
Dr Ing. Carl James Debono

12th November 2009

CCE 4001 – Advanced Computer Architecture

Assignment

A Framework for Heuristic Scheduling for Parallel Processing on Multicore
Architecture: A Case Study with Multiview Video Coding

The paper attached deals with a multicore solution for multiview video coding.

(a) Discuss the contents of this paper, highlighting the advantages and
disadvantages of the proposed architecture.

(70% of marks)

(b) Suggest methods to enhance the efficiency of this architecture and single out

any defects that you think are incorporated within this design.

(30% of marks)

Use any published material to sustain your arguments.

The submitted report should follow A4 IEEE double column format with single-
spaced, twelve-point font in the text. The maximum report length is four (4) pages.
Reports in excess of four pages will not be read and a zero mark will be assigned. All
figures, tables, references, etc. are included in the page limit. A template in Word or
Latex can be downloaded from
http://www.ieee.org/go/conferencepublishing/templates.

Hard deadline for the submission of the assignment: 15th January 2010 at 12:00.
No Assignment will be accepted after this date and time.
Students can work in a group, but each group is limited to a maximum of two.

 UNIVERSITY OF MALTA

Msida − Malta
DEPARTMENT OF COMMUNICATIONS

AND COMPUTER ENGINEERING

L-UNIVERSITA` TA` MALTA
Msida − Malta
DIPARTIMENT TA’ L-INGINERIJA
TAL-KOMUNIKAZZJONI U KOMPJUTER

1658 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 11, NOVEMBER 2009

A Framework for Heuristic Scheduling for Parallel
Processing on Multicore Architecture:

A Case Study with Multiview Video Coding
Yi Pang, Student Member, IEEE, Lifeng Sun, Member, IEEE, Jiangtao (Gene) Wen, Senior Member, IEEE,

Fengyan Zhang, Weidong Hu, Wei Feng, and Shiqiang Yang, Senior Member, IEEE

Abstract—In this paper, using the Intel multicore architectures
and the emerging multiview video coding standard, we introduce
a framework for performing analysis, simulation, and evaluation
of heuristics scheduling algorithms for implementing computa-
tionally intensive algorithms on multicore processors. The frame-
work allows for accurate and quantitative characterization of the
performance of dynamic scheduling algorithms for multimedia
applications on different multicore processors without actual
implementation of the scheduling algorithm and application
on the actual platform. Experimental results demonstrate the
effectiveness and scalability of our framework.

Index Terms—Directed acyclic graph, multicore architecture,
scheduling algorithms.

I. Introduction

IN SPITE OF the rapid improvement of microprocessor
technology, many applications remain outside of the realm

of practicality on even the most cutting-edge microprocessor
platforms. One such computationally intensive application is
video encoding, which has evolved in the last two decades
from MPEG-2 to advanced video coding (AVC), as well as
multiview video coding (MVC) and scalable video coding.
Compared with MPEG-2, currently the most widely deployed
video coding standard in the world, AVC delivers twice the
video coding efficiency at significantly higher computation
and storage complexity, and much higher encoding processing
bandwidth requirements. On the other hand, the ever-widening
application of media processing and video coding technologies
necessitates encoding and processing of increasingly higher
resolution inputs. As a result, relative to the demands on
processor and I/O performance, processor capabilities, albeit

Manuscript received January 30, 2009; revised May 22, 2009. First version
published September 1, 2009; current version published October 30, 2009.
This work was supported by the 973 Program under Grant 2006CB303103, the
863 Program under Grant 2006AA01Z321, and the Key 863 Program under
Grant 2009AA01Z328. This paper was recommended by Associate Editor M.
Mattavelli.

The authors are with the Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China (e-mail: pangy@mails.
tsinghua.edu.cn; sunlf@tsinghua.edu.cn; jtwen@tsinghua.edu.cn; ppsnow@
gmail.com; mail@hwd.name; allenfw@gmail.com; yangshq@tsinghua.
edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2009.2031463

advancing rapidly, remains lagging behind the ever-higher re-
quirements. This situation is illustrated in Fig. 1, which shows
the rate of increase for the relative computation complexity
of different video coding standards, as well as the rate of
growth in computational capabilities for unicore and multicore
microprocessors over the same period of time. The rates of
growth in both cases are normalized to the year 1995, when
MPEG-2 was first widely adopted.

A recent trend in microprocessor design is to put multiple
processing cores on the same processor. The presence of
multiple cores not only improves the amount of data that the
processor can handle in parallel, but also reduces the cost
of data communications and the bandwidth required for data
exchange prior to/after processing between the cores, which
in turn reduces bandwidth requirement for the communication
between the processor and off-chip memory, as well the power
consumption of the entire chip. Asanovic et al. [1] expresses
the landscape of parallel computing research.

The challenge, however, in utilizing multicore technology
for computation and data intensive applications such as video
coding, is to “map” the application onto a multicore pro-
cessor, so that the cores are fully utilized and unnecessary
data exchanges between the cores and especially between the
processor and external, off-chip memory are eliminated to the
greatest extent.

