
Albert Gatt

Corpora and Statistical Methods –

Lecture 8

Language models continued: smoothing and backoff

Part 1

Good-Turing Frequency Estimation

Good-Turing method

 Introduced by Good (1953), but partly attributed to Alan

Turing

 work carried out at Bletchley Park during WWII

 “Simple Good-Turing” method (Gale and Sampson 1995)

 Main idea:

 re-estimate amount of probability mass assigned to low-frequency or

zero n-grams based on the number of n-grams (types) with higher

frequencies

Rationale

 Given:

 sample frequency of a type (n-gram, aka bin, aka equivalence

class)

 GT provides:

 an estimate of the true population frequency of a type

 an estimate of the total probability of unseen types in the

population.

Ingredients

 the sample frequency C(x) of an n-gram x in a corpus of size

N with vocabulary size V

 the no. of n-gram types with frequency C, Tc

 C*(x): the estimated true population frequency of an n-gram

x with sample frequency C(x)

 N.B. in a perfect sample, C(x) = C*(x)

 in real life, C*(x) < C(x) (i.e. sample overestimates the true

frequency)

Some background

 Suppose:
 we had access to the true population probability of our n-grams
 we compare each occurrence of an n-gram x to a dice-throw: either the n-gram is x or not
 i.e. a binomial assumption

 Then, we could calculate the expected no of types with frequency C, Tc, i.e the expected
frequency of frequency

where:

TC = no. of n-gram types with frequency f

N = total no. of n-grams














T

i

CN

i

C

ic pp
C

N
TE

1

)()1()()(

Background continued

 Given an estimate of E(TC), we could then calculate C*

 Fundamental underlying theorem:

 Note: this makes the “true” frequency C* a function of the
expected number of types with frequency C+1. Like Witten-
bell, it makes the adjusted count of zero-frequency events
dependent on events of frequency 1.

)(

)(
)1(* 1

C

C

TE

TE
CC 

Background continued
 We can use the above to calculate adjusted frequencies

directly.

 Often, though, we want to calculate the total “missing
probability mass” for zero-count n-grams (the unseens):

Where:

 T1 is the number of types with frequency 1

 N is the total number of items seen in training

N

T
P GT

1frequency) zero with grams-n(* 

Example of readjusted counts

 From: Jurafsky & Martin 2009

 Examples are bigram counts from two corpora.

A little problem

 The GT theorem assumes that we know the expected
population count of types!

 We’ve assumed that we get this from a corpus, but this, of course, is
not the case.

 Secondly, TC+1 will often be zero! For example, it’s quite possible
to find several n-grams with frequency 100, and no n-grams with
frequency 101!

 Note that this is more typical for high frequencies, than low ones.

)(

)(
)1(* 1

C

C

TE

TE
CC 

Low frequencies and gaps

 Low C: linear trend.

 Higher C: angular

discontinuity.

 Frequencies in corpus display

“jumps” and so do frequencies

of frequencies.

 This implies the presence of

gaps at higher frequencies.

log10 frequency

(after Gale and Sampson 1995)

lo
g1

0
fr

eq
ue

nc
y

of
 f

re
qu

en
cy

Possible solution

1. Use Good-Turing for n-grams
with corpus frequency less than
some constant k (typically, k = 5).
 Low-frequency types are

numerous, so GT is reliable.

 High-frequency types are
assumed to be near the “truth”.

2. To avoid gaps (where Tc+1 = 0),
empirically estimate a function
S(C) that acts as a proxy for E(TC)














 otherwise)1(

 if

*
1

C

C

T

T
C

kCC

C

)(

)1(
)1(*

CS

CS
CC




Proxy function for gaps

 For any sample C, let:

 where:

 C’’ is the next highest non-zero

frequency

 C’ is the previous non-zero

frequency
log10 frequency

(after Gale and Sampson 1995)

lo
g1

0
S C '''

2

CC

T
S

f

C





Gale and Sampson’s combined proposal

 For low frequencies (< k), use standard equation, assuming E(TC) = TC

 If we have gaps (i.e. TC =0), we use our proxy function for TC. Obtained through linear regression to
fit the log-log curve

 And for high frequencies, we can assume that C* = C

 Finally, estimate probability of n-gram:

C

C

T

T
CC 1)1(* 

N

wwC
wwP n

nGT

)...(*
)...(* 1

1 

)(

)1(
)1(*

CS

CS
CC




GT Estimation: Final step

 GT gives approximations to probabilities.

 Re-estimated probabilities of n-grams won’t sum to 1

 necessary to re-normalise

 Gale/Sampson 1995:























otherwise
N

N
-1

0 C if

*

1

1

N

C
N

N

p
normalisedGT

A final word on GT smoothing

 In practice, GT is very seldom used on its own.

 Most frequently, we use GT with backoff, about which,

more later...

