
Automatic Definition Extraction

Using Evolutionary Algorithms

Claudia Borg

Department of Intelligent Computer Systems

University of Malta

Submitted in partial fulfillment of the

requirements for a degree of

Master of Science

June 2009

mailto:claudia.borg@um.edu.mt
http://www.cs.um.edu.mt/ai/
http://www.um.edu.mt

2

Faculty of Information

and Communication Technology

Declaration

I, the undersigned, declare that the dissertation entitled:

Automatic Definition Extraction Using

Evolutionary Algorithms

submitted is my work, except where otherwise acknowledged and ref-

erenced.

Claudia Borg

June 2009

Acknowledgements

Several people have crossed their paths along this piece of work.

Throughout, I thank Mike Rosner for his guidance and supervision.

Once again, it has been a pleasure and I hope it won’t be the last.

Within the LT4eL project, I must thank Paola Monachesi for her

support, encouragement and patience, and for being an inspiration to

how a project should be managed and how people can be motivated.

I also thank the Iasi group in Romania, for hosting me during my

Erasmus exchange. Thank you Dan Cristea, Corina Forascu, Ionut

and Laura Pistol, Adrian Iftene, Diana Trandabat, for offering me

support, friendship and office space. I must also thank Mǎdǎlina

Ioniţǎ for specifically directing me towards Genetic Programming and

giving me the necessary focus. Thanks also to Lothar Lemnitzer, Eline

Westerhout, Rosa del Gaudio, Lukasz Degórski, and all those who

participated in the machine learning group. Thanks to my Maltese

colleagues, Reuben Bartolo and Jimmy Borg, who had to put up with

mundane task, and in the process came up with creative tools to ease

the way. I cannot mention all the LT4eL people since I would surely

leave someone out, so I give a collective thanks to all the project

members. I truly enjoyed my work experience on the project, even if

it delayed the process of completing this piece of work due to more

pressing deadlines!

Within the departments of Computer Science and Artificial Intelli-

gence I thank Sandro Spina, Joe Cordina and Gordon J. Pace for

giving birth to this idea and for the several discussions held there-

after. Kevin Vella for allowing me access to the cluster computers

which have allowed me to run a large number of experiments.

I thank also my friends, Duncan Paul Attard, Christian Colombo,

Steven Caruana, Josef Galea, Anthony Mercieca, Frankie Inguanez,

Edward Grech and Stephen Fenech for running some of my initial

experiments which required a number of processing days to complete!

Thanks for having to put up with a slower PC during those days, it

was a significant contribution towards my level of sanity.

During my employment with the University of Malta, I started my

days in an empty lone office up in the attic. Slowly, colleagues trick-

led in. Duncan Paul Attard, Christian Tabone, Christian Colombo,

Stephen Fenech, thanks to you all for sharing not only the space, but

the despair of being lost. I final see the light at the end of the tunnel,

just as I know you have all found yours.

As always, through such times, family is the first stop to vent out

frustration. Thanks for putting up with all of that, for understanding

that I was too busy at times or for having to accommodate my inflexi-

ble timetable. To my father, Dennis, always prepared to point-out my

mistakes, both in work and in life, followed with lengthy explanations

of how, when, where and why, thanks for the pointing. The lengthy

explanations I could easily live without. Thanks to my lovely friends,

Kler, Claudine, Sarah and Fiona. You might not have understood

one single bit of my work, but you have understood the pressure, and

offered the necessary support.

Last, and certainly most, in no way that words can justify or even

express, I thank Gordon. Without you this work would not have even

started, let alone be complete. Thanks for your support during each

hurdle encountered, your unequivocal encouragement, your belief that

I am getting somewhere before I even knew where I was. Thanks.

Abstract

Learning texts contain implicit knowledge such as definitions which

provide an explanation of a particular term, or how it relates to other

terms. Students assimilate new knowledge about a new topic by re-

ferring to such definitions to help them understand and conceptualise

new ideas. To help the learning process, definitions could be presented

in the form of a glossary which could be queried when new terms are

encountered.

Tutors could identify definitions present in their learning material

manually, and place them in a glossary for easy reference. However,

it is a laborious task to create such glossaries. In this thesis we look at

automatic definition extraction from eLearning texts using machine

learning techniques. We carry out two main experiments. The first

uses Genetic Algorithms to learn weights of a fixed set of features

used to identify definitions. These weights give an indication of the

level of importance to the respective features, and when used in a

definition extraction tool, they can also be used to rank definitions

according to the level of confidence. In the second experiment, Ge-

netic Programming is used on a training corpus of definitions and

non-definitions, and attempts to learn rules which could be used for

automatic classification of sentences in these two classes.

The results achieved are promising, and we show that it is possible

for a Genetic Program to automatically learn similar rules derived by

a human linguistic expert and for a Genetic Algorithm to then give

a weighted score to those rules so as to rank extracted definitions in

order of confidence.

Contents

1 Introduction 1

1.1 Definitions in eLearning . 1

1.1.1 What is a Definition? . 2

1.1.2 Definitional Properties . 3

1.1.3 Motivation for Automatic Definition Extraction 5

1.1.4 The Thesis in Context . 6

1.2 Proposed Approach and Results Achieved 7

1.2.1 Existing Solutions for Definition Extraction 7

1.2.2 Approach Taken by LT4eL 8

1.2.3 Proposed Solution . 9

1.2.4 Results Achieved . 12

1.3 Outline of Dissertation . 14

2 Background 16

2.1 Definition Extraction . 16

2.1.1 Grammar and Rule-based Extraction 18

2.1.2 Machine Learning Techniques 22

2.1.3 Definition Extraction from the Internet 23

2.1.4 Answering Definitional Questions 26

2.1.5 Summary . 30

2.2 Evolutionary Algorithms . 34

2.2.1 Genetic Algorithms . 35

2.2.2 Genetic Programming . 40

2.2.3 Grammar Representation 41

2.2.4 Summary . 41

v

CONTENTS

2.3 Conclusion . 42

3 Genetic Algorithms and Genetic Programming: An Introduc-

tion 44

3.1 Evolutionary Algorithms . 44

3.2 Properties of Evolutionary Algorithms 45

3.2.1 The Individuals of a Population and Their Fitness 47

3.2.2 Selection Method . 48

3.2.2.1 Roulette Wheel 49

3.2.2.2 Stochastic Universal Sampling and Sigma Scaling 49

3.2.2.3 Elitism . 50

3.2.2.4 Boltzmann Selection 50

3.2.2.5 Rank Selection 51

3.2.2.6 Tournament Selection 52

3.2.3 Crossover and Mutation 52

3.2.4 Convergence . 53

3.3 Genetic Algorithms . 54

3.3.1 Encoding the Individual 54

3.3.2 Genetic Operators . 55

3.4 Genetic Programming . 55

3.4.1 Encoding the Individual 55

3.4.2 Genetic Operators with Trees 56

3.4.3 Fitness and Selection Techniques 58

3.5 Conclusion . 59

4 Language Technologies and Definition Extraction for eLearning 60

4.1 Introduction . 60

4.2 Corpus Preparation . 61

4.3 Rule-Based Definition Extraction 62

4.3.1 Categorising Definitions 64

4.3.2 Results of Manually Crafted Rules 66

4.4 Machine Learning Tasks . 67

4.5 Conclusion . 68

vi

CONTENTS

5 Experiment Design and Methodology 69

5.1 Experiment Overview . 69

5.1.1 Experiment One: Genetic Algorithm 70

5.1.1.1 Feature Description 70

5.1.1.2 Learning Weights 72

5.1.1.3 Fitness Function 73

5.1.1.4 Other Configuration Aspects 79

5.1.2 Experiment Two: Genetic Programming 79

5.1.2.1 Representation of the Individual 80

5.1.2.2 Fitness of the Individual 81

5.2 Conclusions . 82

6 Genetic Algorithms for Definition Extraction 83

6.1 Experiment Description . 83

6.1.1 Experiment Settings . 84

6.1.2 Feature Set Used . 85

6.2 Results . 86

6.2.1 Count Fitness Functions 86

6.2.1.1 CountZero Technique 87

6.2.1.2 CountShifted Technique 87

6.2.2 Distance Fitness Functions 88

6.2.2.1 DistanceZero Technique 89

6.2.2.2 DistanceShifted Technique 89

6.3 Evaluation . 89

6.3.1 Convergence and Selection Technique Performance 90

6.3.2 Results Summary for Best Performing Techniques 91

6.3.3 Different Values of Kappa in the F-measure Metric 93

6.3.3.1 Experiments with Kappa Set to 0.5 94

6.3.3.2 Experiments with Kappa Set to 0.1 94

6.3.3.3 Experiments with Kappa Set to 2.0 95

6.3.3.4 Experiments with Kappa Set to 32.0 96

6.3.3.5 Conclusion on Results with Kappa Values 96

6.3.4 The Meaning of an Individual 97

vii

CONTENTS

6.3.5 Classification of Sentences 99

6.3.5.1 Definitions Classified as Non-definitions 101

6.3.5.2 Non-definitions Classified as Definitions 103

6.4 Conclusion . 103

7 Genetic Programming for Definition Extraction 105

7.1 Experiment Description . 106

7.1.1 Encoding of the Individual 107

7.1.2 General GP Configuration 110

7.1.3 Linguistic Objects and Structure of Rules 111

7.1.4 Definitional Categories . 112

7.2 Results and Evaluation . 112

7.2.1 GP Results for the Is-a Category 113

7.2.2 GP Results for the Verb Category 119

7.2.3 GP Results for the Punctuation Category 121

7.2.4 Learning Rules for All Definitions 123

7.3 Conclusion . 124

8 Evolutionary Algorithms for Definition Extraction 126

8.1 Combining the Experiments for Definition Extraction 126

8.2 Results and Evaluation . 128

8.3 Conclusion . 130

9 Conclusions and Future Work 131

9.1 Genetic Algorithms in Definition Extraction 131

9.2 Genetic Programming in Definition Extraction 133

9.3 Future Work in Definition Extraction 134

9.4 Conclusions . 136

A Rules Learnt by The Genetic Program 137

A.1 Is-a Category . 137

A.1.1 GP Experiments with a Small Set of Features 137

A.1.2 GP Experiments with a Larger Set of Features 151

A.1.3 GP Experiments with Multiple Runs 152

viii

CONTENTS

A.2 Verb Category . 155

A.2.1 Linguistic Objects with Verb Parts-of-speech 155

A.2.2 Linguistic Objects with a Generic Verb Object 156

A.2.3 Linguistic Objects with Verb and Word Categories 157

A.3 Punctuation Category . 158

A.4 All Categories . 160

References 171

ix

List of Figures

1.1 Evolutionary algorithms as part of a definition extractor 11

2.1 Torus formation . 37

3.1 One- and two-point crossover of two individuals 53

3.2 Bit crossover of two individuals 53

3.3 Randomly generated computer programs 56

3.4 Crossover of two individuals . 57

3.5 Mutation of an individual . 58

4.1 A sample of an annotated sentence 63

4.2 A sample of a manually crafted rule 64

5.1 Classification of individuals . 74

5.2 BNF specification for the representation of individuals 80

7.1 Node structure implementation of a feature in C 108

7.2 Node structure implementation of a simple-feature in C 108

8.1 Combining the two experiments 128

x

List of Tables

2.1 Summary of Results . 33

4.1 Distribution of definitions by category 66

4.2 Results for definition extraction with manually crafted rules . . . 67

5.1 Set of definitional sentences . 73

5.2 Set of non-definitional sentences 73

6.1 Results for CountZero technique 87

6.2 Results for CountShifted technique 88

6.3 Results for DistanceZero technique 89

6.4 Results for DistanceShifted technique 90

6.5 Convergence of selection techniques over the different fitness func-

tions . 92

6.6 Results for best experiments . 92

6.7 Results for kappa = 0.5 . 93

6.8 Results for kappa = 0.1 . 94

6.9 Results for kappa = 2.0 . 95

6.10 Results for kappa = 32.0 . 96

6.11 The best individuals under the CountShifted technique 97

6.12 The best individuals under the DistanceShifted technique . . . 99

6.13 Percentage of sentences . 100

6.14 Classification of definitions as non-definitions 101

6.15 Classification of non-definitions as definitions 103

7.1 Results for GP experiment one 114

xi

LIST OF TABLES

7.2 Results for GP experiment with a larger search space 116

7.3 Results for GP in the verb category — first set 120

7.4 Results for GP in the verb category — second set 121

7.5 Results for GP in the punctuation category 122

7.6 Results for GP without definition categorisation 124

xii

Chapter 1

Introduction

A milestone for any natural language is the creation of its dictionary. A dic-

tionary’s importance is in its function, allowing people to look up the meaning

of terms in a quick and effective way. A person can expand his knowledge and

understanding of a topic by conceptualising new terms encountered and relate

them to the knowledge previously gained. Both a general purpose dictionary or a

domain specific glossary can be considered as indispensable references. However

many introductory texts or books to a topic rarely come with an accompanying

glossary since it requires substantial effort to produce, even though most of the

definitions would be present in the text itself. In this dissertation we address

definition extraction using an approach which extracts definitions from learning

material to be presented to a tutor, who would then consolidate the definitions

into a glossary to supplement study materials.

1.1 Definitions in eLearning

eLearning is becoming more widespread, offering a learning service not only to

students who are at different physical locations from the teaching institution,

but also to those in a traditional learning environment by providing them with

additional support and learning aids to facilitate their learning process. One of

the most popular gateways to eLearning is online via the Internet, often through

a learning management system (LMS), which allows both students and tutors to

1

1.1 Definitions in eLearning

manage the learning materials and track their progress. But how helpful is an

LMS? Consider the following scenario:

John is a University student, enrolled in several courses spread over the year.

Lecturers upload the material covered during a lecture on an LMS, supplemented

with additional material such as case study articles or documents which cover

technical issues in more detail. Over the weeks, the amount of information con-

tinues to increase and, by the end of the course, John is overwhelmed by the

material that has been covered. Luckily an LMS allows the tutor to organise the

material in sections or topics, so it is organised in a structured manner. John

simply has to go through each topic and cover the material available. However

sometimes he encounters problems in understanding technical words, or is not

sure of the concept being discussed. He is sure he read the word, together with

an explanation, in some previous document, but he has forgotten its meaning.

How can the LMS assist John in pinpointing the definition he had read?

The process could be quite simple. As the tutor uploads new material, the

LMS could propose candidate definitions that it extracts automatically from the

text. The tutor can then approve, or modify the definitions for the LMS to save

in a glossary. The glossary can be accessed by learners before they attempt to

read new material, or can be retrieved by the LMS’s search facility when a learner

is looking for the meaning of a particular term.

1.1.1 What is a Definition?

In this thesis we look at automatic definition extraction from eLearning texts

with the aim of assisting learners to conceptualise new terms and help the under-

standing of new concepts encountered in learning material. So, what is exactly a

definition?

There are several ways a term can be defined. One way is by offering a

synonym, similar to the function of a thesaurus. For instance, the word feature

can be also expressed as a characteristic or an attribute. We can thus conceive

the meaning of a word by another one that can replace it, and we understand its

meaning by saying that “a feature is an attribute of an object”. We can also offer

a definition by its genus et differentia, where genus explains the general class

2

1.1 Definitions in eLearning

it belongs to, and differentia gives the distinguishing factors from other similar

classes. For instance,

A poodle is a dog with thick curling hair.

The first part of the sentence defines a poodle belonging to the class dog,

whilst the second part of the sentence gives the distinguishing factors of how a

poodle differs from other dogs. Terms can also be defined by enumeration of

hyponyms, such as:

A dog is an animal with four legs which barks, e.g. the poodle, terrier

or greyhound.

In this sentence, we are provided with specific examples of things which fall under

the class ‘dog’. Terms can also be defined by what they are not, such as:

An animal is a living creature, not a plant, that has senses and is able

to move.

In this case we are specifying that an animal is not a plant. Sometimes definitions

could be the glossary items of acronyms, such as:

XML is an eXtensible Markup Language.

Although it is useful to know the full wording of an acronym, it does not nec-

essarily mean that a proper explanation of the term has been provided. In this

example, if a person does not know what a markup language is, the full term still

does not provide much meaning as to what XML is. Words can also be defined

by providing an example of how it is used in a sentence. So in the case of XML,

the explanation might have included a sample of XML and an explanation of how

it is used and why.

1.1.2 Definitional Properties

From the above examples we can see that definitions have several properties, and

that the way that a term is explained can differ substantially. Shaw (1922) pro-

vides six different ways of constructing definitions, which in themselves highlight

the properties that definitions should have.

3

1.1 Definitions in eLearning

A definition could be based on the etymology of a word, by showing its deriva-

tion; this is done by breaking the word into its original components and deriving

the meaning from each of those components. In English this is usually done by

tracing the word to Greek or Latin. For example, the word agnostic it made

up of two components: the prefix a-, meaning without, and gnostic, related to

the Greek word gnōsis meaning knowledge. The word agnostic thus refers to a

person who is non-committal about something (usually used in the context of

religious belief) because of lack of knowledge for or against the case.

In order to reduce ambiguity, a definition may have to provide context to

the term, providing added meaning through surrounding words within the same

sentence. For example, the term case has several definitions, some of which are:

• a patient under treatment in medical jargon,

• a legal action under law,

• the lower or upper case of letters in printing.

We clearly require the context of the term within a sentence to understand the

particular meaning being referred to.

A definition can be based on the analysis of a term by bringing out the char-

acteristics that it represents. In this way a term can be explained through a

description of its appearance, its parts and its purpose. Along with analysis, a

term can be described by exclusion, stating what the term is not. This technique

is used to alleviate ambiguity for when an erroneous meaning is associated to a

word. A term can also be described by providing an example of what its function

is and what it can be applied to or not. And finally, a definition by analogy ex-

plains the meaning of a term by comparing it to somewhat similar (synonymous)

terms. Various combinations of these techniques are commonly used to provide a

definition by genus et differentia described in the previous section, where a term

is first described in its general form and then the definition goes on to describe

what sets is apart from other similar terms.

However, it is clear that definitions are not always clear-cut cases, and some-

times we are presented with information that gives some overall meaning of a

4

1.1 Definitions in eLearning

term, without actually setting out to define it. For example, the following sen-

tence does not really constitute a definition:

Notebook computers are complete computers with full functionality

and with all major devices of a desktop computer.

The problem with such a sentence is that it attempts to define what a notebook

computer is by using the term computer, which is itself present in the term being

defined. This type of definition is referred to as a circular one where a term is

defined by the term itself. Such a definition is vague and does not tell us much

about notebook computers. It also does not differentiate a notebook computer

from a desktop computer. Definitions must also not be too broad, such as:

A chair is an object you sit on.

There are several other objects you can sit on (table, floor, sofa, bed) and which

are definitely not a chair. Finally, definitions should use more familiar terms to

explain the meaning to the term itself. If a definition is aimed towards people

with certain technical knowledge, then it is acceptable for it to contain terms

used frequently is such specialised domains.

1.1.3 Motivation for Automatic Definition Extraction

The identification of what constitutes a good definition is itself a challenge. At

times, humans themselves do not agree when they are classifying sentences as

definitions, because of different views of what a definition should consist of and

how detailed or complete it should be. In automatic definition extraction the

challenge goes one step further — how does a human classify a sentence as a

definition or a non-definition? And can we produce some process to automatically

extract definitions from text?

With so many forms of how a definition is expressed, it is certainly a challeng-

ing task to identify the way humans classify definitions. We are able to classify a

sentence as a definition if we recognise that the sentence contains information that

explains a term. So we are able to conceptualise that a sentence contains defini-

tional knowledge, without necessarily having an understanding of the knowledge

5

1.1 Definitions in eLearning

expressed. However there are some tips that humans use implicitly. For instance,

a sentence which contains the phrase structure ‘something is a . . . ’ would, usu-

ally, classify as a definition. Sometimes the structure of a sentence or its position

could also indicate if a sentence could be a definition or not, such as having a

colon in the sentence, Term: explanation; or the first sentence of a Wikipedia

article. Such indicators used by humans could facilitate the automatic process of

extracting definitions.

Automatic definition extraction can be a useful tool not only in the eLearning

domain, but in other domains such as automatic dictionary creation, question

answering systems and ontology engineering. Manual identification of definitions

is a time-consuming task. John’s tutor may have already spent several hours

preparing the necessary materials for a course and planning its structure. It is

unlikely that she is prepared to spend more time creating a glossary, unless this

is presented to her in an automatic manner. A definition extractor tool can be

plugged into a LMS so that such a functionality can be made available to the tutor.

In the scenario of a question answering system, we can automatically extract

information on a particular question, such as ‘What is XML?’ The utility of such

a tool is the extraction of knowledge, and possibly the ability of manipulating that

knowledge for further use, such as in ontology engineering where terms and their

meanings are used for automatic ontology creation. The example seen previously,

‘A poodle is a dog with thick curling hair.’, could result in the creation of two

concepts, dog and poodle, where the relation between the two is defined as type

of, and the concept poodle has an attribute hair which is thick and curling.

Although there are several end uses for definition extraction, we focus on

eLearning where definitions are used to gain knowledge and information on spe-

cific topics. Our scenario is to create an easy and usable definition extraction

tool which could provide specific and additional knowledge to learners.

1.1.4 The Thesis in Context

This thesis began in the context of a larger project, LT4eL — Language Tech-

nologies for eLearning, Monachesi et al. (2007). LT4eL was a 6th Framework

Programme project with the aim of facilitating the retrieval of Learning Objects

6

1.2 Proposed Approach and Results Achieved

(LOs) through the use of language technologies and semantic knowledge. One of

the tasks within the project involved creating grammar rules that could be used

to extract definitions. This proved to be a laborious and tedious task, requir-

ing specialist linguistic knowledge, and the results achieved were discouraging.

To try and improve the results, a machine learning group was created to apply

different machine learning techniques to the task of definition extraction. Differ-

ent approaches were taken with the aim of evaluating the potential of different

techniques used. This thesis presents the proposed approach taken by the Univer-

sity of Malta, presenting a novel experiment using a particular class of machine

learning techniques for the purpose of definition extraction.

1.2 Proposed Approach and Results Achieved

Automatic definition extraction presents a challenging situation where we are

trying to identify specific knowledge, and there is no hard and fast rule as to

how that knowledge is represented or how to encode the machinery to extract

that knowledge. One possible approach could be to use linguistic information

pertaining to a sentence and try to identify the composition of how a definition

is structured through linguistic rules. Another approach could try to attempt

machine learning techniques and allow a computer program to automatically

learn such rules by providing it with specific examples of both definitions and

non-definitions.

1.2.1 Existing Solutions for Definition Extraction

Different corpora and techniques have been applied to the task of definition ex-

traction. The most common approach is rule-based, creating rules based on either

part-of-speech information, noun phrase chunking or cue phrases, or a mixture of

some or all of these components. The work carried out using technical or medical

texts achieved far better results than non-technical texts, with the average best

precision1 varying between 60% and 87%. These results are further improved by

1Precision is a metric used in Information Retrieval showing the percentage of correctly
classified items of those being proposed as candidate solutions through the automatic system.

7

1.2 Proposed Approach and Results Achieved

machine learning techniques, where the highest accuracy1 rate achieved was by

Fahmi & Bouma (2006) on Wikipedia medical texts at 92%. It is obvious from

the early stages of our experiment that the corpus from which definition extrac-

tion is attempted does influence the results. For instance, sentence position is

considered as an important feature in Wikipedia articles, whereas in an eLearning

corpus this feature is not always applicable.

In the domain of Question Answering (QA) results vary, but similarly the best

results are those that employ machine learning techniques. In the QA domain,

one very differing aspect is that the system is only looking for definitions for

a particular word or term. In such a context, a system could easily identify

all sentences containing that specific word, and thus limiting the search space.

In work by Blair-Goldensohn et al. (2004), they further apply summarisation

techniques so as to present an article format to ‘what is’ questions. Our work

differs in that we attempt to identify all definitions in a particular text, and we

have no information as to what head words might possibly be present.

1.2.2 Approach Taken by LT4eL

In the context of the LT4eL project, the work carried out and the problems

there encountered influenced the direction of the proposed thesis. A set of 450

definitions were annotated to be used as a ‘learning corpus’ by observing the

structure of definitional sentences together with linguistic information (mainly

part-of-speech), trying to identify common aspects between the sentences. Gram-

mar rules were executed against a training corpus and a program automatically

evaluated each change in the manual grammar rules. The metrics used were sim-

ilar to other work in this domain, being precision, recall and f-measure. Precision

is the percentage showing the quality of the automatically classified definitions,

whilst recall is a percentage that shows the proportion of definitions that have

actually been captured. F-measure is a formula that gives a weighted average

between precision and recall, with the facility to favour one more than the other.

It was noticed that restricting the rules to a few sentences gave higher precision

since the rules would capture very few, but correct sentences. On the other hand,

1Accuracy is the percentage of correct classifications over the whole corpus.

8

1.2 Proposed Approach and Results Achieved

recall would be low since other definitional sentences were being left out. By

generalising the grammar rules to try to capture more sentences immediately

resulted in a higher recall (more of the definitional sentences being captured), but

a low precision since many of the captured sentences now were not definitional

sentences. It is hard to decide where the middle line should be drawn.

Within an eLearning context, where definitions are presented to a tutor and

thus the extraction process is semi-automatic with human expert validation, a

higher recall was preferred albeit with a low precision.

In LT4eL it was observed that:

1. Identifying grammar rules manually which can be used to detect definitions

is difficult and requires experimentation. Results were discouraging, where,

for example, in definitional sentences containing the phrase ‘is a’, a precision

of 17% was obtained.

2. The rules contained no ranking knowledge, and thus the candidate defini-

tions were presented to the tutor in the order found in the text, rather than

ranking them according to the likelihood of a sentence being considered as a

definition or not. This problem is quite crucial since it affects the usability

of the system. A tutor who is presented with definitions in a ranked order

is more likely to continue using such a system.

Faced with these problems, LT4eL set up a group to attempt machine learn-

ing techniques to improve results. The University of Malta, through the work

carried out as part of this thesis, proposed a solution which applies evolutionary

algorithms in order to solve these two problems.

1.2.3 Proposed Solution

We are presented with two specific problems in the process of extracting defini-

tions automatically. The first problem is that of ranking definitions according to

a level of certainty in their classification. A possible solution could attempt at

attaching some form of likelihood to the rules capturing those definitions, thus

resulting in rules containing confidence information on the way they classify sen-

tences. The second problem is to discover automatically candidate rules which

9

1.2 Proposed Approach and Results Achieved

could be used to classify definitions. By exploring various rule-possibilities au-

tomatically against a training corpus, we might be able to identify such new

rules without relying on linguistic expertise. The approach to these two prob-

lems taken in this thesis is to apply evolutionary algorithms, namely Genetic

Algorithms (GA) and Genetic Programming (GP), in the attempt of solving rule

confidence and rule discovery respectively.

The simplest of the two experiments is learning how likely a rule is to capture a

definition. For this problem we propose to use a GA which could learn to allocate

weights to a fixed set of predefined features. We can allow a GA to explore

different sets of weights and discover which ones would achieve the best results.

One of the advantages of learning weights is that we can learn both positive and

negative weights, the first indicating that a rule can be used to detect a definition,

and the latter indicating that a rule can detect a non-definition. Through these

weights we would like to create the ideal dividing line between definitions and

non-definitions, capturing and classifying sentences as correctly as possible. Since

this takes the form of an experiment, we decided to test different possible fitness

functions and selection methods to be able to judge which would fare better than

others.

In order to attempt learning new possible grammar rules, we need an ex-

perimental setup which could come up with new grammar rules automatically

and test them on the training data available. When it finds a rule which can

correctly match a sentence, it keeps it as a possibly good rule to be used as a

definition identifier. A GP is ideal for this type of experiment, as similarly to

GAs, it allows the exploration of possible grammar rules automatically, through

which process, it might discovering rules which are able to classify definitions

from non-definitions correctly.

The two experiments can be viewed as the learning process whose output

will finally be used by a definition extraction tool. Figure 1.1 shows how these

algorithms could fit into a complete tool that provides the user with a learning

module, and an actual classification module. In phase 1, learning objects are

automatically annotated with linguistic features and human annotators tag defi-

nitions to produce a training set. Phase 2 would then consist of the GP deriving

rules which could capture definitional sentences. The rules are based on linguistic

10

1.2 Proposed Approach and Results Achieved

Phase 1

Learning Objects

Definitional
Tagging

Linguistic
Analysis

Annotated Training Set

Phase 2

Linguistic
Features

Genetic Program

Phase 3
Manually
Crafted
Rules

Genetic Algorithm

GP-discovered
rules / features

Phase 4

Definition Classifier

Learning
Objects

Weights &
Features

Final Glossary
Definition
Checking

Figure 1.1: Evolutionary algorithms as part of a definition extractor

11

1.2 Proposed Approach and Results Achieved

features inputted by the human annotator, and depend on the type of linguistic

tagging carried out in the first phase. For instance, if a part-of-speech tagger is

used, then the tags it uses would probably end up as part of the linguistic fea-

ture set used by the GP over which the rules are learnt. The rules produced by

the GP can then be fed into the GA in phase 3, together with manually crafted

rules (optional), so that weights can be associated to the rules. The final phase

represents the actual end-user definition extraction tool, whereby together with

the rules and weights learnt, it is possible to classify and rank definitions in order

of confidence. In an eLearning context, a tutor would check the output of the

definition extractor tool and select those sentences which will form part of the

final glossary.

The learning phase is a one-time process with the objective of learning a

weighted grammar which could then be applied to any document within the same

domain of the training corpus. Once the learning phase has been completed, the

definition classifier can be used independently. The different phases do not repre-

sent a single tool, but rather different components. This thesis focuses primarily

on the second and third phase.

1.2.4 Results Achieved

The experiments were carried out as two separate tasks. The GA aims at learning

weights of a set of features which can be used to identify definitions. When ap-

plied to the extraction process, the weights act as a confidence indicator, ranking

definitions by allocating a score to the sentence. The first experiment focuses

on testing different possible settings for the GA, specifically trying out different

selection methods and fitness functions. Overall, through the application of the

weights on a basic set of simple features, we successfully improve precision from

17% (achieved in the manually crafted rules) to over 62%. Whilst carrying out

a qualitative evaluation on the classification of definitions, we discover certain

errors in the manual annotation of definitions within the corpus which affect

our results. Some sentences were wrongly annotated as definitions, whilst other

sentences which are clearly definitions have been missed during the annotation

12

1.2 Proposed Approach and Results Achieved

process, and are thus considered as non-definitions. Notwithstanding this prob-

lem, and despite having utilised only a small and simple feature set for the GA,

the improvement obtained in precision was very promising.

The GP resulted in a more difficult experiment setting. It is faced with

a large search space and the task to learn grammar rules is not a trivial one.

Notwithstanding this, the GP did succeed to learn rules that had been identified

in the manually crafted rules, and thus could be used as a tool to replace the

human expert or to supplement the knowledge required to bootstrap a grammar

for extracting definitions. In one of the definitional categories (the punctuation

category1) the GP succeeded in learning rules that achieved better results than

those achieved from the manually crafted rules, raising the f-measure from 17%

(manually crafted rules) to 30% (GP-learnt rules).

For other types of definitions, the GP manages to learn rules similar to those

already present in the manually crafted rules, but achieves lower results due to

lack of linguistic detail in the rules learnt. For instance, the GP learnt (within a

few generations) the sequence noun-is-a-noun. However, this rule is slightly too

generic. By comparison, the manually crafted grammar rules are slightly more

complex taking into consideration various surrounding possibilities and phrases.

The results achieved by the GP show that it is not a final or stand-alone solu-

tion for rule discovery, and indicate that further experimentation could lead to

better results. It might also be the case that the features chosen for the learning

algorithm were themselves based on what was already observed in the process

of the manually crafted rules, thus influencing the rule-learning process towards

that direction.

In a final experiment, we ran the GA on a set of rules learnt by the GP

in the is-a category2 in order to associate weights to these rules. The rules on

their own, without any confidence measure, obtain an average of 26% f-measure,

which is very similar to that obtained through the manually crafted rules. By

learning weights to these sets of rules, the f-measure increased to 68%, obtaining

1Definitional sentences that contain a punctuation mark such as a colon or a dash as a
characteristic.

2The is-a category represents those sentences which contain the verb to be followed by a
determiner, typically being the phrase is a.

13

1.3 Outline of Dissertation

a 100% precision and a 51% recall. These figures mean that by applying weights

to the rules learnt by the GP, we managed to correctly classify just over half of

the definitions, without capturing a single sentence incorrectly. The 51% recall

indicates that the other half of the definitions were considered as non-definitions

by our classifier. This possibly might be because the rules learnt by the GP do not

cover the full set of definitions. Considering that this type of result was achieved

through a practically fully automatic1 learning algorithm, with minimal human

intervention, this result is a very positive one which requires further exploration.

The results achieved have directed us towards various new questions, giving

space for further experimentation. An evolutionary approach is not so frequently

applied in Natural Language Processing, and this experiment has shown that it

is possible to achieve positive results using such an approach. Further experi-

ments with different corpora will place us in a better position to compare our

results with other work reviewed where definition extraction is attempted on a

different domain, such as a medical one, where documents and hence definitions

are well-structured and might be easier to identify with our techniques. We also

propose how these techniques can be used to successfully bootstrap both a cor-

pus of definitions and grammar rules to extract definitions and carry out further

experiments.

1.3 Outline of Dissertation

In chapter 2 we look at the work carried out in the task of definition extraction

for different applications such as glossary creation or question answering systems.

We compare various results achieved and methods used for this task, and pro-

pose to use an alternative machine learning technique which was not previously

applied to definition extraction. We also review work carried out using genetic

algorithms and genetic programming in domains containing similarities to our

problems, such as grammatical inference, in order to be in a position to address

potential problems in the proposed experiments. We provide a tutorial on GAs

and GPs in chapter 3, giving the reader enough background to understand the

1The only human input the GP requires is a set of linguistic objects to use for the production
of the rules, and a training set based upon which it would learn grammar rules.

14

1.3 Outline of Dissertation

implications of our decisions when discussing in greater detail the choices made

for our experiments. Chapter 4 provides the description of the work carried out

within the LT4eL project, which served both as a motivation and a foundation

to this work. We then describe in detail the proposal of our experiment and

the decisions made for the design and implementation of both the GA and GP

in chapter 5. Chapters 6 and 7 describe the different experiments carried out

and the results achieved for the GA and the GP respectively. We also evaluate

the results from both a qualitative and an quantitative perspective. Chapter 8

describes an additional experiment where the GA is applied to the rules learnt

by the GP, in order to evaluate both algorithms as a possible combined tool for

definition extraction. Finally, we conclude in chapter 9 by presenting a discussion

on the work carried out and observations made which motivate future work in

definition extraction.

15

Chapter 2

Background

In this chapter we review definition extraction approaches reported in the lit-

erature, and applied to different domains such as glossary creation or question

answering systems. We compare different results achieved, types of corpora used

and methods applied to this task. We review how results from rule-based tech-

niques are improved through the application of machine learning techniques, and

how the corpus can affect the results of the definition extraction task. Since in our

experiment we propose to use GAs to learn how to rank the correctness of clas-

sified definitions, and GPs to learn new grammatical rules to capture definitions,

we also review work carried out in similar areas using these algorithms.

2.1 Definition Extraction

The literature review presented in this section looks at various attempts in def-

inition extraction, some of which are aimed at specific applications, such as the

automatic creation of glossaries or question answering techniques. When at-

tempting definition extraction this is generally done in a specific domain, with

few works trying to identify definitions over generic texts. We analyse the vari-

ous techniques used, from grammar patterns, cue-phrases, statistical methods to

support vector machines, and present a discussion on the different approaches at

the end of this section. Compared to some other NLP areas, definition extrac-

tion remains relatively unexplored. The review below highlights the issues and

difficulties present in the task of automatic definition extraction.

16

2.1 Definition Extraction

Several of the works reviewed use precision and recall as their metrics in

order to evaluate the quality of their results. Precision is the percentage of all

sentences being proposed as definitions correctly classified as definitions. Recall

is the percentage of all the set of definitional sentences manually marked in the

training data correctly classified as definitions1. If one looks at the sentences a

definition extraction algorithm identifies in a text, one can calculate its precision.

However, for every sentence identified by the algorithm, there are typically many

other sentences in the corpus which may or may not be definitions. To calculate

recall one has to check whether each of the sentences in the corpus is actually

a definition. Given the large number of such sentences in a corpus, this is a

much more labour intensive task than that of calculating precision2. For this

reason, some of the results discussed in this chapter uses only precision as their

main measure of success. The main problem with this is that an over-restrictive

filter may be designed to extract only definitions but resulting in many other

definitions remaining unnoticed. This would give a high precision even though

other definitions would not be captured.

Another metric used is accuracy, which considers the correct classifications

not only of the positive examples, but also of the negative ones. Since in defi-

nition extraction we are presented with a rather large set of non-definitions and

a relatively small set of definitions, accuracy is not the ideal metric since gen-

erally a rather large number of non-definitions will be correctly classified (e.g.

classifying 20,000 non-definitions correctly, with 600 of these wrongly classified

as definitions would not have a great impact on accuracy. However classifying

600 non-definitions as definitions, when we only have a 100 definitions in our

corpus, would have a serious impact on the resulting definition extractor.). Man-

ning et al. (2008) argues that the advantage of using precision and recall is that

you can trade-off one for the other by using f-measure, which gives a weighted

harmonic mean of the two metrics, according to the emphasis required for the

retrieval process to be considered a successful one.