Most computation and data intensive applications such
as media processing, involves computation intensive tasks
that can be parallelized. The frequency and scope of these
operations, however, are usually context dependent, which
makes it difficult for a static scheduling algorithm to achieve
optimized performance partitioning such applications onto
multicore processors. As an example, in the baseline and
main profiles of the AVC standard, the motion prediction
residual of each 16 × 16 macroblock (MB) is partitioned into
nonoverlapping 4 × 4 blocks that subsequently undergo 4 × 4
integer transform, quantization, and entropy coding. Although
the transform of each 4 × 4 block is independent of other
4 × 4 blocks, the entropy coding of the coefficients after
quantization is context dependent, and must be processed
sequentially. Therefore, even if the transforms of the 4 × 4
blocks in an MB is partitioned onto different processing cores,
the resultant coefficients must still be exchanged between the
cores so that entropy coding could be carried out correctly. In

1051-8215/$26.00 c© 2009 IEEE

Authorized licensed use limited to: University of Malta. Downloaded on November 12, 2009 at 03:10 from IEEE Xplore. Restrictions apply.

PANG et al.: A FRAMEWORK FOR HEURISTIC SCHEDULING FOR PARALLEL PROCESSING ON MULTICORE ARCHITECTURE—A CASE STUDY 1659

Fig. 1. Development of video compression and processor technologies.

addition, applications such as video coding present numerous
possibilities of parallelization at different levels of the syntax
hierarchy, resulting in different performance/complexity trade-
offs. For example, in AVC encoding, a frame can be divided
into multiple slices that can be independently encoded. Such
mutually independent slices can, therefore, be processed on
separate cores with minimal data exchanges between the
cores during encoding. This approach may work nicely for
processors with a small number (e.g., 2) of cores, especially
when the input resolution is high. However, for processors
with a large number (e.g., 8 or 16) of cores, dividing input
frames into such a large number of slices leads to significant
losses in coding efficiency that renders such partitioning
useless.

In summary, the challenges in designing an application
specific, good scheduling algorithm for multicore architectures
lie in the following aspects: 1) the dependencies between
the tasks in a specific application is usually context, im-
plementation, and some times input dependent, making it
difficult to design a “one-size-fits-all” scheduling algorithm;
2) evaluating different scheduling algorithms requires detailed
real-time tracing information that are usually not available on
the application layer; and 3) evaluating optimized scheduling
algorithms requires trading off processor performance and
application performance, for which a scientific framework of
quantitative comparison has not been established. As a result,
traditionally, virtually the only reliable way of evaluating the
performance of a dynamic scheduling algorithm for multime-
dia applications on multicore processors is to implement the
algorithm on the actual processor, along with the multimedia
application itself, and the measure the performance using a
large set of inputs. This approach is of course prohibitively
expensive and is almost impossible to automate. Therefore, it
is highly desirable to come up with an automatic tool that
is capable of capturing the key characteristics of different
designs (speed, bandwidth, utility, etc.) with minimal human
intervention, so that automatic “tuning” of the design can be
performed.

In this paper, we use the emerging MVC standard as an
example and present a generic directed acyclic graph (DAG)-
based framework that can be used to model the dynamic nature

Fig. 2. Dependencies among GOPs as a function of NoC GOPs.

of the dependencies between tasks in a complicated application
at different granularities. We demonstrate ways of using such a
framework to come up with different heuristics for designing
efficient scheduling algorithms, and more importantly, ways
of evaluating or predicting the performance of scheduling
algorithms for applications on multicore platforms without
actually implementing the algorithm and the application on
the target platform. In the paper, we use five different and
commonly adopted heuristic-based scheduling algorithms for
MVC with different encoding options as test cases. Through
both analysis and experimental results, we show that the
framework, tools, and methodology presented in this paper is
capable of capturing the key characteristics and performance
parameters of a scheduling algorithm.

The paper is organized as follows. Section II contains
an analysis of the problem of scheduling video encoding
tasks on multicore architectures. In Section III, we intro-
duce the DAG-based framework, as well as methodologies
for using such a framework for the design of heuristic
for finding good scheduling algorithms and to analyze their
performances. Using MVC as an illustrative example, in
Section IV, we demonstrate the framework in operation and
its usefulness, as well as experimental results. Finally, Sec-
tion V contains the conclusions and suggestions for future
research.

II. Parallel Scheduling of Video Encoding for

Multicore Architecture

Video encoding is well known to be computationally
demanding, and therefore, parallel architecture for video
encoding has been an active research topic for well over a
decade, and will continue to be so in the foreseeable future.
Interested readers may refer to references [2]–[5]. In [6],
Wang et al. proposed a novel high-definition television video
decoder and decentralized control scheme with a data-driven
architecture on the function level. The data-driven architecture
was adapted to allow each processing unit to operate as soon
as data and buffer become available. In [7], Nanda et al. intro-
duced IBM’s video surveillance server prototype, implement-
ing AVC on the cell broadband engine (Cell/B.E.) processor.
The tasks are partitioned into four modules, each of which is
assigned to a dedicated synergistic processing element.

In addition to single view coding, MVC as an extension
to AVC was recently standardized to efficiently compress
multiple parallel video inputs that capture different views
of the same content. Although it is intuitive to see that
MVC exhibits good inherent parallelism, tackling the encoding

Authorized licensed use limited to: University of Malta. Downloaded on November 12, 2009 at 03:10 from IEEE Xplore. Restrictions apply.

