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Language models continued: smoothing and backoff

Part 1



Good-Turing Frequency Estimation



Good-Turing method

 Introduced by Good (1953), but partly attributed to Alan 

Turing

 work carried out at Bletchley Park during WWII 

 “Simple Good-Turing” method (Gale and Sampson 1995)

 Main idea:

 re-estimate amount of probability mass assigned to low-frequency or 

zero n-grams based on the number of n-grams (types) with higher 

frequencies



Rationale

 Given:

 sample frequency of a type (n-gram, aka bin, aka equivalence 

class) 

 GT provides:

 an estimate of the true population frequency of a type

 an estimate of the total probability of unseen types in the 

population.



Ingredients

 the sample frequency C(x) of an n-gram x in a corpus of size 

N with vocabulary size V

 the no. of n-gram types with frequency C, Tc

 C*(x): the estimated true population frequency of an n-gram 

x with sample frequency C(x)

 N.B. in a perfect sample, C(x) = C*(x)

 in real life, C*(x) < C(x) (i.e. sample overestimates the true 

frequency)



Some background

 Suppose:
 we had access to the true population probability of our n-grams
 we compare each occurrence of an n-gram x to a dice-throw: either the n-gram is x or not
 i.e. a binomial assumption

 Then, we could calculate the expected no of types with frequency C, Tc, i.e the expected 
frequency of frequency

where:

TC = no. of n-gram types with frequency f

N = total no. of n-grams
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Background continued

 Given an estimate of E(TC), we could then calculate C*

 Fundamental underlying theorem:

 Note: this makes the “true” frequency C* a function of the 
expected number of types with frequency C+1. Like Witten-
bell, it makes the adjusted count of zero-frequency events 
dependent on events of frequency 1.

)(

)(
)1(* 1

C

C

TE

TE
CC 



Background continued
 We can use the above to calculate adjusted frequencies 

directly.

 Often, though, we want to calculate the total “missing 
probability mass” for zero-count n-grams (the unseens):

Where:

 T1 is the number of types with frequency 1

 N is the total number of items seen in training
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Example of readjusted counts

 From: Jurafsky & Martin 2009

 Examples are bigram counts from two corpora.



A little problem

 The GT theorem assumes that we know the expected 
population count of types!

 We’ve assumed that we get this from a corpus, but this, of course, is 
not the case.

 Secondly, TC+1 will often be zero! For example, it’s quite possible 
to find several n-grams with frequency 100, and no n-grams with 
frequency 101!

 Note that this is more typical for high frequencies, than low ones.
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Low frequencies and gaps

 Low C: linear trend.

 Higher C: angular 

discontinuity.

 Frequencies in corpus display 

“jumps” and so do frequencies 

of frequencies.

 This implies the presence of 

gaps at higher frequencies.

log10 frequency

(after Gale and Sampson 1995)
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Possible solution

1. Use Good-Turing for n-grams 
with corpus frequency less than 
some constant k (typically, k = 5). 
 Low-frequency types are 

numerous, so GT is reliable.

 High-frequency types are 
assumed to be near the “truth”.

2. To avoid gaps (where Tc+1 = 0), 
empirically estimate a function 
S(C) that acts as a proxy for E(TC)
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Proxy function for gaps

 For any sample C, let:

 where: 

 C’’ is the next highest non-zero 

frequency

 C’ is the previous non-zero 

frequency
log10 frequency

(after Gale and Sampson 1995)
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Gale and Sampson’s combined proposal

 For low frequencies (< k), use standard equation, assuming E(TC) = TC

 If we have gaps (i.e. TC =0), we use our proxy function for TC. Obtained through linear regression to 
fit the log-log curve

 And for high frequencies, we can assume that C* = C

 Finally, estimate probability of n-gram:
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GT Estimation: Final step

 GT gives approximations to probabilities. 

 Re-estimated probabilities of n-grams won’t sum to 1

 necessary to re-normalise

 Gale/Sampson 1995:
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A final word on GT smoothing

 In practice, GT is very seldom used on its own. 

 Most frequently, we use GT with backoff, about which, 

more later...