1Both precision and recall are defined in mathematical terms in section 5.1.1.3 where we
describe how the formulae will be used in our work.

2In some cases recall might not even make much sense to calculate, such as when the corpus
is not a fixed one e.g. the Internet.

17

2.1 Definition Extraction

2.1.1 Grammar and Rule-based Extraction

Work carried out on automatic creation of glossaries usually tends to be rule-

based, taking into consideration mainly part-of-speech (POS) information as the

main linguistic feature. Park et al. (2002) extract glosses1 from technical texts

(such as computer manuals), using additional linguistic information added to

the texts to enable them to identify possible glosses. For this purpose they use

several external tools, including POS tagging and morphological analysis, to add

the linguistic information to the texts. They manually identify the linguistic

sequences which could constitute glosses, and describe the sequences as cascade

finite-state transducers. Since sequences sometimes also capture non-gloss items,

Park et al. include post-filtering rules to discard certain forms from the candidate

set. These include person and place names, special tokens such as URLs, words

containing symbols (except for hyphens and dashes) and candidates with more

than six words in length.

Variants are identified and grouped, with one gloss set as the canonical form

and others listed as variants (including misspelt items and abbreviations). Finally

all glossary candidates are ranked and presented to human experts who select

which glosses will be part of the final glossary. In evaluating the candidate glosses,

three human experts accepted 228 (76%), 217 (72%), and 203 (68%) out of the

top 300 items as valid glossary items. The evaluation does not consider missed

glosses which ranked lower than 300 and inter-annotator agreement between the

three experts is not discussed. The choice of the top 300, rather than say 200,

glosses seems to be arbitrary, possibly expecting experts to go through glosses

only until non-gloss items become more frequent in the list. They also do not

state the length of the texts and how many gloss items on average are present in

their texts.

Muresan & Klavans (2002) propose a rule-based system, DEFINDER, to ex-

tract definitions from technical medical texts, which can then be fed into a dic-

tionary. The corpora used consist of consumer-oriented texts, where a medical

term is explained in general language words in order to provide a paraphrase.

1A gloss provides a short meaning of a term, usually expanding an acronym or specialised
terms.

18

2.1 Definition Extraction

They approach the task by identifying linguistic features present in definitions or

synonyms through manual observation. They point out that the structure of def-

initions might not always follow the genus et differentia model and that different

styles of writing can be a challenge for the automatic identification of definitions.

DEFINDER first identifies candidate phrases by looking for cue-phrases such

as “is called a”, “is the term for”, “is defined as”, or a specific set of punctua-

tion marks which are deemed important for this task. A finite state grammar is

then applied to extract the definitions, basing its rules on POS and noun phrase

chunking to help with the definition identification process. DEFINDER then

uses statistical information from a grammar analysis module to improve the re-

sults, which the authors claim that this takes into account the styles for writing

of definitions (apposition, relative clauses, anaphora). In this work we see that

the automatic identification of definitions is mainly based on the primary iden-

tification of certain phrases, and then further filtered through certain rules that

reinforce a sentence being a definition (such as its POS structure).

The evaluation of DEFINDER focuses on comparing the classification of def-

initions extracted from nine articles against those marked by human annotators,

obtaining a precision of 86.95% and a recall of 74.47%. Since the end-use of

DEFINDER is to provide alternative definitions to medical jargon, a qualita-

tive evaluation focuses on the usefulness and the readability of the definitions

proposed in comparison to other online medical dictionaries.

Malaisé et al. (2004) attempts definition extraction with the purpose of ex-

tracting the semantic relation present in definitions. In this work the extraction

is carried out from an anthropological corpus consisting of different formats, and

the evaluation corpus is in the field of dietetics, a medical type of resource. They

apply lexico-syntactic patterns in addition to cue phrases, focusing on hypernym

and synonym relations in sentences. They obtain a precision of 66% and a recall of

36% (recall is calculated over a small random sample of the corpus). The authors

conclude that the lexical markers used to extract definitions and their relations

are sometimes limited to domain-specific contexts, and thus can be reused only

within a particular domain. It is possible to apply the rules to a new domain to

try and discover possible new pairs of definitions and relations, however it might

not necessarily be as effective as in the domain the rules were created for.

19

2.1 Definition Extraction

Storrer & Wellinghoff (2006) report on work work carried out in definition

extraction from technical texts by using valency frames. Valency frames contain

linguistic information indicating what arguments a verb takes, such as object,

subject, position and prepositions. Frames are used to match structures of sen-

tences, and thus extracting definitions using rules which are centred around verbs.

This is a rule-based expert-driven approach, with all information being provided

by human experts (valency frame, definition categorisation). Definitions in tech-

nical texts tend to be well-structured, frequently matching crisp rules and thus

making such an approach viable. Classifying definitions into categories according

to their valency frame allows Storrer & Wellinghoff to concentrate on specific

patterns per rule, taking a fine-grained approach rather than a generic ‘catch-all’

definition extractor. The evaluation was carried out on a corpus containing man-

ually identified definitions, and achieved an average of 34% precision and 70%

recall over all the rules created.

Walter & Pinkal (2006) work on definition extraction from German court

decisions using parsing based on linguistic information. Their corpus consists

of court decisions, restricted to environmental law due to domain specific ter-

minology in legal texts. They identify two styles of definitions: (i) normative

knowledge is described as text that “connects legal consequences to descriptions

of certain facts”, (ii) terminological knowledge consists in “definitions of some of

the concepts used in the first descriptions”. They discuss issues specific to legal

text, where although the text is fairly structured, the decisions themselves could

constitute in controversy as often the terms used in legal texts need clarification.

Based on a survey of definitional sentences, Walter & Pinkal observe common

structural elements which constitute a definition. They identify them as follows:

1. the element that is defined (the term);

2. the element that fixes the meaning to be given to the term (the definition);

3. the connector — indicating a relation between the term and the definition;

4. a qualification specifying a domain area; and,

5. signal word that serves to mark a definition (dann in German, for which

there is no equivalent term in English).

20

2.1 Definition Extraction

The first three structural elements are applicable to several definitions. The

fourth one is domain specific being more applicable to legal texts, and the fifth

element is present in German but not English, thus language specific.

Walter & Pinkal also observe that definitions contained broad linguistic vari-

ations and that simply using keyword or pattern matching would not suffice to

extract such sentences. On the other hand, through the recognition of the simi-

larities between the structural elements, and with added linguistic knowledge, the

task of definition extraction becomes more effective. Based on these observations,

they manually craft 33 extraction rules which retrieve 4,716 sentences as candi-

date definitions from their corpus. Filtering rules are then applied to bring the

number down to 1,342 sentences (28% of the initial 4,716 candidate sentences).

In order to evaluate the extracted definitions, 473 sentences were given to two

annotators to decide on the correctness of the classification, reaching a precision

of 44.6% and 48.6% respectively. Precision improves considerably (over 70%)

when the best 17 rules are used out of the 33. Recall is not calculated since the

corpus is not annotated with definitions.

Przepiórkowski et al. (2007) attempt definition extraction for a Slavic group

of languages (Bulgarian, Czech and Polish). They use eLearning texts and apply

rule-based techniques to extract definitions. They classify sentences according to

linguistic types, such as:

• NounPhrase is NounPhrase,

• NounPhrase: NounPhrase,

• NounPhrase i.e. NounPhrase,

and derive three sets of grammar rules for each language (sharing similarities

between them). The best results achieved are for the Czech language, with a

precision of 18.3% and a recall of 40.7%. The result for the Czech group is higher

through the use of a technique which enables the capture of multi-sentence defi-

nitions. The authors claim that since there is no established evaluation method-

ology for definition extraction, they decided to include sentences which were par-

tially captured as definitions. Thus a grammar rule does not need to capture a

definitional sentence in full, but can capture only part of the sentence, and the

21

2.1 Definition Extraction

whole sentence is presented as a definition. By classifying such sentences as well,

the results for Czech increase to a precision of 22.3% and a recall of 46%, and for

the other languages the improvement margin is higher, but still achieving lower

results than Czech. A discussion on the challenges faced from a linguistic point

of view is presented, where it is argued that Slavic languages have certain charac-

teristics which result in difficult encoding of simple patterns such as NounPhrase

verb NounPhrase. As a result the authors conclude that more generic grammar

rules should be applied to increase recall, and employ machine learning techniques

to filter out non-definitions at a later stage, thus improving precision.

2.1.2 Machine Learning Techniques

Fahmi & Bouma (2006) use medical pages from the Dutch Wikipedia as their cor-

pus, starting with a rule-based approach to definition extraction and then turning

to machine learning techniques to try and improve their results. They start by

extracting all sentences containing the verb to be, together with some other gram-

matical restrictions, as the initial set of possible definition sentences. These sen-

tences are then manually categorised into definitions and non-definitions. From

these sentences they observe which features can be important to distinguish the

set of definitional sentences from non-definitional ones.

Features identified include (i) text properties (n-grams, root forms, and paren-

theses), (ii) sentence position, (iii) syntactic properties (position of the subject of

sentence and whether the subject contains a determiner) and (iv) named entities

(location, organisation and person). These features, and different combinations

of them, are then categorised into attribute configuration files which are fed into

three supervised learning methods, namely näıve Bayes, maximum entropy and

support vector machine. This work evaluates the improvement achieved in defini-

tion extraction by using these machine learning methods and the different feature

combinations. The accuracy achieved over the different methods and configura-

tion files varies from 77% to 92%, with the best resulting method being the

maximum entropy on the configuration using the first three features described

above.

22

2.1 Definition Extraction

Westerhout & Monachesi (2007a, 2008) experiment with both rule-based and

machine learning techniques. They use an eLearning corpus in Dutch which is

partially annotate with manually identified definitions. They argue that since the

definition extractor is for an eLearning setting and the learning objects tend to be

small in size, both precision and recall need to be given importance unlike similar

work where only precision is considered. The manually annotated definitions are

divided into five different categories that have been identified through observation.

Linguistic rules are used to capture a large number of definitions, after which

machine learning techniques similar to Fahmi & Bouma (2006) are applied as a

filtering technique. Their final results are slightly lower than those of Fahmi &

Bouma, with accuracy at 88%. This is to be expected since the corpus used is

less structured than Wikipedia articles.

Degórski et al. (2008) focus on Polish eLearning material with the purpose

of extracting definitions to be presented to a tutor for glossary creation. Initial

attempts using manually crafted grammar rules achieve an f-measure of 28%,

and thus the authors attempt several machine learning classifiers available in the

Weka toolset (Witten & Frank, 2005) to improve results. The techniques used

are näıve Bayes, decision trees (ID3 and C4.5), lazy classifier IB1, AdaBoostM1

with Decision Stump and AdaBoostM1 with nu-SVC. In these experiments they

report an increase of f-measure to a maximum of 31% (precision at 20% and

recall at 69%) with the best result obtained by the ID3 decision tree classifier.

Further experiments on the Polish language use Balanced Random Forest (BRF)

in Kobyliński & Przepiórkowski (2008). BRF is a machine learning technique

for classification using decision trees, where decisions are based on a subset of

attributes which are randomly selected and the best attribute for the current

tree is then chosen. This technique increases f-measure to 32% (precision at 21%

and recall at 69%), with an accuracy of 85%. Both techniques have improved

results over manually crafted rules, achieving close results to work by by Fahmi

& Bouma; Westerhout & Monachesi.

2.1.3 Definition Extraction from the Internet

Klavans et al. (2003) look at the Internet as their corpus, focusing mainly on large

23

2.1 Definition Extraction

government websites, and try to identify definitions by genus by using linguistic

information. They use POS and noun phrase chunking as part of the linguistic

tools to annotate documents, and also use cue phrases to identify possible im-

portant information. In this task, several problems are identified, including the

format of the definitions and the content in which they are present. Definitions

on the Internet can be ambiguous, uncertain or incomplete. They are also being

derived from heterogeneous document sources. Another problem encountered is

that the Internet is a dynamic corpus, and websites may change over time.

An interesting discussion is presented in how to evaluate a definition extrac-

tor, proposing a gold standard for such a type of evaluation, based on qualitative

evaluation apart from the standard quantitative metrics. In their evaluation, hu-

man annotators were given 25 definitions and are asked to identify the head word

and the defining phrase. The inter-annotator agreement can then be calculated

according to what was marked. The authors remark that although there is a

high agreement on the marking of the head words, there is lower agreement on

the defining phrase, with 81% agreement if considering partial phrases (e.g. one

annotator marks a full sentence, and another marks only part of it), and even

lower if exact matches were only considered. This shows the challenges as to how

humans differently perceive sentences to be definitions.

Liu et al. (2003) apply a rule-based approach to extract definitions of concepts

for learning purposes from the Internet, focusing mainly on computer science top-

ics. They aim to assist learning by presenting learners with definitions of concepts,

and the sub-topics or salient concepts of the original topic. Their system queries

search engines with a concept, and the top 100 ranked results are retrieved. In

order to discover salient and sub-topics, they look at layout information presented

in the HTML tags for features such as headings, bold and italic. A rule-based

approach is then applied to filter out items which are generally also highlighted

in webpages (such as company names, URLs, lengthy descriptions) and stopword

removal. They use term frequency to rank the proposed salient or sub-topics.

Definition extraction is then attempted for the concepts and sub-concepts

identified in the first phase of their work. The identification is carried out through

rule-based patterns, (e.g. {concept} {refers to | satisfies}. . .). Webpages contain-

ing definitions are attached to the concept, and presented to the user in ranked

24

2.1 Definition Extraction

order. The ranking is based on how many concepts and definitions are present in

a webpage (the more being available, the higher the ranking as it is considered

more informative).

Liu et al. also propose a way of dealing with ambiguity, where the term being

learnt is too generic and may appear in different contexts (e.g. classification may

be used in library classification, product classification, data mining classification,

etc.). Again, to differentiate between different contexts, the term is allocated a

parent topic, and through the use of document layout structure, a hierarchical

structure of topics is built accordingly. Mutual reinforcement is also used to

provide further evidence of the hierarchy built, by further searching for sub-

topics under a particular concept. This usually identifies information about other

salient topics under that same concept, which thus continues to re-ensure that

the sub-topics are related and belong to the parent concept. Their evaluation

compares the definitions retrieved by their system (achieving 61.33% precision)

to the results provided by Google (precision 18.44%) and AskJeeves (precision

16.88%).

It is interesting to note that the definition extraction phase is preceded by

a phase of concept identification, simplifying the task of definition extraction.

However, the search for definitions is carried out on particular concepts, and not

for all definitions contained in a given text. This might result in definitions of

other concepts present in parsed documents being lost. The work also does not

make any use of linguistic information, since at their level of processing simple

pattern matching on particular keywords is sufficient. The web is a very large

corpus and thus can provide many documents containing definitions. However,

this can also be a disadvantage affecting the quality of definitions found, similar

to the problems encountered by Klavans et al. (2003) described earlier — ambigu-

ous, uncertain or incomplete definitions. This is partially addressed by providing

several resulting definitions, and documents containing more definitions (which

might be more authoritative) are presented first. Quality of definitions is im-

portant in any learning phase, and can determine the learner’s understanding of

a concept — providing wrong or incomplete definitions can be detrimental to a

learner’s experience.

25

2.1 Definition Extraction

2.1.4 Answering Definitional Questions

Question Answering (QA) is considered part of information retrieval, attempting

to provide answers to questions posed in natural language by trying to identify

the reply from a collection of documents. There are several areas in which QA

systems are applied to, including definitional questions on which the following

review will focus. QA systems use the question posed as a starting point to

searching for information, and apply linguistic techniques to filter out the nec-

essary content. Some systems use summarisation techniques to provide specific

answers in paragraph format rather than short snippets. In either case, we are

interested in analysing the techniques used to identify sentences containing the

possible definitional information.

Prager et al. (2001) attempt a solution to definitional questions to form part

of a full QA system. They identify those hypernyms1 which co-occur with the

definition term, and then check with Wordnet how closely related the two terms

are. Co-occurring terms with the highest occurrence count and closest relation in

Wordnet are ranked highest. They argue that highest ranked co-occurring terms

are more likely to be considered acceptable hypernyms and can be presented as

a definitional answer. However, not all definitional questions can be answered in

this way, since sometimes Wordnet does not contain the term being defined, or

does not contain useful hypernyms which could be presented as definitions. Also,

in some cases, a hypernym is not the ideal answer as a user might not know what

the answer means, and the system risks falling into a cyclic pattern of definitional

answering.

Joho et al. (2001) observe particular patterns which could extract definitional

information or hypernyms not present in Wordnet. Their method extracts all the

sentences where the query noun matches, and then rank the sentences according

to (i) the sentence position — the earlier it occurs in the document, the more

likely it is to be a definition, (ii) word count of the highest occurring words in

all candidate answers (excluding stop words), and, (iii) a weight to the pattern

itself.

1A term is said to be a hypernym of a group of terms where the former denotes a class of
objects of the latter. The term ‘animal’, for example, is a hypernym of the terms cat, dog, bird,
etc.

26

2.1 Definition Extraction

Miliaraki & Androutsopoulos (2004) extend on Prager et al. and Joho et al.’s

work just described, and apply it on TREC QA data1. Their learning-based

method uses a support vector machine (SVM) and they attempt to learn clas-

sification of definitions based on four different configurations. An SVM is given

a training set of terms to be defined and all 250-character-snippets in which the

term occurs in the middle, retrieved from the information retrieval engine. Each

snippet is converted into a training vector according to the configurations being

learnt. The snippets are manually classified into acceptable definitions or not

(3,004 definitions vs. 15,469 non-definitions). The SVM learns to generalise the

attributes to be able to classify unseen vectors.

1. The first configuration is based on work by Joho et al. The SVM learns

the attributes of (i) sentence position, (ii) word count, based on the most

words appearing in all snippets, and (iii) a weight to each manually crafted

patterns, 13 in all.

2. The second configuration takes the above attributes, but also includes an

additional binary attribute to show whether the snippet contains one of the

best hypernyms or not.

3. The third configuration adds extra binary attributes to the second, each

corresponding to an automatically acquired pattern. The patterns con-

sidered are the n-grams extracted from documents where the query term

occurs before or after. The patterns are ranked according to precision, and

the best 100 to 300 patterns are used. The advantage of using n-grams is

that domain specific indicators in definitions are also learnt.

4. To evaluate whether the use of Wordnet facilitates finding definitional an-

swers, an additional experiment was done discarding the information of

whether or not a snippet contains a hypernym.

The third configuration obtained the best results with 84% of the questions being

answered with acceptable snippets.

1TREC is the yearly Text REtrieval Conference, with a specific track on QA.

27

2.1 Definition Extraction

Blair-Goldensohn et al. (2004) apply both pattern matching and machine

learning techniques towards answering definitional questions from generic cor-

pora containing a range of topics. They then apply summarisation techniques to

provide a long format answers. They work towards extracting all possible sen-

tences that contain definitional information, based on a pre-defined predicate set

as follows:

1. Genus — a generic description of the category the term belongs to;

2. Species — specific information which distinguishes the term from other

terms in the same category;

3. Target partition — dividing the term into sub-parts;

4. Cause — the cause of something;

5. History — historical information about the term;

6. Etymology — information on the term’s origin;

7. Non-specific definitional — any type of information related to the term (this

can be seen as a superset of all the above categories, and more).

In order to learn the above predicates, 14 terms were selected and 5 documents

were retrieved from the web for each term. The texts were manually annotated

according to these predicates and used as training data. Two approaches were

considered to learn the categorisation of sentences according to the predicates.

The first uses machine learning techniques to learn feature-based classification

and the second uses manually extracted lexico-syntactic patterns over the training

dataset.

The machine learning technique uses incremental reduced error pruning (IREP)

learning algorithm, achieving an 81% accuracy on the training data. The rules

learnt take into consideration term concentration and position within a docu-

ment, and the accuracy is considered sufficient since these sentences will not be

presented directly to the user, but rather summarised at a later stage. The second

technique concentrates on identifying definitions by genus et differentia using lex-

icosyntactic patterns. Using the 18 manually crafted rules a precision of 96% over

28

2.1 Definition Extraction

the training set, however recall is not calculated. Since summarisation is being

applied to the extracted sentences, the final evaluation focuses on the readability

and quality of the summaries provided as answers.

Sang et al. (2005) develop two QA strategies that look specifically at medical

texts about RSI (Repetitive Strain Injury) in Dutch, based on layout information

and syntactic parsing. By restricting the domain to medical texts, the type ques-

tions asked and the type of answers expected are identified as follows: treatment,

symptom, definition, cause, diagnosis, prevention and other. Type of answers

required are also identified as named entities (what does RSI mean?), list (a list

of causes), paragraph (a more detailed explanation), and a yes/no type of answer.

The first strategy was a layout-based information extraction system, which

extracts the first sentence of each article from a medical encyclopaedia. Through

this exercise it was observed that in larger descriptions in encyclopaedias, infor-

mation is divided into sections with heading containing keywords similar to the

question types recognised (treatment, symptoms, causes), and thus further defi-

nitions could be extracted from such sections. The second strategy uses syntactic

parsing based on dependency relations, with the corpus annotated and stored

as dependency parse trees. Patterns were then defined manually to extract in-

formation pertaining to definitional, cause and symptom questions. Definitional

answers were based on the concept being present as the head word followed by

the verb to be, and achieved a precision of 18%. Symptom answers were based

on the presence of particular phrases (a sign of, an indication of, is recognizable,

points to, manifests itself in, etc.), with a precision of 76%. Cause answers were

based on the presence of certain phrases (causes, cause of, results of, arises, leads

to), extracting 6600 definitions and achieving 78% precision.

The extracted sentences are then made available to a QA system, and if no

answer is found within that set, it uses a generic QA system as a fallback option.

The results show that these systems do not perform well, and the precision of the

combined correct and incomplete answers range between 14% and 12% for the

respective systems. Sang et al. argue that three main reasons for these results

are that (i) these strategies do not contain question analysis, (ii) the corpus is too

small (e.g. does not contain any or enough information on the treatment of RSI)

and (iii) the fall back generic QA system is not appropriate for medical texts.

29

2.1 Definition Extraction

2.1.5 Summary

In this literature review, rule-based approaches rely heavily on expert knowledge

at hand crafting and improving rules for definition extraction. Post-filtering rules

are also used to improve results, as described by Park et al., Muresan & Klavans,

and Walter & Pinkal. With the exception of Liu et al., all rule-based or ma-

chine learning techniques exploit linguistic information such as POS or named

entity recognition in order to abstract away from specific terms and instead fo-

cus on the linguistic structure of definitional sentences. Whilst most focus their

corpora around technical, legal or medical texts where definitions are generally

well-structured, Blair-Goldensohn et al.; Kobyliński & Przepiórkowski; Wester-

hout & Monachesi manage to achieve very positive results in extracting definitions

from more generic domains. However, QA systems already have the query term

as a starting point and thus need only consider sentences containing the query

term. This feature of QA systems could explain why identification of definitional

sentences produces more positive results.

Identifying glosses in the work of Park et al. can be seen as a subset of identify-

ing full definitions. Whilst achieving an average precision of 72%, their system is

aimed at providing semi-automatic glossary creation, suggesting possible glosses

to a human expert. For their task, they consider this result as satisfactory. Mure-

san & Klavans point out various difficulties that are encountered when attempting

definition extraction, especially since writing styles can differ. DEFINDER works

on medical texts and the evaluation is limited to a set of 53 definitions, which is

considerably small and might explain the high precision and recall obtained. On

the other hand, the results obtained by Storrer & Wellinghoff; Walter & Pinkal;

Westerhout & Monachesi indicate that relying solely on grammatical rules is not

enough. This is further substantiated in various works carried out, including that

of Muresan & Klavans who use statistical techniques over and above grammatical

information, and Fahmi & Bouma; Kobyliński & Przepiórkowski; Westerhout &

Monachesi who apply machine learning to learn rules for definition extraction.

Fahmi & Bouma manage to increase accuracy substantially from 54% to an

average of 90% by introducing an element of machine learning to rule-based def-

inition extraction. One must take into account that the corpus used (Wikipedia

30

2.1 Definition Extraction

medical articles) are well-structured, and definitions tend to be contained within

the first sentence or paragraph of the article. This facilitates the identification

task of definitions, especially since sentence position is a feature used by the

machine learning techniques to identify definitions. They also concentrate on

sentences containing the verb to be, thus limiting the learning task. Westerhout

& Monachesi also succeed in emulating similar results on an unstructured corpus

achieving a slightly lower accuracy, but nonetheless re-enforcing the effectiveness

of the techniques used by Fahmi & Bouma. Other machine learning techniques

such as ID3 in Degórski et al. and BRF in Kobyliński & Przepiórkowski also

showed an improvement in the classification of definitions. This could indicate

that the structure of definitional sentences is paramount to how successful the

extraction task is. In the case of medical Wikipedia articles it is relatively easier

even for an untrained human to identify definitions. Whilst in eLearning texts

definitions might be found in various locations throughout the text, and might

not have a well-structured format, as expected in technical and medical texts.

Extracting definitions from the Internet presents further challenges, in that

such a system would have to deal with the faults of the web. The content is dy-

namic, likely to change or become unavailable, and not necessarily authenticated.

The last point can cause problems if definitions extracted are incorrect because

they state erroneous facts. The problem here is not the definition extractor, but

rather the origin of such text, which cannot be detected with automatic methods.

Answering definitional questions has always be a challenge in QA systems.

Such systems are usually quite large catering for various types of questions, and

containing a module concentrating on definitional type of questions. The advan-

tage in this type of work is that the query phrase contains the starting point

for the search of the definition. Thus from an early stage of the search, the sys-

tem need only consider sentences that contain the term being searched for, or its

synonyms.

Sang et al. approach QA by extracting all first sentences contained in medical

articles on RSI. They consider these sentences as definitions which could possibly

answer definitional questions. This system does not perform well when compared

to other systems since it limits its answers to this extracted set of ‘definitions’.

31

2.1 Definition Extraction

It does not try to extract other definitional sentences contained within the rest

of the texts which might provide more correct answers for their QA system.

In work by Blair-Goldensohn et al. and Miliaraki & Androutsopoulos, we see

that approaching definition extraction with machine learning techniques increases

precision considerably to over 80%. This is a positive result, reflecting also the

increase in accuracy by Fahmi & Bouma (92%). Of particular interest is the

work by Blair-Goldensohn et al. where they are interested in a wider spectrum

of definitions which will finally be summarised into a long format answer.

From the above we can conclude that improving results achieved by rule-based

techniques can be done by including machine learning techniques. However, since

definition extraction is still relatively unexplored, not many different machine

learning techniques have been attempted on this type of task. The purpose

of this work is to explore the use of evolutionary algorithms, specifically using

Genetic Algorithms and Genetic Programming, for the task of learning rules and

ranking of candidate definitions. Thus the next section will review work carried

out in areas similar to the task of definition extraction using these techniques.

In table 2.1 we present a summary of the results reviewed above. In the table

we abbreviate accuracy to A, precision to P, and recall to R. Languages are also

abbreviated (EN — English, DE — German, DU — Dutch, PL — Polish, CZ

— Czech). The table shows the corpora used, the techniques employed and the

results achieved (if several results are reported, only the best one is shown in the

table).

32

2
.1

D
e
fi
n
itio

n
E

x
tra

ctio
n

Table 2.1: Summary of Results

Metric

Author Corpus L. Technique A P R F

Park et al. (2002) Technical EN Rule-based, POS sequence 76%

Muresan & Klavans (2002) Medical EN Cue phrases, rule-based, POS

sequence

87% 74% 80%

Malaisé et al. (2004) Medical EN Cue phrases, rule-based, POS 66% 36% 47%

Storrer & Wellinghoff (2006) Technical EN Valency frames 34% 70% 46%

Walter & Pinkal (2006) Law DE Rule-based 70%

Fahmi & Bouma (2006) Medical DU Features augmented with ML 92%

Westerhout & Monachesi (2007b) eLearning DU Features augmented with ML 88% 80% 78%

Przepiórkowski et al. (2007) eLearning CZ Rule-based, POS sequences,

noun phrases

22% 46% 30%

Degórski et al. (2008) eLearning PL ML — ID3 20% 69% 31%

Kobyliński & Przepiórkowski (2008) eLearning PL ML — BRF 85% 21% 69% 32%

Klavans et al. (2003) Internet EN POS sequences, noun phrases 81%

Liu et al. (2003) Internet EN Rule-based, concept identifica-

tion

61%

Miliaraki & Androutsopoulos (2004) QA TREC EN SVMs with different settings 84%

Blair-Goldensohn et al. (2004) QA Internet EN ML – IREP algorithm 81%

Blair-Goldensohn et al. (2004) QA Internet EN Manually crafted rules 96%

Sang et al. (2005) QA Medical DU Layout, POS 76%
A: Accuracy; P: Precision; R: Recall; F: F-measure; EN: English; DE: German; DU: Dutch; CZ: Czech; PL: Polish

33

2.2 Evolutionary Algorithms

2.2 Evolutionary Algorithms

A Genetic Algorithm (GA) (Goldberg, 1989; Holland, 1975) is a search technique

which emulates natural evolution, attempting to search for an adequate solution

to a problem by mimicking natural selection. By simulating a population of indi-

viduals represented as strings (with a particular interpretation) GAs try to evolve

better solutions by selecting the best performing individuals (through the use of

a fitness function), allowing them to survive and reproduce. This is done using

two operations called crossover and mutation. Crossover takes two individuals

(parents), splits them at a random point, and switches them over, thus creating

two new individuals (children, offspring). Mutation takes a single individual and

modifies it, usually in a random manner. The fitness function measures the per-

formance of each individual, which is used by the GA to decide which individuals

should be selected for crossover and mutation, and which individuals should be

eliminated from the population. This process mimicks the survival of the fittest,

with the better performing individuals remaining within the population, and poor

performing individuals being removed.

Genetic Programming (GP) (Koza, 1992) is based on GAs, with the difference

that the individuals are represented as programs (stored as trees), as opposed to

strings as in GAs. In this manner, ‘programs’ can be evolved through the use of

GPs. Although not as widespread in use as GAs, GPs provide an excellent way to

retain the evolutionary techniques of GAs and at the same time take advantage

of tree representation which may be more appropriate for certain problems. The

same types of operations are carried out in GPs, using sub-trees for creating new

individuals in the crossover phase, and changing one node randomly during the

mutation phase. The fitness function performs the exact same function as in

GAs, in that it decides which individuals will be selected to proceed further into

the evaluation process.

Concerns in GAs and GPs are similar. The fitness function is generally difficult

to derive, and experiments are required to determine the effect of different fitness

functions. Other parameters, such as population size and how often mutation

and crossover are carried out, also have an effect on the results. With respect to

GPs, the tree representation translates into having a larger search space and it

34

2.2 Evolutionary Algorithms

is more difficult to implement crossover and mutation. These factors have to be

considered, and the literature review below will analyse how such decisions have

been taken before.

The task of learning rules is closely related to grammatical inference, in which

machine learning techniques are used to learn grammars from data. GAs, and less

frequently GPs, are two such techniques which have been applied to grammatical

inference. We will thus review work in this area to observe the different techniques

used and results achieved. A full overview of GAs and GPs is given in chapter 3,

where a detailed explanation of the two algorithms is given.

2.2.1 Genetic Algorithms

Lankhorst (1994) describes a GA used to infer context-free grammars from pos-

itive and negative examples of a language. New, possibly better performing,

grammar rules may be discovered by combining parts of different grammar rules.

A discussion is presented on the choice of gene representation, between a binary

representation and a high-level representation. It is argued that a bit string

can represent many more schemata than higher level representations, yielding

to a better coverage of the search space. A bit representation is chosen, with

the lower order bits encoding grammar rules on the right hand side of the rule,

whereas higher order bits are encoding the left-hand side symbol.

Selection is based on a stochastic universal sampling algorithm, which helps

to prevent premature convergence by ‘holding back’ super-individuals from tak-

ing over the population within a few generations. The best individual is also

always allowed to survive to the next generation. Mutation allows for a bit in a

chromosome to be mutated. However, this operation is given a low probability

so as not to change the population randomly. Reproduction is affected by the

schema chosen. The crossover point is influenced by how the representation of the

rule is expressed. Lankhorst chooses a two-point crossover1 system, thus allowing

right-hand side rules to crossover more easily.

The GA runs different types of experiments, each time attempting to learn a

grammar for a particular target language, with the final aim to use the rules learnt

1A two-point crossover splits each individual in three parts rather that the standard two.

35

2.2 Evolutionary Algorithms

by the GA to classify positive and negative examples over a language correctly.

In total, ten different languages are specified, ranging from matching brackets to

a micro natural language. The latter includes simple grammar rules such as a

sentence consists of a noun phrase and a verb phrase, a noun phrase can consist

of a determiner followed by a noun or else a noun on its own. These grammar

rules are kept at a rather simple level, since they do not contain the detailed

linguistic information usually used when parsing is carried out.

Since the GA uses both positive and negative examples to learn possible rules,

Lankhorst defines a fitness function that uses the correct classification of posi-

tive and negative examples. In general, the first fitness function proposed by

Lankhorst allows the population to converge into a solution with reasonable re-

sults (the number of generations the GA needed to converge to the best solution

vary from 17 to over 1000, depending on the grammar being learnt). However,

for the micro natural language, the fitness function did not result in a correct

grammar. A further adjustment to the fitness function was required, and the

GA was trained incrementally, initially training it using only noun phrases, and

after the grammar was correctly inferred, verb phrases were introduced into the

training data. This procedure resulted in correct classifications of substrings to

influence the fitness score, allowing the GA to converge correctly as well for this

grammar, converging after just under 2000 generations.

Losee (1996) applies a GA to learn the syntactic rules and tags for the purpose

of document retrieval by providing linguistic meaning to both documents and

search terms. Individuals in the GA represent a syntactic rule for parsing or

a rule containing the sequence of part-of-speech (POS) tags, or a combination

of the two. Whilst sequences of POS tags are not attached to particular words

(e.g. noun–verb–determiner–verb), syntactic rules attach linguistic information

to each separate word (e.g. dog–noun–subject, in ‘dog bites man’). Losee limits

the number of rules for each non-terminal symbol to five to allow the experiment

to achieve acceptable results given the computational restraints at the time. He

also restricts the GA to produce one offspring during the crossover phase. He

maintains that, apart from improving computational performance since only one

child has to be evaluated, this also introduces superior genes into the population

more quickly as it increases the rate of learning. As a fitness function, the GA

36

2.2 Evolutionary Algorithms

Figure 2.1: Torus formation

uses a weighted function of the resulting ranking of the document and the average

maximum parse length, thus measuring performance in terms of how effectively

the added linguistic information facilitates document retrieval. The evaluation

measures which documents are retrieved and the length of the parse required to

retrieve such documents. The GA is reported to improve the quality of the initial

randomly generated syntactic rules and POS tags.

Belz & Eskikaya (1998) attempt grammatical induction from positive data

sets in the field of phonotactics. The grammar is represented with finite state

automata. In this paper two results are produced, one for German syllables and

the other for Russian bisyllabic words. The GA is described in detail, including

the type of methods selected, and chromosome representation. The GA used is

a fine-grained one, where individuals are on a fixed size matrix and are allowed

to mate with immediate neighbours. The neighbourhood function is defined as

though the individuals lie on the surface of a torus (representation of which is

shown in figure 2.1). They argue that an important issue is the representation

used for individuals. They present two alternatives:

1. production rules of the form s1 → as2 and s1 → a (where s is a nonterminal

symbol and a is a terminal symbol); or

2. a state transition matrix.

They argue that production rules produce more fine-grained genotype repre-

sentations since the terminals and nonterminals can be represented individually.

On the other hand, state transition matrices can be only seen as a whole, each

37

2.2 Evolutionary Algorithms

represented by a single cell. The final representation chosen for this work is that

of transition matrices. Each individual represents a possible transition matrix

which in turn represents the grammar being induced. In order for GAs to be

used, the matrix is flattened into one string (one row after the other).

The chosen representation has direct implications on the rest of the GA oper-

ations. Crossover and mutation cannot be carried out in the traditional sense of

GAs, and certain knowledge must be present in the GA so as to maintain a sound

structure of this flat matrix. Belz & Eskikaya manage to discover automata for

German syllables and on average for 94% of the Russian noun dataset, achieving

rather promising results.

Keller & Lutz (1997) attempt learning context-free grammars through the

use of GAs, by learning probabilities to all possible grammar rules. The initial

population of the GA is made of all possible combinations of terminals and non-

terminals of the form A → BC and A → a, where A, B and C are nonterminals

and a is a terminal. This guarantees that, although the grammar is a large one,

it is finite. There is also no loss of generality, as all possible rules are present in

the initial grammar (including those that will not be part of the final solution).

The type of GA chosen for this work also uses a 2D grid representation in

torus formation (figure 2.1), where mating occurs only with immediate neigh-

bours. Each individual is encoded as a set of weights, each weight relevant to

one parameter. The weight is represented as an n-bit block, and an individual

can be viewed as consisting of M blocks of n-bits, where M is the number of all

possible rules. Since the grammar is considerably larger than the final solution,

Keller & Lutz try to give more importance to zero probability assignment. Thus,

the initial bits of the n-bit block is seen as a “binary-switch” as to whether the

rest of the bits should be taken into consideration or not.

As for crossover, Keller & Lutz achieved better performance by using a novel

genetic operator which they call and-or crossover instead of the classical crossover

operation. And-or crossover looks at the parents bit by bit, with one child taking

the bits produced using conjunction (conservative), and the other child takes the

bits produced using disjunction (liberal).