1660 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 11, NOVEMBER 2009

and decoding of multiple views, requires higher processing
power, more storage, and higher bandwidth communications.
As a result, implementing MVC on multicore processors
has become an important emerging research topic. In [8], a
parallelization methodology for MVC based on hyper-space
theory was presented and tested on multiprocessor platforms.
[9] analyzed the parallelism of MVC using video frames as
the parallel granularity. The techniques and methodology in
these papers differ significantly as a result of the differences in
target applications and platforms, which highlighted the need
for a systematic and generic approach for performing theo-
retical analysis and design of scheduling and parallelization
algorithms for video encoding on multicore processors.

A fundamental tool that we are using throughout this paper
is DAG. Scheduling algorithm design and analysis for parallel
systems and architectures using DAGs is a classic problem
(see for example, [10]–[12]). This prior research, however,
was not targeted at scheduling dynamic tasks on multicore
architectures, but toward cluster, grid, and multiprocessor sys-
tems that involves tradeoffs that are different than MVC. These
existing approaches targeted cases in which the DAGs are to
a very large extent static, as opposed to involving dynamic
insertion and deletion of nodes over time. Further more, the
application of the DAG-based approach is mainly to facilitate
only the designing of scheduling algorithms, as opposed to de-
signing and then evaluating such algorithms, without actually
implementing the scheduling algorithm in question.

In this paper, without losing generality, we use the total exe-
cution time as the criterion for measuring system performance,
although other criteria are also possible.

In traditional sequential implementations of video encoding
on a unicore processor, at each given moment, only one group
of pictures (GOPs) can be processed and the encoding of the
next GOP can not start until the current GOP is completed.
In MVC and on multicore platforms, however, GOPs can be
processed in parallel by the different cores. The number of
GOPs that a multicore processor can process simultaneously
is called the number of concurrent GOPs (NoC GOPs), which
is limited by the delay constraints of the application and the
sizes of the encoding and decoding buffers. When a processing
core of the system is done with encoding a GOP of the
input, it will “bypass” the other GOPs that the other cores are
processing, and may go directly to the next GOP that has not
been processed by any of the cores. In practice and to simplify
data access strides, the allocation of the GOPs to be encoded
by each core is usually periodic, as shown in Fig. 2 for the
cases when the NoC GOPs is 1 or 3. The arrows in the figure
illustrate the time order in which the GOPs are processed, and
the interleaving of arrows depict the concurrent nature of the
allocation of GOPs to cores.

Because the data dependencies in video encoding in general
and MVC in particular, are complex, time variant, and some-
times dependent on the “earlier” decisions made by a dynamic
scheduling algorithm, finding the optimal scheduling algorithm
for MVC with a certain configurations (e.g., number of views,
resolution, bit-rate, content, etc.) is often nondeterministic
polynomial complete or at least immensely computational
intensive, thereby making it difficult for embedding into real-

time encoding operations for improving system performance
“on-the-fly.”

III. Heuristic Parallel Scheduling Framework

of Video Encoding on Multicore Architecture

A. Problem Formulation

To model video encoding on a certain multicore processor,
we first introduce a set of variables A which uniquely identifies
a configuration of a particular encoding application on a
particular multicore processor, e.g., MVC with eight views
and other encoding parameters on IBM Cell/B.E. with eight
cores, etc. The subset of A that is related to video encoding
and impacts compression efficiency (Y) is denoted by Ave.
Obviously, Y is a function of Ave, i.e., Y = Y (Ave).

A particular video encoding application is characterized by a
series of encoding tasks that may change over time. Depending
on the particular application, the tasks could be defined at
different granularities, e.g., encoding a GOP, a frame, a slice,
so on, and so forth. When the ith task is processed, the
next scheduling action f (i) is constrained by the application
and the platform, as well as earlier scheduling decisions. We
denote the time between the completion of the i − 1th task
and the ith task by �tj(i). It is straightforward to see that
the total execution time tj(i) from beginning encoding to the

completion of the ith task is simply tj(i) =
i∑

k=0
�tj(k). Given

set A and a scheduling algorithm, the total execution time
tj(n − 1) is uniquely decided, as is T (n − 1) = {tj(n − 1),
j = 0, 1, . . . , |Q| − 1} where, n is the number of tasks, T is
the set of all possible total execution times and Q is the set of
heuristics scheduling algorithms. Usually, different heuristics
lead to different scheduling algorithms. The problem of finding
the optimal scheduling algorithm can be formulated as

min
{Q,A}

T (n − 1)

= min
{Q,A}

{tj =
n−1∑

i=0

�tj(i), j = 0, 1, . . . , |Q| − 1}

s.t. Y (Ave) � Y0 (1)

where Y0 is the compression performance requirement of the
application (e.g., as defined by target bit-rate/peak signal-to-
noise ratio).

In the above formulation, the heuristics scheduling algo-
rithm that leads to the shortest total execution time is con-
sidered optimal. As noted earlier, it is straightforward to
generalize the formulation to other optimality criteria.

It should be noted that we assume that the video encoder is
causal and 1-pass, i.e., it is not possible to revert to a decision
that the encoder and/or the scheduler has made earlier. This
is a realistic assumption for most real-time video applications

B. Application to MVC

There are different levels of the syntax elements in MVC
that can be used as parallel granularities, including: GOP,
frame, slice, MB, etc. MVC also consists of different encod-
ing steps, including intra-prediction (Intra-P), inter-prediction

Authorized licensed use limited to: University of Malta. Downloaded on November 12, 2009 at 03:10 from IEEE Xplore. Restrictions apply.

