In questions 1-4, you may identify (if you find it helpful) a point \((x,y,z)\) in \(\mathbb{R}^3\) (or \((x,y)\) in \(\mathbb{R}^2\)) with the corresponding vector \(x \mathbf{i} + y \mathbf{j} + z \mathbf{k}\) (or \(x \mathbf{i} + y \mathbf{j}\)).

(1) Determine whether or not the following transformations are linear:

(a) the transformation \(F\) from \(\mathbb{R}^3\) onto \(\mathbb{R}\) defined by \(F(x, y, z) = 2x - 3y + 4z\).

(b) the transformation \(G\) from \(\mathbb{R}^2\) into \(\mathbb{R}^3\) defined by \(G(x, y) = (x + 1, 2y, x + y)\).

\{Ans: (a) linear; (b) not linear\}

(2) Let the linear transformation \(F\) of the plane be defined by

\[F(i + 2j) = 2i + 3j\quad \text{and}\quad F(j) = i + 4j.\]

Find a formula for \(F\), that is, find \(F(a \mathbf{i} + b \mathbf{j})\).

(Hint: \(i + 2j, j\) form a basis in the plane.)

\{Ans: \(F(a, b) = (b, -5a + 4b)\}\}

(3) Determine whether or not each of the following linear transformations in the plane is nonsingular. If the transformation is singular, find \(a, b\) (not both 0) such that \(F(a,b)=(0,0)\).

(a) \(F\) defined by \(F(x, y) = (x - y, x - 2y)\)

\{Ans: nonsingular\}

(b) \(G\) defined by \(G(x, y) = (2x - 4y, 3x - 6y)\)

\{Ans: singular; e.g. \((2, I)\)\}

(4) Let the transformation \(H\) of \(\mathbb{R}^3\) be defined by:

\[H(x, y, z) = (x + y - 2z, x + 2y + z, 2x + 2y - 3z)\]

Show that \(H\) is nonsingular.
Consider a change of coordinates from a first frame of reference (coordinate system) \(O e_1 e_2 e_3 \) to a second frame \(O e_1' e_2' e_3' \), where:

\[
\begin{align*}
e_1' &= a_{11} e_1 + a_{12} e_2 + a_{13} e_3, \\
e_2' &= a_{21} e_1 + a_{22} e_2 + a_{23} e_3, \\
e_3' &= a_{31} e_1 + a_{32} e_2 + a_{33} e_3.
\end{align*}
\]

Let \(M \) be the point having coordinates \((x, y, z)\) and \((x', y', z')\) relative to \(O e_1 e_2 e_3 \) and \(O e_1' e_2' e_3' \), respectively. Show that the relation:

\[
\begin{align*}
x &= a_{11} x' + a_{12} y' + a_{13} z', \\
y &= a_{21} x' + a_{22} y' + a_{23} z', \\
z &= a_{31} x' + a_{32} y' + a_{33} z',
\end{align*}
\]

holds. Assuming now that the first coordinate system is a rectangular Cartesian system (\(e_1, e_2, e_3 \) are mutually orthogonal unit vectors), and that \(e_1', e_2', e_3' \) are unit vectors, show that

\[
\alpha_{rs} = \cos(\theta_{rs}) \quad r, s = 1, 2, 3
\]

where \(\theta_{rs} \) denotes the angle between \(e_r' \) and \(e_s \). Assuming furthermore that \(e_1', e_2', e_3' \) are mutually orthogonal (so that the second frame of reference is also rectangular), deduce that:

\[
\begin{align*}
x' &= a_{11} x + a_{12} y + a_{13} z, \\
y' &= a_{21} x + a_{22} y + a_{23} z, \\
z' &= a_{31} x + a_{32} y + a_{33} z.
\end{align*}
\]

(Hint: look at your notes)

(b) Assuming that the frames of reference are both rectangular Cartesian systems (the triples \((e_1, e_2, e_3), (e_1', e_2', e_3')\) each consist of mutually orthogonal unit vectors) show that the 3x3 matrix \((\alpha_{rs})_{r,s}\) is orthogonal.

(c) Recall that, as long as the frames of reference are rectangular Cartesian systems, the quantities \(x^2 + y^2 + z^2 \) and \((x')^2 + (y')^2 + (z')^2 \) both give the length of the segment OM. Without using this, using instead part (b) above, show that

\[
x^2 + y^2 + z^2 = (x')^2 + (y')^2 + (z')^2
\]

(d) Suppose that the rectangular Cartesian system \(O e_1'e_2'e_3' \) is obtained from the rectangular Cartesian system \(O e_1 e_2 e_3 \) by an anticlockwise rotation of an angle \(\theta \) about the \(O e_2 \) axis. Find, the transformation matrix \(A=(\alpha_{rs})_{r,s} \) (which expresses \(x', y', z' \) as functions of \(x, y, z \), as above) in terms of the angle \(\theta \).

\[\text{[Ans: } A = \begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix} \}\]
The matrix of a transformation representing the change of coordinates from the rectangular Cartesian system \(Oe_1 e_2 e_3 \) to a new rectangular Cartesian system \(Oe_1' e_2' e_3' \) is:

\[
\begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

Describe by a diagram how the position of the two set of axes are related.

Show that the equations:

\[
x' = x \sin \theta \cos \phi + y \sin \theta \sin \phi + z \cos \theta,
\]
\[
y' = x \cos \theta \cos \phi + y \cos \theta \sin \phi - z \sin \theta,
\]
\[
z' = -x \sin \phi + y \cos \phi,
\]

represent an orthogonal transformation.

Fix once and for all three mutually orthogonal unit vectors \(\mathbf{i}, \mathbf{j}, \mathbf{k} \), and think of vectors in terms of their coordinates. Consider an orthogonal transformation \(F \) of vectors defined by

\[
F(a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) = a_1' \mathbf{i} + a_2' \mathbf{j} + a_3' \mathbf{k}
\]

where

\[
\begin{pmatrix}
a_1' \\
a_2' \\
a_3'
\end{pmatrix} = A
\begin{pmatrix}
a_1 \\
a_2 \\
a_3
\end{pmatrix}
\]

for a fixed orthogonal matrix \(A \). (If you find it helpful, you may also fix an origin in space, and therefore think of the vectors as position vectors, and of \(F \) as a linear transformation in space. You may also assume the triple \((\mathbf{i}, \mathbf{j}, \mathbf{k}) \) is right-handed). Show that for any two vectors \(\mathbf{v}, \mathbf{w} \)

a) \(F(\mathbf{v}) \cdot F(\mathbf{w}) = \mathbf{v} \cdot \mathbf{w} \)

b) \(F(\mathbf{v}) \wedge F(\mathbf{w}) = \det(A) F(\mathbf{v} \wedge \mathbf{w}) \)