Their experiments focus on 6 grammars (equal number of as and bs, anbn, bal-

anced brackets, balanced brackets with two bracket symbols, palindromes over

38

2.2 Evolutionary Algorithms

{a,b}, and palindromes over {a,b,c}). They ran the GA for each grammar 10

times, except for the last language which ran only for 3 times due to process-

ing time required. The results show that in the majority of runs the GA was

able to learn a grammar which contained all the necessary rules to generate the

language. In some instances it would also learn an additional rule with a near

zero probability. In other cases where the GA does not converge to a suitable

grammar, it is terminated after a number of generations. In such cases Keller &

Lutz suggest that this is due to the presence of local maxima around which the

population would have converged.

Spasić et al. (2004) aim at classifying biomedical terms into specific classes,

which represent concepts from an ontology in the biomedicine domain. In order

to derive the possible class of a term, they look at the surrounding context of

that term. This context is learnt through data mining, extracting the contextual

patterns surrounding the terms. The patterns contain morpho-syntactic and

terminological information and are represented as generalised regular expressions.

Each contextual pattern is then given a value indicating its statistical relevance.

They use this to remove the top and bottom ranked features since they are

considered too general or too rare to play a role in term classification. Class

selection of a term is then learnt using a GA. For a particular class, the GA tries

to learn which of the contextual patterns are relevant. Each individual in the GA

is a subset of contextual patterns and its fitness corresponds to the precision and

recall of using these patterns on the training data. Eventually the GA learns a

good subset of features which can be used to identify terms in that class.

In their evaluation, Spasić et al. manage to obtain higher precision and recall

than three other baseline methods used (random rule, majority rule and näıve

Bayes), with f-measure standing at 47%. This experiment shows that by intro-

ducing linguistic knowledge to the problem of classification, they were able to im-

prove results considerably. They suggest that by exploiting further orthographic

and lexical terms (such as suffix), it would be possible to improve precision even

further.

39

2.2 Evolutionary Algorithms

2.2.2 Genetic Programming

Smith & Witten (1995) propose a GP that adapts a population of hypothesis

grammars towards a more effective model of language structure. They discuss

grammatical inference using statistical methods, and the problems encountered

in their work. They point out that probabilistic n-gram models allow frequent,

well-formed expressions to statistically overwhelm infrequent ungrammatical ex-

pressions. There is also the problem with allowing probability for unseen data.

The zero-frequency problem entails in assigning a small probability to all unseen

data, resulting in both ungrammatical n-grams becoming as probable as unseen

grammatical ones.

In their work, Smith & Witten aim at finding a context-free grammar which

is able to parse and generate strings in English. They consider the choice of

representation of the grammar between logical s-expressions or Chomsky Normal

Form (CNF), and base their discussion on similar work by Koza (1992) and Wyard

(1991). Koza successfully trained a GP using s-expressions to learn a context-free

grammar to detect exons of length 5 within DNA strands. Wyard on the other

hand, failed to learn anbn using CNF grammars. Smith & Witten decide to base

their work on Koza’s representation and the population is represented as Lisp

and-or s-expressions. Initial experiments showed that certain constraints were

required in order for the GP to evolve, including a maximum depth for nesting and

a grammar-generator to allow the GP to evolve towards more suitable grammars.

With these constraints in place, the GP evolves simple grammars even within

two generations, forming simple sentences such as ‘the dog saw a cat’. However,

the GP is left to run over more generations to achieve a broader exploration of

the search space and result in a more efficient grammar. In order to evaluate

the performance of the grammar being learnt, after every 25 generations, they

introduce new sentences to see if a similar word grouping is achieved. For example,

the sentence ‘the dog bit a cat’ evolved the same grammar as ‘the dog saw a cat’

within the next cycle, as the authors expected.

40

2.2 Evolutionary Algorithms

2.2.3 Grammar Representation

Through the work reviewed in grammatical inference, we note that grammar rep-

resentation is an important choice in the expression of our problem. In context-

free grammars we specify rewrite rules which for a given symbol on the left hand

side, to a string in a specified language on the right hand side. Another gram-

mar representation is tree-adjoining grammars (TAG) Joshi & Schabes (1997),

where rather than having symbols and strings, trees are used as the representa-

tion structure. Modifications to a tree are carried out either by substitution or

adjoining. The first specifies that a leaf node is changed with another tree only if

its root is the same as the leaf node. The latter inserts an auxiliary tree instead

of an internal node in the original tree, replacing that one node by the auxiliary

tree itself. TAG is used to derive grammars, and the type of operations specified

are similar to those that can be carried out by GPs. Thus such a representation

could allow us to specify the required language over which the GP will learn the

grammar rules. Being similar to context-free grammars, it might be too rich for

our requirements, where a regular language might serve well. It would also result

in an increased search space, which could effect the performance of the GP. How-

ever, it is still interesting to review the operations defined on TAG which could

influence those in the GP.

2.2.4 Summary

We have reviewed work using GAs and GPs in the area of grammar induction,

which is closely related to our problem of learning grammars which can be used for

definition extraction. Work by Lankhorst highlights the importance of the fitness

function, effecting the success (convergence) of the algorithm. Lankhorst uses the

positive and negative classifications of a grammar to calculate its performance. He

eventually arrives at a function that also considers partially correct classification

and context of a sentence. The different functions were derived through the

various experiments carried out, and for different types of grammars. Fine-tuning

a fitness function will be necessary for any experiment with GAs. Losee also basis

the fitness function on what is parsed correctly, creating a average parse metric

in order to be able to evaluate the fitness of the grammar being learnt. In cases

41

2.3 Conclusion

where the problem being learnt is a grammar, the fitness function must take into

account what is being parsed correctly, or classified wrongly. This type of measure

is very close to precision and recall metrics used in information retrieval, and also

in the work reviewed in section 2.1. These types of metric could be reflected in

the choice of fitness function when implementing our work.

The representation of the individual is an important aspect in GAs and GPs.

In the reviewed survey we observed that certain authors choose to flatten a tree

structure and impose restrictions on the algorithm in order to use a GA. It is not

clearly stated whether this is a well informed choice or whether the possibility

of using a GP is not considered. By imposing restrictions on the GA to treat a

string structure as a tree structure could affect the learning process, since these

restrictions affect crossover and mutation. The issue of how to represent the

problem being learnt, i.e. the encoding of the individual, seems to be overlooked

at times, or ‘easier’ representations chosen. In the work reviewed above, we often

note that rather than opting for a tree representation and using a GP for learning

a grammar, a flattened bit-type representation is chosen and restricting where a

GA can dissect the individual for crossover and mutation operations.

2.3 Conclusion

In this chapter we presented a review of work in definition extraction and GAs

and GPs. Several aspects were highlighted which could affect our results and the

subsequent evaluation process. The first issue is that of the type of corpora used,

where most often technical and medical texts, being more structured, result in

better results. The application of machine learning techniques tends to improve

results considerably, and although evolutionary algorithms have not been applied

to definition extraction, we expect to achieve some improvement over the results

achieved using manually crafted rules. Within the QA domain we find that since

the head word is present in the question, definition extraction has a head start.

This can be seen by the results achieved in QA. In our work we focus on extracting

all definitions present in a text, and not those pertaining to a particular term.

Comparison between the two tasks is difficult, however it is still important to

note the techniques used and if these could be applied to definition extraction in

42

2.3 Conclusion

general. Another issue is that GPs have not been used as extensively as GAs, and

when it was applicable to use GPs authors would select to flatten a tree structure

and use a GA with certain conditions rather than keeping the tree structure and

using a GP algorithm. Reasons for such a choice are not provided. This also

means that literature on GPs is not as extensive as GAs, and focuses more on

learning of computer programs.

43

Chapter 3

Genetic Algorithms and Genetic

Programming: An Introduction

This chapter provides an overview of the techniques used in Genetic Algorithms

and Genetic Programming, presenting the necessary concepts used in the rest of

the dissertation. Different aspects of these algorithms are presented including

choices and their affect on the overall performance of the algorithms.

3.1 Evolutionary Algorithms

Artificial Intelligence (AI) aims at creating systems which are able to react in-

telligently to the environment. There are as many different definitions for in-

telligence as there are researchers in the field. However one prevalent view due

to McCarthy (2007) is that of intelligence as the “ability to achieve goals in the

world.” Researchers in this field have been experimenting with several approaches

to compute programs which are able to achieve specific goals, including amongst

others, formal logic, brain simulation and evolutionary computation. The last is a

technique that mimics biological evolution in nature and simulates a process akin

to this. An evolutionary algorithm is a population-based optimisation process

using operations corresponding to biological reproduction, genetic mutation, and

fitness to survive, so as to advance the quality of the candidate solutions.

Genetic Algorithms and Genetic Programming are two strands of evolution-

ary algorithms differing mainly on the way they represent candidate solutions

44

3.2 Properties of Evolutionary Algorithms

(individuals of the population). In this chapter we give an overview of these

two approaches, presenting concepts and techniques which will be used in our

approach.

3.2 Properties of Evolutionary Algorithms

An Evolutionary Algorithms (EAs) is a search technique which emulates natural

evolution, attempting to search for an optimal solution to a problem by mim-

icking natural selection. By simulating a population of individuals (candidate

solutions), EAs try to evolve better solutions by selecting the better performing

individuals, allowing them to survive and reproduce. Performance is measured

through a fitness function, which provides some value of how good a solution

is when compared to another. Reproduction is done using two operations called

crossover and mutation. Crossover takes two individuals (parents), splits them at

a random point, and combines the first part of the first individual with the second

part of the second individual to create the first child. Then combines the second

part of the first individual and the first part of the second individual to produce

the second child. These children become new individuals in the next generation

of the population, and are sometimes referred to as offspring. Mutation takes

a single individual and modifies it slightly, usually in a random manner. The

fitness function is a measure of performance, through which we quantify how fit

an individual is. The process of selection uses the fitness measure to pick those

which will be allowed to reproduce and thus progress into the new generation of

the population. This process mimics the survival of the fittest, with the better

performing individuals advancing to a new generation, and poorer performing in-

dividuals being eliminated. An outline of the process described here is presented

below in algorithm 1. The key elements of the EA are:

Search Space is a plane of unknown size, and at times infinite, consisting of

possible different solutions and there is an element of distance between

candidate solutions.

Gene representation is the way of encoding a proposed solution (individual)

to the problem being attempted by the EA.

45

3.2 Properties of Evolutionary Algorithms

Crossover is the mating process through which two individuals are recombined

to produce two new individuals, thus permitting search space exploration

by looking at new solutions.

Mutation is a disruptive process through which an individual is modified slightly

in a random manner, again intended to explore different solutions. Due to

its disruptive element, mutation is usually set with a low probability of

occurring.

Fitness is a function which measures how well an individual fares in attempting

to solve a problem. This function is detrimental to the EA’s performance

since if we are not measuring an individual’s strength in the right manner,

we might be attempting to solve a different problem than the one actually

specified.

Selection is a process through which individuals are chosen to reproduce. This

process can be discriminatory by allowing only individuals of a certain fit-

ness level to reproduce. Selection is an important technique since it endorses

which genes (characteristics of an individual) will move on to the next gen-

erations.

Population convergence is reached when the population consists of closely

similar individuals or solutions, usually having the same fitness value through-

out the population. When such a situation is reached it is difficult for in-

dividuals to improve further unless it is through some disruptive force such

as mutation. This is referred to as reaching a local maximum, where a best

solution has been found with the information currently present in the pop-

ulation, but this is not necessarily the best overall solution to the problem,

and other better solutions probably exist.

Termination is a decision where we consider whether the algorithm should ter-

minate after a fixed number of generation or after the population has con-

verged. In reality, evolution does not terminate and is a continuing process

over millions of years. The ‘improvement’ of individuals can take thousands

46

3.2 Properties of Evolutionary Algorithms

of years and in general evolution is slow. In EAs we are presented with lim-

ited computation and time, and thus several techniques aim at hastening

the evolution process.

There are various considerations to be taken when implementing an EA. In this

section we will discuss some of the possible implementations and techniques avail-

able which are of more importance to our work.

Algorithm 1 Outline for the Evolutionary Algorithm

Generate Random Population

for i = 0 to MaxGenerations do

calculate FITNESS of all individuals

SELECT individuals for crossover

carry out CROSSOVER

carry out MUTATION

if population converges then

exit loop

end if

end for

3.2.1 The Individuals of a Population and Their Fitness

We stated that an EA consists of a population of individuals which represent

candidate solutions. Thus the encoding of an individual (how it is actually pro-

grammed) will depend on what type of problem we are attempting to solve.

Choosing the right type of encoding is important to the algorithm and its perfor-

mance, and ideally should present an intuitive way of understanding the problem

being tackled by the EA. Different encodings will be explained in further detail

later in this chapter.

Since the individual represents a candidate solution to a problem, the EA

should have a method to evaluate the individual’s performance. This method is

referred to as the fitness function. There is no singular fitness function that can

be applied to different problems as each fitness function is problem specific.

47

3.2 Properties of Evolutionary Algorithms

If we were trying to learn the solution to the linear equation 3x + y = 384,

our individuals would consist of candidate solutions of x and y that when applied

to the equation would result in the value 384. In this case the fitness function

would be to actually evaluate the equation. However, when EAs are applied to

real world problems, we usually have no indication of what the ideal solution is,

we only know what the problem is. Therefore, we might not have the ideal fitness

function that would result as the desired solution. Often the fitness function is

a form of metric which, when applied to a good individual, the result would be

close to the sought solution (in our example if x = 127 and y = 2, applying

the equation would give us the result of 383, which is close to the solution being

sought; however it is usually unlikely that we use GAs to solve this type of

‘easy’ problem.). Choosing the most appropriate fitness function for the problem

attempted is one of the most difficult choices when implementing a GA — what

type of measurement should we use to decide how well an individual fares? The

choice made might affect how successfully the algorithm performs.

3.2.2 Selection Method

An important feature of EAs is the selection method which is responsible for

identifying which individuals which will be chosen to reproduce, and thus which

genes will advance to following generations. Ideally, we would like a selection

technique which will allow the fitter individuals into the next generation of the

population, whilst at the same time continue exploring possible solutions with

weaker individuals which might grow stronger in future generations. An inappro-

priate section method would permit weaker individuals to reproduce on an equal

basis as the fitter individuals, thus slowing down the evolution of the population;

allowing only fit individuals to reproduce limits the diversity of the population,

resulting in an early convergence to the current best individual. There are various

selection techniques which have been proposed for EAs which attempt to select

individuals in a fair manner to maintain a mix of fitness in the population. The

choice of the selection method applied to a particular problem is still an open-

ended question (Mitchell, 1998). Thus, we will evaluate some of the different

48

3.2 Properties of Evolutionary Algorithms

selection methods proposed in EAs, and analyse in which way they facilitate the

growth of a population and possible pitfalls they might have.

3.2.2.1 Roulette Wheel

The roulette wheel selection method is a fitness-proportionate technique which

was used in Holland’s original work on GAs (Holland, 1975). A ‘roulette wheel’

is divided into n-slices, with each slice being proportionate in size to the fitness

of each individual in the population (with n-individuals in a population). The

‘wheel’ is spun N times to select N individuals which will be used as parents for

the next generation. One of the problems with this technique is that selected

individuals are placed back into the pool for selection, and can be selected again.

In a worst case scenario an unfit individual can be selected N times, resulting

in the loss of all better individuals and the next population constituting of the

same individual. In such a situation, it is difficult for improvement to occur any

further as there is no divergence within the new population. The population is

said to have converged to a local maximum, with no better solution possible.

3.2.2.2 Stochastic Universal Sampling and Sigma Scaling

In order to avoid such a situation, Baker (1987) proposed an extension of the

roulette wheel by giving each individual an expected value based on its fitness,

at each generation. Each individual is represented proportionately according

to the expected value over the wheel. In this method however, the wheel is

spun only once, but with N equally spaced pointers to select N individuals for

parenthood. Although this method still allows less fit individuals to be selected,

fitter individuals will multiply more quickly since their expected value is higher

than those of less fit individuals. This can still result in premature convergence

and might not allow the GA to search for other possible solutions.

To address such a problem Forrest (1985) experimented with the expected

value, with the aim of giving each individual a closer chance of being selected

while there is greater difference in the overall fitness of the population. The ex-

pected value is calculated using sigma scaling, which is based on the fitness of the

individual, the average fitness of the population and the standard deviation of

49

3.2 Properties of Evolutionary Algorithms

the population fitness. As the population begins to converge, and the average fit-

ness and standard deviation reduce, fitter individuals will have a higher expected

value than less fit individuals.

ExpVal(i, t) =

{
1.0 + f(i)−f̄(t)

2σ(t)
if σ(t) 6= 0

1.0 otherwise,

where ExpVal(i, t) is the expected value of individual i at time t, f(i) is the fitness

of i, f̄(t) is the mean fitness of the population at time t, and σ(t) is the standard

deviation of the population fitnesses at time t. In the beginning of an EA, the

standard deviation will be high since the population will contain individuals with

varying fitness. As the population begins to converge towards a solution, the

deviation decreases as the individuals become similar in fitness values.

3.2.2.3 Elitism

So far, the selection methods reviewed all allow the possibility of losing the fittest

individual in a particular generation. Elitism, introduced by De Jong (1975),

forces the selection process to keep an exact copy of the top fittest individuals

from the population at each generation. It also allows these individuals to be

selected for reproduction. Through this technique we can ensure that the best

individuals are not lost through reproduction or mutation. Many researchers

have found that this technique improves the performance of an EA substantially,

as the best individuals are always kept (Mitchell, 1998). If the best individuals

discovered by an EA are kept, we reduce the possibility of converging to a local

maximum. Although it is still possible that the search space contains better

solutions that the EA still has not discovered.

3.2.2.4 Boltzmann Selection

Boltzmann selection uses a “temperature” variable, which controls the rate of

selection according to a preset schedule. The idea of this technique is to vary the

weakness or strength of the selection method at different stages of the evolution.

The temperature in the beginning of the evolution is set to high, resulting in

the selection method to be weak, allowing less fit individuals to reproduce at a

50

3.2 Properties of Evolutionary Algorithms

close rate of the fitter individuals. Throughout the lifetime of the algorithm, the

temperature is gradually lowered and the selection strengthens, becoming stricter

and giving fitter individuals a higher chance to reproduce. An implementation is

to assign to each individual i at time t an expected value,

ExpVal(i, t) =
ef(i)/T

〈ef(i)/T 〉t

where T is the temperature and 〈g(i)〉t is the average of function g over the

population at time t. This allows for search-space exploration which might lead

to fitter individuals and aims at avoiding having individuals stuck in a local

maximum. However, fitter individuals could be lost in the beginning of the EA

lifecycle, when selection pressure is weak.

3.2.2.5 Rank Selection

Proposed by Baker (1985), this selection method considers the rank rather than

the fitness value of an individual. Through this technique, if there is a ‘super-

individual’ with a very high fitness value, this difference will not influence the

selection as its rank value is one position away from the next ranked individual.

In this way we avoid giving a larger share of offspring to a small group of highly fit

individuals and allow for a slower convergence of the population. Each individual

is ranked in increasing order of fitness, from 1 toN . The user chooses the expected

value Max for the fittest individual at rank order N , where Max must be ≥ 0.

The expected value of individual i at time t is given as

ExpVal(i, t) = Min + (Max −Min)
rank(i, t)− 1

N − 1

where Min is the expected value of the individual with rank 1. Baker recommends

Max = 1.1 and showed this scheme to be favourable over other values. Similarly to

the Boltzmann selection, Rank allows for a weak selection technique which could

result in a slower process in finding highly fit individuals. However this technique

increases the preservation of diversity and could lead to a quicker convergence

than fitness-proportionate selection.

51

3.2 Properties of Evolutionary Algorithms

3.2.2.6 Tournament Selection

In the fitness-proportionate techniques described above, the EA has to pass twice

through the population to calculate the average fitness and then to compute the

expected value of each individual. Tournament selection chooses two individuals

at random from the population, and takes a random value r between 0 and 1.

If r > k (k is a constant), then the fitter of the two individuals is chosen as a

parent, otherwise the less fit individual is chosen. Both individuals are placed

back into the population and can be chosen again. Although this technique is

computationally more efficient, the selection process is still taking the fitness into

consideration. If the constant k is set to 0.5, this will result in half the time

choosing the fitter individual and half the time the less fit one. However in a

worst case scenario, the fittest individual is never chosen to be able to compete

with another, and this might result in a loss of gene information.

3.2.3 Crossover and Mutation

Crossover is a genetic operation that takes two individuals (parents) from the

population and mates them to create new individuals (offspring, children). The

idea of this operation is to keep the genes present in a population, but at the

same time try new combinations of these genes. The simplest form of crossover,

shown in figure 3.1, is the single-point crossover, which takes a random point and

switches the parents over to produce two new individuals. The disadvantages of

this technique it when the individuals are long in length, since it limits the way

different parts in the parents are recombined. To deal with this problem, it is

possible to carry out a two-point crossover technique, where the parents’ parts

are switched at two random points rather than one. Still, the recombination can

be restricted, and researchers experimented with various numbers of crossover

points to try to maximise recombination possibilities. In implementations where

the individuals are of varied length, the crossover point can be at a different

location for the two parents, thus producing offspring of different length. Another

technique is to perform bit-crossover, where the crossover occurs at every bit (as

shown in figure 3.2). In this technique, the children will constitute of bits selected

52

3.2 Properties of Evolutionary Algorithms

Figure 3.1: One- and two-point crossover of two individuals

Parent A Parent B Offspring

+ =

Figure 3.2: Bit crossover of two individuals

randomly from both parents, but these bits remain at the same position in the

children as they were originally in the parents.

Mutation is the process through which an individual changes slightly in a

random manner, and thus introducing a controlled randomness into the evolution

of the population. This slight modification is designed to explore the search space

better, considering slightly different solutions to our problem. However, due to the

randomness of the mutation process, it introduces a certain disruptiveness within

the population and an individual’s fitness might improve as well as worsen. In

general, the probability of mutation occurring in every generation is kept low,

to control this injected disruptiveness which could have a negative impact on a

well-performing population.

3.2.4 Convergence

A population is said to converge when all individuals in the population reach a

similar fitness and no further improvement is observed. The EA should ideally

permit the exploration of the search space by letting less fit individuals to re-

53

3.3 Genetic Algorithms

produce and by finding a correct balance between crossover and mutation. A

high mutation rate might reduce the fitness of the best individuals by randomly

changing their genes. As we saw above, the selection method also affects the

convergence of the population. Strict fitness-proportionate techniques which give

more importance to the fitter individuals will lose the diversity of the population

fitness and converge prematurely. Premature convergence does not give enough

time for search space exploration, and we might reach a local maximum, which

would be the best solution for the population we currently have, but might still

not be the best solution over the whole search space.

3.3 Genetic Algorithms

A Genetic Algorithm (GA) (Goldberg, 1989; Holland, 1975) is based on EAs

and it is designed to offer a generic algorithm which can be applied to several

problems. An important element of GAs is the representation of the individual,

since this should provide a flexible setup to solve a variety of problems.

3.3.1 Encoding the Individual

Deciding upon the way an individual is encoded is important as it will determine

the way a GA and its operations are implemented. Typically, most GA implemen-

tations choose a fixed-length binary encoding since Holland’s work concentrated

on such a representation and thus is more well-documented. Other possible rep-

resentations include many-character encodings (such as a protein structure, com-

monly found in work in the domain of bioinformatics) and real-value encodings

(example to learn weights for a neural network).

The encoding is a representation of the solution to the problem we are at-

tempting. Different encodings can represent different types of problems. If we

are trying to learn simple and correct computer programs, we might try to rep-

resent the individuals as strings, made up of the syntax of possible programs.

However we would then have to encode additional information, such as which

parts of the individual can be changed by which in operations such as crossover

and mutation. For example, we can substitute keywords with other keywords,

54

3.4 Genetic Programming

but not with equations. Another representation could be a tree structure, which

is a more natural representation as we can specify node types, and allow opera-

tions according to their type, without imposing restrictions on the encoding itself.

Tree representation will be discussed in more detail in section 3.4, where Genetic

Programming is described.

3.3.2 Genetic Operators

The genetic operations are affected by the encoding of the individual chosen and

by implementation considerations. In a bit or character representation crossover

and mutation can occur at any point in the gene. In real number representation,

crossover could either take into consideration the length of each number and

select the crossover point at such a particular interval, or it could select any

point in the individual, thereby lower order values could become higher order,

thus changing the value. Same applies for mutation where it could occur at a bit

level (thus changing the value of the real number), or replacing a real number

with a randomly generated one. Figure 3.1 shows how one-point and two-point

crossover operations produce new individuals whilst figure 3.2 shows the result of

the bit crossover technique.

3.4 Genetic Programming

Genetic Programming (GP) was introduced by Koza (1992), with the idea of ap-

plying evolutionary programming to automatically generate computer programs.

The main distinguishing factor of GPs is the encoding of the individual where

the encoding of an individual is represented as a tree. This change affects the

way genetic operations are implemented in GPs.

3.4.1 Encoding the Individual

The design of a GP begins at a high order level, where one must define what

problem the candidate solution (computer program) must solve. Once this is

defined, it is possible to decide what set of terminals and primitive functions

(non-terminals) will be used in the encoding of the individuals. Koza et al.

55

3.4 Genetic Programming

(2005) provides the following example to illustrate this process. The goal of the

GP is to find a computer program whose output is equal to the values of the

quadratic polynomial x2 +x+1 in the range between −1 and +1. This is referred

to as symbolic regression where the aim is to discover the target functions and

the necessary coefficients (or an approximation to them). In the given example,

the non-terminal set of symbols (primitive functions) is set as F = {+,−, ∗,%}
and the terminal set includes x and a fixed set of constants in the range of −5.0

to +5.0. Figure 3.3 displays individuals which were randomly generated under

the conditions described here.

Figure 3.3: Randomly generated computer programs

In more complex problems, it is usually necessary to restrict the syntactic

structure of the individual by specifying certain ‘conditions’. For instance, such a

specification could restrict that one type of node or leaf must be followed only by

another of a particular type. When such constraints are placed, all GP operations

must comply with these specifications.

3.4.2 Genetic Operators with Trees

Crossover in GPs takes two selected individuals and recombines them at randomly

selected nodes, as though sections of different programs are being switched. Fig-

ure 3.4 displays a possible crossover between two individual, where the crossover

point for the first individual was selected at the + node, and at the x node for

the second individual. The resulting offspring from this crossover operation are

also shown.

56

3.4 Genetic Programming

Figure 3.4: Crossover of two individuals

57

3.4 Genetic Programming

Figure 3.5: Mutation of an individual

In the case of mutation, a random node is chosen and the subtree from that

node onwards is deleted. A new subtree is generated randomly and placed at

that point, replacing the original subtree. This is shown in figure 3.5.

Similarly to GAs, the probability of mutation is kept low to around 1% of

the population. Another genetic operator referred to by Koza is reproduction,

whereby an individual is copied into the new population as is. In GAs, this

process occurs when the Elite selection technique is implemented, maintaining

the top scoring individuals within the next population to ensure that the best

individuals are kept. Koza et al. suggest that around 8% of the population can be

retained at each generation, chosen randomly through the process of reproduction

and around 90% of the population are selected for crossover.

3.4.3 Fitness and Selection Techniques

The fitness of an individual in GPs is calculated by executing the program and

comparing the result to the evaluation of the target program. Figure 3.3 displays

the formulas that the trees represents, and according to the parameters of the

problem specification, x is evaluated in the range from −1.0 to +1.0. The value

of the function can be compared to the value of the target function, thus giving

an indication of how close a solution is. The perfect fitness value is that of 0

indicating that a solution has been found which gives the exact same result as

the solution being sought.

58

3.5 Conclusion

The most common selection techniques in GPs are tournament selection and

fitness-proportionate selection, both giving importance to the relatively fit indi-

vidual. These selection methods are preferred as they are not greedy, meaning

that weaker individuals still have a chance of being selected and stronger individ-

uals are not guaranteed selection.

3.5 Conclusion

In this chapter we have given an overview of GAs and GPs and at the same time

we touched upon certain algorithm choices which will influence our implementa-

tion described in chapter 5. This tutorial is by no means a complete overview,

and readers who are interested in further detail should refer to more complete

literature, especially (Holland, 1975; Koza et al., 2005; Mitchell, 1998). Our pur-

pose was to provide a sufficient explanation of the features found in GAs and

GPs to understand the solution we propose for definition extraction in the rest

of the dissertation.

59

Chapter 4

Language Technologies and

Definition Extraction for

eLearning

This thesis is a result of work carried out under LT4eL, a project where definition

extraction from eLearning texts was attempted through manually crafted rules.

The experience gained within the project, together with experiments carried out

by different partners, gave us an insight to the difficulties encountered in the

manual task of creating grammar rules based on observation. In this chapter we

present the work we carried out within the project that served as a basis for this

thesis.

4.1 Introduction

eLearning is the process of acquiring knowledge, information or skill through

electronic means. One of the most popular gateways to eLearning is online via the

Internet, often through Learning Management Systems (LMS). LMS allow tutors

to manage collections of learning materials and monitor students’ progress, whilst

providing students with a structured way to access data. However, given the huge

amount of static and dynamic learning content created for eLearning tasks, it

becomes necessary to improve the effectiveness of retrieval and the accessibility

of such documents through the LMS.

60

4.2 Corpus Preparation

Language Technology can support eLearning, especially when used to en-

hance LMS. From a content perspective, it would be ideal if learning objects

(LOs) would contain additional information to facilitate the retrieval of such

documents. Content creators would want to emphasis their efforts on the learn-

ing task, rather than manually selecting and entering metadata. In the project

Language Technologies for eLearning (LT4eL, Monachesi et al. (2007)) aims at

enhancing eLearning through the use of keyword extraction, definition detection

and concept annotation in LOs. Through these functionalities, embedded within

a LMS, a tutor can provide additional information to a LO, such as a keyword

list and definition compendiums present in the text, enabling the student to pin

down the important topics present in a particular collection of documents. The

implementation of these functionalities was based on the presence of implicit lin-

guistic information available in texts. Nowadays, reliable linguistic tools such as

part-of-speech taggers are available and provide linguistic analysis of text. Thus

LOs can be annotated with linguistic information as meta-data (hidden from the

user) which is available to this suite of tools.

The LT4eL definition extraction tool was based on grammar rules derived

through manual observation of definitions and their linguistic properties. This

proved to be a challenging job and the results achieved in the time-frame of the

project were poor when compared to peer work. The project decided to split the

definitions into distinct categories with the aim to improve results. This section

covers the work carried out under the LT4eL project by the University of Malta

in which we were heavily involved.

4.2 Corpus Preparation

Within the LT4eL project, we collected a corpus of English LOs of IPR-free

(Intellectual Property Rights) documents in the areas of ICT and eLearning.

The target for the corpus was of 200,000 words for each language, with the final

English corpus consisting of over 1.2 million words. The majority of the LOs

were written in a proprietary format, which does not allow easy manipulation and

addition of metadata. In order to standardise the formats across the corpus, all

LOs were converted into HTML (Hypertext Markup Language) to retain layout

61

4.3 Rule-Based Definition Extraction

information (such as bold, italic, table format), and then automatically translated

into an XML-based (extensible markup language) format conforming to the XCES

(corpus encoding standard using XML) DTD, a specification for linguistically

annotated corpora (Ide & Suderman, 2002). We created a linguistic annotator

for English, which uses a part-of-speech tagger (Toutanova & Manning, 2000)

and named-entity recogniser (Finkel et al., 2005) as plug-in tools, to provide

documents with the necessary additional linguistic metadata.

Once the corpus was linguistically annotated, we manually identified and an-

notated a set of 450 definitions within our corpus to assist in the creation and

evaluation of the tools required for the project. Through this schema, all the

information within our corpus becomes easily extractable and machine readable.

Figure 4.2 show an annotated sentence which includes markings for a definition,

keyword, named entity and other linguistic information for each word in the final

XML format.

4.3 Rule-Based Definition Extraction

Initially, we set out to have 450 manually annotated definitions, split into three

sets: (i) a training set, (ii) a testing set, and finally (iii) an evaluation set, each

consisting of 150 definitions. The training set was used to manually observe

possible patterns that can be commonly found in definitions; the testing set was

to test the created rules and on the basis of the results tweak the rules; and the

evaluation set was used to carry out a final evaluation of the grammar rules.

The rules were created through manual observation of these sentence defi-

nitions, representing mainly the POS sequences noticed. An XML transducer,

lxtransduce (Tobin, 2005), was used to match the defined patterns and a rewrite

rule is then applied to the matched cases. In our case, definitions are left intact,

and surrounded with definingText tags. Figure 4.3 shows an example of a gram-

mar rule which looks for a determiner at the beginning of a sentence followed by

a noun.

A program to evaluate new grammar rules was created to immediately eval-

uate any changes to the rules. Thus is was possible to monitor the effect of the

slightest change. Often, the result was that when using more specific rules, we

62

4.3 Rule-Based Definition Extraction

<s id="s81">

<definingText id="dt1" def_type1="is_def" def="m1">

<markedTerm id="m1" dt="y" kw="y">

<chunk id="c1a" type="NAME">

<tok id="t2172" class="word" sp="y" ctag="NNP" base="latex"

msd="N,SG,proper,vrbl">LATEX</tok>

</chunk>

</markedTerm>

<tok id="t2173" class="punc" sp="y" ctag="(" base="("msd="">(</tok>

<tok id="t2174" class="word" sp="y" ctag="VBN"

base="pronounce" msd="V,PAST,ED,finite">pronounced</tok>

<tok id="t2175" class="other" sp="y" ctag="JJ"

base="lah-tek" msd="">Lah-tek</tok>

<tok id="t2176" class="word" sp="y" ctag="CC" base="or"

msd="CJ">or</tok>

<tok id="t2177" class="other" sp="y" ctag="JJ"

base="lay-tek" msd="">Lay-tek</tok>

<tok id="t2178" class="punc" sp="y" ctag=")" base=")"msd="">)</tok>

<tok id="t2179" class="word" sp="y" ctag="VBZ" base="be"

msd="AUX,PRES,S,finite">is</tok>

<tok id="t2180" class="word" sp="y" ctag="DT" base="a"

msd="DT,SG,wh">a</tok>

<tok id="t2181" class="word" sp="y" ctag="NN"

base="collection" msd="N,SG">collection</tok>

<tok id="t2182" class="word" sp="y" ctag="IN" base="of"

msd="PP">of</tok>

<tok id="t2183" class="word" sp="y" rend="i" ctag="FW"

base="macro" msd="N,PL,proper,vrbl">macros</tok>

...

</definingText>

</s>

Figure 4.1: A sample of an annotated sentence

obtained a higher precision but lower recall. On the other hand, if we attempted

63

4.3 Rule-Based Definition Extraction

<rule name="det_S_noun_phrase">

<seq>

<query match="s/*[1][name()=’tok’][@ctag=’DT’]"/>

<ref name="noun_group" mult="+"/>

</seq>

</rule>

Figure 4.2: A sample of a manually crafted rule

to generalise the rules slightly, we would gain a higher recall, but precision would

lower. The task of actually discovering these grammar rules manually was tedious

and required linguistic knowledge.

Another issue observed during this phase was how to deal with definitions

that are spread over multiple sentences. Human annotators were instructed to

annotate multi-sentence definitions as constituting of parts. However, the rules in

lxtransduce were not able to cover multi-sentences and thus affected our results. It

was decided that if a rule would match one sentence of a multi-sentence definition,

it would be considered as a match, even if the whole definition is not captured.

In an eLearning context this is acceptable since the tutor is presented with the

context of the extracted definitions (surrounding sentences) and it would still be

possible for the tutor to include a second sentence as part of the definition.

4.3.1 Categorising Definitions

On the basis of the initial results and difficulties encountered, it was decided to

adopt a divide-and-conquer approach by splitting definitions into different cate-

gories observed with the hope that working on the categories separately would

improve the quality of our grammars. This also allowed to concentrate on gram-

mar rules within a particular category which allowed to focus on specific char-

acteristics in that category. The types of definitions observed in our texts have

been classified as follows:

Is-a Definitions containing the verb “to be”, generally followed by a determiner.

E.g.: “A joystick is a small lever (as in a car transmission gearshift) used

64

4.3 Rule-Based Definition Extraction

mostly in computer games.”

Verb Definitions containing other verbs as connectors such as “means”, “is de-

fined”, “is called”. E.g.: “the ability to copy any text fragment and to

move it as a solid object anywhere within a text, or to another text, usually

referred to as cut-and-paste.” In this case the term being defined is at the

end of the sentence, and it is classified so by the use of ‘refer to’.

Punctuation Definitions containing punctuation features, usually separating

the term being defined and the definition itself. This category is also re-

ferred to as ‘punct’ for short. E.g.: “hardware (the term applied to com-

puters and all the connecting devices like scanners, modems, telephones,

and satellites that are tools for information processing and communicating

across the globe).” where the definition is contained within brackets.

Layout Definitions containing particular layout style, similar to the punctuation

feature, but separated through the use of a table or the defining term is a

heading and the definition is the sentence below it (similar to the punctua-

tion definition, however the term and definition would be placed in separate

cells).

Anaphora Definitions containing a pronoun, usually referring to the defining

term which would be placed outside the definitory context. This is com-

mon in cases where the definition is over more than one sentence, and the

second sentence would refer to the defining term using a pronoun. E.g.:

“This (Technology emulation) involves developing techniques for imitating

obsolete systems on future generations of computers .”

Other Other definitions to capture those which do not fall in the above cate-

gories. E.g.: “information skills, i.e. their ability to collect and process the

appropriate information properly in order to reach a preset goal.” where

the defining term and the definition are separated by ‘i.e.’.