PANG et al.: A FRAMEWORK FOR HEURISTIC SCHEDULING FOR PARALLEL PROCESSING ON MULTICORE ARCHITECTURE—A CASE STUDY 1661

TABLE I

Constraints on the GOP, Frame, and MB Levels

Parallel Constraints Generated From
Granularity GOP Level Frame Level MB Level
MB Concurrent GOP Inter-P Intra-P,

ME, DCT, etc.
Frame Concurrent GOP Inter-P Null
GOP Concurrent GOP Null Null

Fig. 3. Hierarchical dependence of MVC—an example.

(Inter-P), motion estimation (ME), discrete cosine transform
(DCT), etc. The different constraints and tradeoff involved
in selecting different syntax units as parallel granularities
are summarized in Table I. For example, when we choose
frame as parallel granularity (as the “frame” row in Table I),
the dependencies between frames generate from GOP level
and frame level constraints. MBs are within frame, so the
constraints on MB level within a frame, e.g., Intra-P, ME,
etc., do not impact dependencies on frame level (“null” in
Table I). On GOP level, the constraint is concurrent GOP;
on the frame level, the constraint is Inter-P which impacts
dependencies among frames but within a GOP.

As an example, consider MVC with 12 frames in each GOP,
3 views and an NoC GOP of 2. The corresponding hierarchical
prediction/dependency structure is depicted in Fig. 3.

The dependency of Fig. 3 can be modeled by a DAG. In
the DAG, the notes designate the tasks τ0, τ1, . . . , τn−1 ∈ �,
where � is the set of tasks. These nodes are weighted by
their corresponding workloads w0, w1, . . . , wn−1 ∈ W . The
dependencies between the tasks correspond to the edges in
the DAG, namely ei = 〈τj, τk〉 ∈ E, τj, τk ∈ �. The
edges are in turn weighted by the communication costs of
h0, h1, . . . , h|E|−1 ∈ H . By definition, τj depends on τk, if
τjcannot start until τk finishes. Fig. 4 shows the DAG for MVC
on GOP level, with NoC GOPs of 2.

In addition to the variables in A that are related to video
encoding as Ave, the remaining components that are not
directly related to video encoding, but related to the platform
and processor are denoted as Amc. Amc is mutually exclusive
with Ave. Processing capability of the cores and memory are
donated as nodes, and the directions and bandwidth of data
transmission between cores and memory are weighted edges.
They are all the elements in Amc. Then a given multicore
architecture can be also modeled as a weighted directed graph
(DG). This DG is different from the DAG modeling the MVC

Fig. 4. DAG of MVC with two concurrent GOPs.

dependencies, and reflects the constraints and “cost” structure
imposed by the target platform, and traversing through this DG
reflects the performances of a particular scheduling algorithm.

C. Heuristics Algorithm Design Using DAG—Overview

We introduced two types of graphs in the previous section;
one models the dynamic dependencies between encoding tasks
among encoding units, and the other models the capabilities
of the multicore platform.

To find a good heuristic algorithm q using these two graphs,
we introduce another set of parameters X, which quantitatively
describe the performance of the scheduling algorithm. Typical
members of X may include the utilization of each core,
the ratio of executing time to data transmission time, etc.
Similarly, heuristics algorithm can also be parameterized by a
vector Z, whose components may include parallel granularity,
heuristics mechanism, etc. Z is a function of X, and each Z

corresponds to a different q.
For example, when the utilization of core is low, a heuristics

scheduling algorithm q may aim to generate a lower parallel
granularity. To this end, q can lower the parallel granularity
and choose to schedule a task that is prerequisite for the most
of other tasks. If multiple tasks have the same dependent
tasks, then the task with the shortest executing time should
be scheduled.

On the other hand, when the ratio of executing time to
data transmission is low, the goal of q maybe to reduce data
transmission. To achieve this goal, q can schedule the tasks
that are self-contained to each core thereby reducing data
transmission.

D. Framework Design Using DAG

In this section, we demonstrate the design of heuristics
mechanisms q using the DAG-based framework presented
earlier. The framework (shown as Fig. 5) consists of three
modules: the encoding module, the heuristics scheduling mod-
ule and the multicore module.

Encoder Module: Video encoding algorithm is abstracted as
a hierarchical multisource multisink DAG extended over the
time axis. The DAG G is updated continuously to reflect the
input that is currently “visible” to the encoder (e.g., the current
frame and the frames in the reference frame buffer).

The main task of this module is to update the DAG once
a task has been scheduled. G(i) denotes the updated graph G

after scheduling the ith task.

Authorized licensed use limited to: University of Malta. Downloaded on November 12, 2009 at 03:10 from IEEE Xplore. Restrictions apply.

1662 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 11, NOVEMBER 2009

Fig. 5. Structure diagram of framework.

Heuristic Scheduling Module: The heuristics scheduling
module synthesizes the states of encoder graph and multicore
processor, and makes task scheduling decisions denoted by
f (i). Each heuristics mechanism corresponds to a particular
scheduling algorithm.

