
Albert Gatt

Corpora and Statistical Methods –

Lecture 8

Language models continued: smoothing and backoff

Part 1

Good-Turing Frequency Estimation

Good-Turing method

 Introduced by Good (1953), but partly attributed to Alan

Turing

 work carried out at Bletchley Park during WWII

 “Simple Good-Turing” method (Gale and Sampson 1995)

 Main idea:

 re-estimate amount of probability mass assigned to low-frequency or

zero n-grams based on the number of n-grams (types) with higher

frequencies

Rationale

 Given:

 sample frequency of a type (n-gram, aka bin, aka equivalence

class)

 GT provides:

 an estimate of the true population frequency of a type

 an estimate of the total probability of unseen types in the

population.

Ingredients

 the sample frequency C(x) of an n-gram x in a corpus of size

N with vocabulary size V

 the no. of n-gram types with frequency C, Tc

 C*(x): the estimated true population frequency of an n-gram

x with sample frequency C(x)

 N.B. in a perfect sample, C(x) = C*(x)

 in real life, C*(x) < C(x) (i.e. sample overestimates the true

frequency)

Some background

 Suppose:
 we had access to the true population probability of our n-grams
 we compare each occurrence of an n-gram x to a dice-throw: either the n-gram is x or not
 i.e. a binomial assumption

 Then, we could calculate the expected no of types with frequency C, Tc, i.e the expected
frequency of frequency

where:

TC = no. of n-gram types with frequency f

N = total no. of n-grams

T

i

CN

i

C

ic pp
C

N
TE

1

)()1()()(

Background continued

 Given an estimate of E(TC), we could then calculate C*

 Fundamental underlying theorem:

 Note: this makes the “true” frequency C* a function of the
expected number of types with frequency C+1. Like Witten-
bell, it makes the adjusted count of zero-frequency events
dependent on events of frequency 1.

)(

)(
)1(* 1

C

C

TE

TE
CC

Background continued
 We can use the above to calculate adjusted frequencies

directly.

 Often, though, we want to calculate the total “missing
probability mass” for zero-count n-grams (the unseens):

Where:

 T1 is the number of types with frequency 1

 N is the total number of items seen in training

N

T
P GT

1frequency) zero with grams-n(*

Example of readjusted counts

 From: Jurafsky & Martin 2009

 Examples are bigram counts from two corpora.

A little problem

 The GT theorem assumes that we know the expected
population count of types!

 We’ve assumed that we get this from a corpus, but this, of course, is
not the case.

 Secondly, TC+1 will often be zero! For example, it’s quite possible
to find several n-grams with frequency 100, and no n-grams with
frequency 101!

 Note that this is more typical for high frequencies, than low ones.

)(

)(
)1(* 1

C

C

TE

TE
CC

Low frequencies and gaps

 Low C: linear trend.

 Higher C: angular

discontinuity.

 Frequencies in corpus display

“jumps” and so do frequencies

of frequencies.

 This implies the presence of

gaps at higher frequencies.

log10 frequency

(after Gale and Sampson 1995)

lo
g1

0
fr

eq
ue

nc
y

of
 f

re
qu

en
cy

Possible solution

1. Use Good-Turing for n-grams
with corpus frequency less than
some constant k (typically, k = 5).
 Low-frequency types are

numerous, so GT is reliable.

 High-frequency types are
assumed to be near the “truth”.

2. To avoid gaps (where Tc+1 = 0),
empirically estimate a function
S(C) that acts as a proxy for E(TC)

 otherwise)1(

 if

*
1

C

C

T

T
C

kCC

C

)(

)1(
)1(*

CS

CS
CC

Proxy function for gaps

 For any sample C, let:

 where:

 C’’ is the next highest non-zero

frequency

 C’ is the previous non-zero

frequency
log10 frequency

(after Gale and Sampson 1995)

lo
g1

0
S C '''

2

CC

T
S

f

C

Gale and Sampson’s combined proposal

 For low frequencies (< k), use standard equation, assuming E(TC) = TC

 If we have gaps (i.e. TC =0), we use our proxy function for TC. Obtained through linear regression to
fit the log-log curve

 And for high frequencies, we can assume that C* = C

 Finally, estimate probability of n-gram:

C

C

T

T
CC 1)1(*

N

wwC
wwP n

nGT

)...(*
)...(* 1

1

)(

)1(
)1(*

CS

CS
CC

GT Estimation: Final step

 GT gives approximations to probabilities.

 Re-estimated probabilities of n-grams won’t sum to 1

 necessary to re-normalise

 Gale/Sampson 1995:

otherwise
N

N
-1

0 C if

*

1

1

N

C
N

N

p
normalisedGT

A final word on GT smoothing

 In practice, GT is very seldom used on its own.

 Most frequently, we use GT with backoff, about which,

more later...

