
CCE 3202 – Advanced Digital System Design 
 
Lab Exercise #3 
 
This lab exercise will show you how to create, synthesize, and test a 3-bit ripple 
counter.  A ripple counter is simply a circuit that outputs the value "000" then "001" 
then "010", etc., until it hits "111" and resets to zero.  You will be implementing this 
counter from within VHDL, and utilizing the BASYS onboard clock and you can 
watch one of the 7-segment display count from 0 to 7. Once the bitstream for this 
counter has been created, you simply need to download the file and the counter will 
begin automatically.  
 

Deliverables for Lab Exercise #3  

When completed, you will hand in the following deliverables for Lab Exercise #3, in 
this order:  

1. Title Page  
2. Circuit Diagram  
3. Your VHDL Code. Make your code readable and neatly organized. 
4. Simulation Waveforms as proof that your code works.  
5. Any comments  

Introduction  
 
You will use Xilinx Webpack v9.1 to allow the synthesis and creation of VHDL-
based designs. This lab will outline the steps necessary to synthesize, download, and 
test the 3-bit ripple counter using VHDL. 
 

 
All synthesis tools use files called "netlists."  Netlists are simply text descriptions of 
how various circuit components are connected.  The HDL design flow is similar to 
Schematic Capture, except that it deals with VHDL code instead of schematic 
drawings.  Xilinx ISE can take VHDL and create a netlist based on your code.   
 
Before starting the VHDL code that implements the 3-bit ripple counter, first take a 
look at its schematic diagram:  



 
The BASYS boards have a programmable external clock of 100 MHz that can be 
access through pin 54.  However, this frequency is far too fast for us to see the 
counter's output, so you need to use a clock divider to reduce the frequency to about  
1 Hz, so the counter will count once per second.  
 
The easiest way to implement a ripple counter is to use T-Flip Flops. When the "T" 
input is a logic 1, the output Q will toggle on every clock transition.  When the "T" 
input is logic 0, the output Q will not change on clock transitions.   
 
To implement the 3-bit ripple counter within VHDL, you will be using three VHDL 
blocks.  The first block is the clock divider, the second block is a T-Flip Flop, and the 
third block is a decoder to map the output of the ripple counter to the 7-segment 
display. Then a top-level block that instantiates and interconnects the clock divider, 
flip flops and decoder is required.  This top level block can be synthesized and 
downloaded into the FPGA, and the counter will immediately begin to count.   
 
 
 
 
 
 



The Clock Divider  
 
The VHDL code used to implement the clock divider is:  
   
   library IEEE;  
   use IEEE.std_logic_1164.all;  

entity Clock_Divider is  
    port (  
        CIN: in STD_LOGIC;  
        COUT: out STD_LOGIC  );  
end Clock_Divider;  
architecture Clock_Divider of Clock_Divider is  
     constant TIMECONST : integer := 84;  
     signal count0, count1, count2, count3: integer range 0 to 1000;  
     signal D: STD_LOGIC := '0';  
begin  
     process (CIN)  
     begin  
      if CIN'event and CIN = '1' then  
          count0 <= count0 + 1;  
          if count0 = TIMECONST then  
          count0 <= 0;  
          count1 <= count1 + 1;  
          elsif count1 = TIMECONST then  
          count1 <= 0;  
          count2 <= count2 + 1;  
          elsif count2 = TIMECONST then  
          count2 <= 0;  
          count3 <= count3 + 1;  
          elsif count3 = TIMECONST then  
          count3 <= 0;  
          D <= not D;  
          end if;  
        end if;  
        COUT <= D;  
     end process;  
end Clock_Divider; 
 

You do not necessarily have to understand how this code works. The component is in 
its "entity" declaration, this component has only two ports, CIN and COUT.  We will 
feed the 100 MHz external clock into CIN, and then a 1 Hz signal will come out of 
COUT.  This frequency is adjustable, however, according to the following formula:  

Output Frequency = 100000000 / (2 * (TIMECONST ^ 4) ) 
Inside your VHDL code you can set the "TIMECONST" parameter to a different 
value according to your desired frequency.  
   
Note that we are using "STD_LOGIC" declarations.  STD_LOGIC allows you to 
create code that will behave more like a real-world circuit would, so in general most 
VHDL is written using STD_LOGIC signal declarations.  The use of STD_LOGIC 
requires us to add the std_logic.1164 library, which is the first two lines of our code.  
   