Multicore Module: The module records and updates the
states of the multicore processor, and calculates the set V (i)
of tasks which have been finished on the ith step.

Updates to the modules and graphs are only performed with
i updated to i + 1 only when V (i) is not empty.

Conceptually, the work flow is as the following.

1) Initialization: Initialize parameters and states of. Set i =
0, G(i) = G(0), where G(0) is the initial g (the number
of concurrent GOPs) GOPs.
The states of cores and data transmission bandwidths
are set free.

2) Scheduling: Based on the states of cores and data
transmission and G(i), q chooses the next scheduling
action f (i) based on both video encoding and processor
constraints.

3) Update multicore states: When a task is scheduled, the
states of the processor must be updated.

4) Calculate the set V of nodes which are finished: When
a round of tasks for all the cores has been completely
scheduled, the virtual time is incremented and the set
V (i) of tasks that have been completed during the
previous time period is calculated. Otherwise, if the tasks
in the current round have not been completely scheduled,
the module will stall. If after action f (i) is taken, no task
can be scheduled in G(i), or if there are no free cores,
update virtual time t and V (i), otherwise t cannot be
updated and V (i) is null. Here, the term “virtual time”
refers to the total execution time as captured by the
simulation framework (as opposed to measured on the
actual platform).

5) Update graph and simplify graph G: When new nodes in
current round have been encoded, i.e., V (i) is not empty,
graph G needs to be updated to G(i + 1) referring V (i).
If V (i) is empty, G(i + 1) = G(i).

6) Repeat steps 2–5 until all frames are encoded.

Fig. 6. GOP prediction structure in MVC.

IV. Application to MVC on Symmetric Multicore

Architectures

To further illustrate the DAG-based approach, in this sec-
tion, we use the scheduling of MVC on the Intel symmetric
multicore processor as an example.

A. Framework for MVC

1) Encoder Module for MVC: In this particular example,
we assume that the processing capability of each of the
symmetric cores is c. This is a reasonable assumption because
for each frame, the execution time of ME, DCT, quantization,
and entropy coding is much higher than that of data transfer on
symmetrical multicore architecture with shared memory, such
as the Intel multicore processor. Under these two assumptions,
graph G(�, W, E, H) is simplified to G(�, W/c, E) with no
weighting for each edge. We also focus on the MVC encoder
with a standard 8×8 GOP with the topological structure shown
as in Fig. 6 [13]. Here, W/c is the execution time of tasks.
We obtained W/c through experiment and categorize the tasks
according to their, respectively, times. Through experiments
we found that the ratio of the execution times for different
tasks remain relatively constant for different clips, even though
the value of the execution time itself may change.

During initialization, G(0) is initialized to g connected
GOPs. As defined earlier, � is the set of tasks in g GOPs,
E is the set of edges of the encoder DAG. We use kd to
denote the number of GOPs in the input.

Under these assumptions, pseudo code of the update pro-
cedure UpdateG() for G is shown in UpdateG(). In our
experiments we chose frame as the parallel granularity, while
GOP and MB are also possible choices. Through experiments
we categorize the frames into five classes, namely I, P, B2,
B3, and B4. I and P types correspond I-frame and P-frame,
respectively, Bn(n = 2, 3, 4) type corresponds B-frame which
refers to n frames. The estimated execution time of the node
is estimated-based on the frame type. The most effective way
of setting the weights is to based the value on the ratio of
the time the processor needs for performing different tasks.

Authorized licensed use limited to: University of Malta. Downloaded on November 12, 2009 at 03:10 from IEEE Xplore. Restrictions apply.

PANG et al.: A FRAMEWORK FOR HEURISTIC SCHEDULING FOR PARALLEL PROCESSING ON MULTICORE ARCHITECTURE—A CASE STUDY 1663

UpdateG() algorithm pseudo code:
� = � − V (i)

// G(i) delete nodes of V (i) and relative edges
if (kd < g)

� = � + (g − kd)GOP // G(i) add the new nodes
//and corresponding edges to make kd equal to g

end if

Fig. 7. GOP scheduling in MVC.

The ratio usually is relatively easier to obtain. In the paper,
for example, to establish the framework for MVC, we need
know the ratio of running times for encoding I-frame, P-frame
and B − frames (n = 2, 3, 4). Such data can be estimated
using virtually any implementation of MVC on the target
platform. Fig. 7 shows the scheduling of a GOP in MVC. The
scheduling (Fig. 7) can be generated from Fig. 6 automatically
by topological sorting. The dependencies in Fig. 6 remain in
Fig. 7. In order not to make Fig. 7 too complex, we eliminated
some nonessential edges, e.g., edge from frame 00 to 20, the
edges from 00 to 40 and from 40 to 20 imply that frame 20
depends on 00.

2) Heuristics Scheduling Module for MVC: In our ex-
periments, we tested several different heuristic scheduling
algorithms: Poc, Refs. Num., Ex. Time, Sum. Time, and Left
Frame, which respectively gives the highest priority to: 1)
the earliest frame in display order; 2) the frame which is
referred by the most frames; 3) the frame with the shortest
expected execution time; 4) on the subsequent route in G, the
frame whose sum of executing time is the largest; and 5) on
the subsequent route in G, the frame which is referred by
the most frames. Task pool TP(i) is the set of nodes which
are ready to process in graph G. The task which has the
highest priority is scheduled first. The scheduling action of the
ith task to the u(i)th core is denoted by f (i) = (fn(i), u(i)),
i = 0, 1, . . . , n−1, in which fn(i) is the serial number of task.

