Corpora and Statistical Methods -

Lecture 8

Albert Gatt

Language models continued: smoothing and backoff

Good—Turing Frequency Estimation

Good-Turing method

® Introduced by Good (1953), but partly attributed to Alan
Turing
® work carried out at Bletchley Park during WWII

* “Simple Good-Turing” method (Gale and Sampson 1995)

® Main idea:

® re-estimate amount of probabﬂity mass assigned to low—frequency or
zero n-grams based on the number of n-grams (types) with higher

frequencies

Rationale

e (Given:

® sample frequency of a type (n-gram, aka bin, aka equivalence

class)

o GT provides:
® an estimate of the true population frequency of a type

® an estimate of the total probability of unseen types in the

population.

Ingredients

® the sample frequency C(x) of an n-gram x in a corpus of size

N with vocabulary size V
® the no. of n-gram types with frequency C, T_

® C*(x): the estimated true population frequency of an n-gram
x with sample frequency C(x)
® N.B. in a perfect sample, C(x) = C*(x)
® inreal life, C*(x) < C(x) (i.e. sample overestimates the true

frequency)

Some background

® Suppose:
® we had access to the true population probability of our n-grams
® we compare each occurrence of an n-gram x to a dice-throw: either the n-gram is x or not
® i.e. a binomial assumption

® Then, we could calculate the expected no of types with frequency C, T_ i.e the expected
frequency of frequency ’

T (N
E(TC):Z C (pi)c(l_ pi)(N_C)

where:
T = no. of n- gram types with frequency f

N = total no. of n-grams

Background continued

® Given an estimate of E(T), we could then calculate C*

¢ Fundamental underlying theorem:

1) E (TC +1)
E(Tc)

C*=(C+

* Note: this makes the “true” frequency C* a function of the
expected number of types with frequency C+1. Like Witten-
bell, it makes the adjusted count of zero-frequency events
dependent on events of frequency 1.

Background continued

® We can use the above to calculate adjusted frequencies

directly.

® Often, though, we want to calculate the total “missing
probability mass” for zero-count n-grams (the unseens):

T

P*.; (n-grams with zero frequency) = Wl

Where:
® T1 is the number of types with frequency 1

® N is the total number of items seen in training

Example of readjusted counts
® From: Jurafsky & Martin 2009

o Examples are bigram counts from two corpora.

AP Newswire Berkeley Restaurant

c (MLE) N, ¢ (GT) c (MLE) N, *(GT)

0 74,671,100,000 0.0000270 0 2,081,496 0.002553
1 2,018,046 0.446 1 5315 0.533960
2 449,721 1.26 2 1419 1.357294
3 188,933 2.24 3 642 2.373832
4 105,668 3.24 4 381 4.081365
5 68,379 4.22 5 311 3.781350
6 48,190 5.19 6 196 4.500000

A little problem

E(T
C* — (C +1) (C+1)
E(T;)
® The GT theorem assumes that we know the expected

population count of types!

® We’ve assumed that we get this from a corpus, but this, of course, is
not the case.

® Secondly, T, will often be zero! For example, it’s quite possible
to find several n-grams with frequency 100, and no n-grams with

frequency 101!

® Note that this is more typical for high frequencies, than low ones.

Low frequencies and gaps

SO ® [ow C: linear trend.
st s o * Higher C: angular
Pt discontinuity.

* Frequencies in corpus dispiay
' “jumps” and so do frequencies

of frequencies.

® This implies the presence of

gaps at higher frequencies.

log10 frequency of frequency
2

0 1 2 3 4
log10 frequency
(after Gale and Sampson 1995)

Possible solution

1. Use Good-Turing for n-grams
with corpus frequency less than

some constant k (typically, k = 5).

[0 Low-frequency types are
numerous, so GT is reliable.

O High—frequency types are

assumed to be near the “truth”.

2. To avoid gaps (where T | = 0),

empirically estimate a function

S(C) that acts as a proxy for E(T.)

< (C+1)

(Cif C>k

T]
€+ otherwise

C*=(C+1])

L C

S(C+1)
S(C)

Proxy function for gaps

log10 S,

°)
itsanfe For any sample C, let:
| ¢ S 2 X Tf
t::i C —
* N c"-C
] +++ ++ : . Where :
o iR - ® (7 is the next highest non-zero
= * - frequency
+ e C’is the previous non-zero
0 1 2 3 4 frequency
loglO frequency

(after Gale and Sampson 1995)

Gale and Sampson’s combined proposal

® For low frequencies (< k), use standard equation, assuming E(T.) =T

TC +1
TC
* If we have gaps (i.e. T =0), we use our proxy function for T, Obtained through linear regression to
fit the log-log curve
S(C+1)

* And for high frequencies, we can assume that C* = C

C*=(C+1

C*=(C+1)

* Finally, estimate probability of n-gram:

C*(w..w,)
N

P*ar (W..w,) =

GT Estimation: Final step

o GT gives approximations to probabilities.

® Re-estimated probabilities of n-grams won’t sum to 1

® necessary to re-normalise

* Gale/Sampson 1995:

N, If C=0

N
pc':‘Tnormalised = N C -
(1- 1) otherwise
" NN

A final word on GT smoothing

® In practice, GT is very seldom used on its own.

® Most frequently, we use GT with backoff, about which,

more later...

Held-out estimation & cross-validation

Held-out estimation: General idea

e “hold back” some training data
® create our language model

® compare, for each n-gram (w,...w):
® C.: estimated frequency of the n- gram based on training data

° C: frequency of the n-gram in the held-out data

Held-out estimation

® Define Tot. as:

® total no. of times that n-grams with frequency C in the training corpus

actually occurred in the held-out data

Tot. = > Cp (W)

g Wi G (v,)=C}

® Re-estimate the probability:

Tot.