Table 4.1 shows the distribution of the manually annotated sentences accord-

ing to the described categories above. Work carried out on the manually crafted

rules for the LT4eL project focused on the first three categories where is was

65

4.3 Rule-Based Definition Extraction

Table 4.1: Distribution of definitions by category

Category Number Percentage

Is-a 111 24%

Verb 141 30%

Punctuation 127 27%

Pronoun 28 6%

Layout 8 2%

Other 49 10%

viable to concentrate efforts in, since the majority of definitions fell within these

categories. The forth category, based on layout style, depends on the conversion

process to HTML, and how well the information is retained. For instance, in the

conversion carried out in LT4eL, table information was not retained. The fifth

category would have required anaphora resolution to be applied, where words

such as ‘this’ would have been resolved to what original word it refers to. For

example “There is a TEX system called LATEX. This is a typesetting system.”.

The second sentence would have been marked as definitional sentence under the

fifth category. Had we applied anaphora resolution, the word “This” would have

been replaced by “LATEX”. The last category was introduced as a catch-all one,

where all remaining sentences were grouped together.

4.3.2 Results of Manually Crafted Rules

Although categorisation of definitions permitted focusing efforts to crafting rules

over a smaller set of sentences, it was still hard to improve results. Table 4.2

presents the results achieved with the manually crafted rules delivered as part of

the LT4eL project.

In general, the results are not very promising, especially if these had to be

compared to other related work. These results were similar throughout the other

languages within the LT4eL project, which motivated us to look into machine

learning techniques for improvement.

66

4.4 Machine Learning Tasks

Table 4.2: Results for definition extraction with manually crafted rules

Category F-measure Precision Recall

Is-a 0.26 0.17 0.58

Verb 0.33 0.34 0.32

Punctuation 0.17 0.33 0.12

To discriminate between definitions and non-definitions in an automatic man-

ner, it is important to identify features which are present in the definitional class

but not in the non-definitional class. Such features may range from a simple rule

stating contains the verb to be, to more complex rules, such as POS sequences.

The proposed machine learning approach aimed at extending and improving the

results achieved from the manually-crafted grammars.

4.4 Machine Learning Tasks

Various machine learning approaches were tried in order to improve the results of

the definition extraction process. For the Dutch language, Westerhout & Monach-

esi (2007a) attempted several experiments based on work carried out by Fahmi

& Bouma (2006), using different textual properties as features and then using

three different supervised learning methods, namely namely näıve Bayes, maxi-

mum entropy and support vector machine. They managed to increase f-measure

in the is-a category from 42% with manually crafted rules to 79% using a näıve

Bayes classifier (with an accuracy of 88%). In an elearning context such a result

is acceptable considering that a tutor would then verify the proposed sentences

to be included in a final glossary.

For Polish, Degórski et al. (2008) experiment with well-known classifying al-

gorithms (näıve Bayes, decision trees (ID3 and C4.5), lazy classifier IB1, Ad-

aBoostM1 with Decision Stump and AdaBoostM1 with nu-SVC). From an f-

measure of 28% with manually crafted rules, the best increase is achieved by the

ID3 classifier with an f-measure of 32%. In a separate experiment, Kobyliński &

Przepiórkowski (2008) use Balanced Random Forest (BRF) which is a machine

67

4.5 Conclusion

learning technique for classification using decision trees, where decisions are based

on a subset of attributes which are randomly selected and then the best attribute

for the current tree is chosen. Here the f-measure also reaches 32%, with accuracy

at 85%.

The various experiments carried out supported the idea that in the case of the

corpora being used within LT4eL, machine learning techniques improved results,

and in some cases, substantially. Thus, from our part we proposed to use evolu-

tionary algorithms, which as yet had not been applied to the task of definition

extraction and classification. A detailed proposal is described in the following

chapter.

4.5 Conclusion

Through the categorisation of definitions, we were able to improve results for cer-

tain categories, such as the is-a category. However, having achieved a high recall,

precision was considerably low. This meant that whilst good definitions were

being captured, a high number of incorrect definitions were also being included

in the result set.

Another problem was that there was no ranking of the results as the extrac-

tion method used was a simple yes/no classification. Definitions were presented

to the user in the order in which they appeared in the texts. Since the system

was intended to suggest definitions to a tutor for approval, having a few incorrect

definitions was not deemed as a problem. However, it is desirable that the def-

initions are presented in a ranked order, so that those definitions with a higher

confidence value are presented at the top of the results. We also observed that

incorrectly classified definitions could be filtered out using post-processing filter-

ing after the initial grammar was applied. We propose to use GAs and GPs to

include these desired features into the process of definition extraction. Our focus

remains on English non-technical eLearning texts.

68

Chapter 5

Experiment Design and

Methodology

In this chapter we discuss the setup of the two proposed experiments for definition

extraction from natural language texts — one using a GA and another using a

GP. The GA aims learning weights to a set of features; thus we define what

we mean by a feature, what an individual constitutes of, and how it will be

represented in the GA. We also discuss different fitness functions and selection

methods available, and justify why the purpose of the initial experiment is to

find the ideal setup for the GA. The GP, although similar to a GA in structure,

requires different individual representation, and thus we define the language of

the individual’s representation and how the individual will be interpreted. The

description and discussion on both the GA and the GP serve as the basis of the

implementation of the two experiments.

5.1 Experiment Overview

We are confronted with two specific problems in definition extraction. The first

problem is that manually crafted rules have no information as to how effective

they are as definitions classifiers. To solve this problem we propose our first

experiment, whereby we use a GA which learns weights to a fixed set of features

or rules, and these weights can then be used to represent a level of importance

69

5.1 Experiment Overview

or confidence associated to respective features, allowing a definition extractor to

rank classified definitions according to some form of score.

The second problem identified is that manually crafting grammar rules is not

an easy task, requires certain expertise and is time-consuming. Our proposal

attempts solving this problem by applying a GP to a training corpus of defini-

tional and non-definitional sentences. The GP generates different grammar rules

(by observing a certain process) and tests whether these rules are good defini-

tion classifiers. Thus, it is possible to learn rules which capture definitions in an

automatic manner.

In this section we describe in detail the two proposed experiments and the

choices made for the implementation of these two algorithms. Of particular im-

portance in the following sections is the discussion of how we represent the indi-

viduals in both experiments, and the different fitness functions used.

5.1.1 Experiment One: Genetic Algorithm

From the experience gained through the manual crafting of grammar rules for

definition extraction, we noticed that certain rules, or sub-parts, contain more

specific or important information than other rules. This led to the idea of using

a GA as a possible technique to learn the importance of the features that can

recognise definitions. This can be done by assigning weights to each feature and

allowing the algorithm to adjust the weights according to the performance.

5.1.1.1 Feature Description

A feature is a test which, given a sentence s, returns whether a particular struc-

ture, word or linguistic object is present in the sentence — essentially character-

istics that may be present in sentences. These could range from rendering in-

formation (bold, italic), to the presence of keywords, or part-of-speech sequences

that could identify the linguistic structure of a definition. Consider the following

two example sentences:

s1 = “vi is a text editor that runs under Unix.”

s2 = “The Artificial Intelligence department is part of the ICT Faculty.”

70

5.1 Experiment Overview

Consider also the following set of features:

f1 = FW→VBZ→DT→NN→NN→WDT→VBZ→IN→NNP

f2 = hasItalic

f3 = hasBold

Feature f1 represents a part-of-speech sequence showing the order of the tags

expected in a particular sentence. Features f2 and f3 describe rendering infor-

mation a sentence should contain. In our examples, sentence s1 matches features

f1 and f3, while sentence s2 matches feature f2. A match returns a value of 1,

whereas a non-match returns a value of 0. Note that a feature does not neces-

sarily have to match a whole sentences, but can match only a part. It is also

possible that the feature is present more than once in the sentence (say, there

is more than one bold word), however the return is still 1 in that a match has

occurred.

Now, given a set of n basic features, f = 〈f1 . . . fn〉, and n numeric constants,

α = 〈α1 . . . αn〉, one can produce a compound feature combining these basic

features in a linear fashion:

F f
α (s) =

n∑
j=1

αj × fj(s)

If we apply this to our example sentences above, taking, for instance, the

numeric constants to be α = 〈4,−1, 3〉.

F
〈f1,f2,f3〉
〈4,−1,3〉 (s1) = 4× 1 + (−1)× 0 + 3× 1 = 7

F
〈f1,f2,f3〉
〈4,−1,3〉 (s2) = 4× 0 + (−1)× 1 + 3× 0 = −1

There are different ways how these values may be interpreted.

• Classifying a sentence as a definition if and only if its score is greater than

0. In this case s1 would be classified as a definitions, whereas s2 would not.

71

5.1 Experiment Overview

• Using zero as the cut-off point is arbitrary and can be set to any particular

value τ . For example if we take τ to be −5, both s1 and s2 would be

classified as definitions.

• A more elaborate interpretation is to use the value as the confidence by

which one can categorise the sentences as a definition. In this case, s1 is

more likely to be a definition than s2 since it has a higher score. Naturally

this can be done both using zero or another arbitrary cut-off point.

Clearly the question now lies in how appropriate values for the vector of

numeric constants α, and τ can be chosen.

5.1.1.2 Learning Weights

The problem now is: given a fixed set of features f , how can we calculate a good

set of weights α, so as to maximise the effectiveness of the combined features as

a definition classifier?

We use a GA with the different possible interpretations of a compound feature

described above. The values learnt would thus correspond to the relative effec-

tiveness of the individual features as classifiers of definitions. Before starting the

experiment, a predefined set of features is adopted and remain static through-

out the experiment. The individual will be encoded as a list of real numbers

of length equal to the number of predefined features. Thus, the ith individual

(1 ≤ i ≤ populationsize) will have the structure:

gi = 〈αi,1, αi,2 . . . αi,n〉
Note that n corresponds to the number of predefined features. An individual

gi scores a sentence s using the compound feature formula given earlier:

value i(s) = F f
〈αi,1,...,αi,n〉(s) =

n∑
j=1

fj(s)× αi,j

The initial population will consist of genes with random weights assigned to

each feature.

72

5.1 Experiment Overview

Table 5.1: Set of definitional

sentences

Definition Value

D1 3

D2 2

D3 2

D4 1

D5 −2

Table 5.2: Set of non-

definitional sentences

Non-definition Value

ND1 1

ND2 0

ND3 −1

ND4 −3

ND5 −5

5.1.1.3 Fitness Function

Given that we have a training corpus available, we can define a fitness function

that is based on how many definitions and non-definitions an individual manages

to classify correctly. F-measure, precision and recall are popular metrics used

in retrieval and classification domains. These metrics can be used as a fitness

function to gauge the performance of an individual in the population (providing

a way to rank individuals and produce a quantifiable fitness measure).

Given an individual i, and a value τ separating definitions from non-definitions,

one can define the following values:

truePositivesτ (i) = count{s | s ∈ D ∧ valuei(s) ≥ τ}

falsePositivesτ (i) = count{s | s ∈ ND ∧ valuei(s) ≥ τ}

trueNegativesτ (i) = count{s | s ∈ ND ∧ valuei(s) < τ}

falseNegativesτ (i) = count{s | s ∈ D ∧ valuei(s) < τ}

Example: To illustrate better, we will use the following example. Let D be the

set of definitions in the corpus with their associated valuei(s) shown in table 5.1,

and ND be the set of the non-definitions with their associated valuei(s) shown

in table 5.2. For instance, taking zero as the value of τ , we obtain the following

values:

truePositives0(i) = count{D1, D2, D3, D4} = 4

73

5.1 Experiment Overview

Figure 5.1: Classification of individuals

falsePositives0(i) = count{ND1, ND2} = 2

trueNegatives0(i) = count{ND3, ND4, ND5} = 3

falseNegatives0(i) = count{D5} = 1

If instead we take the value of −2 for τ , we obtain the following results:

truePositives−2(i) = count{D1, D2, D3, D4, D5} = 5

falsePositives−2(i) = count{ND1, ND2, ND3} = 3

trueNegatives−2(i) = count{ND4, ND5} = 2

falseNegatives−2(i) = count{} = 0

Figure 5.1 shows this in a graphic way, where sentences are plotted in each of the

four quadrants representing the value described. �
There are various ways of how these values could be used, however our focus

will be on precision, recall and f-measure, metrics which are widely used in infor-

mation retrieval and classification problems. Based on these counts, we calculate

the following metrics:

Precision is the percentage of correctly classified definitions from all sentences

being proposed as definitions by the learning system. This percentage measures

the quality of the definitions being proposed.

74

5.1 Experiment Overview

Precisionτ (i) =
truePositivesτ (i)

truePositivesτ (i) + falsePositivesτ (i)

Recall is the percentage of correctly classified definitions from all the set of

positively marked sentences in the training data. This percentage measures how

much of the actual definitions we managed to capture.

Recall τ (i) =
truePositivesτ (i)

truePositivesτ (i) + falseNegativesτ (i)

Example: Building on the previous example we can now calculate precision and

recall at τ = 0:

Precision0(i) =
truePositives0(i)

truePositives0(i) + falsePositives0(i)
=

4

4 + 2
= 0.67

Recall0(i) =
truePositives0(i)

truePositives0(i) + falseNegatives0(i)
=

4

4 + 1
= 0.80

Similarly, the values of precision and recall for when τ = −2 are:

Precision−2(i) =
truePositives−2(i)

truePositives−2(i) + falsePositives−2(i)
=

5

5 + 3
= 0.63

Recall−2(i) =
truePositives−2(i)

truePositives−2(i) + falseNegatives−2(i)
=

5

5 + 0
= 1.00

Note that in this example, by taking the classifying line as τ = −2, we capture

all the definitions in our corpus, indicated by recall = 1.00. However, more non-

definitions are captured as definitions, affecting precision in a negative way. Still,

the increase in recall has surpassed the decrease in precision. �

F-measure is a metric that uses precision and recall together with a kappa1

value, which gives the relative importance to be assigned to precision or recall.

1In Information Retrieval, this value is usually referred to as alpha. However, in order to
avoid confusion between the alpha’s being learnt by the GA as features’ weights, we refer to
the f-measure’s alpha value as kappa or κ.

75

5.1 Experiment Overview

F κ
τ (i) =

(1 + κ2) · (Precisionτ (i) · Recall τ (i))

(κ2 · Precisionτ (i) + Recall τ (i))

The kappa value is used to give more importance to either one of the two

metrics. Our approach in this experiment is to use f-measure as a fitness function,

with kappa being equal to one (no preference to either precision or recall).

Example: Developing our example further, we can calculate f-measure with

κ = 1.0 and τ = 0 as follows:

F 1.0
0 (i) =

(1 + 1.02) · (Precision0(i) · Recall0(i))

(1.02 · Precision0(i) + Recall0(i))
=

2 · 0.67 · 0.8
1.0 · 0.67 + 0.80

= 0.73

Calculating f-measure with τ = −2 we would have the following results:

F 1.0
−2 (i) =

(1 + 1.02) · (Precision−2(i) · Recall−2(i))

(1.02 · Precision−2(i) + Recall−2(i))
=

2 · 0.63 · 1.00

1.0 · 0.63 + 1.00
= 0.77

From this example, we consider τ = −2 to be a better definition classifier since

it increased the overall f-measure from 0.73 to 0.77. �

The f-measure metric presents an interesting problem found in all types of

classification problems. Although we would like to achieve both a high preci-

sion and a high recall, this becomes difficult as either one improves considerably.

As seen in the above example, a high recall (capturing all the definitions) usu-

ally results in capturing also a number of non-definitions, which affects precision

negatively. On the other hand, a high precision reflects the correctness of those

definitions being captured, which usually means that our rules are too specific

and are not capturing the full set of definitions, resulting in low recall. In our

experiments we can use the kappa value to emphasis which of the two values

should be considered more important, precision or recall. This will allow the

experiments to shift the learning preference towards either a higher recall or a

higher precision. Of course, when carrying out such experiments we are aware

that if one value gains, the other suffers. Yet it is interesting to note the results

of what can be learnt under such conditions.

Thus, we propose the following two experiments for different value of κ:

76

5.1 Experiment Overview

1. Taking τ to be zero, thus using F κ
0 (i) as the fitness score of individual i.

We refer to this method as CountZero.

2. Choosing an optimal value of τ for individual i, thus giving the following

score to individual i:

max{F κ
τ (i) | τ ∈ R}

We refer to this method as CountShifted. In practice we calculate this not

over all real numbers but only over the scores of the sentences which would

give the same results.

An alternative way of using the formulae is by taking the sum of the squares

of the distances above or below the threshold τ (or zero), rather than simply the

count. Using the following alternative definitions:

∆truePositivesτ (i) =
∑
{(valuei(s)− τ)2 | s ∈ D ∧ valuei(s) ≥ τ}

∆falsePositivesτ (i) =
∑
{(valuei(s)− τ)2 | s ∈ ND ∧ valuei(s) ≥ τ}

∆trueNegativesτ (i) =
∑
{(valuei(s)− τ)2 | s ∈ ND ∧ valuei(s) < τ}

∆falseNegativesτ (i) =
∑
{(valuei(s)− τ)2 | s ∈ D ∧ valuei(s) < τ}

Example: To understand the value of the formulae being proposed, we calculate

these figures where at τ = 0 we will have the following results:

∆truePositives0(i) =
∑
{(3− 0)2, (2− 0)2, (2− 0)2, (1− 0)2} = 18

∆falsePositives0(i) =
∑
{(1− 0)2, (0− 0)2} = 1

∆trueNegatives0(i) =
∑
{(−1− 0)2, (−3− 0)2, (−5− 0)2} = 35

∆falseNegatives0(i) =
∑
{(−2− 0)2} = 4

And at τ = −2 we will have the following:

∆truePositives−2(i) =
∑
{(3− (−2))2, (2− (−2))2, (2− (−2))2,

(1− (−2))2, (−2− (−2))2} = 66

∆falsePositives−2(i) =
∑
{(1− (−2)2, (0− (−2))2, (−1− (−2))2} = 14

∆trueNegatives−2(i) =
∑
{(−3− (−2))2, (−5− (−2))2} = 10

∆falseNegatives−2(i) =
∑
{} = 0

77

5.1 Experiment Overview

�
Based on these, one can calculate precision (∆Precisionτ (i)), recall (∆Recall τ (i))

and f-measure (∆F κ
τ (i)) just as before but using these values instead of the counts.

Example: Building further on our calculations, we can now obtain values for

precision and recall at τ = 0:

∆Precision0(i) =
∆truePositives0(i)

∆truePositives0(i) + ∆falsePositives0(i)
=

18

18 + 1
= 0.95

∆Recall0(i) =
∆truePositives0(i)

∆truePositives0(i) + ∆falseNegatives0(i)
=

18

18 + 4
= 0.82

Similarly, the values for precision and recall for when τ = −2 are:

∆Precision−2(i) =
∆truePositives−2(i)

∆truePositives−2(i) + ∆falsePositives−2(i)
=

66

66 + 14
= 0.83

∆Recall−2(i) =
∆truePositives−2(i)

∆truePositives−2(i) + ∆falseNegatives−2(i)
=

66

66 + 0
= 1.00

We note that although these values are different from the count values calcu-

lated previously, the affect of the classification is the same. Taking τ = −2 has

increase recall to 1.00, but lowered precision to 0.83.

We now calculate f-measure, ∆F κ
τ (i), with κ = 1.0, at τ = 0:

∆F 1.0
0 (i) =

(1 + 1.02) · (∆Precision0(i) ·∆Recall0(i))

(1.02 ·∆Precision0(i) + ∆Recall0(i))
=

2 · 0.95 · 0.82

1.0 · 0.95 + 0.82
= 0.88

Finally, we calculate f-measure at τ = −2:

∆F 1.0
−2 (i) =

(1 + 1.02) · (∆Precision−2(i) ·∆Recall−2(i))

(1.02 ·∆Precision−2(i) + ∆Recall−2(i))
=

2 · 0.83 · 1.00

1.0 · 0.83 + 1.00
= 0.91

78

5.1 Experiment Overview

Again, we note that the affect of using the distance rather than the count

effected our figures, but not the way the sentences are classified. �

From the above examples, we see that using the distance rather than the count,

the scores increase considerably. In our experiments we want to investigate the

use of this metric to see whether the learning of weights would result to giving

a better separating line between definitions and non-definitions. We yield two

experimental setups for a particular value of κ:

1. Taking τ to be zero, thus using ∆F κ
0 (i) as the fitness score of individual i.

We refer to this method as DistanceZero.

2. Choosing an optimal value of τ for individual i, thus giving the following

score to individual i:

max{∆F κ
τ (i) | τ ∈ R}

We refer to this method as DistanceShifted. Again, in practice we calcu-

late this not over all real numbers but only over the scores of the sentences

which gives an adequate approximation.

5.1.1.4 Other Configuration Aspects

There are different configuration aspects described in Chapter 3 with respect to

selection methods, crossover techniques and settings such as population size and

mutation rate. A GA is a machine that is coded to solve a particular optimisation

problem. In our case, we seek to optimise weights for a set of features that could

identify definitions. Since the ideal setting is not known in advance, part of

the experiment will be to discover which of these configuration aspects are most

effective for our problem.

5.1.2 Experiment Two: Genetic Programming

Using the GA as described above one can make do without human expertise to

give relative importance to different features. However, the features would still

have to be identified by human experts. In this second experiment we propose a

GP approach to automatically learn new features to be used by the GA.

79

5.1 Experiment Overview

feature ::=

simplefeature

| simplefeature & feature

simplefeature ::=

lobj

| emptystring

| any

| simplefeature ?

| simplefeature *

| simplefeature . simplefeature

| simplefeature + simplefeature

Figure 5.2: BNF specification for the representation of individuals

5.1.2.1 Representation of the Individual

Individuals in a GP are represented as a tree, i.e. members of a language described

as a context-free grammar (Koza, 1992). We thus have to define a language

which can be used to describe features. Through observations of related work

and the capabilities of lxtransduce (Tobin, 2005), regular expressions (extended

with a number of constructs) should be sufficient to produce expressions that

could correctly identify definitions.

We want to learn a combination of features that can be used to strengthen

the confidence of definition classification. For this reason we specify two types of

features which would be present in our language:

1. Feature — A unit which contains a conjunction of simple features

2. Simple feature — A unit which matches a simple object, such as a part-of-

speech unit ‘VB’ (verb)

The grammar over which the individuals in the GP will range is given in figure

5.2, which essentially corresponds to regular expressions over simple linguistic

objects, with the possibility of conjunction at the top level. This restriction over

conjunction is used so as to ensure that the definition extractors are of reasonable

80

5.1 Experiment Overview

size — allowing conjunction at any point in a regular expression would lead to a

blow-up in the size of the transducers produced from such individuals.

Individuals of the GP will be interpreted as regular expressions by using the

following semantics. Given a way of translating simple linguistic objects into

regular expressions rel we can define a function re translating features into regular

expressions:

re(sf)
df
= res(sf)

re(sf & f)
df
= (any∗ · res(sf) · any∗) ∧ re(f)

res(emptystring)
df
= ε

res(any)
df
= any

res(sf?)
df
= ε | res(sf)

res(sf*)
df
= res(sf)∗

res(sf1.sf2)
df
= res(sf1) · res(sf2)

res(sf1+sf2)
df
= res(sf1) | res(sf2)

res(lobj)
df
= rel(lobj)

We note that in the case of lobj, this is translated according to the actual

linguistic feature being matched. For instance, when we look for the word is, the

regular expression specifies that we are searching a part in the sentence where the

part-of-speech is a verb and the base of the word is be. For each of the linguistic

objects, we define a specific regular expression that represents the rules that have

to be satisfied in order for a match to be made.

5.1.2.2 Fitness of the Individual

In GPs the fitness function is the execution of the program where the result is

then compared to the target program. In our case, we are dealing with a grammar

representation that will be used to capture definitional sentences. Thus the fitness

of the individual is the execution of the rule on our training corpus, and the result

81

5.2 Conclusions

will be the classification of the sentences. Similarly to the GA, we will focus on

collecting figures for:

truePositives(i) = count{s | s ∈ D ∧matches(s, re(i))}

falsePositives(i) = count{s | s ∈ ND ∧matches(s, re(i))}

trueNegatives(i) = count{s | s ∈ ND ∧ ¬matches(s, re(i))}

falseNegatives(i) = count{s | s ∈ D ∧ ¬matches(s, re(i))}

where matches takes a sentence and a regular expression and returns whether the

former matches the latter. Using these definitions one can define precision, recall

and f-measure as defined in section 5.1.1.3. We propose to run this experiment

using the f-measure as the fitness function, keeping Kappa at 1.0 since we want

to learn rules without emphasising precision or recall.

5.2 Conclusions

In this chapter we described the experimental setup for different instances of GAs

and GPs to learn how to identify definitional sentences. In the case of the GA the

objective is to experiment with different selection methods, fitness functions and

other configuration aspects which will influence the performance of the algorithm.

This experiment will thus produce the setup of a final machine to be used with any

set of features. The GP addresses a different question which is that of learning

relevant features which can be used in the GA. The results of these experiments

are reported in the following two chapters.

82

Chapter 6

Genetic Algorithms for

Definition Extraction

In this chapter we present the setup of the GA experiment together with the

results achieved over the different runs. The experiment focuses on trying out

different fitness functions and selection methods to find an ideal GA configuration

for definition extraction. We also experiment with different kappa values in the

f-measure formula, showing that it is possible to influence the GA’s learning

process to favour either precision or recall. Finally, we analyse in a qualitative

manner as to how the best individual classifies sentences. The evaluation brings

forward errors in the human annotation of definitions in our corpus which have an

impact on our results. Through the experiments we successfully show that even

by using a a small set of features the GA improves the classification of definitional

sentences.

6.1 Experiment Description

The purpose of the GA is to determine the weights to a set of predefined fea-

tures which can classify definitions or non-definitions. The weights symbolise the

importance or relevance a feature has according to the quality of the classifica-

tion of the sentences. For instance, if we have a feature which is able to capture

only sentences manually marked as definitions, this feature should have a high

weighting indicating a level of confidence in its classification.

83

6.1 Experiment Description

The purpose of the experiment is to find the ideal configuration set up for

the GA to be able to be used in future as a ‘fixed machine’ for this single pur-

pose. We have mentioned several design issues in section 3.3 which influence

the performance of the GA. Additionally, we do not know in advance what the

ideal settings should be (population size, number of generations required for the

GA to converge, the best performing fitness function). Thus the first experiment

focuses on using different settings and comparing the results achieved. Once the

configuration is set, we can also focus on the kappa parameter of the f-measure

which gives more weighting to recall or precision in the calculation of the formula.

It is necessary to test with different kappas since different definition extraction

tasks require different emphasis. We claim that in an eLearning scenario recall

should be given more importance since definitions will be presented to a human

expert who can then select which of the proposed definitions will make it into

the final glossary. However, precision must not be a detriment since if an expert

is presented with a large number of incorrect definitions, the system will not be

usable.

The outcome of this experiment is to analyse the results obtained to by dif-

ferent runs, upon which we can then decide the final setup the GA should consist

of for future experiments.

6.1.1 Experiment Settings

The corpus, detailed in section 4.1, is made up of eLearning objects and has

been manually annotated with definitions. Furthermore, the definitions have

been categorised into six different categories. In this experiment we focus only

on the is-a category. In this category there are 111 definitions and 21,112 non-

definitional sentences. These sentences are used by the GA as the learning corpus.

The sentences were analysed against the predetermined set of features in order

to obtain vectors of 0s and 1s indicating the presence or absence of a feature in

a sentence.

The GA parameters were set to a population size of 100, maximum genera-

tions of 1000, and a mutation rate 1%. The initial population, although created

randomly, was generated with the same seed so that the comparison between

84

6.1 Experiment Description

methods can be carried out in a more restricted form. This ensures that the

experiments are not affected with a one-off super individual which might have

been created randomly in one run, but not in another.

The selection methods used were SUS with sigma scaling, Roulette Wheel,

Boltzmann, Elite and Rank. For Roulette, SUS, Boltzmann and Rank we im-

plemented two variants for crossover. The first is the traditional crossover which

selects a random point for crossover (one-point crossover) and the second is bit-

crossover, where crossover occurs at every bit. To differentiate between the two

crossover techniques, we append ‘Bit’ to the selection method; thus ‘SUS’ refers

to SUS selection with one-point crossover, whilst ‘SUS-Bit’ refers to SUS selection

with bit-crossover.

6.1.2 Feature Set Used

The experiment aims at testing different GA configurations to find the best GA

setup for assigning weights to a predetermined set of features. For the purpose of

this experiment, the tests are limited to the is-a category, using a feature set that

need not be thoroughly complete or representative for the is-a category. A simple

set of features is being used so as to place us in a better position to determine in

an easy manner whether the weights learnt to the respective features are indeed

realistic ones and reflect the situation in the corpus. The following is the feature

set used:

1. contains the verb “to be”

2. has sequence “IS A” (“to be” followed by a determiner)

3. has sequence “FW IS” (FW is a foreign word - in the example “The process

of bringing up the operating system is called booting”, booting is tagged as

an FW1.)

1The tag FW, foreign word, is used by a tagger usually to indicate that the word is not
known in the current position. In this case ‘booting’ is at a position where the tagger expects
a noun, however it might not have the word in its lexicon and thus has no knowledge of its
category.

85

6.2 Results

4. has possessive pronoun (I, we, you, they, my, your, it)

5. has punctuation mark in the middle of the sentence (such as a hyphen or

colon)

6. has a marked term (keyword)

7. has rendering (italic, bold)

8. has a chunk marked as an organisation

9. has a chunk marked as a person

10. has a chunk marked as a location

We expect the second, third and sixth features to gain higher importance

over the other features, although not necessarily equal. The last five features

have not been used in the manually crafted grammar rules since it is not possible

to express them in lxtransduce rules due to the hierarchical structure of the corpus

annotations.

6.2 Results

The first set of experiments run were with the following configuration parameters:

• Population size — 100

• Maximum generations — 1000

• Mutation rate — 1%

• Kappa (for f-measure) — 1.0 (no preference to either precision or recall)

6.2.1 Count Fitness Functions

The Count fitness functions is based on the f-measure metric described in sec-

tion 5.1.1.3, which in this case is calculated according to the counts of how the

sentences classify (true positive, true negative, false positive, false negative).

86

6.2 Results

Table 6.1: Results for CountZero technique

Method f-measure Precision Recall

Roulette 0.02 0.01 0.95

Roulette-Bit 0.02 0.01 0.94

SUS 0.03 0.01 0.90

SUS-Bit 0.03 0.01 0.95

Boltzmann 0.01 0.01 1.00

Boltzmann-Bit 0.01 0.01 1.00

Elite 0.03 0.01 0.96

Rank 0.03 0.01 0.95

Rank-Bit 0.03 0.01 0.89

6.2.1.1 CountZero Technique

Table 6.1 presents the precision, recall and f-measure for the best individual ob-

tained for the different selection techniques using the CountZero fitness function

described in 5.1.1.3. The CountZero technique takes zero as the classifying sep-

arator between definitions and non-definitions; i.e. sentences obtaining a score

above zero are classified as definitions.

The results clearly demonstrate that this technique fairs badly, and although

recall is very high, precision is too low. This means that although it captures

practically all those sentences manually marked as definitions, the technique also

classifies a high number of non-definitions as definitions, thus resulting in such

poor precision performance. We can also conclude that since recall practically

reaches 100%, all definitional sentences score above zero with the present feature

set.

6.2.1.2 CountShifted Technique

Apart from using zero as the classifying line, we consider shifting the classifier

to find the most favourable dividing line between definitions and non-definitions.

87

6.2 Results

Table 6.2: Results for CountShifted technique

Method F-measure Precision Recall

Roulette 0.50 0.46 0.55

Roulette-Bit 0.45 0.38 0.57

SUS 0.57 0.62 0.52

SUS-Bit 0.57 0.64 0.50

Boltzmann 0.37 0.42 0.32

Boltzmann-Bit 0.41 0.32 0.55

Elite 0.57 0.62 0.52

Rank 0.53 0.62 0.46

Rank-Bit 0.53 0.60 0.47

The position is shifted until the best yielding f-measure is found.

Table 6.2 presents the f-measure, precision and recall for the CountShifted

technique. Using this technique we observe that the results have improved con-

siderably over the previous technique, obtaining a maximum of 57% f-measure,

with precision of around 63% and recall around 51%.

6.2.2 Distance Fitness Functions

One of the fitness functions we experiment with is to use the distance rather than

the count so as to indicate a more accurate level of confidence in the classification

of sentences. This means that if the classifying line is at zero, sentence s1 scores

3, and sentence s2 scores 10, then we conclude that the classification of s2 has a

higher level of confidence than that of s1. Again, we experiment with two different

techniques, one where zero is taken as the classifying line, and the second is where

the classifying line is shifted to find the best value.

88

6.3 Evaluation

Table 6.3: Results for DistanceZero technique

Method F-measure Precision Recall

Roulette 0.01 0.01 1.00

Roulette-Bit 0.01 0.01 1.00

SUS 0.02 0.01 0.75

SUS-Bit 0.02 0.01 0.75

Boltzmann 0.01 0.01 1.00

Boltzmann-Bit 0.01 0.01 1.00

Elite 0.02 0.01 0.76

Rank 0.02 0.01 0.96

Rank-Bit 0.02 0.01 0.77

6.2.2.1 DistanceZero Technique

In table 6.3 we present the results achieved for the DistanceZero technique. The

results obtained here are very similar to the results obtained using CountZero

technique shown in section 6.2.1.1. Again we manage to achieve a high recall at

the expense of poor precision, resulting in a very low f-measure.

6.2.2.2 DistanceShifted Technique

In table 6.4 we present the f-measure, precision and recall obtained for the

DistanceShifted technique. We note a similarity in results obtained in the

CountShifted technique, the latter being slightly better. The best f-measure

obtained is by the SUS, SUS-Bit, Rank, Rank-Bit and Elite selection methods,

each reaching a value of 54%, with a precision of 59% and a recall of 50%.

6.3 Evaluation

From the results presented in section 6.2, we can conclude that zero is not an

effective separating line between definitions and non-definitions, and yields very

89

6.3 Evaluation

Table 6.4: Results for DistanceShifted technique

Method F-measure Precision Recall

Roulette 0.39 0.29 0.59

Roulette-Bit 0.36 0.25 0.59

SUS 0.54 0.59 0.50

SUS-Bit 0.54 0.59 0.50

Boltzmann 0.52 0.51 0.52

Boltzmann-Bit 0.41 0.32 0.55

Elite 0.54 0.59 0.50

Rank 0.54 0.58 0.50

Rank-Bit 0.54 0.59 0.50

poor results. Although in both CountZero and ShiftedZero the average recall

is over 90%, precision is around 2%, resulting in a very low f-measure score

for all selection methods. As expected, shifting the separator results in better

results in our experiments. CountShifted performs slightly better on average

than DistanceShifted given their f-measure, both able to achieve over 50%.

In this section we evaluate the performance of the GA and the individuals it

has learnt. We also present a set of experiments where we tested different kappa

values for f-measure, influencing the learning algorithm towards favouring either

recall or precision. Finally, we take one of the best individuals and discuss the

weights learnt, what they represent and how sentences are classified using this

individual. Through this qualitative evaluation we uncover certain annotation

errors in our corpus.

6.3.1 Convergence and Selection Technique Performance

In table 6.5 we present the number of generations required for a particular run to

converge to the best individual. In the case where the GA did not converge this

is indicated with the letters DNC. Looking at the different selection techniques,

90

6.3 Evaluation

both the Roulette Wheel and the Boltzmann selection methods were unable to

converge except when using the CountZero function. A documented problem with

the Roulette Wheel technique is that the number of times an individual is selected

for crossover is different from its expected value (either larger or smaller). Mitchell

(1998) states that in “an extremely unlikely series of spins of the roulette wheel

could even allocate all offspring to the worst individual in the population”. As

for Boltzmann selection, de la Maza & Tidor (1991) found that it outperformed

fitness-proportionate functions for a small set of problems. In our case, when

analysing the Boltzmann technique, throughout the life cycle of the GA the best

individual fluctuates constantly and never settles at a fixed position (converges).

In the case of the Roulette Wheel, the fact that two parents are chosen randomly

also seems to produce a fluctuating best fitness in the experiments.

As for the shifted techniques where the best classifying line is chosen, we

believe that when two well-performing individuals are selected, but with very

different thresholds1, then it would be difficult to produce equally good offspring

from such varying parents. On the other hand, one notes an overall better perfor-

mance with the Elite selection method since the best individuals are kept whole

and are thus not lost to crossover.

6.3.2 Results Summary for Best Performing Techniques

The best performing techniques are CountShifted with SUS, SUS-Bit and Elite,

and DistanceShifted with SUS, SUS-Bit, Elite, Rank and Rank-Bit obtaining

similar results. Table 6.6 presents a summary of the best performing results

described previously, showing precision, recall and f-measure for the best resulting

experiments.

We note that since the features chosen are not a complete set of possible

features the results might improve with a larger feature set for the is-a category

of definitions. When comparing these results to those achieved with the manually

crafted rules in the LT4eL project, and considering that the experiment is using

a restricted selection of features, we not only have managed to retain a high

1For example ind1’s best f-measure results at 0.2 being the dividing line, and ind2’s best
f-measure happens at 0.7.