3) Multicore Module for MVC: Because we assume that
the cost of communication is negligible, the multicore module
simply records and updatesScore = (core0, core1, . . . , corem−1).
The states of the cores is reflected in terms of remaining time
for the task. We assume corej = (ctj, cnj), j = 0, 1, . . . , m−1,
ctj denotes the left time of task scheduled on the core. If
ctj = 0, the corresponding core is free. cnj denotes the
serial number of task scheduled on the core, τcnj

is the

Update MC() algorithm pseudo-code:
ctu(i) = wfn(i)/c

cnu(i) = fn(i)

if (TP = null or
m−1∏

j=0
ctj �= 0)

deltaT= min(ctj , j=0, 1, . . . , m-1)
t = t + deltaT //the virtual time goes forward
for (j = 0 : m-1)

ctj = ctj− deltaT
//the left working time reduces deltaT
if (ctj = 0)

V = V + τcnj
//add encoded node to V

end for
else

V = null;
end if

Fig. 8. Working flowchart of framework.

scheduled task. ctj , cnj , t and V are initialized as zero or null.
The multicore update algorithm is shown in Update MC().
Update MC() finds the minimal expected execution time
deltaT of the running cores, and emulates the execution by de-
creasing each anticipated running time (cti, i = 0, 1, . . . , m−1)
by deltaT.

The flowchart of framework is in Fig. 8. Init() is initializa-
tion, GenTP() generates TP , Gen f() generates action f , and
SimplifyG() simplifies graph G.

B. Experimental Results

We implemented the simulation framework using C++ and
a parallel MVC algorithm on the Intel multicore processor.
We set quantitative parameter to 32, the number of views to
8, with each view containing 97 frames and the prediction
structure as in the JMVC [13]. The NoC GOPs, heuristics
scheduling algorithm, the number of cores and test sequences
were configurable.

Figs. 9 and 11 show the speedup of five types of heuristics
scheduling algorithms (Poc, Refs. Num., Ex. Time, Sum. Time
and Left Frame) running on from one to 16 cores with two
or three concurrent GOPs on the framework. Different criteria
for scheduling the tasks were tested and shown in the figures.

As can be seen in Fig. 9, the slope of the speedup is linear
when the NoC GOPs is 2 and the number of cores equal to or
smaller than 6; when the number of cores is between 7 and
12, the slope of speedup lowers slightly.

Fig. 11 shows that Poc is the best heuristics scheduling
algorithm, and slope of the speedup is linear when the NoC
GOPs is 3 and the number of cores is increased to ten. The
speedup slope lowers afterward.

Authorized licensed use limited to: University of Malta. Downloaded on November 12, 2009 at 03:10 from IEEE Xplore. Restrictions apply.

1664 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 11, NOVEMBER 2009

Fig. 9. Speedup ratio of five heuristics algorithms estimated by the proposed
framework (NoC GOPs = 2).

Fig. 10. Speedup ratio of five heuristics algorithms measured on the real
system for test sequence golf1 (NoC GOPs = 2).

We then tested the standard golf1 sequence (320×240) [14]
on the real system with the same parameters as Figs. 10 and
12. As can be seen from the figures, the actual performance
on the actual system is nearly identical to the prediction in
Figs. 9 and 11. This comparison shows that our framework
can be used as a tool for reliably evaluating the performance
of different scheduling algorithms without implementing the
application and the scheduling algorithm on the actual plat-
form.

Figs. 13 and 14 show the speedup of Poc encoder with
2, 3, 4 and an unlimited number of concurrent GOPs, as
analyzed using the proposed framework and measured on
the actual system, respectively. Again, the prediction and
the actual measurement matches nicely. We can also see
that as the NoC GOP increases, the speedup also increases.
When the number of concurrent GOPs is unlimited, the slope
of the speedup of dynamic heuristics algorithms is nearly
linear.

We also tested other standard test sequences including
Rena (640 × 480) [15], Ballet (1024 × 768) and Breakdancer
(1024 × 768). The results are shown in Fig. 15.

It is clear from Fig. 15 that proposed framework and
algorithms perform for these additional test sequences are

Fig. 11. Speedup ratio of five heuristics algorithms estimated by the pro-
posed framework (NoC GOPs = 3).

Fig. 12. Speedup ratio of five heuristics algorithms measured on the real
system for test sequence golf1 (NoC GOPs = 3).

Fig. 13. Speedup ratio as a function of the number of concurrent GOPs,
estimated by the proposed framework.

similar to that of golf1, the speedup is linear with respect
to the number of cores and the analysis with the framework
matches the actual measurement nicely.

In summary, the comparison of the framework and per-
formance on the real system shows that our framework can
be used to predict and analyze critical characteristics of the
performance of an algorithm for an application on the actual

Authorized licensed use limited to: University of Malta. Downloaded on November 12, 2009 at 03:10 from IEEE Xplore. Restrictions apply.