Held-out estimation & cross-validation

Held-out estimation: General idea

 “hold back” some training data

 create our language model

 compare, for each n-gram (w1…wn):

 Ct: estimated frequency of the n-gram based on training data

 Ch: frequency of the n-gram in the held-out data

Held-out estimation

 Define TotC as:

 total no. of times that n-grams with frequency C in the training corpus

actually occurred in the held-out data

 Re-estimate the probability:





})...(:...{

1

11

)...(
CwwCww

nhC

ntn

wwCTot

C...wC(w
NT

Tot
wwP n

C

C
nh ) if)...(11

Cross-validation

 Problem with held-out estimation:

 our training set is smaller

 Way around this:

 divide training data into training + validation data (roughly

equal sizes)

 use each half first as training then as validation (i.e. train twice)

 take a mean

Cross-Validation
(a.k.a. deleted estimation)

 Use training and validation data

A B

train validate

validate train

Model 1

Model 2

Model 1 Model 2+ Final Model

Split training data:

train on A, validate on B

train on B, validate on A

combine model 1 & 2

Cross-Validation

Combined estimate (arithmetic mean):

NT

Tot
P

A

C

AB

C
h 

NT

Tot
P

B

C

BA

C
h 

)(B

C

A

C

BA

C

AB

C
ho

TTN

TotTot
P






Combining estimators: backoff and interpolation

The rationale

 We would like to balance between reliability and

discrimination:

 use trigram where useful

 otherwise back off to bigram, unigram

 How can you develop a model to utilize different length n-

grams as appropriate?

Interpolation vs. Backoff

 Interpolation: compute probability of an n-gram as a function

of:

 The n-gram itself

 All lower-order n-grams

 Probabilities are linearly interpolated.

 Lower-order n-grams are always used.

 Backoff:

 If n-gram exists in model, use that

 Else fall back to lower order n-grams

Simple interpolation: trigram example

 Combine all estimates, weighted by a factor.

 All parameters sum to 1:

 NB: we have different interpolation parameters for the
various n-gram sizes.

)(

)|(

)|()|(

3

12

21112

^

n

nn

nnnnnn

wP

wwP

wwwPwwwP

















 
i

i 1

More sophisticated version

 Suppose we have the trigrams:

 (the dog barked)

 (the puppy barked)

 Suppose (the dog) occurs several times in our corpus, but not

(the puppy)

 In our interpolation, we might want to weight trigrams of

the form (the dog _) more than (the puppy _) (because the

former is composed of a more reliable bigram)

 Rather than using the same parameter for all trigrams, we

could condition on the initial bigram.

Sophisticated interpolation: trigram

example

 Combine all estimates, weighted by factors that depend on

the context.

)()(

)|()(

)|()()|(

3213

23212

213211213

^

wPww

wwPww

wwwPwwwwwP













Where do parameters come from?

 Typically:

 We estimate counts from training data.

 We estimate parameters from held-out data.

 The lambdas are chosen so that they maximise the likelihood on

the held-out data.

 Often, the expectation maximisation (EM) algorithm is used

to discover the right values to plug into the equations.

 (more on this later)

Backoff

 Recall that backoff models only use lower order n-grams

when the higher order one is unavailable.

 Best known model by Katz (1987).

 Uses backoff with smoothed probabilities

 Smoothed probabilities obtained using Good-Turing estimation.

Backoff: trigram example

 Backoff estimate:

 That is:

 If the trigram has count > 0, we use the smoothed (P*) estimate

 If not, we recursively back off to lower orders, interpolating
with a paramater (alpha)















otherwisewPw

wwC ifwwPww

wwwC ifwwwP

wwwP katzkatz

)(*)(

0)()|()(

0)()|(*

)|(

32

212321

321213

213





Backoff vs. Simple smoothing

 With Good-Turing smoothing, we typically end up with the

“leftover” probability mass that is distributed equally among

the unseens.

 So GF tells us how much leftover probability there is.

 Backoff gives us a better way of distributing this mass among

unseen trigrams, by relying on the counts of their component

bigrams and unigrams.

 So backoff tells us how to divide that leftover probability.

Why we need those alphas

 If we rely on true probabilities, then for a given word and a given n-
gram window, the probability of the word sums to 1:

 But if we back off to lower-order model when the trigram
probability is 0, we’re adding extra probability mass, and the sum
will now exceed 1.

 We therefore need:
 P* to discount the original MLE estimate (P)
 Alphas to ensure that the probability from the lower-order n-grams

sums up to exactly the amount we discounted in P*.

 

ji

jix wwwP

,

1)|(

Computing the alphas -- I

 Recall: we have C(w1w2w3) = 0

 Let ß(w1w2) represent the amount of probability left over

when we discount (seen) trigrams containing w3

)|(*1)(21

0)(:

321

3213

wwwPww
wwwCw






The sum of probabilities P for seen trigrams involving w3

(preceded by any two tokens) is 1. The smoothed probabilities P*

sum to less than 1. We’re taking the remainder.

Computing the alphas -- II

 We now compute alpha:






0)(:

23

21
21

3213

)|(

)(
)(

wwwCw

katz wwP

ww
ww




The denominator sums over all unseen trigrams involving our bigram.

We distribute the remaining mass ß(w1w2) overall all those trigrams.

What about unseen bigrams?

 So what happens if even (w1w2) in (w1w2w3) has count zero?

 I.e. we fall to an even lower order. Moreover:

 And:

0))|()|(223213  wC(w if wwPwwwP 1katzkatz

0)0)|(* 2213  wC(w if wwwP 1

0)1)(221  wC(w if ww 1

Problems with Backing-Off
 Suppose (w2 w3) is common but trigram (w1 w2 w3) is

unseen

 This may be a meaningful gap, rather than a gap due to chance

and scarce data

 i.e., a “grammatical null”

 May not want to back-off to lower-order probability

 in this case, p = 0 is accurate!

References

 Gale, W.A., and Sampson, G. (1995). Good-Turing frequency

estimation without tears. Journal of Quantitative Linguistics, 2:

217-237