91

6.3 Evaluation

Table 6.5: Convergence of selection techniques over the different fitness functions

Method CountZero CountShifted DistZero DistShifted

Roulette 100 DNC DNC DNC

Roulette-Bit 800 DNC DNC DNC

SUS 1,000 200 1,000 200

SUS-Bit 700 300 600 300

Boltzmann 800 DNC DNC DNC

Boltzmann-Bit 600 DNC DNC DNC

Elite 300 200 400 400

Rank 600 700 400 400

Rank-Bit 500 200 400 300

Table 6.6: Results for best experiments

Method F-measure Precision Recall

SUS (CS) 0.57 0.62 0.52

SUS-Bit (CS) 0.57 0.64 0.50

Elite (CS) 0.57 0.62 0.52

SUS (DS) 0.54 0.59 0.50

SUS-Bit (DS) 0.54 0.59 0.50

Elite (DS) 0.54 0.59 0.50

Rank (DS) 0.54 0.58 0.50

Rank-Bit (DS) 0.54 0.59 0.50

recall, but also increased precision to over 62% from just 17% obtained using the

manually crafted rules.

92

6.3 Evaluation

Table 6.7: Results for kappa = 0.5

Method F-measure Precision Recall

SUS CountShifted 0.62 0.70 0.42

SUS DistanceShifted 0.60 0.72 0.37

SUS-Bit CountShifted 0.62 0.75 0.37

SUS-Bit DistanceShifted 0.60 0.72 0.37

Elite CountShifted 0.62 0.71 0.41

Elite DistanceShifted 0.61 0.68 0.45

Rank CountShifted 0.62 0.71 0.41

Rank DistanceShifted 0.59 0.69 0.37

Rank-Bit CountShifted 0.60 0.68 0.41

Rank-Bit DistanceShifted 0.54 0.58 0.43

6.3.3 Different Values of Kappa in the F-measure Metric

So far the experiments described always used f-measure with kappa equal to 1.0 as

its fitness function. By changing the kappa value it is possible to manipulate the

f-measure in bias of either precision or recall. The advantage of using f-measure as

the fitness function is that this bias can be heavily influenced to one side without

altering the internal functions of the fitness function. Apart from experimenting

with the traditional kappa values of 0.5 (favouring precision) and 2.0 (favouring

recall), we also wanted to test with exaggerated values of 0.1 (practically the

f-measure is equal to precision) and 32.0 (where f-measure is nearly equal to

recall). These experiments aim at showing whether it is possible to influence the

learning of weights that would favour recall or precision accordingly. If so, then it

would be possible to focus the learning path of the GA according to the system’s

requirements, thus providing a flexible approach to learning weights of features.

93

6.3 Evaluation

Table 6.8: Results for kappa = 0.1

Method F-measure Precision Recall

SUS CountShifted 0.90 1.00 0.08

SUS DistanceShifted 0.65 1.00 0.02

SUS-Bit CountShifted 0.87 1.00 0.06

SUS-Bit DistanceShifted 0.85 1.00 0.05

Elite CountShifted 0.83 1.00 0.05

Elite DistanceShifted 0.83 1.00 0.05

Rank CountShifted 0.83 1.00 0.05

Rank DistanceShifted 0.83 1.00 0.05

Rank-Bit CountShifted 0.83 1.00 0.05

Rank-Bit DistanceShifted 0.87 1.00 0.06

6.3.3.1 Experiments with Kappa Set to 0.5

Table 6.7 presents the f-measure, precision and recall for the experiments with

kappa set to 0.5. This value favours precision slightly more than recall. Previously

our best results stood at f-measure equal to 0.57, precision 0.63 and recall at

0.51. We note that setting kappa to 0.5 meant that the GA learnt weights which

give a higher precision, resulting in a higher f-measure. The average figures have

managed to improve precision to over 0.70, whilst recall was lowered to 0.42. This

shows that it is impossible to improve precision without affecting, even slightly,

recall. Although precision increased by 7 points, recall has been reduced by 10

points.

6.3.3.2 Experiments with Kappa Set to 0.1

In table 6.8 we show the results for kappa set to 0.1. In this case f-measure is

completely biased towards precision, emphasising that we would like to classify

only correct definitions. The results show that indeed the experiments did learn to

classify only correct definitions reaching complete precision, however the values for

94

6.3 Evaluation

Table 6.9: Results for kappa = 2.0

Method F-measure Precision Recall

SUS CountShifted 0.54 0.46 0.56

SUS DistanceShifted 0.51 0.51 0.51

SUS-Bit CountShifted 0.53 0.39 0.59

SUS-Bit DistanceShifted 0.52 0.59 0.50

Elite CountShifted 0.54 0.46 0.56

Elite DistanceShifted 0.52 0.60 0.50

Rank CountShifted 0.53 0.41 0.58

Rank DistanceShifted 0.52 0.44 0.55

Rank-Bit CountShifted 0.53 0.40 0.57

Rank-Bit DistanceShifted 0.50 0.40 0.54

recall show that only few of the manually annotated definitions have actually been

captured. If the experiment were to be applied to a fully automated definition

extraction, it might be the case that such a setting would be preferred.

6.3.3.3 Experiments with Kappa Set to 2.0

Table 6.9 presents the f-measure, precision and recall for the experiments with

kappa set to 2.0. This value favours recall slightly more than precision. In the

experiments with kappa set to 1.0, our best results stood at f-measure equal to

0.57, precision 0.63 and recall at 0.51. From the results of this experiment we see

that at most, recall improved by 8 points to 0.59. However, in that case precision

decreased by 24 points to 0.39. It is clear that in this case, the emphasis on recall

reflects quite negatively on precision — something which in general we would like

to avoid.

95

6.3 Evaluation

Table 6.10: Results for kappa = 32.0

Method F-measure Precision Recall

SUS CountShifted 0.94 0.02 0.98

SUS DistanceShifted 0.94 0.06 0.95

SUS-Bit CountShifted 0.94 0.08 0.95

SUS-Bit DistanceShifted 0.94 0.08 0.95

Elite CountShifted 0.95 0.02 0.98

Elite DistanceShifted 0.94 0.08 0.95

Rank CountShifted 0.94 0.08 0.95

Rank DistanceShifted 0.94 0.04 0.96

Rank-Bit CountShifted 0.94 0.07 0.95

Rank-Bit DistanceShifted 0.94 0.06 0.95

6.3.3.4 Experiments with Kappa Set to 32.0

In table 6.10 we show the f-measure, precision and recall obtained for the exper-

iments with kappa set to 32.0. This setting gives a definite bias to recall, with

f-measure resulting to practically the same value of recall. We note that preci-

sion is effected negatively by this setting and although we successfully capture all

definitions, we also capture a high number of non-definitions.

6.3.3.5 Conclusion on Results with Kappa Values

It is clear from the experiments that it is indeed possible to influence the learning

of weights to features in such a way as to bias for either precision or recall. As

has been pointed out previously, it largely depends on the system requirements

the technique will be applied to. If there will be human expert intervention in

approving the list of definitions (such as in an eLearning scenario where a tutor

would select the definitions that will constitute the final glossary), then it is

worthwhile considering an f-measure that favours recall. Notwithstanding, even in

such a scenario precision remains an important factor, as a system which presents

96

6.3 Evaluation

Table 6.11: The best individuals under the CountShifted technique

Feature SUS SUS-Bit Elite

(1) contains the verb “to be” 0.60 0.38 0.15

(2) contains “is-a” 0.84 0.92 0.86

(3) contains “FW-is” 0.07 0.55 0.19

(4) has possessive pronoun −0.21 −0.21 −0.21

(5) has punctuation 0.08 −0.27 0.10

(6) has keyword 0.63 0.97 0.58

(7) has rendering −0.30 −0.30 −0.30

(8) has organisation chunk −0.38 −0.38 −0.38

(9) has person chunk 0.25 0.00 0.15

(10) has location chunk 0.11 0.20 −0.08

too many incorrect ‘definitions’ will be unusable. It is difficult to judge where

the ideal setting lies, as one would have to carry out a qualitative assessment of

such a system from a usability perspective. Such an assessment is outside the

scope of this thesis, and would be applicable not just to this technique, but to

any technique being implemented for definition extraction.

6.3.4 The Meaning of an Individual

The experiments produced different sets of weights for the features used described

in section 6.1.2. Table 6.11 presents the weights learnt by the best performing

techniques for the CountShifted fitness function.

It is interesting to note that the features which received negative weights

(possessive pronoun, rendering, and organisation chunk) from each experiment

resulted in the GA learning the same weight for these features. This demonstrates

a level of confidence in that these particular features are not helpful in detecting

definitions. We also note that the first feature contains the verb “to be” is a

subset of the feature contains “is-a” and that the weight learnt for the first

97

6.3 Evaluation

feature is always smaller than the weight learnt for the second feature. This

is because there are far more generic sentences having the verb “to be” than

there are sentences with the sequence “is a”. The latter is, as expected, more

common in our category of definitional sentences. In fact the weights learnt do

reinforce the perception that the sequence “is a”, even if commonly found in all

types of sentences, is a very important feature in our definitional set of sentences.

Another important feature is the has keyword feature which generally has a high

weighting. In section 6.1.2 we stated that we expected the second, third and sixth

features to be recognised as important features. In fact these have been given

positive weights by the three individuals. Another feature, has person chunk,

has also been identified as a positive feature, although not as important and the

other three features. We also note that there is sometimes a variance between

the weights learnt for each feature. For instance, the feature has punctuation was

recognised as a positive feature by the SUS and the Elite techniques, and as a

negative feature by the SUS-Bit technique. It must be pointed out that the GA

learns the best set of weights rather than individual weights, so this fluctuation

is expected since in one experiment the importance of a feature might have been

shifted to another. These different experiments produced very similar f-measure,

precision and recall and thus shows that the variants in weights, although might

affect the classification of certain sentences, do not affect the overall classification.

Thus, if one set of weights managed to classify ten sentences, and another set of

weights classified a different set of ten sentences as definitions, the overall result

still remains the classification of ten definitional sentences.

In table 6.12 we show the weights of the best individuals learnt under the

DistanceShifted technique. With this technique it transpires that only has

rendering and has organisation chunk result as negative features. The other fea-

tures are somewhat positive. Again the second, third and sixth features have the

highest weights. The remaining features all have weights of around or below 0.10.

The idea behind the distance technique is to create a certain level of confidence

in the classification of sentences where, rather than just taking the count of the

classifications, we use the distance of the score. The weights learnt in this setting

also reflect this type of classification where features like four, five, nine and ten

are not features which can clearly separate non-definitions from definitions.

98

6.3 Evaluation

Table 6.12: The best individuals under the DistanceShifted technique

Feature SUS SUS-Bit Elite

(1) contains the verb “to be” 0.04 0.04 0.00

(2) contains “is-a” 0.92 0.79 0.94

(3) contains “FW-is” 0.35 0.45 0.39

(4) has possessive pronoun 0.05 0.00 0.01

(5) has punctuation 0.02 0.02 0.01

(6) has keyword 0.95 0.88 0.97

(7) has rendering −0.30 −0.30 −0.30

(8) has organisation chunk −0.38 −0.38 −0.38

(9) has person chunk 0.11 0.02 0.01

(10) has location chunk 0.07 0.02 0.03

6.3.5 Classification of Sentences

In the following section we analyse the classification of sentences by taking the

best individual and applying it to the training corpus. The purpose is to mea-

sure how the effective the weights learnt are at classifying definitions and non-

definitions. Table 6.13 shows how the corpus was classified, giving the score

range the sentences obtained, and the number and percentages of the positive

and negative sentences according to their classification.

These results show that there is at least some certainty in classifying non-

definitions correctly with only 3% (655 from 21222 sentences) being classified as

definitions. The problem remains that even this 3% remains a high figure when

compared to the number of definitional sentences (111 sentences). However, 94%

of non-definitions captured as definitions revolve mainly around the 9 — 0 score

range. From this figure we confirm how difficult the task of definition extraction is.

The problem remains with those sentences which share linguistic characteristics

and yet are not necessarily definitions. To further analyse the results, we look

at a qualitative assessment of the classification of sentences to understand how

99

6.3 Evaluation

Table 6.13: Percentage of sentences

Score Range Positive

Sentences

Negative

Sentences

Percentage

of Positives

Percentage

of Negatives

50 – 40 4 0 100% 0%

39 – 30 35 16 69% 31%

29 – 20 2 4 33% 67%

19 – 10 15 19 44% 56%

9 – 0 21 626 3% 97%

−1 – −10 25 547 4% 96%

−11 – −20 4 77 5% 95%

−21 – −30 2 2792 0% 100%

−31 – −40 2 10893 0% 100%

−41 – −50 0 284 0% 100%

−51 – −60 1 4121 0% 100%

−61 – −70 0 1267 0% 100%

−71 – −80 0 27 0% 100%

−81 – −90 0 87 0% 100%

−91 – −100 0 362 0% 100%

100

6.3 Evaluation

Table 6.14: Classification of definitions as non-definitions

Problem Summary Sample Sentence #

Good Sentences A version of UNIX that is popular and available

for no cost today, even for less powerful personal

computers, is Linux.

11

Wrongly annotated

as a definition

Beads are of several forms (circle, square, and tri-

angle) and colors (red, green, blue, yellow, black,

and white).

5

Grammatical Prob-

lem

ePortfolio (. . .) is [a] collection of electronic doc-

uments. . . .

1

Questionable Defini-

tions

Notebook computers are complete computers with

full functionality and with all major devices of the

desktop computer.

1

Conversion Problem [A trackball is a ball about the size of] an egg em-

bedded into a panel , which you can rotate.

11

further improvements in classification could be carried out. Due to time and

resource restrictions, it is not possible to analyse the whole training corpus. We

focus on the following questions:

1. Why are the definitional sentences with negative scores ranging from −1

to −60 achieving such a low score and are thus not being classified as

definitions?

2. Why are the top 39 non-definitional sentences achieving such a high score

ranging from 10 to 39 and are thus being classified as definitions?

6.3.5.1 Definitions Classified as Non-definitions

In order to understand the results obtained at this stage, we first look as those

sentences which were manually tagged as definitions, but have not been classified

so by the GA. We analyse why these sentences are so classified by grouping them

into groups as follows:

• Good definitional sentences, which should have been captured.

101

6.3 Evaluation

• Sentences which have been wrongly annotated as definitions, and thus have

been correctly identified as non-definitions by the GA.

• Sentences with grammatical problems, originating from the text used.

• Questionable definitional sentences which have the structure of a definition,

and seem to be describing something, but in reality such sentences would

not be considered a complete or usable definition.

• Sentences whose structure has been changed during the conversion process;

e.g. joining of two sentences as one, or splitting a sentence into two.

Table 6.14 presents the problems outlined above, a sample sentence from our

training data and the number of sentences which fall under each problem category.

This exercise has helped us to identify not only what the problems are, but why

are they happening and if they are avoidable. In the case where the sentences are

good definitions, these are not being captured because the features used are not

rich enough and do not cater for their sentence structure. In the example given

in the table, we do not find the sequence “is a”, but rather “is Linux”. Similarly,

in some other sentences under this category, the “is a” phrase was interrupted

by another word, e.g. “is in fact a”, which was also not present in our feature

set. It is clear that the features used were not flexible enough to cater for these

differences, omitting 11 sentences from being classified as definitions. In the case

of sentences wrongly annotated as definitions the problem lies in human error and

is difficult to eradicate entirely. At times it is difficult to judge with certainty

if a sentence is a definition or not, giving rise to questionable definitions. The

definition of a notebook computer is a circular one, where it is defined by the term

computer itself. The sentence on its own does not define a notebook computer,

but its structure still gives the impression that it is a definition. Finally, some

problems arose from the conversion process where a sentence was either split in

two, or two sentences joined as one. In either case it is difficult to classify such

definitions and thus it is acceptable to have such an error that is not dependent

on the definition extraction process itself.

102

6.4 Conclusion

Table 6.15: Classification of non-definitions as definitions

Problem Summary Sample Sentence #

Should be marked as

definitions

An operating system for which the source code is

freely available is Linux.

21

Questionable sen-

tences

The most important input device for computers

currently is the keyboard, which serves mostly for

text input, and, to a large extent, imitates the key-

boards of typewriters.

4

Non-definitions Objects are given names; an object is the value of

its name.

14

6.3.5.2 Non-definitions Classified as Definitions

In the case of the classification of non-definitions as definitions, table 6.15 shows

why 39 non-definitional sentences receiving a positive score between 39 and 10

have been classified as definitions. Half of these sentences turn out to be defi-

nitions which were missed out by the human annotators. This implies that our

experiment results would actually improve if the data were to be re-annotated

with these corrections. Since it is not the scope of this thesis to provide a good

quality corpus, we decided to leave the annotations as is, thus also factoring in

human error in our results.

6.4 Conclusion

In this chapter we described the setup of the GA experiment and the results for the

different settings. We show that the best resulting settings for the GA are using

the CountShifted technique with the SUS, SUS-Bit and Elite selection methods,

and the DistanceShifted technique with SUS, SUS-Bit, Elite, Rank and Rank-

Bit selection methods. From a precision of 17% achieved using manually crafted

rules in the is-a category, we manage to achieve a maximum of 64% precision.

When evaluating the classification of sentences from a qualitative perspective, we

discovered errors present in the manual annotation of the definitions, with some

definitional sentences which had not been annotated as definitions, and other

103

6.4 Conclusion

questionable or non-definitional sentences having been annotated as definitions.

Taking these factors into consideration, it would be possible to further improve

the results achieved. We also show that by adjusting the kappa value used by the

fitness function in the f-measure metric, it is possible to influence the learning of

weights which could favour either precision or recall. We discussed how the best

individuals learnt are related to the set of features used and showed how they can

be interpreted to show the relevance of each of the features.

One of the expected outcomes of this experiment was that the set of features

chosen did not cater for all definitional sentences in our corpus, thus classifying

some definitions as non-definitions. The purpose of the GP experiment aims at

tackling this problem by identifying possible features automatically, described in

the following chapter.

104

Chapter 7

Genetic Programming for

Definition Extraction

In this chapter we describe the GP experiments carried out and the results and

rules learnt in the different definitional categories. We describe the way the

individual is encoded and implemented, the fitness function used, the selection

method, and other configurational aspects in the experiment setup. The central

point of this experiment is to learn rules which could extract definitions. Thus

the results present both f-measure values obtained with the rules learnt, and the

rules themselves. We explore different settings for the GP by increasing the search

space through the introduction of more features that could be part of the rules.

The experiments focus on the three definitional categories described previ-

ously, the is-a category, the verb category and the punctuation category. We also

ran a generic experiment to capture all types of definitions without categorical

restrictions. In all categories we have succeeded to learn rules that do capture

some of the definitions. In general, when analysing the rules learnt by the GP, we

find a similar subset to the manually crafted rules. This observation is also re-

flected by the similar f-measure values obtained. In the punctuation category we

successfully manage to obtain better results than those obtained by the manually

crafted rules.

105

7.1 Experiment Description

7.1 Experiment Description

The GP experiment aims at having a program which creates rules in a random

manner and tests if they are good candidate rules to extract definitions or not.

Since the principles of the GP are the same as that of a GA, the best candidates

are kept and allowed to evolve further in an experiment’s lifetime. The rules

are restricted to cover the language specified in section 5.1.2.1, yet different ex-

periment runs will cover different sets of linguistic objects. In the experiments

described in this chapter, linguistic objects are limited to either part-of-speech

items (e.g. VBZ — verb, 3rd person singular, present), classes of part-of-speech

(e.g. all verbs), and specific words or their base form (e.g. called, call). A

rule learnt by the GP can also be a conjunction of different sub-rules, with each

sub-rule being a different sequence or occurrence of linguistic objects.

The main objective of the GP experiment is to produce an automated pro-

cess which can identify rules by trying out as many variations as computation-

ally possible or feasible. When a linguist expert creates rules, he already has a

predefined knowledge of certain grammar restrictions and thus avoids testing un-

grammatical rules. The GP has no such knowledge, and thus will probably test

a majority of ungrammatical rules for which no sentence (whether definitional

or non-definitional) would match. However, as the evolution process proceeds,

the rules that do capture sentences are passed on to future generations, modified

(through genetic operations such as crossover and mutation) to evolve into pos-

sibly better performing rules. These are tested against the set of definitional and

non-definitional sentences in order for the GP to be able to score their perfor-

mance. Of course, a linguist would change rules based on his knowledge, and does

not attempt any conceivable configuration knowing a priori that the result would

be an ungrammatical rule. The GP experiment might attempt every conceivable

structure or form of a rule, which might result in a worse performance.

The set of linguistic objects specified for a particular experiment influences

the size of the search space. Whilst this was not an issue in our GA experiment

since we worked with a fixed set of features, in the GP experiment this issue

comes to the forefront of our experiments since it directly affects the results. A

small set of linguistic objects reflects a small search space by limiting the possible

106

7.1 Experiment Description

options for the rules which can be composed by the GP. The further the set of

linguistic objects is increased, the larger the search space becomes since the GP

is presented with more possible options or paths that could be traversed. It is not

possible to test each and every path as this would be an infinite exercise. Thus

the GP is trying out possible rules that are created either randomly (through the

initial population or by mutation) or genetically (crossover). This means that

the rules and the elements within the rules are largely dependent on an amount

of randomness. If, in the initial population, a particular linguistic object is left

out (randomly), the search space of rules containing that element is not explored

until it is introduced by mutation. Similarly, it can happen that if a certain

linguistic object is indeed present in the beginning, but the structure of the rule

is ungrammatical or matches only non-definitions, such a rule would perform

poorly and probably be discarded within the following few generations. Thus the

linguistic object present in that rule is also lost through the evolution process.

For these reasons we try out different sets of linguistic objects according to the

category of definitions being tackled.

A difference worth noting between the GP and the GA is in the fitness func-

tion. In the GA experiment we had tested different functions by shifting the

classifying line which scores definitions or non-definitions and aiming at getting a

level of confidence in the classification of the sentences. In the case of the GP we

are primarily interested in the resulting rules that are able to capture definitions.

It would make our problem of rule-finding much harder had we had to include

a similar principle of level of confidence, since it would have made the fitness

function stricter than that of a general classifier. Thus, in this experiment we

maintain the classical view of classifying sentences as definitions that score above

zero when calculating f-measure.

7.1.1 Encoding of the Individual

An individual represents a candidate rule which could be used to classify defini-

tions. In section 5.1.2.1 we described the structure of the individual, specifying

that it is composed of a conjunction (only at top level) of features, and that fea-

tures translate to different sequences and occurrences of either linguistic objects,

107

7.1 Experiment Description

typedef struct Feature {

enum featureType ftag;

union FeatureList {

struct sFeature *simpleF;

struct cFeature {

struct sFeature *sf1;

struct Feature *sf2;

} compoundF;

} featureList;

} FEATURE;

Figure 7.1: Node structure implementation of a feature in C

typedef struct SimpleFeature {

enum TAG tag;

union currFeature {

enum lObj object;

struct followby {

struct sFeature *sfptr1;

struct sFeature *sfptr2;

} fb;

struct or1 {

struct sFeature *sfptr1;

struct sFeature *sfptr2;

} or;

struct zeromany {

struct sFeature *sfptr1;

} zm;

struct zeroorone {

struct sFeature *sfptr1;

} zo;

} currf;

} SIMPLEFEATURE;

Figure 7.2: Node structure implementation of a simple-feature in C

108

7.1 Experiment Description

the empty string or match any element. We also specified the BNF determining

the language over which rules could be created. The BNF has been implemented

in C as a tree structure by implementing two types of nodes. Figure 7.1 shows

the implementation of the node at top level where conjunction can occur, giving

the feature the possibility to be a structure of type feature or a conjunction of

simple-feature together with feature. Figure 7.2 shows the implementation of

the node simple-feature which can have different occurrences and sequences of

linguistic objects, empty string or any element.

The tree structure is used by the GP to perform the necessary operations dur-

ing a generation on a population. Apart from the manipulation of an individual,

we need to interpret the individual in terms of its success as a possible candidate

solution. Thus, an individual (tree) is translated into a regular expression which

can be applied directly to string sentences in our corpus. This was done by using

a standard GNU C library for regular expressions1. When a regular expression,

which is another interpretation of the individual, is applied to a sentence, the

function will either return a match or a fail. Those sentences which match the

rule are considered to be classified as definitions, whilst those that fail are clas-

sified as non-definitions. In the next section we will discuss the fitness function

which uses the interpretation of an individual in order to evaluate the population.

In order to restrict slightly the way a tree is randomly generated, we in-

troduced weights or probabilities to each possible node, so as to give a higher

preference to certain types of nodes that others. The initial population for each

experiment is generated randomly, influenced by these weights. The same tech-

nique is used when generating of sub-trees required during the mutation process.

At a top level of the node generation, the GP was given a 50% chance of going

either way for a simple-feature or a conjunction of a feature and a simple-feature.

At simple-feature level, we set weights at different levels according to what was

deemed to have a higher priority. The highest probability was placed on the

linguistic object since they are the main focus of our rule learning. An issue in

the generation of trees from a computational and operational perspective is their

1 The GNU C library and its POSIX.2 functions used are described in more detail here:
http://www.gnu.org/software/libtool/manual/libc/Regular-Expressions.html last ac-
cessed 15 December 2008.

109

http://www.gnu.org/software/libtool/manual/libc/Regular-Expressions.html

7.1 Experiment Description

size. In order to introduce an element of control, we set an arbitrary depth limit

of ten during the creation of a tree. However, this depth limit in not respected

during the genetic operations, meaning that the depth of a tree can grow through

evolution. The following are the weights used for the different possible nodes at

simple-feature level:

Linguistic Object 30%, with all possible linguistic elements having equal prob-

ability;

Followed By 14%;

Either Or 14%;

Zero or Many 14%;

Zero or One 14%;

Empty String 7%; and

Any Element 7%.

7.1.2 General GP Configuration

As described in chapter 5, the GP uses f-measure as its fitness function. The

values to calculate the fitness function will be based on how sentences match

against the individuals (rules) and their classifications will contribute to the fol-

lowing values:

• True Positives - manually marked definitional sentences classified as defini-

tions by the system (correct classification);

• False Negatives - manually marked definitional sentences classified as non-

definitions by the system (incorrect classification);

• False Positives - manually marked non-definitional sentences classified as

definitions by the system (incorrect classification);

• True Negatives - manually marked non-definitional sentences classified as

non-definitions by the system (correct classification),

110

7.1 Experiment Description

which are then used to calculate precision, recall and f-measure. The latter is

the metric used to score individuals, and used by the selection function to select

those individuals for crossover. We use the Elite selection technique implemented

for the GP (keeping the top individuals), with the remaining individuals being

selected for mating through the SUS selection technique with sigma scaling. This

means that a predetermined number of the best individuals are copied into the

next generation without any modifications. The remaining places in the new

population are filled in by the children of the current generation, with selection

for mating being done through the SUS proportionate-fitness function. Thus top

individuals not only remain intact, but also have the opportunity to mate with

other individuals in the population. In our experiments we found that keeping

the top 10% of the population gave the best results, and increasing the percentage

did not seem to improve results any further.

7.1.3 Linguistic Objects and Structure of Rules

The rules learnt by the GP are sequences of what we refer to as linguistic objects.

Several of the related work reviewed in chapter 2, such as Malaisé et al. (2004);

Muresan & Klavans (2002); Park et al. (2002), and work carried out in the LT4eL

project described in chapter 4 focus primarily on part-of-speech when manually

crafting rules. Furthermore, in experiment described in Westerhout & Monachesi

(2008), the authors state that using deep parsers for the purpose of definition

extraction did not improve results. Based on these observations, we focus on part-

of-speech annotations and specify our rules according to the Penn Treebank tagset

(Marcus et al., 1993) used to annotate the corpus1 or occurrence of particular

words and their base form.

In describing the set of linguistic objects being applied to a particular exper-

iment(s), we choose to either use specific part-of-speech tags such as NN (noun,

common, singular or mass); NNP (noun, proper, singular); NNPS (noun, proper,

plural); NNS (noun, common, plural). Otherwise we generalise these tags into

1The Penn Treebank tagset and an explanation of the tags used is available here: http:

//www.comp.leeds.ac.uk/amalgam/tagsets/upenn.html last accessed 15 December 2008.

111

http://www.comp.leeds.ac.uk/amalgam/tagsets/upenn.html
http://www.comp.leeds.ac.uk/amalgam/tagsets/upenn.html

7.2 Results and Evaluation

one class and refer to them as nouns. The principle is applied to other categories

in a similar manner.

7.1.4 Definitional Categories

In section 4.3.1 we described the way definitions were categorised in the LT4eL

project and subsequently how our definitional corpus is divided. Out of the six

categories, we believe that the first three categories are ideal for machine learning.

These are the is-a category, verb category and punctuation category. The layout

category depends highly on HTML elements such as table layout which were

not maintained during the conversion process to XML. Even if so, it would be

difficult to include such layout information into the rule learning process. The

anaphora category (where ‘this’ is used in the definitional sentence to refer to

the defining term) requires anaphora resolution and the final category, other, is

a catch-all category with no particular characteristics. Thus our GP experiments

focus on the first three categories. A final experiment attempts at learning rules

without taking the definitional categories into consideration and thus includes all

six categories.

7.2 Results and Evaluation

The first set of experiments focused on the is-a category, where most work is

generally carried out. Initially, we test the GP with a rather ‘small’ search space,

limiting the number of linguistic objects to five. At this stage we are also in-

terested in experimenting with elements such as population size and how many

generations are necessary for the GP to converge. Once the initial observations

are made, we then increased the set of linguistic objects to nine and succeeded to

improve the results, albeit slightly. We also carry out similar experiments for the

verb category and the punctuation category. For the verb category we try using

two different sets of linguistic objects; one set emphasises on the part-of-speech,

whilst the other included certain words found usually in cue phrases such as ‘call’,

‘define’ or ‘known’. The last experiment attempts to capture all definitions in

112

7.2 Results and Evaluation

the six categories in order to evaluate the effectiveness of categorisation and the

ability of a GP to possibly learn rules over such a large search space.

The best individual of each of the experiments is presented in appendix A

in full. In this chapter we present important snippets of these rules to discuss

interesting aspects of what the GP has learnt.

7.2.1 GP Results for the Is-a Category

In our first set of experiments, we aim to determine how the GP should be

set up to achieve the best results. We ran a few experiments with a relatively

small search space (of five linguistic objects) with the idea of trying out different

variables for population size, number of generation runs and the number of top

individuals the Elite selection method should copy to the new generation. The

set of linguistic objects chosen are:

• the word is

• noun

• adjective

• adverb

• modal

Notably, certain important parts-of-speech for this category have been pur-

posely left out to determine if the use of any defined in our language will be

included in the rules learnt by the GP to result in a rule such as noun . is . any

. noun, with any replacing the determiner.

Table 7.1 shows the settings of five different runs together with the f-measure

achieved by the best individual. The first three experiments are exactly the same

in settings, with the aim of giving an overall indication of performance. In the

case of Exp2 the run did not converge (indicated with the letters DNC) within

100 generations, and since it was fairing better than Exp1 and Exp3, we ran

the experiment with the same seed, allowing it to run for up to 500 generations.

By 270 generations it converged with no further improvement in the population

113

7.2 Results and Evaluation

Table 7.1: Results for GP experiment one

Configuration Exp1 Exp2 Exp3 Exp4 Exp5 Exp2b

Population Size 200 200 200 500 1000 200

Elite n 10 10 10 50 50 10

Generations 100 100 100 500 500 500

Converged 70 DNC 100 120 430 270

F-measure 0.21 0.24 0.18 0.24 0.26 0.25

after that. The improvement overall is minimal, and on average, 100 generations

seemed enough to achieve a respectable performance by the GP. Exp4 and Exp5

focus on trying out the same pool of linguistic objects but with a larger population

size. We also allowed the GP to run for up to 500 generations. With a population

of 500 individuals, Exp4 converged by the 120th generation and reached an f-

measure of 24%. Exp5 had a population of 1,000 individuals and converged in

generation 430, reaching an f-measure of 26%.

If we solely rely on f-measure as a metric of performance, Exp5 would be the

best performing individual. However, if one had to look at the actual rules learnt,

we are inclined to say that Exp5 learnt the longest and most illegible rule out

of all the experiments run. As shown in appendix A the rule description for the

best individual in Exp5 runs over almost 11 pages, whereas most rules learnt are

simply a few lines in length. Even in the case of Exp4 the rule runs over only one

page. A general technical observation over the experiments run is that the longer

a GP took to converge, the more complex (and not necessarily sophisticated) the

resulting rules were.

Overall, all the experiments learnt the sequence noun is any noun. This is a

positive aspect since it is generally considered as the most obvious rule from a

human’s perspective in the is-a category. Other rules learnt were either a subset

of this sequence, such as is any noun, or other rules such as adjective any any

noun, and noun any noun. More complex rules included NN · any? · IS · (any +

(NN · IS ·NN)) ·NN, where the + indicating an or results in the rule having two

paths:

114

7.2 Results and Evaluation

• NN · any? · IS · any · NN

• NN · any? · IS · NN · IS · NN · NN

In such a rule, if one of the paths never matches, but the other matched some

definitions, the rule as a whole will always perform well even if part of it might

never be executed. The GP views rules globally and has no knowledge on the

validity of sub-rules. This means that the GP is bound to learn duplicate or

‘useless’ information, and throughout the process we do not have any means of

simplifying or reducing the complexity of the rules. It would also be unwise to

throwaway rules which do not match any sentences in our corpus since there is

always a possibility, no matter how slight, that such a rule might match an unseen

sentence.

In the second set of experiments in the is-a category, we experiment with

increasing the search space by adding further linguistic objects to the above set

as follows:

• determiner

• foreign word or symbol

• preposition

• which

First we ran two experiments, ExpF1 and ExpF2, in order to analyse the

affect the additional linguistic objects have on the GP. With a population size

of 1,000 and allowed to run over 500 generations, both experiments converged

rather early within 30 generations. The Elite selection techniques kept 1% of

the individuals as is in the first experiment, and 5% in the second. This did not

seem to hinder the results so we decided to keep 2% of the population for the

remaining runs. We also decided to retain the population size at 500 since in the

previous experiments the larger populations risked converging later and resulting

in complex rules.

115

7
.2

R
e
su

lts
a
n

d
E

v
a
lu

a
tio

n

Table 7.2: Results for GP experiment with a larger search space

Experiment F-measure Precision Recall Converged Population Size Elite

ExpF1 0.25 0.20 0.33 30 1000 10

ExpF2 0.25 0.20 0.33 30 1000 50

ExpM1 0.25 0.20 0.33 50 500 10

ExpM2 0.25 0.20 0.33 50 500 10

ExpM3 0.25 0.20 0.33 40 500 10

ExpM4 0.28 0.22 0.39 90 500 10

ExpM5 0.21 0.15 0.31 90 500 10

ExpM6 0.25 0.20 0.33 30 500 10

ExpM7 0.26 0.22 0.33 80 500 10

ExpM8 0.26 0.22 0.32 100 500 10

ExpM9 0.26 0.20 0.36 100 500 10

ExpM10 0.26 0.22 0.33 60 500 10

116

7.2 Results and Evaluation

The experiment ExpF1 learnt the rule noun is determiner noun, while ex-

periment ExpF2 learnt noun is determiner and is determiner determiner 1. The

remaining experiments invariably learnt noun is determiner noun, with some of

the runs learning other interesting features as follows:

ExpM3 learnt the rule:

• NN · ((((DET · IS∗)∗ · ((((IS · IS∗)∗ · (IS2 · DET)∗ · IS∗ · DET)∗ · DET ·
IS)∗ · (IS2 ·DET)∗)∗ · IS∗)∗ ·DET)∗ ·MD)∗ · IS ·DET · NN

This rule has included modal (MD) as an optional with one of the possible

paths being that of noun modal is determiner noun.

ExpM4 achieved the highest F-measure (0.28) with the rule:

• NN·((any∗ ·((NN4 ·NN∗ ·IS·DET·NN·((any∗ ·(((any ·(NN·(any ·(any ·
NN ·any ·(any2 ·NN ·any2)∗ ·(any ·(NN ·(any ·NN2 ·(NN2 ·any)∗ ·((any ·
NN·(((any ·(NN·(any ·(any ·NN·any ·(any2·NN·any2)∗·(any ·(NN·(any ·
NN2 ·(any∗ ·(((any ·(NN·(any ·(any ·NN·any ·(any2 ·NN·any2)∗ ·(any ·
(NN ·(any ·NN2 ·(any ·NN ·any)∗ · IS ·DET · IS ·DET)∗ ·any ·(any ·NN ·
(any ·NN2 ·(any ·NN ·any)∗ ·IS ·DET ·IS ·DET)∗ ·any)∗ ·any)∗ ·any)∗)∗ ·
any)∗ ·any ·(any ·NN ·any)∗ ·any)∗ ·any)∗ ·NN ·any)∗ ·NN2)∗ ·any)∗ ·IS ·
DET·IS·DET)∗ ·any ·(any ·NN·(any ·NN2 ·(any ·NN·any)∗ ·IS·DET·IS·
DET)∗ ·any)∗ ·any)∗ ·any)∗)∗ ·any)∗ ·any ·(any ·NN·any)∗ ·any)∗ ·any)∗ ·
NN·any)∗·NN2)∗·any)∗·NN·any)∗·DET·IS·DET)∗·any ·(any ·NN·(any ·
NN2 ·(any ·NN·any)∗ ·IS·DET·IS·DET)∗ ·any)∗ ·any)∗ ·any)∗)∗ ·any)∗ ·
any ·(any ·NN·any)∗ ·any)∗ ·any)∗ ·NN·any)∗ ·NN2)∗ ·any)∗ ·NN·any)∗ ·
IS ·DET ·NN ·DET ·NN ·any)∗ ·NN2)∗ ·any)∗ ·NN ·any)∗ · IS ·DET ·NN

One could easily discard from what is in the first bracket after NN to the last

closing bracket star —)∗, since the star means zero or more, we can take the

brackets to be a zero occurrence and we are left with the already learnt rule

noun is determiner noun. However, we can safely assume that since this

rule achieved a 3-point higher f-measure than the other experiments (which

1Only one sentence of the definitional sentences matches the last rule.