PANG et al.: A FRAMEWORK FOR HEURISTIC SCHEDULING FOR PARALLEL PROCESSING ON MULTICORE ARCHITECTURE—A CASE STUDY 1665

Fig. 14. Speedup Ratio as a function of the number of concurrent GOPs,
measured on the real system for test sequence golf1.

Fig. 15. Speedup ratio for different test sequences measured on the real
system (NoC GOPs = 3).

system. As the analysis using the framework is computation-
ally trivial, while implementing applications and scheduling
algorithms on the actual platform is not only time consuming
and error prone, the framework presented in this paper can
serve as an important tool in the design and analysis for
building applications on multicore platforms. Because of the
reasonable parameters abstraction of the critical characteristics
in MVC, the framework matches the real system very well,
as can be seen from the experimental results. It also validates
that our previous assumption that the cost of communication
is negligible is reasonable.

In this paper, to better explain the core idea of the proposed
framework, we use frame as the granularity for parallelism and
five widely-used heuristic-based scheduling algorithms. The
significant difference in performance of the five algorithms
(all of which make intuitive sense) show that even for this
simple example, the problem of finding a good dynamic
scheduling algorithm is still highly challenging. This further
proves the necessity for using a low complexity and generic
framework for predicting the performance of the scheduling
algorithm.

V. Conclusion and Future Research

The increased interests in the design and adaption of a
multicore platform for computationally intensive and dynamic
applications such as MVCs necessitate dynamic scheduling
algorithms and tools for analysis and fine tuning such algo-
rithms, and for predicting important characteristics of the
performance (e.g., core usage, speedup ratio, bandwidth, etc.).

In this paper, a framework for modeling the behavior of
the target application and target platform using DAGs was in-
troduced, with simulation results demonstrating the usefulness
and scalability of the framework and methodology presented.

The framework and tools introduced in this paper are
generic, expandable to other applications and optimality met-
rics, and lightweight. It can be used to accurately capture
the performance of applications and algorithms that would
otherwise take much longer to implement, debug, and test,
and/or for platforms that are not yet available for actual
implementation.

In our experiments for this paper, the scheduling algorithms
that we tested for each test scenario are static, i.e., even though
input to the algorithm maybe highly dynamic, the criteria used
by the algorithm for tasking scheduling (e.g., Poc or otherwise)
remains unchanged for the entire application.

Because of the dynamic and lightweight real-time nature of
the tools that we introduced, a perceivable and important area
for future research is embedding the tools introduced in the
paper into the application with feedbacks from the physical
platform (e.g., core utilization, etc.) incorporated into the
decision loop so that a truly dynamic and real-time optimized
scheduling can be achieved.

Acknowledgment

The authors would like to thank Intel China Research Center
for providing an experimental environment.

References

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick, “The landscape of parallel computing research: A view from
Berkeley,” Dept. Electrical Eng. Comput. Sci., Univ. California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, 2006.

[2] K. Shen and E. J. Delp “A parallel implementation of an MPEG1 encoder:
Faster than real-time!” in Proc. Soc. Photo-Optical Instrum. Eng. Conf.
Digital Video Compression: Algorithms Tech., vol. 2419. Bellingham,
WA, 1995, pp. 407–418.

[3] H. C. Yung and K. K. Leung, “Spatial and Temporal Data Parallelization
of the H.261 video coding algorithm,” IEEE Trans. Circuits Syst. Video
Technol., vol. 11, no. 1, pp. 91–104, Jan. 2001.

[4] B. T. Erik and G. J. Egbert “Mapping of MPEG-4 decoding on a flexible
architecture platform,” in Proc. Soc. Photo-Optical Instrum. Eng. Media
Processor, vol. 4674. 2002, pp. 1–13.

[5] Y. K. Chen, E. Q. Li, X. Zhou, and S. Ge, “Implementation of H.264
encoder and decoder on personal computers,” J. Visual Commun. Image
Representation, vol. 17, no. 2, pp. 509-532, Apr. 2006

[6] H. Wang, X. Mao, and L. Yu “A novel HDTV decoder and decentral-
ized control scheme,” IEEE Trans. Consum. Electron., vol. 47, no. 4,
pp. 723–728, Nov. 2001.

[7] A. K. Nanda, J. R. Moulic, R. E. Hanson, G. Goldrian, M. N. Day,
B. D. D’Amora, and S. Kesavarapu, “Cell/B.E. blades: Building blocks
for scalable, real-time, interactive, and digital media servers,” IBM J. Res.
Dev., vol. 51, no. 5, pp. 573–582, Sep. 2007.

Authorized licensed use limited to: University of Malta. Downloaded on November 12, 2009 at 03:10 from IEEE Xplore. Restrictions apply.

1666 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 11, NOVEMBER 2009

[8] Y. Yang, G. Jiang, M. Yu, and D. Zhu “Parallel process of hyper-space-
based multiview video compression,” in Proc. IEEE Int. Conf. Image
Process., Atlanta, GA, Oct. 2006, pp. 521–524.

[9] Y. Pang, L. F. Sun, S. L. Guo, and S. Q. Yang, “Spatial and temporal data
parallelization of multiview video encoding algorithm,” in Proc. IEEE
Int. Workshop Multimedia Signal Process., Crete, Greece, Oct. 2007,
pp. 441–444.