Held-out estimation & cross-validation

Held-out estimation: General idea

 “hold back” some training data

 create our language model

 compare, for each n-gram (w1…wn):

 Ct: estimated frequency of the n-gram based on training data

 Ch: frequency of the n-gram in the held-out data

Held-out estimation

 Define TotC as:

 total no. of times that n-grams with frequency C in the training corpus

actually occurred in the held-out data

 Re-estimate the probability:

})...(:...{

1

11

)...(
CwwCww

nhC

ntn

wwCTot

C...wC(w
NT

Tot
wwP n

C

C
nh) if)...(11

Cross-validation

 Problem with held-out estimation:

 our training set is smaller

 Way around this:

 divide training data into training + validation data (roughly

equal sizes)

 use each half first as training then as validation (i.e. train twice)

 take a mean

Cross-Validation
(a.k.a. deleted estimation)

 Use training and validation data

A B

train validate

validate train

Model 1

Model 2

Model 1 Model 2+ Final Model

Split training data:

train on A, validate on B

train on B, validate on A

combine model 1 & 2

Cross-Validation

Combined estimate (arithmetic mean):

NT

Tot
P

A

C

AB

C
h

NT

Tot
P

B

C

BA

C
h

)(B

C

A

C

BA

C

AB

C
ho

TTN

TotTot
P

Combining estimators: backoff and interpolation

The rationale

 We would like to balance between reliability and

discrimination:

 use trigram where useful

 otherwise back off to bigram, unigram

 How can you develop a model to utilize different length n-

grams as appropriate?

Interpolation vs. Backoff

 Interpolation: compute probability of an n-gram as a function

of:

 The n-gram itself

 All lower-order n-grams

 Probabilities are linearly interpolated.

 Lower-order n-grams are always used.

 Backoff:

 If n-gram exists in model, use that

 Else fall back to lower order n-grams

Simple interpolation: trigram example

 Combine all estimates, weighted by a factor.

 All parameters sum to 1:

 NB: we have different interpolation parameters for the
various n-gram sizes.

)(

)|(

)|()|(

3

12

21112

^

n

nn

nnnnnn

wP

wwP

wwwPwwwP

i

i 1

More sophisticated version

 Suppose we have the trigrams:

 (the dog barked)

 (the puppy barked)

 Suppose (the dog) occurs several times in our corpus, but not

(the puppy)

 In our interpolation, we might want to weight trigrams of

the form (the dog _) more than (the puppy _) (because the

former is composed of a more reliable bigram)

 Rather than using the same parameter for all trigrams, we

could condition on the initial bigram.

Sophisticated interpolation: trigram

example

 Combine all estimates, weighted by factors that depend on

the context.

)()(

)|()(

)|()()|(

3213

23212

213211213

^

wPww

wwPww

wwwPwwwwwP

Where do parameters come from?

 Typically:

 We estimate counts from training data.

 We estimate parameters from held-out data.

 The lambdas are chosen so that they maximise the likelihood on

the held-out data.

 Often, the expectation maximisation (EM) algorithm is used

to discover the right values to plug into the equations.

 (more on this later)

Backoff

 Recall that backoff models only use lower order n-grams

when the higher order one is unavailable.

 Best known model by Katz (1987).

 Uses backoff with smoothed probabilities

 Smoothed probabilities obtained using Good-Turing estimation.

Backoff: trigram example

 Backoff estimate:

 That is:

 If the trigram has count > 0, we use the smoothed (P*) estimate

 If not, we recursively back off to lower orders, interpolating
with a paramater (alpha)

otherwisewPw

wwC ifwwPww

wwwC ifwwwP

wwwP katzkatz

)(*)(

0)()|()(

0)()|(*

)|(

32

212321

321213

213

Backoff vs. Simple smoothing

 With Good-Turing smoothing, we typically end up with the

“leftover” probability mass that is distributed equally among

the unseens.

 So GF tells us how much leftover probability there is.

 Backoff gives us a better way of distributing this mass among

unseen trigrams, by relying on the counts of their component

bigrams and unigrams.

 So backoff tells us how to divide that leftover probability.

Why we need those alphas

 If we rely on true probabilities, then for a given word and a given n-
gram window, the probability of the word sums to 1:

 But if we back off to lower-order model when the trigram
probability is 0, we’re adding extra probability mass, and the sum
will now exceed 1.

 We therefore need:
 P* to discount the original MLE estimate (P)
 Alphas to ensure that the probability from the lower-order n-grams

sums up to exactly the amount we discounted in P*.

ji

jix wwwP

,

1)|(

Computing the alphas -- I

 Recall: we have C(w1w2w3) = 0

 Let ß(w1w2) represent the amount of probability left over

when we discount (seen) trigrams containing w3

)|(*1)(21

0)(:

321

3213

wwwPww
wwwCw

The sum of probabilities P for seen trigrams involving w3

(preceded by any two tokens) is 1. The smoothed probabilities P*

sum to less than 1. We’re taking the remainder.

Computing the alphas -- II

 We now compute alpha:

0)(:

23

21
21

3213

)|(

)(
)(

wwwCw

katz wwP

ww
ww

The denominator sums over all unseen trigrams involving our bigram.

We distribute the remaining mass ß(w1w2) overall all those trigrams.

What about unseen bigrams?

 So what happens if even (w1w2) in (w1w2w3) has count zero?

 I.e. we fall to an even lower order. Moreover:

 And:

0))|()|(223213 wC(w if wwPwwwP 1katzkatz

0)0)|(* 2213 wC(w if wwwP 1

0)1)(221 wC(w if ww 1

Problems with Backing-Off
 Suppose (w2 w3) is common but trigram (w1 w2 w3) is

unseen

 This may be a meaningful gap, rather than a gap due to chance

and scarce data

 i.e., a “grammatical null”

 May not want to back-off to lower-order probability

 in this case, p = 0 is accurate!

References

 Gale, W.A., and Sampson, G. (1995). Good-Turing frequency

estimation without tears. Journal of Quantitative Linguistics, 2:

217-237