117

7.2 Results and Evaluation

learnt the well-known sequence noun is determiner noun), it probably has

done so by matching something within the brackets that helped to identify

definitions slightly better.

ExpM9 learnt the rule:

• NN · IS ·DET · ((any · ((IS ·DET · IS ·DET) + (IS ·NN)? + (any · IS?)? +

(NN · IS · DET · NN) + (NN · (DET? + (any · IS · ((WHCH? ·MD) +

(NN · IS ·DET · NN))? · NN))? · NN)) ·DET? · NN)? + NN)? · NN

where again what is in brackets could be ignored, leaving us with the se-

quence noun is determiner noun. However, this rule also obtains a slightly

higher f-measure (0.26) than other rules that simply learnt this sequence,

so it is possible that inside the brackets lies a configuration or sequence of

linguistic objects which capture more definitions.

Overall, through our observations of the experiments in the is-a category, we

note that the most obvious rule, even to our machine learning technique, is the

sequence noun is determiner noun. With just that rule as the basis of definition

extraction it is possible to achieve an f-measure of 25%. The average recall stood

around 33% and precision around 20%. In experiment ExpM4, where we had

an f-measure of 28%, recall stood at 40% and precision at 22%. Although the

comparison might not be well-levelled, manually crafted rules used within the

LT4eL project in the is-a category obtained an f-measure of 26%, recall of 58%

and precision of 17%. The manually crafted rules contained more detail than the

sequence noun is determiner noun by trying to identify the general structure of

the sentence apart from this phrase. However, based on these results, we are led

to think that the manually crafted rules, having been specified over particular

sentences, might have a negative impact over the process of definition extraction

as a whole. This is based on the fact that the manual rules are capturing a

higher number of definitions (higher recall), but also capturing a higher quantity

of non-definitions (lower precision).

118

7.2 Results and Evaluation

7.2.2 GP Results for the Verb Category

The verb category places together definitions that are based on certain cue phrases

such as “is defined as”, “is known as”, “is referred to” and so on. Again, our

approach is to split the GP experiment into two different sets. In the first set

we focus on different parts-of-speech, with the hope of pinning down the types

of verbs used in such sentences rather than using a generic verb category. In the

second set of experiments we include the use of particular words, such as “called”,

“known” and others.

The first set of experiments are split in two sections. In the first one, the GP

is set up to include all different part-of-speech tags for the verb category shown

below, whilst the second only contains the generic verb category to catch all below

as one tag. The aim of this distinction is to see if there is any particular part-of-

speech tags within the verb category that are more important to definitions than

others. Apart from the usual set of linguistic objects (noun, adverb, adjective,

modal, determiner, foreign word, preposition, to), we also have specific categories

of verbs as follows:

• VBD — verb, past tense

• VBG — verb, gerund/present participle

• VBN — verb, past participle

• VBP — verb, non-3rd person singular present

• VBZ — verb, 3rd person singular present

• VB — verb

These categories are specified according to the Penn Treebank (Marcus et al.

(1993)) part-of-speech tagset used when the linguistic objects were annotated.

Table 7.3 shows the results for the two experiments, with VExp1 and VExp2

having all verb parts-of-speech, and VExp3, VExp4 having only the generic verb

category specified as a catch-all tag. When one looks at the rules learnt by

the best individuals in these runs, only one rule included the tag ‘VBP’ learnt by

VExp2, with the rest of the rules leaving out the verb component entirely. It thus

119

7.2 Results and Evaluation

Table 7.3: Results for GP in the verb category — first set

Experiment F-measure Precision Recall Converged

VExp1 0.08 0.07 0.09 100

VExp2 0.11 0.10 0.12 100

VExp3 0.11 0.16 0.09 100

VExp4 0.12 0.15 0.09 100

seems to be by coincidence that there is a slight increase in f-measure by using

the general verb linguistic object rather than all parts-of-speech. Since the rules

did not learn anything specific related to ‘verbs’ within a definitional sentences,

it explains the poor results achieved in this category, and that in retrospect,

one would expect a large amount of non-definitional sentences to contain these

features as well, and thus it would be difficult for the GP to identify what type

of verbs are distinguishing in definitions when such characteristic are present in

an equally strong manner in non-definitions.

In the second experiment we augmented the linguistic objects by including

the following set of words:

• mean

• define

• relate

• call

• consist

• know

This set of linguistic objects introduces the concept of the typical verb words

found in such definitional sentences. The set above is primarily based on the

words used in the manually crafted rules, since the latter was based on human

120

7.2 Results and Evaluation

Table 7.4: Results for GP in the verb category — second set

Experiment F-measure Precision Recall Converged

VExp5 0.19 0.13 0.33 40

VExp6 0.20 0.33 0.14 100

VExp7 0.21 0.19 0.23 100

observation. It is by no means complete, and could certainly be improved in

further experiments.

The results presented in table 7.4 show that by introducing such words, it is

now possible for the GP to actually learn rules which distinguish better defini-

tional sentences from those learnt in the first set of experiments in this category.

In this set of experiments, the rules learnt included the words ‘call’, ‘mean’ and

‘define’. Other words seem as though they were not properly explored. For in-

stance, in Exp7, the word ‘relate’ was included in the initial population, but seems

to have been discarded shortly afterwards. As we mentioned previously, search

space exploration can be affected by how the initial population is drafted. If the

rule containing ‘relate’ did not perform well because it was in an ungrammatical

rule or was not present in the manually annotated definitions as an example, the

token is easily lost through evolution. Notwithstanding, a notable improvement

was registered by adding cue words that are generally used in this category.

7.2.3 GP Results for the Punctuation Category

The final category to which we applied the GP is the punctuation category, where

the interesting aspect of sentences in this class of definitions is that they contain

certain punctuation marks which are normally found only in such definitions.

For instance the presence of a term followed by a colon would usually indicate

that what follows is the definition of that term. In this experiment we include

punctuation marks to our set of linguistic objects to try and learn rules that would

specify where those marks fall in a sentence in order to distinguish a definition

from a non-definition. For the purpose of this experiment we ran the GP with the

121

7.2 Results and Evaluation

Table 7.5: Results for GP in the punctuation category

Experiment F-measure Precision Recall Converged

PExp1 0.27 0.23 0.33 90

PExp2 0.30 0.25 0.36 200

normal set of linguistic objects (noun, verb, adjective, adverb, modal, determiner,

foreign word, preposition, which and to), and included the punctuation marks:

• colon

• semi-colon

• comma

We could have also included open and close brackets, however in our set of

examples we did not have such sentences and thus the GP would not have learnt

rules for such cases. In table 7.5 we present the f-measure, precision and recall

for the experiments ran, and immediately one notices that in this category the

GP achieves the best results. This could be due to two possible reasons: (a) the

number of identifying features to be learnt are rather small and so it is could have

resulted that the GP had an easier task to learn, and (b) it could also indicate

that the sentences in this category do not vary much in their structure, and thus

made the learning task easier.

Both experiments learnt rather simple and straightforward rules, each learning

a conjunction of small rules. Interestingly enough, none of the rules contain the

comma element, and seem to focus only on the use of the colon. For instance

in the first experiment, PExp1, the best individual learnt that a sentence must

contain:

• a preposition,

• a noun followed by a colon,

• a noun followed by zero or one colon followed by a noun,

122

7.2 Results and Evaluation

• a noun followed by a colon followed by a determiner,

• a determiner followed by a noun,

• zero or one determiner,

in order to be considered as a definition. Unlike the other experiments, the

rules learnt by the GP are very easy to understand and could be even translated

manually to lxtransduce rules. The simplicity of the rules could indeed reflect

that the learning task itself was a simple one and that sentences were similar to

each other. However, the fact that the comma was not used in to rules could

indicate that the search space was not explored enough, since after all we are

only capturing one third of the definitions.

7.2.4 Learning Rules for All Definitions

A final experiment aims at running the algorithm on the whole set of definitions

without the categories. This would mean a larger search space in terms of what

needs to be learnt, and would probably result in less rules being learnt. However,

it is of interest to try such an experiment to see how effective a GP could be

without a categorised training set. The idea is to see what type of rules in such a

generic setting the GP could learn. It might also be the case that the GP is able

to identify rules for other categories in which we did not train the GP previously,

especially in the case of the generic ‘other’ category.

Again we take two approaches to the experiments. The first set (AExp1,

AExp2) includes a mixture of all generic linguistic objects used above, including

the words under the verb category (‘mean’, ‘known’, ‘define’, ‘relate’, ‘call’, ‘con-

sist’) and the punctuation marks (comma and colon), using a total of 19 linguistic

objects. The second set (AExp3, AExp4) augmented the first set to include all

parts-of-speech specified in the the Penn Treebank tagset, leaving the noun and

verb categories in a general format, reaching a total of 29 linguistic objects. Ta-

ble 7.6 shows the f-measure, precision and recall for these four experiments, all

of which obtained very similar results.

The rules learnt by these experiments centred around the sequence “is a”, and

“is called a”, with no other rules from different categories learnt. This reinforces

123

7.3 Conclusion

Table 7.6: Results for GP without definition categorisation

Experiment F-measure Precision Recall Converged

AExp1 0.20 0.18 0.21 150

AExp2 0.22 0.18 0.27 140

AExp3 0.20 0.18 0.22 60

AExp2 0.20 0.19 0.22 140

our statement that by increasing the search space it becomes more difficult for the

GP to explore different rules which cover a wider area of the search space. The

positive outcome from this experiment is that the two sets obtained very similar

results, which implies that if we had to apply the GP to a different language, it

is possible to start off by learning the most common rules in that language using

the part-of-speech tagset as the set of linguistic objects.

7.3 Conclusion

In this chapter we describe the setup of the GP experiment, the way the individ-

ual is encoded and how it is evaluated during the experiment, and the different

sets of linguistic objects used. We presented the results based on the f-measure

metric obtained by the rules derived from our GP experiments for the different

categories. The best results registered were in the punctuation category, where

the GP obtained an f-measure of 30%, an improvement over manually crafted

rules drafted in the LT4eL project. In the is-a category we obtain an average

of around 25%, with the best run reaching 28%. In this category we observe

that overall, the easiest rule learnt was noun is a noun and that rules reaching a

higher f-measure included some additional information, such as the presence of a

modal within the sentence. The verb category proved the most difficult category

to learn due to the large search space for this particular problem. We observe

that although certain cue words would be present in the initial randomly gener-

ated rules, these would be lost within a few evolutions since they are contained

in rules which fair badly. It is also probable that certain words are not highly

124

7.3 Conclusion

represented in our corpus, making it harder for the GP to learn rules based on

a few sentences. In a final experiment we tried to learn rules over all categories,

and as expected, the search space was too large and in fact only two rules were

explored by the GP.

Overall the results are promising, with the GP achieving similar or better

results than the manually crafted grammar in the LT4eL project. The GP man-

ages to learn common rules automatically. At times, the rules learnt by the GP

are long and complex to decipher, but in the best cases, the rules were rather

simple and easy to understand once duplication is removed. The experiment

also provides a case study for the use of GPs in Natural Language Processing, a

combination which is hardly ever explored.

125

Chapter 8

Evolutionary Algorithms for

Definition Extraction

The two experiments carried out have achieved positive results in isolation, as

stand-alone algorithms. We set out to solve two problems in an independent

manner. We applied a GP to learn rules which could be used to identify def-

initions, and a GA to learn weights to a fixed set of rules or features. In this

chapter we discuss how it is possible to combine the two experiments and achieve

a complete definition extraction tool which covers rule discovery and ranks the

sentences classified as definitions by a certain level of confidence. Through the

use of evolutionary algorithms it is possible to automate completely the task of

definition extraction, with the added advantage of having also a ranking mech-

anism for the resulting classification of sentences. Through this application, we

are able to increase the f-measure average of 25% in the is-a category by the GP

(described in the previous chapter) up to 68%. This shows the validity of such

algorithms in the problem of definition extraction.

8.1 Combining the Experiments for Definition

Extraction

Our experiments have so far been isolated, with the purpose of solving two sep-

arate problems within definition extraction task. As specified in chapter 1, defi-

126

8.1 Combining the Experiments for Definition Extraction

nition extraction poses two challenges to the task itself, (i) the discovery of rules

which could be used to extract definitions, and (ii) the ranking of sentences pro-

posed as definitions so that users are presented with definitions in a likelihood

order. We have tackled both issues separately, the first using a GP to learn rules

which could capture definitions, and the second using a GA to give weights which

indicate a level of importance to a fixed set of rules. However, we can also form a

‘pipeline’ architecture and use the whole system as a complete definition extrac-

tion tool which would include rule-learning for a particular category, and a way

of learning how to rank classified sentences.

As we described in the previous chapter, the GP is able to learn the most

common rules that are able to extract a portion of the definitions annotated in a

corpus. Using these rules, we would be able to have a definition extraction tool

that simply classifies sentences as definitions or non-definitions. The GP has no

knowledge of which sentences are more likely to be definitions, nor does it have

any level of confidence attached to the rules. As we saw, each GP experiment

over the same category would produce different rules, and although they would

share several similarities between them, each GP can produce an individual which

focuses on a particular aspect of the problem. For instance, in the verb category,

one GP run focused on the cue word ‘call’, whilst another included rules with

the word ‘mean’. This means that running the GP several times could provide

a larger coverage of the search space as each run could provide different rules

(individuals). It is thus ideal to combine the best individuals from different GP

runs in the definition extraction task. Each individual can be seen as one feature

which captures a subset of the definitions present in a corpus.

It is now possible to apply the GA to this newly-formed set of features, and

learn their respective weights. As outlined in chapter 6, these weights will indicate

which rules are more likely to classify correctly definitions, and as a result, rank

the candidate definitional sentences themselves. By providing this mechanism,

we are able to present definitions to the user according to a level of confidence

and make the end-purpose of the definition extraction task more usable.

For the purpose of this experiment, we use the best individuals from the

different GP runs under the is-a category, described in section 7.2.1. In particular,

we refer to the experiment results presented in table 7.2, where we presented

127

8.2 Results and Evaluation

Figure 8.1: Combining the two experiments

the results for experiments entitled ExpM1 to ExpM10. The GP for these ten

experiments had exactly the same settings for each run, with the best individual’s

f-measure ranging from 21% to 28%. In our analysis of the rules learnt by the

different individuals, we noted that in certain cases the best individual resulted

in the simple rule noun is a noun, whilst in other cases more complex rules were

identified, with the inclusion of linguistic objects such as modal or other different

linguistic sequences.

A visual representation of this experiment is presented in figure 8.1, where the

output of the various GP runs (in our case, ten runs), becomes the input to the

GA as a fixed set of features. The resulting output of the GA is a set of weights,

with each weight being associated to the respective rule. For this experiment

we used the best GA configuration identified in chapter 6, using CountShifted

as our fitness function, and Elite with SUS selection technique. The GA was

allowed to run for a maximum of 400 generations, with a population size of 100

individuals.

8.2 Results and Evaluation

The average f-measure by these set of rules learnt by the GP was at 25%, with

various similarities shared within the rules themselves. Using this set of rules

128

8.2 Results and Evaluation

in the GA, we manage to achieve an f-measure of 68% by applying the weights

learnt to the respective rules in the classification process. The following describes

in better detail the figures behind our f-measure metric:

Precision 100% — The sentences classified as definitions have been classified

correctly.

Recall 51% — Out of all the definitions manually marked, we manage to classify

51% of them.

This means that together with the rules learnt and their weights, we suc-

cessfully manage to classify just over half of the definitions, without classifying

any incorrect definitions. If we compare this result to the evaluation of the clas-

sification of sentences in the GA, specifically in section 6.3.5, it is possible to

gain a better understanding of why this result was achieved. In that section we

explained that through the evaluation of the classified sentences, we discovered

some anomalies in the manual tagging of the corpus. There were cases where

definitional sentences were left out from the manual marking, and other cases

where non-definitions were inadvertently marked as definitions. In the analysis

of this classification, we found that some of the non-definitional sentences clas-

sified as definitions were similar in structure to definitional sentences. In fact,

it was observed that the sentences achieved similar scores, and in reality should

have been annotated as definitions.

The identification of this problem is of extreme importance when we analyse

what the GP learnt, and how it might have derived its individuals. We know

that the corpus used in this experiment has incorrect classifications of some of the

sentences. Thus we have a situation where sentences sharing similar definitional

structures have not been marked in a consistent manner. As an example, the

following two sentences are taken from our corpus, where the first sentence S1,

was not manually marked as a definition, whilst the second one was.

S1 — not marked as a definition: Pro/DESKTOP is a commercial computer-

aided design (CAD) software package that enables users to design using 3D

solid models, and then go on to produce engineering drawings and photo-

realistic renderings.

129

8.3 Conclusion

S2 — marked as a definition: A daemon is a program like a print spooler, a

mail listener or a WWW server that lurks in the background, waiting for

things to do.

In its learning process, the GP learnt rules that covered both sentences, mean-

ing that its f-measure was also being affected by capturing negative examples. The

GA surprisingly managed to learn weights in such a way as to distinguish com-

pletely between the positive and negative sentences, and managed to classify S1

as a non-definition, according to the training set. In fact the GA did not manage

to achieve a higher recall only because the collective GP rules did not cover any

of the remaining definitions.

8.3 Conclusion

The result of this experiment shows the success evolutionary algorithms can have

in the classification of definitional sentences based on linguistic knowledge. The

experiment shows that by applying a GA to a set of rules learnt by the GP, it is

possible to obtain a perfect distinction between definitions and non-definitions.

We have also showed that it is possible to achieve a complete automatic process

from rule-learning to definition ranking without requiring specialist knowledge.

In our initial requirements we set out the objective to classify definitions without

including too many non-definitions. This experiment has superseded that objec-

tive by classifying only definitions for all those sentences that GP learnt rules for,

even where the GP rules also covered non-definitions.

130

Chapter 9

Conclusions and Future Work

In this chapter we review the work carried out and discuss the results achieved

and the level of success of our experiment. We look at each experiment separately,

and discuss what was achieved and what further possibilities are present for the

respective experiments. Finally, we conclude by giving a direction for further

experiments and work for definition extraction in general, not limited to the

techniques used in this thesis.

9.1 Genetic Algorithms in Definition Extraction

The GA experiment focuses on learning weights to a set of features which could

identify definitions. The weights would then act as a ranking mechanism in the

classification of sentences, providing a level of certainty as to whether a sentence is

actually a definition or a non-definition. Through the experiments carried out, we

found that zero is not an ideal classifying value, and that it should be optimised

to the particular set of features for which we are learning weights. Through this

process we successfully managed to obtain a precision of 62% in the is-a category

by using a set of simple features such as has keyword, contains “is a”, and so

on. We also saw that it is possible to influence the learning of weights to favour

either precision or recall by changing the kappa value in the f-measure metric.

The kappa value reflects the relative importance of precision and recall which

is used by the fitness function to incline towards one of these values so as to

emphasis the context and purpose of our learning algorithm.

131

9.1 Genetic Algorithms in Definition Extraction

An important outcome of the evaluation process was the observation of in-

correct manual annotation of definitions. This brings forward the idea of using

the GA as a way of assisting in the manual annotation of definitions in a corpus.

By identifying simple key features present in some of the definitional sentences,

one could use the GA to present similar sentences as candidate definitions which

might be marked as definitions. The GA could also be used to correct irregulari-

ties found in the corpus, simply by carrying out an evaluation which looks at the

top percentages of the incorrectly classified sentences. Through such a process it

would then be possible to rectify any errors in the annotation. It is certainly the

case that when annotating definitions manually, the annotator is seeing sentences

in context, whereby some sentences might appear as definitions. But when these

are seen outside of their context, as sole sentences, they might be vague or unclear

and thus lack the necessary properties to be considered as complete definitions.

The use of the classification by the GA allows an annotator to see these sentences

in such a manner, and thus be able to perform a better judgement on the quality

of the sentence as a definition. Through the ranking mechanism, one would also

see the sentence next to other likely candidates, and can compare the qualitative

value of a sentence compared to other similarly ranked sentences.

Our GA experiments were limited to the is-a category. Further experimen-

tation would be required to see the effectiveness of weights learnt by a GA on

other definitional categories. In the case of the verb category, a set of features

could easily include a set of cue phrases used by both the LT4eL project and other

work reviewed such as Liu et al. (2003); Malaisé et al. (2004); Muresan & Klavans

(2002); Storrer & Wellinghoff (2006). The GA could learn weights to the respec-

tive phrases and identify which ones are more likely to be found in definitions.

Similarly, in the punctuation category we could apply similar features to those

identified by Przepiórkowski et al. (2007) such as NounPhrase: NounPhrase,

or simply using different punctuation mark sequences (e.g. comma noun-phrase

comma). We would expect similar results in the verb and punctuation categories

if we apply the GA to learn weights to the rules learnt by the GP. During this

process one could also consider re-examining the other categories to analyze their

classification. For instance, there were sentences in the anaphora category that

132

9.2 Genetic Programming in Definition Extraction

were classified as definitions under the is-a category. Thus, it is possible that

definitions share features over the different categories.

Another interesting experiment would be to put all the categories together

and their respective learnt features to try and learn weights for a single defini-

tion extraction tool. After all, the definition extractor will be used not on sole

categories but rather as a full tool covering all types of categories.

9.2 Genetic Programming in Definition Extrac-

tion

The GP experiment was designed to learn rules which could identify definitions.

From the different experiments carried out we observe that the size of the search

space influences the ability of the GP to learn generic rules. We also saw how the

coverage of the search space by the rules learnt depends on the initial random

generation of the population and on mutation, since linguistic objects can only

be introduced at these times, and risk being lost through the evolution process

at the early stages of the run if they are present in ungrammatical rules. If a

particular linguistic object is discarded, the search space cannot be fully explored

and thus the resulting rules from that GP will not contain any rules representing

that solution. In fact we observed that in general, the GP learnt rules for the

most common occurrences present in definitions. The lack of exploration of the

search space was noticed most in the verb category experiments, with most rules

emphasising on the presence of the word ‘call’. Other words were rarely consid-

ered in the rules learnt, and thus achieving the lowest results in our experiments.

The punctuation category performed very well, achieving a considerable improve-

ment in f-measure over the manually crafted rules in the LT4eL grammars. This

improvement is probably due to the restriction over the search space, where we

are only considering sentences which have certain punctuation mark occurrences.

At times, the rules learnt by the GP were long and complex, containing several

duplicate parts (e.g. at the top level, we would find a conjunction of two identical

rules). The growth of the GP trees was controlled only during the random creation

of individuals in the initial population and of subtrees during mutation. However,

during the crossover function we did not consider the depth of the tree, and

133

9.3 Future Work in Definition Extraction

allowed crossover to be carried out irrespective of the depth of the node on which

crossover was to be done. In the worst case scenario, the depth of the tree would

have doubled at each generation. Certain conditions could be included in future

to limit the depth of a tree. One operation which might reduce a tree’s depth

is to remove duplicate rules from the trees, say, after one complete generation.

Such rules add only computational requirements to the GP and contain no useful

information. Sometimes the rules learnt are also a subset of each other. Of course,

one would have to weigh the computational requirements of removing such extra

information during each generation of the GP.

An interesting experiment to be carried out in future would be to use a GP

to learn rules in an iterative manner. The GP would start with a full training set

but after the first experiment, the sentences for which it learnt rules are removed

from the training corpus, and a second experiment is carried out. At each stage,

we would remove sentences for which we learnt the rules, leaving the remaining

sentences as the training corpus. In this way we would be reducing the search

space, and forcing the GP to learn new rules (having removed the more common

sentences). It might be the case that the GP does not learn certain rules as they

would classify to many non-definitions to simply capture few definitions. However,

by carrying out such an experiment we might be able to learn rules which cover

the search space better, and at the same time identify those definitions for which

it is difficult to define rules which provide acceptable results.

The GP was a successful experiment, managing to learn similar rules to the

manually crafted rules by the human expert in the LT4eL project. Categorisa-

tion of definitions did help the GP to identify more specific rules, rather than

attempting rule-learning over all definitions.

9.3 Future Work in Definition Extraction

The final experiment of using both the GP and the GA together as one tool for

definition extraction gave surprising results, managing to identify only definitions,

achieving a 100% precision, albeit having identified rules to capture only half of

the definitional set of sentences. This result is certainly encouraging when consid-

ering that the process is fully automated and also provides a ranking mechanism

134

9.3 Future Work in Definition Extraction

to the classification of sentences. In the work reviewed, Fahmi & Bouma (2006)

manage to obtain a maximum of 92% accuracy when extracting definitions from

the Dutch Wikipedia medical articles using maximum entropy. In this work, they

use information we do not have access to, such as sentence position, since a defini-

tion in such an article is typically found in the beginning. Recall is not calculated

since the definitions are not annotated. Blair-Goldensohn et al. (2004) manage to

obtain 96% precision (again recall is not given), where the extracted definitions

are used for a question answering system which summarised the information to

provide a long format answer.

Our experiments would need to be evaluated further, initially by adjusting

the incorrect annotations discovered during the evaluation process. Such an ad-

justment would have a positive outcome on our results, enabling the GP to learn

better classifying rules by providing stronger reinforcement of certain type of

sentences. We would also need to experiment with other corpora in different do-

mains. For instance, medical texts contain several terms which a part-of-speech

tagger might not recognise and would tag as foreign word (FW). Thus the rules

learnt for our eLearning corpus might not necessarily apply for a medical corpus.

We intend to use Henry Gray’s Anatomy of the Human Body (Gray, 1918) — a

popular textbook which is still used in today’s medical undergraduate courses.

Another interesting experiment that could be carried out in future would be

to compare the weights learnt by the GA to other machine learning applications

such as Hidden Markov Models, Support Vector Machines, and other classification

algorithms found in the Weka toolset (Witten & Frank, 2005). Another possibility

would be to compare the results of a simple probabilistic n-gram model to what

is learnt by the GP, and to see whether applying the model to the GA to learn

their weights would enhance its performance. This might not be necessarily the

case, since the probabilistic model is already learning the more relevant features.

Our machine learning approach is completely language independent, and thus

further experiments would attempt at learning rules over corpora in different

languages. Our first experiments will be carried out in languages present in

the LT4eL project for which resources are readily available, and definitions are

annotated. The only knowledge required to set the linguistic objects for the GP

would be a slight understanding of the part-of-speech tagger (e.g. understanding

135

9.4 Conclusions

which tags represent different types of nouns). By using the GP in an iterative

process as suggested above, it might be possible to identify the important tags

which are present in definitions.

One aspect missing in this thesis is an evaluation of the definition extraction

tool over an unseen corpus. For this purpose we plan to evaluate our techniques

on more technical texts, specifically in the domain of eLearning through the MIT

Open Courseware1 and Open University’s Learning Space2. Such an evaluation

might show that the rules learnt by the GP are not generic enough to cover unseen

definitions, a result which is common in such machine learning techniques. It

would be ideal to have some form of feedback loop from an expert to the learning

algorithm to integrate new knowledge gained over unseen copora.

9.4 Conclusions

Overall, the experiments carried out have resulted in very interesting results

for definition extraction. The final experiment of using both the GA and GP

as a single tool for definition extraction brought out a surprising and positive

results that the GA was able to learn weights which achieved a 100% precision,

a feat that was not achieved in any of the reviewed work. Of course, such an

application would need to be tested on an unseen corpus to evaluate the quality

and applicability of the results achieved in this work. Further work needs to be

carried out to integrate the two algorithms into one seamless application. Based

on the results achieved it is worth exploring the possibility of including this tool

not only as part of an eLearning system, but even in other domains such as

that of question answering. Further experiments should consolidate the results

achieved and further encourage experimentation in natural language processing

using evolutionary algorithms.

1http://ocw.mit.edu/OcwWeb/web/home/home/index.htm
2http://openlearn.open.ac.uk/

136

http://ocw.mit.edu/OcwWeb/web/home/home/index.htm
http://openlearn.open.ac.uk/

Appendix A

Rules Learnt by The Genetic
Program

This appendix presents the rules learnt by the GP during the experiments car-

ried out. These rules have been simplified from the original rules by removing

obvious redundant instances such as duplicates to make them more legible and

understandable.

A.1 Is-a Category

A.1.1 GP Experiments with a Small Set of Features

1. Best individual for Exp1; Satisfy all the following:

• NN · IS · any

• IS · any · NN · any2

• any4 · NN

• IS · any · NN · any2

• NN · IS · any · NN

2. Best individual for Exp2b; Satisfy all the following:

• NN · any? · IS · (any + (NN · IS · NN)) · NN

• NN · any · (any + (NN · any? · any2)) · NN

137

A.1 Is-a Category

• NN · IS? ·any · (any + (NN · IS ·any · IS · (any? + (any? · IS)) ·NN · (any +

any? + (any? · IS)) · any))

• IS · any? · (any + (NN · any? · any · (any + (NN · any · (any + any? +

(any? · IS)) · any)))) · (any + (IS · any · IS · (any? + (any? · IS)))) · NN

3. Best individual for Exp3; Satisfy all the following:

• (IS · any)?

• any3 · AJ · any2 · NN · any

• any2 · NN

• any4 · AJ · any2 · NN · any

• NN · any3 · NN

• any4 · AJ · any3

• NN · any · NN

• any5 · NN

• AJ · any2 · NN

• IS · any · NN

4. Best individual for Exp4; Satisfy all the following:

• NN ·(((((any ·(AJ+((((AJ+NN) ·(any ·MD)?)+(NN ·(NN ·any)? ·NN ·
any2 ·MD)+any)? ·NN ·any)+(AJ · (any ·MD)?)) ·any3)? ·NN ·any)+

any)·NN·any)?·(AJ?+((any·MD)?·AJ·((any·(AJ+MD))+(NN·any·
MD)))+AJ+((any · (AJ+(((AJ? · (((any ·MD)? · (any+(NN ·any)))+

any))+(NN2 ·any ·MD)+any)? ·any3)+(NN ·AJ ·MD?)) ·any3)? ·NN ·
any)))? · IS · ((NN · ((AJ + (any? ·NN · any) + ((any ·MD)? ·AJ · ((AJ +

IS)2+(any2?·NN·any)))+((any·((any·(AJ+IS))+(any2?·NN·any)))?·
NN ·any))? ·(((IS+(NN ·any))? ·(AJ+(NN ·((any? ·NN ·any2)? ·(AJ?+

((AJ+(NN · ((any? ·NN ·any2)? · (AJ?+((any ·MD)? ·AJ ·NN)+AJ+

((any ·(AJ+(((AJ? ·(any ·MD)?)+(NN ·(NN ·any)? ·NN ·any2 ·MD)+

any)?·NN·any)+(NN·AJ·(any·MD)?))·any3)?·NN·any)))?·IS·((NN·
((any+((any ·MD)? ·AJ ·((AJ+IS)2 +(any2? ·NN ·any)))+AJ+((any ·

138

A.1 Is-a Category

((any·((any?·NN ·any)?+AJ+NN))+((any?·NN ·any)? ·NN ·any)))?·
NN·any))?·((IS+(any?·NN·any))?+(NN·any)))?)+any)·NN·any2)+

((any·MD)?·AJ·(AJ+IS)2?))·AJ·NN)+AJ+((any·(AJ+(((AJ?·(any·
MD)?)+(any·((any?·NN·any)?+AJ+NN))+any)?·NN·any)+(NN·AJ·
(any·MD)?))·any3)?·NN·any)))?·IS·((NN·((AJ+(((AJ?·((any·MD)?·
any? ·AJ ·any?)?)+(NN ·any ·((AJ+IS)2 +(any2? ·NN ·any)))+any)? ·
NN·any)+((any·MD)?·AJ·((NN·((AJ+(((AJ?·((any·AJ·((AJ+IS)2+

(any2?·NN·any)))?·any?·AJ·any?)?)+(NN·any·((AJ+IS)2 +(any2?·
NN ·any)))+any)? ·NN ·any)+((any ·MD)? ·AJ · ((AJ+IS)2 +(any2? ·
NN ·any)))+((any ·((any ·((any? ·NN ·any)?+AJ+NN))+((any? ·NN ·
any)?·NN·any)))?·NN·any))?·(((IS+(any?·NN·any))?·(AJ?+(((any·
MD)+any)·AJ·(AJ+IS)2?)+AJ+((any·((AJ?·any2)+(NN·any·MD)+

any)·NN·any2)?·NN·any)))+(NN·any)))?)+any+(any2?·NN·any)))+

((any·((any·(((any·NN·(((AJ+(((AJ?·((any·MD)?·any?·AJ·any?)?)+

MD+(((AJ?·((any·MD)?·AJ·((AJ+IS)2+(any2?·NN·any)))?)+(NN·
any ·MD)+any)? ·NN ·(AJ+IS))+any)? ·NN ·any)+((any ·MD)? ·AJ ·
((AJ+IS)2 +(any2? ·NN ·any)))+((any · (any2 +((any? ·any2? ·any)? ·
NN ·any)))? ·NN ·any)+NN) ·(((IS+(any? ·NN ·any))? ·(AJ?+(((any ·
MD)+any)·AJ·(AJ+IS)2?)+AJ+((any·((AJ?·any2)+(NN·any·MD)+

any) ·NN ·any2)? ·(any ·MD)? ·any)))+((NN ·any)? ·NN ·any)))+AJ+

(NN·((any?·NN·any)?·(AJ?+((any·MD)?·AJ·NN)+AJ+((any·(AJ+

(((AJ? · (any ·MD)?)+(NN · (NN ·any)? ·NN ·any2 ·MD)+(any · IS))? ·
NN·any))?·any3)?·NN·any)))?·IS·((NN·((AJ+(((AJ?·(((any·MD)+

any) ·any? ·AJ ·any?)?)+MD+(((AJ? ·((any ·MD)? ·AJ ·((AJ+IS)2 +

(any2? ·NN ·any)))?)+(NN ·any ·MD)+any)? ·NN ·(AJ+IS))+any)? ·
NN ·any)+((any ·MD)? ·AJ · ((AJ+IS)2 +(any2? ·NN ·any)))+((any ·
((any ·((any?·NN ·any)?+AJ+NN))+((any?·NN ·any)?·NN ·any)))?·
NN·any))?·(((IS+(any?·NN·any))?·(AJ?+(((NN·AJ·(any·MD)?)+

AJ)·AJ·(AJ+IS)2?)+AJ+((any·((AJ?·any2)+(NN·any·MD)+any)·
NN·any2)?·NN·any)))+((NN·any)?·NN·any)))?)+any)·NN·any2)+

((any·MD)?·AJ·(AJ+IS)2?)+((any·(MD+((any+(AJ?·((any·MD)?·
AJ · ((AJ + IS)2 + (any2? ·NN ·any)))?) + (NN ·any ·MD)) ·NN ·any) +

(NN·AJ·(any·MD)?)+AJ)·NN·any2)?·NN·any)))?·NN·any)?+AJ+

139

A.1 Is-a Category

NN))+((any?·NN·any)?·NN·any)))?·NN·any)+NN)·(((IS+(any?·NN·
any))?·(AJ?+(((any·MD)+any)·AJ·(AJ+IS)2?)+AJ+((any·((AJ?·
any2)+(NN·any·MD)+any)·NN·any2)?·NN·any)))+(NN·any)))?)+

any) ·NN ·any2)+((any ·MD)? ·AJ ·(AJ+IS)2?)+((any ·(MD+((any+

(AJ? ·((any ·MD)? ·AJ ·((AJ+IS)2 +(NN2 ·any)))?)+(NN ·any ·MD)) ·
NN·any)+any)·NN·any2)?·NN·any)))+(NN·any)))?)+any)·NN·any2

5. Best individual for Exp5; Satisfy all the following:

• ((any + (any3 ·NN)) · ((any ·NN) + (((any · ((any ·NN) + any)) + NN +

IS) · (((any2 ·NN)? · ((any ·NN) + (((any · ((any ·NN) + any)) + NN +

(IS · any · ((any · ((((any · (any3 + (IS ·NN · any2))) + NN + any + (IS ·
any)) · (any2 + NN)) + (IS · ((((any · (any4 + NN)) + (IS · any)) · ((any ·
NN · ((any ·NN) + any)) + NN)) + NN) · IS · any)) · IS · any2 · IS · any) +

NN+any3) · ((any · ((((any · (any2 +(IS ·any3)))+any2) ·NN)+NN))+

NN) · any)) · any))) + any + NN)))) + NN

• any2 + IS

• any · IS · any · NN

• (NN ·IS ·any ·NN)+(IS ·any ·((NN ·(((any3 ·NN)? ·((any ·NN)+(((any ·
(any2 +any))+any+IS)·any))·any)+(IS·any2 ·IS·any)))+NN+any)·
any ·(any ·(any3 +NN) ·any ·(any2 +(any ·(any3 +any) ·any ·((any ·((IS ·
any · ((any · ((((any · (any3 + NN) · any · ((any · ((IS · any · ((any · ((((IS ·
any2)+any) ·any)+NN))+NN+any) ·((any ·((((any ·(any2 +any4))+

any2) ·NN)+NN))+NN) ·any)+NN))+IS) ·any2 · (any · (any3 +NN) ·
any · ((any · ((IS ·any · ((any · ((((IS ·any3) + (IS ·any2 · IS ·any)) ·any) +