B, (W,...w,)= If C(w,..w)=C

C

Cross-validation

¢ Problem with held-out estimation:

® our training set is smaller

® Way around this:
® divide training data into training + validation data (roughly

equal sizes)
® use each half first as training then as validation (i.e. train twice)

® take a mean

e

Cross-Validation
(a.k.a. deleted estimation)

* Use training and validation data

Split training data: A B

train on A, validate on B train - Vvalidate ‘—} -

van 1 |
combine model 1 & 2 Model1 + -_>_

train on B, validate on A validate

T

/

Cross-Validation

_ Toté® 5 _ Tote
TCAN " TCBN

R,

Combined estimate (arithmetic mean):

Totl® +Tot2"

P —
TN TS

Combining estimators: backoff and interpolation

The rationale

e We would like to balance between reliability and
discrimination:
® use trigram where useful

® otherwise back off to bigram, unigram

* How can you develop a model to utilize ditferent length n-

grams as appropriate?

Interpolation vs. Backoff

® Interpolation: compute probability of an n-gram as a function
of:
® The n-gram itself
* All lower-order n-grams
® Probabilities are linearly interpolated.

® [ower-order n-grams are always used.

e Backoff:

® If n-gram exists in model, use that

e Else fall back to lower order n-grams

Simple interpolation: trigram example

® Combine all estimates, weighted by a factor.

P(Wn | Wn—ZWn—l) — ﬂlp(wn | Wn—lwn—z)
+ /IZP(Wn |Wn—1)

+ AP(W,)
* All parameters sum to 1: Z/l, =1

e NB: we have different interpolation parameters for the
various n-gram sizes.

More sophisticated version

® Suppose we have the trigrams:
® (the dog barked)
® (the puppy barked)

® Suppose (the dog) occurs several times in our corpus, but not
(the puppy)
® In our interpolation, we might want to weight trigrams of

the form (the dog _) more than (the puppy _) (because the

former is composed of a more reliable bigram)

* Rather than using the same parameter for all trigrams, we

could condition on the initial bigrarn.

Sophisticated interpolation: trigram
example

* Combine all estimates, weighted by factors that depend on

the context.

II:\)(W?, | W W,) = 21 (W1W2) P (Ws | Wi W,)
+ 2*2 (W1W2) P (Ws | W,)
+ A (W,) P(wsy)

Where do parameters come from?
* Typically:

® We estimate counts from training data.
® We estimate parameters from held-out data.

® The lambdas are chosen so that they maximise the likelihood on
the held-out data.

* Often, the expectation maximisation (EM) algorithm is used

to discover the right values to plug into the equations.

® (more on this later)

Backoff

e Recall that backoff models only use lower order n- grams

when the higher order one is unavailable.

® Best known model by Katz (1987).
® Uses backoft with smoothed probabilities

® Smoothed probabilities obtained using Good-Turing estimation.

Backoff: trigram example

e Backoff estimate:

Pkatz (Ws | W1W2) =

e That is:

(P (W, | W,w,) if C(w,w,w,)>0
CZ(W1W2) I:)katz (W3 | WZ) If C(Wlwz) > O
o (W,) P (w;) otherwise

® If the trigram has count > 0, we use the smoothed (P*) estimate

® If not, we recursively back off to lower orders, interpolating

with a paramater (alpha)

Backoff vs. Simple smoothing

* With Good-Turing smoothing, we typically end up with the
“leftover” probability mass that is distributed equally among

the unseens.

® So GF tells us how much leftover probability there is.

e Backoff gives us a better way of distributing this mass among
unseen trigrams, by relying on the counts of their component

bigrarns and unigrams.

® So backoff tells us how to divide that leftover probability.

Why we need those alphas

* If we rely on true probabilities, then for a given word and a given n-
gram window, the probability of the word sums to 1:

D P(w, [wiw;) =1
1)

® But if we back off to lower-order model when the trigram
probability is 0, we're adding extra probability mass, and the sum
will now exceed 1.

e We therefore need:

® P* to discount the original MLE estimate (P)

® Alphas to ensure that the probability from the lower-order n-grams
sums up to exactly the amount we discounted in P*.

Computing the alphas - |

® Recall: we have C(w,w,w;) = 0
® Let B(w,w,) represent the amount of probability left over
when we discount (seen) trigrams containing w;

IB(W1W2) =1- ZP*(Ws |W1W2)

W5:C (W W, W4)>0

The sum of probabilities P for seen trigrams involving W,
(preceded by any two tokens) is 1. The smoothed probabilities P*

sum to less than 1. We're taking the remainder.

Computing the alphas - |l

* We now compute alpha:

JACALDY
Z I:)katz (W3 | WZ)

W5:C (W W, W4)=0

a(WW,) =

The denominator sums over all unseen trigrams involving our bigrarn.

We distribute the remaining mass B(w,w,) overall all those trigrams.

What about unseen bigrams?

® So what happens it even (w,w,) in (w,w,w;) has count zero?

(w, |ww,) =R, (W, |w,) If C(w,w,)=0

katz katz

® [.e. we fall to an even lower order. Moreover:
P*(w, |ww,)=0I1f C(w,w,)=0

® And:

pww,) =11t Clwyw,) =0

Problems with Backing-Off

* Suppose (W, w;) is common but trigram (w, w, w;) is

unsecen

® This may be a meaningful gap, rather than a gap due to chance

and scarce data

® i.e., a“grammatical null”

® May not want to back-off to lower-order probability

® in this case, p = 0 is accurate!

References
® Gale, WA., and Sampson, G. (1995). Good-Turing frequency

estimation without tears. Journal of Quantitative Linguistics, 2:

217-237