Held-out estimation & cross-validation



Held-out estimation: General idea

 “hold back” some training data

 create our language model

 compare, for each n-gram (w1…wn):

 Ct: estimated frequency of the n-gram based on training data

 Ch: frequency of the n-gram in the held-out data



Held-out estimation

 Define TotC as:

 total no. of times that n-grams with frequency C in the training corpus 

actually occurred in the held-out data

 Re-estimate the probability:
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Cross-validation

 Problem with held-out estimation:

 our training set is smaller

 Way around this:

 divide training data into training + validation data (roughly 

equal sizes)

 use each half first as training then as validation (i.e. train twice)

 take a mean



Cross-Validation
(a.k.a. deleted estimation)

 Use training and validation data

A B

train validate

validate train

Model 1

Model 2

Model 1 Model 2+ Final Model

Split training data:

train on A, validate on B

train on B, validate on A

combine model 1 & 2



Cross-Validation

Combined estimate (arithmetic mean):
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Combining estimators: backoff and interpolation



The rationale

 We would like to balance between reliability and 

discrimination:

 use trigram where useful

 otherwise back off to bigram, unigram

 How can you develop a model to utilize different length n-

grams as appropriate?



Interpolation vs. Backoff

 Interpolation: compute probability of an n-gram as a function 

of:

 The n-gram itself

 All lower-order n-grams

 Probabilities are linearly interpolated.

 Lower-order n-grams are always used.

 Backoff: 

 If n-gram exists in model, use that

 Else fall back to lower order n-grams



Simple interpolation: trigram example

 Combine all estimates, weighted by a factor.

 All parameters sum to 1:

 NB: we have different interpolation parameters for the 
various n-gram sizes.
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More sophisticated version

 Suppose we have the trigrams:

 (the dog barked)

 (the puppy barked)

 Suppose (the dog) occurs several times in our corpus, but not 

(the puppy)

 In our interpolation, we might want to weight trigrams of 

the form (the dog _) more than (the puppy _) (because the 

former is composed of a more reliable bigram)

 Rather than using the same parameter for all trigrams, we 

could condition on the initial bigram.



Sophisticated interpolation: trigram 

example

 Combine all estimates, weighted by factors that depend on 

the context.
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Where do parameters come from?

 Typically:

 We estimate counts from training data.

 We estimate parameters from held-out data.

 The lambdas are chosen so that they maximise the likelihood on 

the held-out data.

 Often, the expectation maximisation (EM) algorithm is used 

to discover the right values to plug into the equations. 

 (more on this later)



Backoff

 Recall that backoff models only use lower order n-grams 

when the higher order one is unavailable.

 Best known model by Katz (1987).

 Uses backoff with smoothed probabilities

 Smoothed probabilities obtained using Good-Turing estimation.



Backoff: trigram example

 Backoff estimate:

 That is:

 If the trigram has count > 0, we use the smoothed (P*) estimate

 If not, we recursively back off to lower orders, interpolating 
with a paramater (alpha)
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Backoff vs. Simple smoothing

 With Good-Turing smoothing, we typically end up with the 

“leftover” probability mass that is distributed equally among 

the unseens.

 So GF tells us how much leftover probability there is.

 Backoff gives us a better way of distributing this mass among 

unseen trigrams, by relying on the counts of their component 

bigrams and unigrams.

 So backoff tells us how to divide that leftover probability.



Why we need those alphas

 If we rely on true probabilities, then for a given word and a given n-
gram window, the probability of the word sums to 1:

 But if we back off to lower-order model when the trigram 
probability is 0, we’re adding extra probability mass, and the sum 
will now exceed 1.

 We therefore need:
 P* to discount the original MLE estimate (P)
 Alphas to ensure that the probability from the lower-order n-grams 

sums up to exactly the amount we discounted in P*.
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Computing the alphas -- I

 Recall: we have C(w1w2w3) = 0

 Let ß(w1w2) represent the amount of probability left over 

when we discount (seen) trigrams containing w3
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The sum of probabilities P for seen trigrams involving w3

(preceded by any two tokens) is 1. The smoothed probabilities P* 

sum to less than 1. We’re taking the remainder.



Computing the alphas -- II

 We now compute alpha:
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The denominator sums over all unseen trigrams involving our bigram. 

We distribute the remaining mass ß(w1w2)  overall all those trigrams.



What about unseen bigrams?

 So what happens if even (w1w2) in (w1w2w3) has count zero?

 I.e. we fall to an even lower order. Moreover:

 And:
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Problems with Backing-Off
 Suppose (w2 w3) is common but trigram (w1 w2 w3) is 

unseen

 This may be a meaningful gap, rather than a gap due to chance 

and scarce data

 i.e., a “grammatical null”

 May not want to back-off to lower-order probability

 in this case, p = 0 is accurate!
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