(IS ·any3)))+NN+any) ·((any ·((((any ·(any2 +(any3 ·(IS+(any ·((IS ·
any2)+(IS ·any3)))+NN+any))))+any2) ·(((any+(IS ·any)) ·(any2 +

NN)) + (IS · any · IS · any)) · IS · any2 · IS · any · IS · any) + any)) + NN) ·
any)+NN))+IS))?·any2)+any)·any)+(IS·any3)))+NN+any)·((any·
(((any3+(any·NN))·NN)+NN))+NN)·any)+NN))+IS))))?·NN·any2)

• IS · any · ((any · ((((IS · any3) + any) · any) + (IS · any4))) + NN + (any2 ·
((any · NN) + any))) · ((any · ((any · NN) + NN)) + NN)

140

A.1 Is-a Category

• (NN · IS · any · NN) + (any3 · (any2 + (any · (any3 + NN) · any · ((any ·
((any · ((any · ((((any · (any2 + (NN · any2))) + any2) · NN) + NN)) +

NN) · any) + NN)) + IS))) · NN · any2)

• (NN · IS · any · NN) + (((any · (any3 + NN)) + (IS · any)) · ((any · NN ·
any) + NN) · NN · (any2 + (NN · any2)))

• ((NN·any2·IS)?·(any+(((any·((any·NN)+any))+NN+IS)·any)))+any

• IS ·any · ((NN · ((any · (any + (IS ·any))) + ((((any + (IS ·any)) · (any2 +

NN))+(IS·any))·IS·any2 ·IS·any·IS·any)))+NN+any+(any·(any4 +

NN))) · ((any · ((any ·NN)+any))+NN) · ((NN · (any2 +(NN · ((NN · IS ·
any ·((any ·NN ·any)+((any3 ·NN)? ·((any ·NN)+(((any ·((any ·NN)+

any))+any+IS) ·any)) ·any)+(IS ·any2 · IS ·any)))+any2 +(IS ·((NN ·
((any·(any+(IS·any)))+((((any+(IS·any))·(any2+NN))+(IS·any))·
IS·any2·IS·((IS·any)+any)·IS·any)))+NN+any)·any2)))))+NN+any)

• (((((any + (NN · (any3 + (any3 ·NN · any · IS · any)))) · (any3 + NN)) +

(IS · any)) · ((any · NN · any) + NN)) + NN) · IS · any · NN

• (NN ·IS ·any ·NN)+(IS ·any ·((NN ·(((any3 ·NN)? ·((any ·NN)+(((any ·
((any ·NN) + any)) + any + IS) · any)) · any) + (IS · any2 · IS · any))) +

NN+any) ·any · (any · (any3 +NN) ·any · ((any · ((IS ·any · ((any · ((((IS ·
any3) + any) · any) + (IS · any3))) + NN + any) · ((any · ((((any · (any2 +

(any · (any2 + (any · ((IS · any2) + (IS · any3))) + NN + any)))) + any2) ·
(((any + (IS · any)) · (any2 + NN)) + (IS · ((any ·NN) + NN) · IS · any)) ·
IS · any2 · IS · any2) + NN)) + NN) · any) + NN)) + IS))? · NN · any2)

• (NN · IS · any · NN) + (NN · any3 · (any2 + (any · (any2 + NN) · any ·
((any · ((IS ·any · ((any · (any+(IS ·any3)))+NN+any) · ((any · ((((any ·
NN) + any2) · NN) + NN)) + NN) · any) + NN)) + IS))) · NN · any2)

• ((((any · (any2 + NN)) + (IS · any)) · (any3 + NN)) + NN) · IS · any ·NN

• (NN ·IS ·any ·NN)+(IS ·any ·((NN ·(((any ·IS ·any3 ·NN)? ·((any ·NN)+

any2)·any)+(IS·any2 ·IS·any)))+NN+any)·any·(((any2+NN+any)·
any) + (any3 · ((any · ((IS · any · ((any · ((((IS · any3) + any) · any) + (IS ·
any4))) + NN + (any2 · (any + (IS · any)))) · ((any · ((((any · (any2 + (IS ·
any3))) + any2) ·NN) + NN)) + NN) · any) + NN)) + IS))) ·NN · (any2 +

141

A.1 Is-a Category

(IS·any·((NN·(((any2 ·(((any+(any3 ·NN))·((any·NN)+(((any·((any·
NN) + any)) + NN + IS) · (((any3 ·NN)? · ((any ·NN) + (((any · ((any ·
NN) + any)) + NN + IS) · any))) + any + NN)))) + NN) ·NN)? · ((any2 ·
NN)+(((any ·((any ·NN)+any))+any+IS) ·any)) ·any)+(IS ·any2 ·IS ·
any)))+NN+any)·any·(IS·((any·((NN·((any·(any+(IS·any)))+(NN·
(any2 + (IS ·any · ((NN · (((any3 ·NN)? · ((IS ·any2 · ((any · ((any ·NN) +

NN) ·any)+IS+any) ·any)+any2 +(((any ·((any ·NN)+any))+any+

IS) ·any)) ·any) + (IS ·any2 · IS ·any))) + NN + any) ·any · (any · (any3 +

NN) ·any · ((any · ((IS ·any · (((any + (any3 ·NN)) · ((any ·NN) + (((any ·
((any·NN)+any))+NN+IS)·(((any3 ·NN)?·((any·NN)+(((any·((any·
NN) + any)) + NN + IS) ·any))) + any + NN)))) + NN) · ((any · ((((any ·
((IS ·any ·(any3 +NN))+any))+any2) ·((any ·((any ·IS ·any2)+NN))+

(IS ·((((any ·((any2 ·((any3 ·((any ·((((IS ·any3)+(any ·((((any ·(any2 +

NN))+NN)·NN)+NN)))·any)+(IS·any3)))+NN+any)·((any·((((any·
(any2 + NN)) + NN) ·NN) + NN)) + NN) · any) + any2)) + NN)) + (IS ·
any))·((any·NN·((any·NN)+any))+NN))+NN)·IS·any))·IS·any2 ·IS·
any·IS·any)+NN))+NN)·any)+NN))+IS))?·NN·any4))·IS·any2 ·IS·
any·IS·any)))+NN+any)·any)+NN)·any·((any·((any·((any·((((any·
((IS ·any ·IS ·any)+(any3 ·NN ·any)))+any2) ·((((any ·(any3 +(IS ·NN ·
any2))) + NN + any + (IS · any)) · (any2 + NN)) + (IS · ((((any · (any4 +

NN))+(IS·any))·((any·NN·((any·NN)+any))+NN))+NN)·IS·any))·
IS·any2 ·IS·any·IS·any)+NN))+NN)·any)+NN))+IS))?·NN·any4)))

• (((((any + (any · (((any + (any3 · NN)) · ((any · NN) + (((any · ((any ·
NN) + any)) + NN + IS) · (((any3 ·NN)? · ((any ·NN) + (((any · ((any ·
NN) + any)) + NN + IS) ·any))) + any + NN)))) + NN)) + NN) · (any3 +

NN)) + (IS2 · any)) · ((any · NN · any) + NN)) + NN) · ((any · ((any ·
NN) + any)) + any + IS) · any2 · NN

• (NN · IS · any · NN) + (IS · any · ((NN · (((any3 · NN)? · ((any · NN) +

(((any · ((any ·NN) + any)) + any + IS) ·any)) ·any) + (IS · ((IS ·any2) +

any) ·NN · IS ·any))) + NN + any) ·any · (any · (any3 + NN) ·any · ((any ·
((NN · any) + NN)) + IS))? · NN · any2)

142

A.1 Is-a Category

• ((((any · ((((any · (any2 + NN)) + NN) ·any) + NN)) + (IS ·any)) · ((any ·
NN · any) + NN)) + NN) · IS · any · NN

• (NN · IS ·any ·NN)+(NN ·any3 ·(any2 +(any ·(any3 +NN) ·any2 ·((any ·
((IS · any · ((any · (any + (IS ·NN · any2))) + NN + any) · ((any · ((((any ·
NN) + any2) · NN) + NN)) + NN) · any) + NN)) + IS))) · NN · any2)

• (NN ·IS ·any ·NN)+(IS ·any ·((NN ·(((any ·IS ·any3 ·NN)? ·((any ·NN)+

(((any·((any·NN)+any))+any+IS)·any))·any)+(IS·any2 ·IS·any)))+

NN+any)·any·(any2+(any3 ·((any·((IS·any·((any·((((IS·any3)+any)·
any)+(IS ·any4)))+NN+any3) ·(any2 +NN) ·any)+NN))+IS))) ·NN ·
(any2+(IS·any·((NN·(((any3 ·NN)?·((any2 ·NN)+(((any·((any·NN)+

any))+any+IS) ·any)) ·any)+(IS ·any)))+NN+any) ·any ·(IS ·((any ·
((NN·((any·(any+(IS·any)))+((((any+(IS·any))·(any2+NN))+(IS·
any)) · IS ·any2 · IS ·any · IS ·any)))+NN+any) ·any)+NN) ·any ·((any ·
((IS·any·((any·((((IS·any3)+any)·any)+(IS·any2 ·((IS·any·((IS·any·
((((IS·any3)+any)·any)+(IS·any3)))+NN+(any2 ·(any2+((NN+IS)·
any)))+IS)·((any·((((any·(any2+NN))+NN)·NN)+NN))+NN)·any)+

IS+any))))+NN+any)·((any·((((any·((IS·any2·((any2·(any2+((NN+

IS) ·any)+any))+IS) ·any)+(IS ·any3)))+any2) ·((((any ·(any3 +(IS ·
NN·any2)))+NN+any+(IS·any))·(any2+NN))+(IS·((((any·(any4+

NN))+(IS·any))·((any·NN·((any·NN)+any))+NN))+NN)·IS·any))·
IS·any2 ·IS·IS?·IS·any)+NN))+NN)·any)+NN))+IS))?·NN·any4)))

• ((((any · (any4 +NN))+any2) · ((any ·NN · ((any ·NN)+any))+NN))+

NN) · IS · any · NN

• (NN·IS·any·((any·NN·any)+((any3 ·NN)?·any2)+(any·NN·any2 ·IS·
any)))+(IS·any·NN·(any2+(IS·any2 ·IS·any))·((any·NN)+NN)·any)

• (NN ·IS ·any ·NN)+(IS ·any ·((NN ·(((any2 ·NN)? ·((any ·NN)+(((any ·
((any ·NN) + any)) + any + IS) · any)) · any) + (IS · any2 · IS · any))) +

NN + any2 + (any · ((any ·NN) + any)) + any + IS) · any · (any2 + (IS ·
((any · ((IS ·any · ((any · ((((IS ·any3)+any) ·any)+(IS ·any4)))+NN+

any3) · ((any · ((((any · (any2 + (IS · any2 · (IS + NN)))) + any2) ·NN) +

NN))+NN) ·any)+NN))+IS))) ·NN · (any2 +(IS ·any · ((NN · (((any3 ·
NN)? ·((any ·NN)+(((any ·((IS ·any)+any))+any+IS) ·any)) ·any)+

143

A.1 Is-a Category

(IS · any2 · IS · any))) + NN + any) · any · (any · (any3 + NN) · any · ((any ·
((IS ·any ·((any ·((((IS ·any3)+any) ·any)+(IS ·any2 ·((IS ·any2 ·((any ·
((((any · (any2 +NN))+NN) ·NN)+NN))+NN) ·any)+IS+any))))+

NN+any) ·((any ·((((any ·((((any ·((any ·NN)+any))+any+IS) ·any ·
(any3 +NN))+(IS ·any3)))+any2) ·(((any+(IS ·any)) ·(any2 +NN))+

(IS · ((((any · ((any2 · (any2 +(any · IS ·any)))+NN))+(IS ·any)) · ((any ·
NN · ((any ·NN) + any)) + NN)) + NN) · IS · any)) · IS · any2 · IS · any ·
IS ·any) + NN)) + NN) ·any) + NN)) + IS))? ·NN · (NN + any2) ·any2)))

• IS·any·((NN·((any·(any+(IS·any)))+((((any+(IS·any))·(any2+NN))+

(IS ·any)) ·IS ·any ·((((any ·(any4 +NN))+(IS ·any)) ·((any ·NN ·((any ·
NN)+any))+NN))+NN) ·IS ·any ·NN ·IS ·any ·IS ·any)))+NN+any) ·
((any·((any·NN)+any))+NN)·((NN·(any2 +(NN·any)))+NN+any)

• ((((any · ((any2 · (any2 + (((NN · IS · any · NN) + (NN · any3 · (any2 +

(any · (any2 + NN) · any · ((any · ((IS · any · ((any · (any + (IS · any3))) +

NN + any) · ((any · ((((any ·NN) + any2) ·NN) + NN)) + NN) · any) +

NN)) + IS))) ·NN · any2) + IS) · any))) + NN)) + (IS · any)) · ((any ·NN ·
((any · NN) + any)) + NN)) + NN) · IS · any · NN

• (NN · IS · any · ((any ·NN · any) + ((any3 ·NN)? · ((any ·NN) + (((any ·
((any ·NN) + any)) + any + IS) · any)) · any) + (IS · any2 · IS · any))) +

(IS · any · NN · (any2 + (IS · any2 · IS · any)) · ((any · NN) + NN) · any)

• (NN · IS · any ·NN) + (IS · any · ((NN · (any3 + (any · IS · any))) + NN +

(IS · any · ((any · ((((IS · any2) + NN) · any) + (IS · any3))) + NN + any) ·
((any · ((((any · (any2 + NN)) + NN) ·NN) + NN)) + NN) · any) + IS) ·
any · (any2 + (IS · any2 · ((IS · any4) + IS))) ·NN · ((((NN? · ((any ·NN) +

any2)) + NN) · any) + (any · NN)))

• IS ·any · ((NN · ((any · (any + (IS ·any))) + ((((any + (IS ·any)) · (any2 +

NN))+(IS·any))·IS·any2 ·IS·any·IS·any)))+NN+any+any2)·((any·
((any · NN) + any)) + NN) · ((NN · (any2 + (NN · any))) + NN + any)

• ((((any · (any3 + NN)) + (IS2 · any)) · ((any ·NN · any) + NN)) + NN) ·
((any · ((any ·NN) + any)) + (any · (any3 + NN) · any) + IS) · any2 ·NN

144

A.1 Is-a Category

• (NN ·IS ·any ·NN)+(IS ·any ·((NN ·(((any3 ·NN)? ·((any ·NN)+(((any ·
((any·NN)+any))+any+IS)·any))·any)+(IS·any·NN·any)))+NN+

any)·any·(any·(any3 +NN)·any·((any·((IS·any·((any·(((any+(any3 ·
NN)) · ((any ·NN) + (((any · ((any ·NN) + any)) + NN + IS) · (((any3 ·
NN)? · ((any ·NN)+ any2))+ any +NN))))+NN))+NN+ any) · ((any ·
((((any · (any2 +(any3 · (IS+(any · (any +(IS ·any3)))+NN+ any))))+

(any ·(any2 +(any3 ·(IS+(any ·((IS ·any2)+(IS ·any3)))+NN+any))) ·
any)) · (((any + (IS ·any)) · (any2 + NN)) + (IS · ((((any · ((any2 · (any2 +

((NN + IS) · any))) + NN)) + (((any · ((any ·NN) + any)) + any + IS) ·
any)) · ((any · NN · ((any · NN) + any)) + NN)) + NN) · IS · any)) · IS ·
any2 · IS · any · IS · any) + NN)) + NN) · any) + NN)) + IS))? ·NN · any2)

• ((((any · ((any · (any + (any · NN · any)) · any) + NN)) + (IS · any)) ·
((any · NN · any) + NN)) + NN) · IS · any · NN

• (NN·IS·any·NN)+(NN·any3·(any2+(any·(any3+NN)·any·((NN·((any·
((IS·any·((any·((((IS·any3)+any)·any)+any2))+NN+(IS·((NN·((any·
(any+(IS·any)))+((((any+(IS·any))·(any2+NN))+(IS·any))·IS·any2·
IS·any·IS·any)))+NN+any)·any4))·((any·((((any·(any2+(IS·any2·(IS+

NN))))+any2)·NN)+NN))+NN)·any)+NN))+NN))+IS)))·NN·any2)

• (NN ·IS ·any ·NN)+(IS ·any ·((NN ·(((any3 ·NN)? ·((any ·NN)+(((any ·
((any·NN)+any))+any+IS)·any))·any)+(IS·any2 ·IS·any)))+NN+

any) ·any · (any + (any · (any3 + NN) ·any · ((any · (any2 + NN)) + IS))) ·
NN · (any2 +(IS ·any · ((NN ·any)+NN+any) ·any · (any · (any3 +NN) ·
any · ((any · ((IS ·any · (((any+(any3 ·NN)) · ((any ·NN)+(((any · ((any ·
NN)+any))+NN+IS) ·(((any ·IS ·any ·NN)? ·((any ·NN)+((NN+IS) ·
any)))+ any +NN))))+NN) · ((any · ((((any · ((IS ·any · (any3 +NN))+

any))+any2) ·(((any+(IS ·any)) ·((any ·IS ·any2)+NN))+(IS ·((((any ·
((any2 · ((any · IS · any · ((any · ((((IS · any3) + (any · ((((any · (any2 +

NN)) + NN) ·NN) + NN))) · any) + (IS · any3))) + NN + any) · ((any ·
((((any·(any2 +NN))+NN)·NN)+NN))+NN)·any)+any2))+NN))+

(IS ·any)) · ((any ·NN · ((any ·NN)+ any))+NN))+NN) · IS ·any)) · IS ·
any2 · IS ·any · IS ·any)+NN))+NN) ·any)+NN))+IS))? ·NN ·any4)))

145

A.1 Is-a Category

• IS·any·((NN·((any·(any+(IS·any)))+(any2 ·IS·any·IS·any)))+any)·
((any·((any·NN)+any))+NN)·((NN·(any2 +(NN·any)))+NN+any)

• (NN·IS·any·NN)+(IS·any·((NN·(((any3 ·NN)?·((any·NN)+((((any3 ·
NN)? ·((any ·NN)+(((any ·((any ·NN)+any))+any+IS) ·any)) ·any)+

(IS ·any2 ·IS ·any)+IS) ·any)) ·any)+(IS ·any2 ·IS ·any)))+NN+any) ·
any · (any · (any3 + NN) · any · (any2 + (any · (any3 + any) · any · ((any ·
((IS ·any ·IS ·any ·((NN ·(((any ·IS ·any3 ·NN)? ·((NN ·((any ·(any+(IS ·
any)))+(any2 · IS ·any · IS ·any)))+any+(((any · ((any ·NN)+any))+

any +IS) ·any)) ·any)+(IS ·any2 · IS ·any)))+NN+ any) ·any · (any2 +

(any·(any+(any·(any2+NN))+NN)·any·((any·((IS·any·((any·((((IS·
any3) + any) ·any) + (IS ·any4))) + NN + any3) · ((any · ((((any · (any2 +

(IS·any3)))+any2)·NN)+NN))+NN)·any)+NN))+IS)))·NN·(any2+

(IS·any·((NN·(((any3 ·NN)?·((any2 ·NN)+(((any·((any·NN)+any))+

any+IS)·any))·any)+(IS·any2 ·IS·any)))+NN+any)·any·(IS·((any·
((NN·((any·(any+(IS·any)))+(((((any·((any·NN)+any))+(IS·any))·
(any2+NN))+(IS·any))·IS·any2 ·IS·any·IS·any)))+NN+any)·any)+

NN)·any·((any·((IS·any·((IS·((((IS·any3)+any)·any)+(IS·any2 ·((IS·
any·((IS·any·((((IS·any3)+any)·any)+(IS·any3)))+NN+any)·((any·
((((any · ((any · (NN ·any3)?)+NN))+NN) ·NN)+NN))+NN) ·any)+

IS+any))))+NN+any)·((any·((((any·((IS·any2·((any2·(any2+((NN+

IS) ·any)+any))+IS) ·any)+(IS ·any3)))+any2) ·((((any ·(any3 +(IS ·
NN·any2)))+NN+any+(IS·any))·(any2+NN))+(IS·((((any·(any4+

NN))+(IS·any))·((any·NN·((IS·any)+any))+NN))+NN)·IS·any))·
IS·any2 ·IS·IS?·IS·any)+NN))+NN)·any)+NN))+IS))?·NN·any4))·
((any·(((any3+(any·NN))·NN)+NN))+NN)·any)+NN))+IS))))?·NN)

• ((NN · any2 ·NN)? · ((any ·NN) + (((any · ((any ·NN) + any)) + NN +

IS) · any))) + any

• IS·any·((NN·((any·(any+(IS·any)))+((((any+(IS·any))·(any2+NN))+

(IS·any))·IS·any2·IS·any·IS·any)))+NN+any+(((any·(any3+NN)·any·
((any·((IS·any·((any·((((IS·any2)+any)·any)+NN))+NN+any)·((any·
((((any·(any2+any4))+any2)·NN)+NN))+NN)·any)+NN))+IS)·IS·
any·((NN·(((any3 ·NN)?·((any·NN)+(((any·((any·NN)+any))+any+

146

A.1 Is-a Category

IS)·any))·any)+(IS·any2·IS·any)))+NN+any)·any·(any·((NN·any2)+

NN)·any·((any·((IS·any·((any·((any·((((IS·any3)+any)·(any+(IS·any·
((NN·(any2+((((any+(NN·any2·NN·any))·(any2+IS+(((any·((IS·any·
((any2·(any2+NN))+NN))+(NN·any3)))+any2)·((any·(any2+NN))+

(IS·(((((any+any3)·((any·(any3+NN)·any·((any·((IS·any·((any·((((IS·
any·IS·any)+any)·any)+(IS·any3)))+NN+any)·((any·((((any·(((NN·
any2 ·NN)?·((any·NN)+(((any·((any·NN)+any))+NN+IS)·any)))+

(any3·(IS+(any·((IS·any2)+(IS·any·((NN·IS·any·NN)+(IS·any·((NN·
((any·((any·((IS·any·NN·(any2+(IS·any2·IS·((any·NN)+(((any·((any·
NN)+any))+NN+IS) ·any)+IS))))+any))+any2))+(any3 ·NN ·any ·
IS·any)))+NN+any2+IS)·any·(any2+(IS·any2·((IS·any4)+IS)))·NN·
((((NN?·((any·NN)+any2))+NN)·any)+(any·NN))))·any)))+NN+

any))))+any2)·(((any+(IS·any))·(any2+NN))+(IS·((IS·any2 ·((any·
NN2)+NN))+NN) ·IS ·any)) ·IS ·any2 ·IS ·any ·IS ·any)+NN))+NN) ·
any)+NN))+IS)·any·(any2+((IS+(any·((IS·any2)+(IS·any2 ·(NN+

(NN · (any2 +(NN ·any)))+any))))+any+NN) ·any)))+NN))+IS2) ·
((any·NN·(any2+any))+(IS·any)))+NN)·IS·any))·IS·any2·IS·any·IS·
any)))+(IS·any))·any3·NN·any3·IS·any)))+NN+any)·(any2+NN))))+

(IS · any4))) + NN + (IS · any3))) + NN + any) · ((any · ((((any · (any2 +

(any3 · (IS+(any · ((IS ·any2)+any3))+NN+ any))))+any2) · (((any +

(IS ·any)) · (any2 +NN))+(IS ·any · IS ·any)) · IS ·any2 · IS · ((IS ·any)+

any)·IS·any)+any))+NN)·any)+NN))+IS))?·any2)+any)·any)+(IS·
any3)) · ((any · ((any ·NN)+any))+NN) · ((NN · (any2 +(NN · ((NN · IS ·
any ·((any ·NN ·any)+((any3 ·NN)? ·((any ·NN)+(((any ·((any ·NN)+

any))+any+IS)·any))·any)+(IS·any2 ·IS·any)))+any))))+NN+any)

• (((((any + (NN · (any3 + (NN2 · any2)))) · (any3 + NN)) + (IS · any)) ·
((any · NN · any) + NN)) + NN) · IS · any · NN

• (NN · IS · any · NN) + (IS · any · ((NN · (((any3 · NN)? · ((any · NN) +

(((any · ((any ·NN) + any)) + any + IS) · any)) · any) + (IS · any2 · IS ·
any))) + NN + any) · any · (any · (any3 + NN) · any · ((any · ((IS · any ·
((any · ((((IS · any3) + any) · any) + (IS · any3))) + NN + any) · ((any ·

147

A.1 Is-a Category

((((any · (any2 + (any3 · (any2 + (any · ((IS · any2) + (IS · any3))) + NN +

any)))) + any2) · any) + NN)) + NN) · any) + NN)) + IS))? ·NN · any2)

• ((((any · ((((any · (any2 + NN)) + NN) ·any) + NN)) + (IS ·any)) · ((any ·
((any · ((any ·NN)+ any))+ any +IS) ·any)+NN))+NN) · IS ·any ·NN

• (NN · IS · any · NN) + (NN · any3 · (any2 + (any · (any2 + NN) · any ·
((any · ((IS ·any · ((any · (any+(IS ·any3)))+NN+any) · ((any · ((((any ·
NN) + any2) · NN) + NN)) + NN) · any3) + NN)) + IS))) · NN · any2)

• ((((any · (any2 + NN)) + (IS · any)) · ((any ·NN · any) + NN)) + NN) ·
IS · any · NN

• (NN · IS · any ·NN) + (IS · any · ((NN · (((any · IS · any3 ·NN)? · ((any ·
NN)+(((any ·((any ·NN)+any))+any+IS) ·any)) ·any)+(IS ·any2 ·IS ·
any))) + NN + any) ·any · (any2 + (any3 · ((any · ((IS ·any · ((any · ((((IS ·
any3) + any) ·any) + (IS ·any4))) + NN + any3) · ((any · ((((any · (any2 +

(IS·any3)))+any2)·NN)+NN))+NN)·any)+NN))+IS)))·NN·(any2+

(IS ·any ·((NN ·(((any3 ·NN)? ·(any+(((any ·((any ·NN)+any))+any+

IS)·any))·any)+(IS·any2 ·IS·any)))+NN+any)·any·(IS·((any·((NN·
((any·(any+(IS·any)))+((((any+(IS·any))·(any2+NN))+(IS·any))·
IS ·any2 ·IS ·any ·IS ·any)))+any+(IS ·any ·(((any+(any3 ·NN)) ·((any ·
NN)+(((any·((any·NN)+any))+NN+IS)·(((any3 ·NN)?·((any·NN)+

(((any · ((any ·NN)+any))+NN+IS) ·any)))+any+NN))))+NN))) ·
any)+NN) ·any ·((any ·((IS ·any ·((any ·((((IS ·any3)+any) ·any)+(IS ·
any2 ·((IS·any·((IS·any·((((IS·any3)+any)·any)+(IS·any3)))+NN+

any)·((any·((((any·(any2+NN))+NN)·NN)+NN))+NN)·any)+IS+

any))))+NN+ any) · ((any · ((((any · ((IS ·any2 · ((any2 · (any2 +((NN+

IS) ·any)+any))+IS) ·any)+(IS ·any3)))+any2) ·((((any ·(any3 +(IS ·
NN·any2)))+NN+any+(IS·any))·(any2+NN))+(IS·((((any·(any4+

NN))+(IS·any))·((any·NN·((any·NN)+any))+NN))+NN)·IS·any))·
IS·any2 ·IS·IS?·IS·any)+NN))+NN)·any)+NN))+IS))?·NN·any4)))

• any2 · ((((any · (any2 + NN)) + NN) ·NN) + any) · ((any · ((any ·NN) +

any)) + NN) · ((NN · (any2 + (NN · any))) + NN + any)

148

A.1 Is-a Category

• (NN · IS · any · ((any ·NN · any) + ((any3 ·NN)? · ((any ·NN) + (((any ·
((any ·NN) + any)) + any + ((any3 ·NN)? · ((any ·NN) + (((any · ((any ·
NN)+any))+any+IS) ·any)) ·any)) ·any)) ·any)+(any ·NN ·any2 · IS ·
any)))+(IS·any·NN·(any2+(IS·any2 ·IS·any))·((any·NN)+NN)·any)

• (NN·IS·any·NN)+(IS·any·((NN·(((any2·NN)?·((IS·NN)+(((any·((any·
NN)+any))+any+IS)·any))·any)+(IS·any2 ·IS·any)))+NN+any2 +

(any · ((any ·NN)+any))+any+IS) ·any · (any2 +(IS · ((any · ((IS ·any ·
((any·((((IS·any3)+any)·any)+(IS·any4)))+NN+any3)·((any·((((any·
(any2+(IS·any2 ·(IS+NN))))+any2)·NN)+NN))+NN)·any)+NN))+

IS)))·NN·(any2+(IS·any·((NN·(((any3 ·NN)?·((any·NN)+(IS·any2))·
any)+(IS·any2·IS·any)))+NN+any)·any·(any·(any3+NN)·any·((any·
((IS·any·((any·((((IS·any3)+any)·any)+(any·(any3+any))))+NN+

any)·((any·((((any·((((any·(any2+any))+any+IS)·any·(any3+NN))+

(IS·any3)))+any2)·(((any+(IS·any))·(any2+NN))+(IS·(((any2+(IS·
any))·((any·NN·((any·NN)+any))+NN))+NN)·IS·any))·IS·any2 ·IS·
any·IS·any)+NN))+NN)·any)+NN))+IS))?·NN·(NN+any2)·any2)))

• (NN · IS · any · ((any ·NN · any) + ((any3 ·NN)? · ((any ·NN) + any2) ·
any) + (IS · any2 · IS · any))) + (IS · any · NN · (any2 + (IS · any2 · IS ·
any)) · ((any · NN) + NN) · any)

• (NN · IS · any ·NN) + (IS · any · ((NN · (any3 + (any · IS · any))) + NN +

(IS · any · ((any · ((((IS · any2) + any) · any) + (IS · any3))) + NN + any) ·
((any · ((((any · (any2 + NN)) + NN) ·NN) + NN)) + NN) · any) + IS) ·
any · (any2 + (IS · any2 · ((IS · any4) + IS))) ·NN · ((((NN? · ((any ·NN) +

any2)) + NN) · any) + (any · NN)))

• IS ·any · ((NN · ((any · (any + (IS ·any))) + ((((any + (IS ·any)) · (any2 +

NN)) + (IS · any)) · IS · any2 · IS · any · IS · any))) + NN + any) · ((any ·
((any · NN) + any)) + NN) · ((NN · (any2 + (NN · any))) + NN + any)

• (IS · any3) + any + IS

• ((((any · (any3 + NN)) + (IS2 · any)) · ((any ·NN · any) + NN)) + NN) ·
((any · ((any · NN) + any)) + (IS · any · ((any · ((((IS · any2) + any) ·
any)+NN))+NN+any) ·((any ·((((any ·(any2 +any4))+any2) ·NN)+

NN)) + NN)) + IS) · any2 · NN

149

A.1 Is-a Category

• (NN ·IS ·any ·NN)+(IS ·any ·((NN ·(((any3 ·NN)? ·((any ·NN)+(((any ·
((any ·NN)+any))+any+IS) ·any)) ·any)+(IS ·any ·NN · IS ·any)))+

NN+any) ·any · (any · (any3 +NN) ·any · ((any · ((IS ·any · (any2 +NN+

any)·((any·((((any·(any2+(any3 ·(IS+(any·(any+(IS·any3)))+NN+

any)))) + (any · (any2 + (any3 · (IS + (any · ((IS · any2) + (IS · any3))) +

NN + any))) · any)) · (((any + (IS · any)) · (any2 + NN)) + (IS · ((((any ·
((any2 ·(any2 +((NN+IS) ·any)))+NN))+(((any ·((any ·NN)+any))+

any+IS) ·any)) ·((any ·NN ·((any ·NN)+any))+NN))+NN) ·IS ·any)) ·
IS ·any2 ·IS ·any ·IS ·any)+NN))+NN) ·any)+NN))+IS))? ·NN ·any2)

• ((((any · ((any · (any + (any ·NN · any)) · (((any3 ·NN)? · ((any ·NN) +

(((any ·((any ·NN)+any))+any+IS) ·any)) ·any)+(IS ·any2 ·IS ·any)+

any)) + NN)) + (IS ·any)) · ((any ·NN ·any) + NN)) + NN) · IS ·any ·NN

• (NN · IS · any · NN) + (NN · any3 · (any2 + (any · (any3 + NN) · any ·
((NN · ((IS · any · ((any · ((((IS · any3) + any) · any) + (IS · any3))) +

NN + any) · ((any · ((((any · (any2 + any4)) + any2) ·NN) + NN)) + NN) ·
any) + NN)) + IS))) · NN · any2)

• ((((any · (any3 + NN)) + (IS · any)) · ((any ·NN · any) + NN)) + NN) ·
IS · any · NN

• (NN ·IS ·any ·NN)+(IS ·any ·((NN ·(((any3 ·NN)? ·((any ·NN)+(((any ·
((any·NN)+any))+any+IS)·any))·any)+(IS·any2 ·IS·any)))+NN+

any)·any·(any2+(any·(any3+NN)·any·((any·(any2+NN))+IS)))·NN·
(any2+(IS·any·((NN·(((any3 ·NN)?·(NN+(((any·((any·NN)+any))+

any+IS)·any))·any)+(IS·any2·IS·any)))+NN+any)·any·(any·(any3+

NN)·any·((any·((IS·any·(((any+(any3·NN))·((any·NN)+(((any·((any·
NN)+any))+NN+IS)·(((any3 ·NN)?·((any·NN)+(((any·((any·NN)+

any))+NN+IS)·any)))+any+NN))))+NN)·((any·((((any·((IS·any·
(any3 +NN))+any))+(any·NN))·(((any+(IS·any))·((any·IS·any2)+

NN)) + (IS · ((((any · ((any2 · ((any · IS ·any · ((any · ((((IS ·any3) + (any ·
((((any·(any2+any))+NN)·NN)+NN)))·((((((any·(any4+NN))+(IS·
any))·((any·NN·((any·NN)+any))+NN))+NN)·IS·any)+any))+(IS·
any3)))+NN+any) ·((any ·((((any ·(any2 +NN))+NN) ·NN)+NN))+

NN) ·any)+ any2))+NN))+(IS ·any)) · ((any ·NN · ((any ·NN)+(any ·

150

A.1 Is-a Category

((((any·(any2+NN))+NN)·NN)+NN))+NN))+NN))+NN)·IS))·IS·
any2 · IS ·any · IS ·any)+NN))+NN) ·any)+NN))+IS))? ·NN ·any4)))

• IS ·any ·((NN ·((any ·(any+(IS ·any)))+(any3 ·IS ·any)))+any) ·((any ·
((any · NN) + any)) + NN) · ((NN · (any2 + (NN · any))) + NN + any)

• ((((any · (any4 + NN)) + (IS · any)) · ((any ·NN · ((any ·NN) + any)) +

NN)) + NN) · IS · any · NN

• (NN · IS · any · ((any ·NN · any) + ((any3 ·NN)? · ((any ·NN) + (((any ·
((any ·NN) + any)) + any + IS) · any)) · any) + (IS · any2 · IS · any))) +

(IS · any · NN · (any2 + (IS · any2 · ((NN · any · ((any · NN) + any)) +

NN + any) · any)) · ((any · NN) + NN) · any)

• (NN · IS · any · NN) + (IS · any · ((NN · (any3 + (any3 · NN · any · IS ·
any))) + NN + any2 + IS) · any · (any2 + (IS · any2 · ((IS · any4) + IS))) ·
NN · ((((NN? · ((any · NN) + any4)) + NN) · any) + (any · NN)))

• IS ·any · ((NN · (any2 +((((any+(NN ·any)) · (any2 +any))+(IS ·any)) ·
any2 · IS · any · ((any · ((any2 · (any2 + ((NN + IS) · any))) + NN)) +

(((any · ((any ·NN) + any)) + any + IS) · any))))) + NN + any) · ((any ·
((any · NN) + NN)) + NN) · ((NN · IS · any) + NN + any)

• (IS · any4) + IS

A.1.2 GP Experiments with a Larger Set of Features

1. Best individual for ExpF1; Satisfy all the following:

• DET2

• IS ·DET · NN

• NN · IS ·DET

2. Best individual for ExpF2; Satisfy all the following:

• NN · IS ·DET

• NN · IS ·DET

• IS ·DET2

151

A.1 Is-a Category

A.1.3 GP Experiments with Multiple Runs

1. Best individual for ExpM1; Satisfy all the following:

• NN · IS ·DET · NN

• IS ·DET

2. Best individual for ExpM2; Satisfy all the following:

• NN∗ · IS

• IS∗ · IS ·DET

• NN · IS ·DET · NN

3. Best individual for ExpM3; Satisfy all the following:

• NN · ((((DET · IS∗)∗ · ((((IS · IS∗)∗ · (IS2 · DET)∗ · IS∗ · DET)∗ · DET ·
IS)∗ · (IS2 ·DET)∗)∗ · IS∗)∗ ·DET)∗ ·MD)∗ · IS ·DET · NN