[10] I. Ahmad, Y. Kwok, and M. Wu, “Performance comparison of algorithms
for static scheduling of DAGs to multiprocessors,” in Proc. 2nd Aust.
Conf. Parallel Real-Time Syst., Sep. 1995, pp. 185–192.

[11] A. A. Steen, M. David, D. P. Michael, and M. T. Christopher, “On
the relation between conditional independence models determined by
finite distributive lattices and by directed acyclic graphs,” J. Stat. Plan.
Inference, vol. 48, no. 1, pp. 25–46, Nov. 1995.

[12] Q. S. Hua and Z. G. Chen, “Efficient granularity and clustering of
the directed acyclic graphs,” in Proc. 4th Int. Conf. Parallel Distributed
Comput., Applicat. Technol., Aug. 2003, pp. 625–628.

[13] Joint Multiview Video Model (JMVM) 8.0, Document MPEG N9762.doc,
MPEG, Archamps, France, Apr. 2008.

[14] KDDI Multiview Video Sequences for MPEG 3DAV Use, Document
M10533.doc, MPEG, Munich, Mar. 2004.

[15] Test Sequences with Different Camera Arrangements for Call for Propos-
als on Multiview Video Coding, Document M12338.doc, MPEG, Poznan,
Poland, Jul. 2005

Yi Pang (S’07) received the B.S. and M.S. de-
grees in computer science from Tsinghua University,
Beijing, China, in 2005 and 2007, respectively. She
is currently pursuing the Ph.D. degree from the
Department of Computer Science and Technology,
Tsinghua University.

During her B.S. and Ph.D. study, she held sev-
eral internships: Summer Senior Analyst at Lehman
Brothers, Hong Kong, a Software Engineer at
Betaresearch, Munich, Germany, an Instructor at
Qinghai University, Xining, China, etc. Her research

interests include parallelism of multimedia (e.g., multiview video coding,
H.264, ray tracing, etc.) on multicore processors (e.g., Cell/B.E., Intel multi-
core, etc.).

Lifeng Sun (M’05) received the B.S., M.S., and
Ph.D. degrees in system engineering from the
National University of Defense Technology,
Hunan, China, in 1995, 1997, and 2000,
respectively.

He is currently an Associated Professor in the
Department of Computer Science and Technology,
Tsinghua University, Beijing, China. His research
interests include interactive multiview video, video
sensor networks, peer-to-peer streaming, and
distributed video coding.

Jiangtao (Gene) Wen (SM’05) received the B.S., M.S., and Ph.D. degrees
(with honors), all in electrical engineering, from Tsinghua University,
Beijing, China, in 1992, 1994, and 1996, respectively.

From 1996 to 1998, he was a Staff Research Fellow at the University of
California, Los Angeles (UCLA), where he conducted cutting-edge research
on multimedia coding and communications. Many of his inventions there
were later adopted by international standards such as H.263, MPEG, and
H.264. After UCLA, he served as the Principal Scientist at PacketVideo
Corp., the Chief Technical Officer at Morphbius Technology Inc., the Director
of Video Codec Technologies at Mobilygen Corp., and as a Technology
Advisor at Ortiva Wireless and Stretch, Inc. Since 2009, he has been a
Professor at the Department of Computer Science and Technology, Tsinghua
University. He is a world-renowned expert in multimedia communication over
hostile networks, video coding, and communications. He has authored many
widely referenced papers in related fields. Products deploying technologies
that he developed are currently widely used worldwide. He holds over 30
patents with numerous others pending.

Dr. Wen is an Associate Editor for the IEEE Transactions on Circuits

and Systems for Video Technology.

Fengyan Zhang was born in 1983. She received
the B.S. degree in computer science and technology
from Tsinghua University, Beijing, China, in 2006.
She is currently pursuing the M.S. degree in com-
puter science and technology from the Department
of Computer Science and Technology, Tsinghua
University.

Her current research interests include parallel
video coding and multiview video coding, among
others.

Weidong Hu was born in 1986. He received the
B.S. degree in computer science and technology
from Tsinghua University, Beijing, China, in 2009.
He is currently pursuing the M.S. and Ph.D. de-
grees in computer science and technology from the
Department of Computer Science and Technology,
Tsinghua University.

His current research interests include parallelism
of multimedia on multicore processors.

Mr. Hu won the gold medal from the Association
for Computing Machinery International Collegiate

Programming Contest in March 2007, and the gold medal in the International
Olympiad in Informatics (IOI) in 2004 and in 2005. He is the coach of the
IOI China Team.

Wei Feng was born in 1987. He is currently pursuing
the B.S. degree in computer science and technology
from Tsinghua University, Beijing, China.

His research interests include high-performance
computing, parallel video coding, and multiview
video coding, among others.

Shiqiang Yang (M’97–SM’08) graduated from the
Department of Computer Science and Technology,
Tsinghua University, Beijing, China, in 1977, and
received the M.E. degree in 1983.

He is now a Professor at Tsinghua University.
His research interesting include multimedia technol-
ogy and systems, video compression and streaming,
content-based retrieval, semantics for multimedia
information, and embedded multimedia systems. He
has published more than 100 papers in international
conferences and journals.

Mr. Yang is currently the President of the Multimedia Committee of the
China Computer Federations.

Authorized licensed use limited to: University of Malta. Downloaded on November 12, 2009 at 03:10 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

