates in plan recognition and the incorporation of the results into a world model.
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which taken together determine the syntactic characteristics of the sentence being

constructed. In a linguistic realisation component based on systemic grammar, these

choices are often characterised as queries posed to the intended semantic content

and the wider environment in order to determine what function words should be

added, how words should be ordered, and so on. For a detailed exposition of the

use of systemic grammar in natural language generation, see (Matthiessen and

Bateman 1991). Bateman (1996) describes kpml, a linguistic realiser based on

systemic grammar which has been used in several nlg projects.

An alternative representation of the ideas in sfl can be found in Elhadad and

Robin's (1996) surge, a uni�cation-based systemically-oriented grammar of En-

glish that uses the functional unification formalism (fuf) as its underlying

mechanism.

Both fuf/surge and kpml are in the public domain.9 These are complicated

and sophisticated general purpose systems, with a correspondingly steep learning

curve required in order to use them successfully. For simple applications, simpler

approaches are often more appropriate.

7.4 Meaning-Text Grammars

Another popular approach to linguistic realisation in applied nlg systems is the

use of grammars based on Meaning-Text Theory (mtt) (Mel'�cuk 1988). mtt makes

use of a type of dependency grammar, and it divides the realisation process up into

several stages: a full implementation of mtt would have seven distinct levels of

representation, but most applied systems based on mtt use fewer. The RealPro

system (Lavoie and Rambow 1997), for example, takes as input a deep syntactic

structure (which is similar in content to an spl expression) and converts this into

text in the following stages:

� a deep syntactic component adds function words, and speci�es syntactic

relations between words;

� a surface syntactic component linearises the words;

� a morphological component in
ects the words;

� a graphical component adds punctuation and formatting; and

� a formatter converts the result into html, rtf, or ascii.

mtt realisers have been used by many applied nlg projects, including FoG (Gold-

berg et al. 1994), AlethGen (Coch 1996), and GhostWriter (Marchant et al. 1996).

The RealPro system described above is available as a commercial product, and

may be licensed free of charge to quali�ed academic institutions.10 Like fuf/surge

and kpml, RealPro is a complex system; making e�ective use of the system will

9 For information on obtaining fuf/surge, see http://www.cs.bgu.ac.il/surge. For
information on obtaining kpml, see
http://www.darmstadt.gmd.de/publish/komet/kpml.htm.

10 For more
information on RealPro, see http://www.cogentex.com/systems/realpro.html, or
email realpro@cogentex.com.
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require some e�ort being expended on learning about the system and the relevant

aspects of mtt.

7.5 Templates

Some applied natural language generation systems do not perform syntactic reali-

sation at all; instead, the content determination process directly speci�es messages

as text templates. This has an impact on a number of the tasks we have described

so far:

� Content determination and discourse planning proceed as described above

in Section 5, but the end result is a text plan whose leaves are templates

(which may include linguistic annotations, as mentioned in Section 4.3.2).

For example, a text plan might have the following as a leaf node:

(18) hx [root=depart, number=number(x)] at yi

hx=CALEDONIAN-EXPRESS, y=1000i

� Sentence aggregation basically works as described in Section 6.1, but it may

not be able to use certain types of aggregation such as ellipsis. This is because

templates do not specify the sentential content at a su�ciently abstract level

to permit the appropriate manipulations. Some types of aggregation are still

possible with templates, however, as discussed in (Geldof and Van de Velde

1997).

� Lexicalization is usually not performed, and instead the content determination

system chooses templates which contain appropriate words to describe domain

concepts. If it is important to not overuse words so as to maintain variety in a

text, it may be necessary to have several templates for the same basic message

and to put in place some mechanism for choosing between them.

� Referring expression generation generates slot �llers for the template. In the

above example, for instance, the referring expression generation mechanism

might determine that the concept CALEDONIAN-EXPRESS should be realised

by the pronoun it. It can be di�cult to generate good referring expressions

in template systems because the nlg system does not know what entities are

mentioned in the canned portion of the template.

� Realisation may take care of agreement (e.g., departs instead of depart) and

other aspects of morphology and orthography, but it does not perform any

syntactic processing.

The template approach often makes sense when only limited syntactic variability

is required in the output texts. For example, if all the sentences that are to be

generated are in the simple present tense, then there is no need for a complex real-

isation mechanism that can generate sentences in other tenses. Another advantage

of the template approach is that, for domain experts, templates are usually easier to

understand than mechanisms that manipulate more complex syntactic structures.

This may assist in the knowledge acquisition task.
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8 Conclusions

In this paper, we have:

� discussed the pros and cons of building natural language generation systems;

� discussed some of the techniques that can be used in determining the require-

ments to be met by such systems;

� presented an overview of the tasks that natural language generation systems

need to attend to; and

� described in some detail one particular architectural model that accommo-

dates these tasks.

There has been insu�cient space here to describe all the design issues involved in

building nlg systems, and all the technical problems that arise. For further in-

formation on these issues, the reader may wish to look at the wider nlg research

literature. Much of this is to be found in books arising from various international

and European workshops on Natural Language Generation that have been held over

the last ten years: see (Kempen 1987; McDonald and Bolc 1988; Zock and Sabah

1988; Dale et al. 1990; Paris et al. 1991; Dale et al. 1992; Horacek and Zock 1993;

Adorni and Zock 1996). Unfortunately, there are many workshops which have not

resulted in subsequent publications. Some of the papers presented at these work-

shops are available over the World Wide Web from the Computation and Language

server (http://xxx.lanl.gov/archive/cmp-lg); otherwise, obtaining information

about papers presented at workshops may require contacting the author or someone

else who was present at the workshop. Joining the Association for Computational

Linguistics' Special Interest Group in Natural Language Generation (siggen) is

a good way to keep in touch with upcoming events in the �eld. The siggen Web

site (http://www.cs.bgu.ac.il/siggen) gives general information about siggen,

plus conference announcements, papers, jobs, and other news of interest to the nlg

community.

If this article has been successful in its goal, it will have provided the reader with

a better appreciation of what is involved in building an applied natural language

generation system. We would be very interested to receive feedback from readers

who try to make use of the work presented here.
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