The T-Flip Flop  
 
Here is the code for our T-Flip Flop:  
 

library IEEE;  
use IEEE.std_logic_1164.all;  
entity TFF is  
    port (  
        T: in STD_LOGIC;  
        Q: out STD_LOGIC;  
        TFF_CLOCK: in STD_LOGIC  
    );  
end TFF;  
architecture TFF of TFF is  
     signal D: STD_LOGIC := '0';  
   
   begin  
   
     process (TFF_CLOCK)  -- Execute process only when the clock changes  
     begin  
   
         if T = '0' then null;  -- no toggle, so don't do anything  
   
         elsif TFF_CLOCK = '1' and TFF_CLOCK'event then  
              D <= not D;  -- rising edge of clock and T = 1, so  
                           -- toggle the output  
         end if;  
   
         Q <= not D;    
   
     end process;  
end TFF; 
 

The entity port map shows three signals - the "T" input, the output "Q", and the clock 
input "TFF_CLOCK."  You may be wondering why there is no inverted output 
"QN."  As you will see later, it is unnecessary to include this output in our T Flip 
Flops when we implement our final design.  
The signal "D" is a signal used to implement the flip flop operation.  It is initially set 
to a value of '0'.  When the clock transitions from low to high, and our "T" input is a 
logic '1', we then invert D and store it back into itself.  However, if the clock 
transitions and our "T" input is a logic '0', then the process stops until the next 
transition, and no change on D occurs.  
At the end of the process the inverse of D is assigned into Q, effectively implementing 
the T Flip Flop operation.  
 
 
The 7-Segment Display 
 
Develop the seven segment display code. Use the code in Lab 2 as an example. 
 



The Ripple Counter  
 
So, now we have the three main components needed for our ripple counter. The 
following code puts it all together:  
 

library IEEE;  
use IEEE.std_logic_1164.all;  
   
-- A 3-bit Ripple Counter  
entity ripple is  
    port (  
        CLOCK_IN: in STD_LOGIC;  
        Q0: out STD_LOGIC;  
        Q1: out STD_LOGIC;  
        Q2: out STD_LOGIC; 
        Q3: out STD_LOGIC; 
        Q4: out STD_LOGIC; 
        Q5: out STD_LOGIC; 
        Q6: out STD_LOGIC 
    );  
end ripple;  
architecture ripple of ripple is  
     component TFF   -- component declaration for the T-Flip Flop  
      port (  
         T: in STD_LOGIC;  
         Q: out STD_LOGIC;  
         TFF_CLOCK: in STD_LOGIC  
         );  
     end component;  
   
     component Clock_Divider  -- component declaration for the clock divider  
      port (  
         CIN: in STD_LOGIC;  
         COUT: out STD_LOGIC  
         );  
     end component;  
 
     component DEC_7seg  -- component declaration for 7 segment decoder 
     port ( 

  Din: in STD_LOGIC_VECTOR (2 downto 0); 
  Segments: out STD_LOGIC_VECTOR (6 downto 0) 
          ); 
     end component; 
    signal S0, S1, S2, S3, Mainclock: STD_LOGIC;  -- various intermediate signals  
    signal F: STD_LOGIC_VECTOR (6 downto 0); 
    signal G: STD_LOGIC_VECTOR (2 downto 0); 
  
     begin  
   
         S0 <= '1';  -- We assign signal S0 with '1', so that we can feed this logic  



                     -- value into all of the "T" inputs.  
   
         -- Now instantiate the clock divider component, so that we can  
         -- feed our ripple counter with a 1 Hz clock  

         CLOCK: Clock_Divider port map (CLOCK_IN, Mainclock);  
   
         -- Now instantiate the 3 T-Flip Flops needed to implement  
         -- the 3-bit ripple counter  
         TFF1: TFF port map (S0,S1,Mainclock);  
         TFF2: TFF port map (S0,S2,S1);  
         TFF3: TFF port map (S0,S3,S2);  
 
 G(0) <= S1; 
 G(1) <= S2; 
 G(2) <= S3; 

 
                    --Now initiate the 7-segment display 

         DISPLAY: DEC_7seg port map (G, F); 
   
         Q0 <= F(0);  
         Q1 <= F(1);  
         Q2 <= F(2); 
         Q3 <= F(3); 
         Q4 <= F(4); 
         Q5 <= F(5); 
         Q6 <= F(6); 
 
end ripple;  
  

 
As you can see, in order to connect the three flip flops together we use intermediate 
signals S0, S1, S2, and S3, and Mainclock.   
 
Synthesizing the VHDL with Xilinx ISE 
   
You are now ready to check the syntax of the code and to synthesize it as well. Open 
the Synthesize XST tree within the process dialog box and run "Check Syntax". 
Notice the output of this operation in the window at the bottom of the HDL editor.  
 
If for some reason your file has an error in it, a red x would appear next to file in 
place of the green check. If this happens, right click on the filename and click on 
"Edit" to fix the problem. 
 
Now we have to synthesise the circuit. First we need to define the pins that will be 
used. In the sources dialog box select Synthesis/Implementation. In the process dialog 
box open the tree of the Implement Design and then Translate. Select the Assign 
Package Pins Post-Translate, right click and “Run”. This will open the PACE utility. 
Enter the locations of the pins by using the datasheet. 
 
 



You can now run the Synthesis and Implementation. Select Synthesize in the process 
dialog box, click the right mouse button and select “Run”. Then select Implement 
Design in the process dialog box, click the right mouse button and select “Run”. This 
will translate the design, map it on to the FPGA, select the slices to be used and do the 
routing. Finally select the Generate Programming File in the process dialog box, click 
the right mouse button and select “Run”. This will generate the .bit file required by 
the FPGA. 
 
 
Downloading and Testing  
 
Now all that's left is to find the ripple.bit file that was generated, and download it to 
the BASYS board (using the same procedure as in last labs).   
 