4. Best individual for ExpM4; Satisfy all the following:

• NN ·((any∗ ·((NN4 ·NN∗ ·IS ·DET ·NN ·((any∗ ·(((any ·(NN ·(any ·(any ·
NN ·any · (any2 ·NN ·any2)∗ · (any · (NN ·(any ·NN2 · (NN2 ·any)∗ ·((any ·
NN·(((any·(NN·(any·(any·NN·any·(any2 ·NN·any2)∗ ·(any·(NN·(any·
NN2 ·(any∗ ·(((any ·(NN ·(any ·(any ·NN ·any ·(any2 ·NN ·any2)∗ ·(any ·
(NN · (any ·NN2 · (any ·NN ·any)∗ · IS ·DET · IS ·DET)∗ ·any · (any ·NN ·
(any ·NN2 ·(any ·NN ·any)∗ · IS ·DET · IS ·DET)∗ ·any)∗ ·any)∗ ·any)∗)∗ ·
any)∗ ·any · (any ·NN ·any)∗ ·any)∗ ·any)∗ ·NN ·any)∗ ·NN2)∗ ·any)∗ · IS ·
DET·IS·DET)∗ ·any·(any·NN·(any·NN2 ·(any·NN·any)∗ ·IS·DET·IS·
DET)∗ ·any)∗ ·any)∗ ·any)∗)∗ ·any)∗ ·any ·(any ·NN ·any)∗ ·any)∗ ·any)∗ ·
NN·any)∗·NN2)∗·any)∗·NN·any)∗·DET·IS·DET)∗·any·(any·NN·(any·
NN2 ·(any ·NN ·any)∗ ·IS ·DET ·IS ·DET)∗ ·any)∗ ·any)∗ ·any)∗)∗ ·any)∗ ·
any ·(any ·NN ·any)∗ ·any)∗ ·any)∗ ·NN ·any)∗ ·NN2)∗ ·any)∗ ·NN ·any)∗ ·
IS ·DET ·NN ·DET ·NN ·any)∗ ·NN2)∗ ·any)∗ ·NN ·any)∗ · IS ·DET ·NN

5. Best individual for ExpM5; Satisfy all the following:

152

A.1 Is-a Category

• IS · (DET + IS + ((((DET + IS) · any) + ((DET + (DET · (DET + (IS ·
DET2)))) ·DET)) · IS))

• ((DET · any) + MD) · any · (DET2 + DET)

• IS ·DET∗

• DET + IS

• (((DET + (IS ·DET)) · any) + IS) · any · (DET + IS)

• DET

• DET + (IS ·DET2)

6. Best individual for ExpM6; Satisfy all the following:

• NN·IS·((IS·(DET+((NN+(NN·IS·(DET+(NN·IS·DET·((IS·(NN+

IS))+DET)))·DET))·IS2 ·(DET+DET2 +(((IS·DET)+NN)·(DET+

(IS·DET?)+((DET+IS)∗·IS·(IS+DET)))·IS·(DET+(NN·IS·((NN2·IS·
DET·(NN+(IS·(DET+NN))+IS)·DET·(DET+(NN·(DET+(NN·IS·
(DET+(IS2·NN)+IS)·IS·((IS·(NN+DET)·(DET+IS))+(NN·DET))·
IS·NN)))))+NN)·NN·DET))))·NN·(DET+(NN·DET·(DET+(NN·IS·
(DET+IS)·DET·IS·(DET+(NN·DET·NN·DET·NN))))·NN·(DET+

(IS·DET)+(IS·(DET+(((IS·(DET+(DET·NN·IS·NN·IS3 ·DET3)+

(NN ·(DET+NN))) ·NN)+((DET+NN) ·DET)+DET) ·(DET+IS+

((DET+NN+(DET·IS·(DET+(NN·IS·(DET+(IS2 ·NN3 ·IS·NN))))·
NN4·IS2·(DET+NN)·DET))·(NN+DET+(NN·IS·DET))·NN·((DET·
NN)+NN+DET+((DET+(((IS ·DET ·(DET+IS) ·IS2 ·((IS ·(DET+

(((NN·(DET+IS)·NN)+DET)·NN)+(NN·IS2 ·NN)))+DET+IS))+

(((IS·NN)+IS)·(DET+IS)))·NN)+(NN·IS2·NN))·IS·((IS·DET·NN)+

IS)))))·NN)+(IS·(DET+NN+IS)))·NN)+(any·(DET+(DET·(DET+

NN) ·NN)))))))) ·((IS ·(DET+(NN2 ·DET ·NN)+(DET ·(DET+(IS2 ·
(DET+NN+(IS ·(DET+(NN ·IS ·(NN+IS))))+(NN ·DET)) ·(DET+

NN+IS) ·NN)) ·NN · (DET+((DET+NN) ·DET · IS3 · (DET+(DET ·
IS2 ·(DET+(DET·IS2 ·DET·NN·IS·((IS·NN·((IS·((NN·DET)+IS))+

NN)·(NN2+IS)·NN2)+DET+NN)·(DET+IS+(DET·NN))))·NN4))·
NN3 ·(DET+NN) ·(DET+(DET ·NN)) ·(NN+DET2) ·(DET2 +(NN ·
IS2)) ·NN · IS ·(DET+(IS ·DET)) ·DET)))) ·DET)+NN))+DET) ·NN

153

A.1 Is-a Category

7. Best individual for ExpM7; Satisfy all the following:

• NN · IS ·DET · NN

• any2 ·DET · NN

• IS ·DET · NN

• WHCH + DET∗

• WHCH + IS

8. Best individual for ExpM8; Satisfy all the following:

• (NN + DET) · IS · ((DET · NN) + IS)

• DET

• NN · IS · (((AJ + DET) · NN) + DET)

• NN · IS · NN∗ · ((IS · (IS + IS2 + DET)) + DET)

• (NN · IS? · (IS · (IS · (((IS + DET) · (IS + (DET · NN) + (NN · (IS +

DET)))) + AJ)∗)∗)∗) + AD

• NN · IS · (AJ? ·DET)∗ · ((IS ·NN) + (NN · ((any∗ ·NN ·AJ∗ · (IS · (IS ·
any)∗)∗) + AJ + NN)))

• (NN · IS? · (((IS ·DET∗)∗+ DET) · IS)∗ · (NN · IS)∗) + (NN · (AJ ·any∗)∗ ·
((IS · (((IS ·DET∗)∗ · (IS · IS∗)∗)∗ + (IS2)∗ + (NN · IS))∗) + AD) ·DET)

• (IS + (IS · (IS + IS∗)) + DET)∗

• IS ·DET?

9. Best individual for ExpM9; Satisfy all the following:

• NN · IS ·DET · ((any · ((IS ·DET · IS ·DET) + (IS ·NN)? + (any · IS?)? +

(NN · IS · DET · NN) + (NN · (DET? + (any · IS · ((WHCH? ·MD) +

(NN · IS ·DET · NN))? · NN))? · NN)) ·DET? · NN)? + NN)? · NN

10. Best individual for ExpM10; Satisfy all the following:

• IS ·DET · NN

• NN · IS

• NN · IS · any · NN

154

A.2 Verb Category

A.2 Verb Category

A.2.1 Linguistic Objects with Verb Parts-of-speech

The following are the rules learnt by the best individuals from the GP having the

following set of linguistic objects:

VBN, VBZ, VBD, VBG, VBP, VB, NOUN, ADJ, ADV, MOD, DET, FW,

PREP, WHICH, TO

1. Best individual for VExp1; Satisfy all the following:

• (AD + DET) · TO

• PREP · (PREP + DET)

• PREP∗ · TO

• DET

• AD∗ · any · AD

• TO∗ · any · AD

• PREP∗ · any2

2. Best individual for VExp2; Satisfy all the following:

• AD

• AJ

• any20 · TO

• (VBP · any6)∗ · any · TO

• any8 · TO

• any12 · (VBP ·AD)∗ · any2 · any∗ · any10 · (VBP · any6)∗ · any12 · (VBP ·
AD)∗ · any6

• PREP

• WHCH

• any10 ·DET · any · any∗ · any14 · (VBP · any6)∗ · any7

155

A.2 Verb Category

A.2.2 Linguistic Objects with a Generic Verb Object

The following are the rules learnt by the best individuals from the GP having the

following set of linguistic objects:

VB, NOUN, ADJ, ADV, MOD, DET, FW, PREP, WHICH, TO

1. Best individual for VExp3; Satisfy all the following:

• any · NN · any2 · NN

• PREP

• NN∗

• AD · (TO + AD)

• NN · (TO + WHCH)

• AJ · NN

• TO · any · NN

• TO∗

• AD · AD∗

2. Best individual for VExp4; Satisfy all the following:

• TO · (NN + (any · AD) + AJ)

• (NN · (NN + ((NN + (TO · AD) + AJ) · AD) + AJ) · NN) + AJ

• NN · any2 · NN

• AD

• NN?

• TO · any · NN

• AD?

• NN · any · NN

• PREP · any · NN

156

A.2 Verb Category

• AJ? · (NN + AD + (TO · (AD + NN + (((TO ·NN ·TO) + AJ) · (AJ +

PREP))+(TO·(NN+((NN+(TO·AD)+AD+PREP)·(AJ+PREP))+

any) · (NN + TO + AJ + (TO · NN · (NN + (AJ · ((TO · (NN + (TO2 ·
(NN + AD + PREP) ·TO ·NN) + any)) + AJ)) + AJ)))) + AJ + (TO ·
NN ·AJ?) + (TO ·AJ?) + (TO · (NN + AD + TO + PREP) · (NN + (TO ·
NN ·TO) + AJ)))) + AJ + PREP + (TO · (NN + PREP))) · (NN + AJ)

• AD + ((NN + TO? + (TO ·NN · (NN + (AJ ·any))) + AJ) ·NN?) + AJ +

PREP + TO2

• TO ·(NN+AD+(AD ·((TO ·(AD+(TO ·(NN+(TO ·(NN+AD+(TO ·
(AD+(((AD ·(AJ+TO))+AJ) ·((TO ·AJ?)+(TO ·(NN+AD+(TO2 ·
(NN + (NN + (TO ·NN · (NN + (TO ·AD) + AD)) + AJ)? + PREP)) +

AJ + PREP)))) + AJ + PREP + (TO · (NN + AJ? + AJ)) + (TO · (AJ +

(TO·AJ?)))))+AJ+PREP)·(AJ+NN+AD+(TO·(NN+(TO·(AD+

((AD + (TO · (NN + AD)) + AJ) ·TO) + AJ + PREP + (TO ·AJ?)?)) +

AJ)) + PREP)) + AJ)) + AJ)) + (AD · AJ?) + AJ)) + PREP + (AD ·
(NN+AD2 +AJ))+AJ) ·(NN+((AD+(TO ·(NN+(TO ·AJ?)+AJ))+

((NN + AD + ((AD + NN + (TO · (AJ + PREP)) + (TO · (NN + ((NN +

(TO·AD)+AD+PREP)·(AJ+PREP))+any)·(NN+TO+AJ+(TO·
NN · (NN + (AJ · ((TO · (NN + (TO2 · (NN + AD + PREP) ·TO ·NN) +

any))+AJ))+AJ))))+AJ+(TO ·NN ·AJ?)+(TO ·AJ?)+(TO ·(NN+

AD+TO+PREP) ·(NN+(TO ·NN ·TO)+AJ))+PREP+(TO ·(NN+

((NN+(TO·(NN+TO+AJ))+AJ+PREP)·AJ?)+AJ)))·(NN+(TO·
(AJ + (TO ·AJ?))) + AJ)) + AJ + PREP) ·AJ?) + PREP) ·AD) + AJ)

• AD + AJ

• NN + PREP

A.2.3 Linguistic Objects with Verb and Word Categories

The following are the rules learnt by the best individuals from the GP having the

following set of linguistic objects:

VBN, VBZ, VBD, VBG, VBP, VB, NOUN, ADJ, ADV, MOD, DET, FW,

PREP, WHICH, TO, MEAN, DEFINE, RELATE, CALL, CONSIST, KNOWN

157

A.3 Punctuation Category

1. Best individual for VExp5; Satisfy all the following:

• CALL + MEAN + DEFINE

2. Best individual for VExp6; Satisfy all the following:

• CALL?

• CALL

• (PREP + (NN · any)) · ((NN · PREP) + CALL)

• NN · PREP

• (CALL + (NN · any)) · ((NN · PREP) + NN + CALL)

• (CALL + ((NN + CALL) · any)) · ((NN · PREP) + PREP + CALL)

3. Best individual for VExp7; Satisfy all the following:

• DEFINE + ((CALL + VBG) ·PREP) + CALL + (PREP · any∗ ·CALL ·
any) + (any · PREP) + (DEFINE · any∗)

• CALL + PREP

• (any · PREP · any∗ · CALL · any) + DEFINE

• PREP

A.3 Punctuation Category

1. Best individual for PExp1; Satisfy all the following:

• PREP

• NN · COLON

• NN · COLON? · NN

• NN · COLON ·DET

• DET∗ · NN?

• DET?

2. Best individual for PExp2; Satisfy all the following:

158

A.3 Punctuation Category

• (DET · NN) + (COLON + AJ∗)∗

• AJ?

• NN · (any + PREP∗) ·DET

• COLON · any? ·DET

• NN · (PREP + NN)

• (AJ + COLON) · NN

• (AJ + COLON)∗

• COLON · (any + PREP∗) ·DET

• (AJ + COLON) · NN

• NN∗

• NN · (any + (AJ + COLON)∗) · PREP

• VERB∗

• AJ∗

• NN · (COLON + PREP∗) ·DET

• NN · (any + PREP∗) · PREP

• NN · (any + PREP∗) · NN

• (COLON? ·DET)∗

• NN · any? · PREP

• PREP∗

• COLON + VERB

• (AJ + COLON) ·DET

• COLON ·DET

• DET∗

• COLON?

• NN · (COLON + NN)

159

A.4 All Categories

A.4 All Categories

1. Best individual for AExp1; Satisfy all the following:

• IS ·DET · ((any5 · ((any5 · IS ·DET · any ·DET · ((any4 · ((any6 · IS) +

any) · any5) + any)) + any) · any4) + any) · any · ((any3 · IS · any2) + any)

• IS · any5

• any5 · ((any · (any + any3) · IS · any5 · IS) + any) · any2

2. Best individual for AExp2; Satisfy all the following:

• CALL+(CALL·(DET+((any+(IS·any)+IS)·any)+IS2))+((CALL+

(IS ·DET)) · any)

• (CALL + (IS · (CALL + ((DET + CALL + ((DET + ((any + CALL +

((CALL+(DET·(CALL+((CALL+(IS·CALL·DET))·any)+((CALL+

((CALL+ any2 +(IS ·DET)+(IS ·CALL ·DET)) ·any)+(IS ·CALL)) ·
DET)) · any)) · ((CALL ·DET) + (IS ·DET) + (IS · (any + CALL + (IS ·
(CALL+((DET+((any+CALL+(IS·any)+IS)·any)+IS2+(IS·CALL·
(CALL + (IS · (any + ((CALL + IS2 + (CALL ·DET)) ·DET)) · any)) ·
any3)) ·any)))+((DET+CALL+((DET+((any +CALL+((CALL+

(IS ·any2)) ·(CALL+any2 +(IS ·DET)+(IS ·(any+CALL+(IS ·any)+

(IS ·DET)+(IS ·(IS+CALL+(any ·DET)+(IS ·CALL)) ·any)) ·any)) ·
any)+IS)·any)+IS2+(IS·CALL·DET))·any)+IS2+(IS·CALL·DET))·
DET)+(IS·(any+(IS·CALL))·any))·any))·(any+CALL+(IS·DET)+

(IS ·(IS+CALL+(IS ·DET)+(IS ·CALL)) ·any)) ·CALL)+IS) ·any)+

IS2+(IS·CALL·DET))·any)+IS2+(IS·CALL·DET))·any)+((CALL+

IS+(IS·DET))·DET))·any))·(CALL+any2+(IS·DET)+(IS·(DET+

CALL+((DET+((CALL+IS+(CALL ·DET)+((any +CALL+(IS ·
any) + IS) · any) + ((CALL + (IS · any2)) · (CALL + any2 + (IS ·DET) +

(IS · (any + CALL + (IS · any) + (IS ·CALL) + (IS · (IS + ((CALL + (IS ·
(CALL+((DET+((CALL+((any+(IS·CALL·DET))·any)+((DET+

CALL+((DET+((any+CALL+((CALL+((((CALL+(CALL·any)+

(IS·DET)+(IS·(any+CALL+(IS·any)+(IS·DET)+(IS·(IS+CALL+

DET+(IS ·CALL)) ·any)) ·any)) ·any)+CALL+(IS ·any)+IS) ·any)+

160

A.4 All Categories

(IS ·DET)+(IS ·CALL ·IS ·(any+CALL+IS2 +(IS ·DET)+(IS ·any)) ·
(DET+(IS·any)+IS2 +(IS·CALL·DET))·any))·any)+((CALL+(IS·
(CALL+((DET+((any+CALL+(IS·any)+DET+((any+CALL+(IS·
any)+IS)·any))·any)+(IS·CALL·DET·IS)+(IS·CALL·DET))·any)+

((CALL+(CALL ·any)+(IS ·CALL)) ·DET)) ·any)) ·(CALL+((any+

((CALL+any2)·any)+IS)·any)+(IS·DET)+(IS·(any+CALL+IS3 +

(IS·(CALL+(IS·any)+(IS·(IS+CALL+(IS·DET))·any)))+(IS·(IS+

CALL+(IS·DET)+(IS·CALL))·any))·any))·(any+CALL+(IS·(DET+

((any+CALL+(IS ·any)+IS) ·any)))+(IS ·DET)+(IS ·(IS+CALL+

((CALL+((CALL+(IS·DET)+any2+IS)·IS·DET)+(IS·DET)+any)·
any)+(IS·CALL))·any))·CALL)+IS)·any)+IS2+(IS·CALL·DET))·
any)+IS2 +(IS·CALL·DET))·any))·DET)+((DET+((any+CALL+

((CALL+(IS·(any+IS+(IS·DET))))·(CALL+any2+(IS·DET)+(IS·
(any+CALL+(IS·(CALL+((DET+(IS·DET)+IS2+(IS·CALL·DET))·
any)))+(IS·DET)+(IS·(IS+CALL+(IS·DET)+(IS·any))·any))·any))·
CALL ·DET ·CALL)+IS) ·any)+IS2 +(IS ·CALL ·DET)) ·any)+IS2 +

(IS ·CALL ·DET)) ·any)+((CALL+((CALL+((CALL+(IS ·(CALL+

((DET+((any+CALL+(IS·CALL)+IS)·any)+IS2+(IS·CALL·DET))·
any)+((CALL+((CALL+((any+CALL+(IS ·any)+IS) ·any)+(IS ·
DET)+(IS ·CALL ·DET)) ·any)+(IS ·DET)) ·DET)) ·any)) ·(CALL+

any2 + (IS ·DET) + (IS · (any + DET + ((any + CALL + ((CALL + (IS ·
(CALL+((DET+((any+CALL+(IS·any)+IS)·any)+IS2+((CALL+

((CALL+((any+CALL+(IS·any)+IS)·any)+(IS·DET))·any)+(IS·
DET)) ·DET)+(IS ·CALL)) ·any)+((CALL+((CALL+(IS ·DET)+

(IS ·CALL ·DET)) ·any)+IS) ·DET)) ·IS ·CALL)) ·(CALL+any2 +(IS ·
DET)+(IS ·(CALL+(CALL ·any)+((CALL+(any · IS)+(IS ·DET)) ·
any)+(IS·DET)+(IS·(any+CALL+((DET+((any+CALL+(IS·any)+

IS) ·any)+IS2 +(IS2 ·DET)) ·any)) ·any)) ·(CALL+any2 +(IS ·DET)+

(IS · (any+CALL+(IS · (IS+((DET+CALL+(IS ·DET)+(IS · (any+

CALL+(IS·any))·any))·any)+(IS·DET))·DET)+(IS·DET)+(IS·(IS+

CALL+(IS·DET)+(IS·CALL))·any))·CALL))))·any)+IS)·any)+IS+

(IS·CALL·DET)+(IS·any)+CALL+(IS·DET)+(IS·(IS+CALL+(IS·
DET)+(IS ·CALL)) ·CALL)) ·CALL)) ·any)+IS+(IS ·CALL ·DET)) ·

161

A.4 All Categories

any)+DET2) ·DET)) ·any)) ·(CALL+any2 +(IS ·DET)+(IS ·(DET+

CALL+((DET+((any+CALL+((CALL+(IS·any2))·(CALL+any2+

(IS·DET)+(IS·(any+CALL+(IS·any)+(IS·DET)+(IS·(IS+CALL+

(any·DET)+(IS·CALL))·any))·any))·any)+IS)·any)+IS2+(IS·CALL·
DET)) ·any)+IS2 +(IS ·CALL ·DET)+IS) ·any)) ·any)+(IS ·CALL)) ·
any))·any))·any))·any)+IS2+(IS·CALL·DET))·any)+IS2+(IS·CALL·
DET) + (IS · (IS + CALL + (IS ·DET) + (IS ·CALL)) ·any)) ·any)) ·any

3. Best individual for AExp3; Satisfy all the following:

• IS ·any ·((IS ·(IS ·DET ·((any ·IS ·DET ·any ·IS2 ·any ·((IS ·DET ·(any+

any?)·any3 ·DET2 ·any·IS2 ·DET?·(IS2 ·any4 ·DET·(any3 +any)·any3 ·
DET·any?·any·IS2·(DET+(DET·any?))·any9)?·any3)?·any2)?)+any)·
any3·DET·any·((any·IS·(any2+any)·any·DET·any2)+any?)·IS·DET·
any)?·any6 ·DET·any?·any·IS·any2 ·any6?·any·IS·any·DET·IS·DET·
IS·any·(any3?·IS·any·((any·(any·(((any3+any)·any)?·any2)?·IS·DET·
(any3+any)·any3)?·any·(any3+any)·any2·IS·DET?·any5·DET·(DET·
any?)? ·any · IS2 ·DET? ·any3 · (((IS ·any · (any3 ·DET? · ((DET? ·DET ·
(any+(IS·DET·(DET·((any·IS·any)+any))?·IS·any))·any·IS2·(DET+

IS)·any9)+IS)·any2)?·any3)+(IS·any·any3?))·any·IS·any4)?·IS·any4)?·
any2)?·any4)?·any3·DET·any5·IS·any4)?·IS·any·(IS·DET·any2·IS·any·
((any3·(any?·any2)?·any3·DET2·any·IS2·DET·any3·((IS·DET·(any3+

any)·DET·(any3+any)·any2 ·DET·any2 ·DET·((any·((DET·IS2 ·((IS·
DET·((any·IS·any·IS2 ·any·((IS·DET·(any3+any?)·any3 ·DET2 ·any·
IS ·any)? ·(any3 +any) ·any)?)+any) ·any3 ·DET ·any2 ·IS ·DET ·any)+

DET)·any6 ·(any3+any))?·any2)?)+any)·any3)?·any·IS·(DET+(IS2 ·
any·any2?·any3·IS?·(any3+any)))·(IS·any·((DET·((IS·DET·((IS2·any4·
(DET+IS)·any9)+any))+any)·IS2 ·DET?·any3 ·IS·DET?·any4 ·(any?·
any·((DET·any)?·any2)?·any3 ·DET·any?·any·IS2 ·DET?·any3 ·((IS·
DET·((IS2·DET?·(IS·DET·any4·DET·any?·(((any2·DET·any?·any·IS·
any·DET?·any5)+any)·any2)?·IS2 ·any4 ·DET?·any9)?·any·(IS·DET·
(any3 +any) ·any · ((any3 · (((any5 ·DET)+any) ·any2)? ·any)+any))? ·
any3)+any)·DET·(any3+any)·any2 ·DET·any?·IS·any2 ·DET·((any·
((((IS·DET·any·IS·any6·IS·any4)?·any2)?·any·IS2·DET?·any6·IS·(IS·

162

A.4 All Categories

DET·((any·IS·DET·any·IS2 ·any·((IS·DET·(any3+any)·any3 ·DET2 ·
any·IS2·DET?·(IS·any·IS·any4·DET·(any3+any)·any3·DET·any?·any·
IS2 ·(DET+(DET ·any?)) ·any11)? ·any3)? ·(any3 +any) ·any)?)+any) ·
any3·DET·any2·IS·DET·any)?·any5·IS·DET·(any+(IS·DET·(IS·(DET·
(IS·any·IS·(IS·any·((DET·IS2·DET?·DET·any5·IS·any2·IS·any·(any3?·
any2)?·any2)?·any2)?·any4)?·(any3 ·DET·(IS·any)?·(any3+any)·any3 ·
DET·any?·any·IS·NN·any4·DET?·any2·((((any3·DET)+any)·any2)+

any)·any)?·any3)?·any)?·((IS·any3·(any3+any))?·any4·DET·any?·any·
IS2 ·DET?·any3 ·((any2 ·DET·any?·IS·any·DET·((any·((IS·any·DET·
any?·any5 ·IS·(IS·DET·((any·IS·DET·any·IS2 ·any·((IS·DET·(any3+

(IS ·DET ·(any3 +any) ·any)) ·any3 ·DET2 ·any ·IS2 ·DET? ·(IS ·any ·IS ·
any4 ·DET·(any3+any)·any3 ·DET·any?·(IS·any6 ·IS·(IS·DET·any3)?·
any2 · IS ·any5)? · IS2 · (DET+(DET ·any?)) ·any6 ·any∗ ·any · IS ·DET ·
(any3+any)·IS·any6)?·any3)?·(any3+any)·any2)?)+any)·any3 ·DET·
any2 · IS ·DET ·any)? ·any6 ·DET ·any2 ·(any3 +any))? ·any2)?)+any) ·
any·IS2·any2)?·any·IS·(DET+(IS2·any·(any·DET)?·any·IS·any·((IS2·
DET?·any·IS·((any2+any)·any2)?·any5·IS·DET?·any5·((any·((DET?·
((DET·any2·IS·DET?·any2)+any)·any·(any+(IS·any3))·(any3+any)·
any ·((any2 ·DET ·any2)+any) ·any3 ·DET ·any? ·any ·IS2 ·DET? ·any4 ·
IS·DET·any3 ·DET·any?·any5)?·any2)?·DET?·(any+(IS·DET·any))·
any)+any)·any2·IS·((DET·IS·any2·DET)?·any2)?·any3·DET?·any·IS·
DET?·any6·any?·any)?·any·(IS·DET·((DET·any2)+any)·any3·IS·any2·
IS2 ·DET?·any9)?·any2)?·any·IS?·(any3+(any·DET·any)+any)))·(IS·
any·(((any4 ·DET·any·DET·any?·IS2 ·DET?·any4 ·IS·any4)+(((any3 ·
DET)+any) ·any2)) ·any2)? ·any ·DET? ·any · IS ·(any?+any) ·any5)? ·
any2)?·IS·any4)?·IS·DET·any6)?))·any·(any3+any))?·any2)?)+any)·
any·IS2·any2)?·any·IS·any·(DET·any·DET·any?·any·IS2·DET?·((any·
DET·any?·IS·DET·((any·IS·any·IS·(any4+any)·any·DET·any4·IS·any·
(any ·(any ·(((any3 +any) ·any)? ·any2)? ·IS ·DET ·(any3 +any) ·any3)? ·
any·(any3+any)·any·(any2 ·(((IS·((any2 ·IS·DET?·any2)+any)·((((IS·
DET·(any3+any)·IS·any2 ·IS2 ·any6 ·((any3 ·DET)+any)·any·DET·IS·
DET?·any5 ·DET·any4 ·(any5+any3+any))+any)·any2)+DET)·any2 ·
IS·any4)+any)·any2)?·any)?)?)+any)·any4 ·DET·(IS2 ·any5)?·any·IS·

163

A.4 All Categories

any4 ·DET ·(IS ·any ·((any4 ·DET ·any? ·any ·IS2 ·(DET+(IS ·any ·(IS? ·
IS ·any ·((any? ·any ·DET)+DET) ·any3)? ·any2)) ·any6 ·DET ·any4)? ·
any2)?·any4 ·DET·(IS·DET·(any+(IS·any·((any2 ·IS·(IS·any·((any4 ·
DET ·any? ·any ·IS2 ·any ·DET? ·any4 ·IS ·any6 ·DET ·any4)? ·any2)?)? ·
((IS2 ·any3 ·DET·(any+(IS·DET?·IS2 ·DET?·IS·DET·any2 ·IS·any))·
any · IS2 ·DET? ·any9)+IS) ·any2)+DET) ·any)))? · IS ·DET? ·any4)? ·
any)+any)·any3)?·any2)?·IS·any4)?·any3)?·any2)?·DET·any?·any·IS·
(any?+any)·any5)?·any2)?·IS·any4)?·any·DET·any4)?·any3)?·any2)?

• IS ·DET · (IS · any · (any3 + any))?

• any·((any·IS·DET·(any·DET·(any3+any))?·(any3+((((any3 ·(any3+

any))? · IS · ((any3 · (any + (DET · (IS ·DET · (any3 + any + ((IS ·DET ·
(any3+any)·DET·(any3+any)·any2·DET·any?·IS2·any5·DET·((any2·
IS·DET?·any4)+any)·any4 ·IS·any2 ·IS·any2 ·DET·any?·any·IS·any·
IS2 ·any)? ·any2)))?)) ·any2)+any) · ((((IS ·any2 ·DET ·any · ((any2 · IS ·
DET?·any2)+(IS·DET?·IS2 ·DET?·IS·(DET+(DET·any?))·any6 ·IS·
any2)+any+any2))+any?) ·any2)+DET) ·any4 ·DET ·any? ·any · IS2 ·
DET? ·any3 · ((DET ·any · IS2 ·any2)? ·any · IS · (DET+(IS2 ·any · (any ·
DET)?·any3 ·IS?·(any3+any)))·(IS·any·(((any4 ·DET·any·DET·any?·
IS ·any? ·any ·IS ·any4)+(((any3 ·DET)+any) ·any2)) ·any2)? ·any2 ·IS ·
(any?+any)·any·IS·any5 ·IS·DET·(any2+(IS·DET·any4))·DET?·any·
IS ·DET ·any2)? ·any2)? ·any4)+IS) ·IS ·DET ·any5)) ·any3 ·DET ·any? ·
any2 ·DET ·any? ·any · IS2 ·any ·((any? ·any · IS ·(IS ·any ·DET ·(DET+

(any2? ·any2)?) ·any)? ·any3)+DET) ·any3 ·any? ·any5 · IS ·any ·DET ·
IS ·DET ·any ·IS ·any4)? ·any2)? ·any ·(IS ·DET ·((any ·IS ·DET? ·any)+

any+(any4? ·any2)) ·any5 ·IS2 ·any ·((any3 ·DET ·(any3 +any) ·any4 ·IS ·
any ·((IS ·any ·((any4 ·DET ·IS ·(IS ·DET ·any4)? ·any3 ·DET ·any? ·IS3 ·
any6)?·IS·any·((any·IS·DET·any2 ·IS·any·(DET·any2)?·any2 ·DET·
any?·any·DET)?·any2)?·any3)?·(IS·DET·(any3+any?)·any3 ·IS·any·
IS2 ·DET?·(IS·DET·any4 ·DET·IS·(((any3 ·IS·any·DET?·DET·any3 ·
IS·any4)+(IS·DET·any·DET?·any2))·any2)?·IS2 ·any4 ·DET?·any9)?·
any · (IS ·DET · (any3 + any) ·any · ((IS2 ·any5 ·DET · ((any2 · IS ·DET? ·

164

A.4 All Categories

any5)+any) ·any3 ·IS ·DET ·any5 ·(((any2 ·DET)+any) ·any2)? ·any)+

any))? · any)? · any4)? · any2)? ·DET? · any? · any7) + any) · any3)? · any

4. Best individual for AExp4; Satisfy all the following:

• any3 · (DET + any2) · any2 · (any + any4)

• any3 · (DET + any3) · any3

• any3 · (DET + any5)

• DET · any2

• any · IS · any5

• IS · any5

• DET · any4

• any · IS · (DET + MEAN)

165

References

Baker, J.E. (1985). Adaptive selection methods for genetic algorithms. In Pro-

ceedings of the First International Conference on Genetic Algorithms and Their

Applications , Erlbaum. 51

Baker, J.E. (1987). Reducing bias and inefficiency in the selection algorithm.

In Proceedings of the Second International Conference on Genetic Algorithms

on Genetic algorithms and their application, Erlbaum. 49

Belz, A. & Eskikaya, B. (1998). A genetic algorithm for finite state automata

induction with an application to phonotactics. In Proceedings of the ESSLLI-98

Workshop on Automated Acquisition of Syntax and Parsing . 37, 38

Blair-Goldensohn, S., McKeown, K.R. & Schlaikjer, A.H. (2004). New

Directions in Question Answering , chap. Answering Definitional Questions –

A Hybrid Approach. AAAI Press. 8, 27, 30, 32, 33, 135

De Jong, K.A. (1975). An Analysis of the Behaviour of a Class of Genetic

Adaptive Systems . Ph.D. thesis, University of Michigan, ann Arbor. 50

de la Maza, M. & Tidor, B. (1991). Boltzmannn Weighted Selection Im-

proves Performance of Genetic Algorithms. Tech. rep., Massachusetts Institute

of Technology, Cambridge, MA, USA. 91

Degórski, L., Marcińczuk, M. & Przepiórkowski, A. (2008). Definition

extraction using a sequential combination of baseline grammars and machine

learning classifiers. In E.L.R.A. (ELRA), ed., Proceedings of the Sixth Interna-

tional Language Resources and Evaluation (LREC’08). 23, 31, 33, 67

166

REFERENCES

Fahmi, I. & Bouma, G. (2006). Learning to Identify Definitions using Syntactic

Features. In Workshop of Learning Structured Information in Natural Language

Applications, EACL, Italy . 8, 22, 23, 30, 31, 32, 33, 67, 135

Finkel, J.R., Grenager, T. & Manning, C. (2005). Incorporating non-

local information into information extraction systems by gibbs sampling. In

Proceedings of the 43nd Annual Meeting of the Association for Computational

Linguistics (ACL 2005), 363–370. 62

Forrest, S. (1985). Scaling fitness in the genetic algorithm, In Documentation

for PRISONERS DILEMMA and NORMS Programs That Use the Genetic

Algorithm. 49

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Ma-

chine Learning . Addison-Wesley, Reading, MA. 34, 54

Gray, H. (1918). Anatomy of the human body . Philadelphia: Lea and Febiger.

135

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems . University

of Michigan Press, Ann Arbor. 34, 49, 54, 59

Ide, N. & Suderman, K. (2002). XML Corpus Encoding Standard Document

XCES 0.2. Tech. rep., Department of Computer Science, Vassar College, and

Equipe Langue et Dialogue, Vandoeuvre-lés-Nancy. 62

Joho, H., Liu, Y.K. & Sanderson, M. (2001). Large scale testing of a descrip-

tive phrase finder. In HLT ’01: Proceedings of the first international conference

on Human language technology research, 1–3. 26, 27

Joshi, A.K. & Schabes, Y. (1997). Tree-Adjoining Grammars. In Handbook

of Formal Languages , vol. 3, 69–124, Springer. 41

Keller, B. & Lutz, R. (1997). Learning Stochastic Context-Free Grammars

from Corpora Using a Genetic Algorithm. In Workshop on Automata Induc-

tion Grammatical Inference and Language Acquisition (ICML-97), Nashville,

Tennessee. 38, 39

167

REFERENCES

Klavans, J.L., Popper, S. & Passonneau, R. (2003). Tackling the inter-

net glossary glut: Automatic extraction and evaluation of genus phrases. In

SIGIR’03 Workshop on Semantic Web. 23, 25, 33

Kobyliński, L. & Przepiórkowski, A. (2008). Definition Extraction with

Balanced Random Forests. In proceedings of GoTAL 2008 . 23, 30, 31, 33, 67

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers

by means of Natural Selection. MIT Press, Cambridge, MA. 34, 40, 55, 80

Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J.

& Lanza, G. (2005). Genetic Programming IV: Routine Human-Competitive

Machine Intelligence. Springer. 55, 58, 59

Lankhorst, M.M. (1994). Breeding Grammars: Grammatical Inference with a

Genetic Algorithm. Tech. Rep. CS-R9401, Department of Computer Science,

University of Gronigen, PO Box 800, 9700 AV Groningen, The Netherlands.

35, 41

Liu, B., Chin, C.W. & Ng., H.T. (2003). Mining Topic-Specific Concepts

and Definitions on the Web. In Proceedings of the Twelfth International World

Wide Web Conference (WWW’03). 24, 25, 30, 33, 132

Losee, R.M. (1996). Learning Syntactic Rules and Tags with Genetic Algo-

rithms for Information Retrieval and Filtering: An Empirical Basis for Gram-

matical Rules. In Information Processing and Management , vol. 32. 36, 41

Malaisé, V., Zweigenbaum, P. & Bachimont, B. (2004). Detecting seman-

tic relations between terms in definitions. In COLING CompuTerm 2004: 3rd

International Workshop on Computational Terminology , 55–62. 19, 33, 111,

132

Manning, C.D., Raghavan, P. & Schütze, H. (2008). Introduction to In-

formation Retrieval . Cambridge University Press. 17

Marcus, M.P., Marcinkiewicz, M.A. & Santorini, B. (1993). Building

a large annotated corpus of English: The Penn Treebank. Computational Lin-

guistics , 19, 313–330. 111, 119

168

REFERENCES

McCarthy, J. (2007). What is artificial intelligence? Stanford University. 44

Miliaraki, S. & Androutsopoulos, I. (2004). Learning to Identify Single-

Snippet Answers to Definition Questions. In Proceedings of Coling 2004 , 1360–

1366, COLING, Geneva, Switzerland. 26, 32, 33

Mitchell, M. (1998). An Introduction to Genetic Algorithms . MIT Press. 48,

50, 59, 91

Monachesi, P., Lemnitzer, L. & Simov, K. (2007). Language Technology

for eLearning. In First European Conference on Technology Enhanced Learning .

6, 61

Muresan, S. & Klavans, J.L. (2002). A method for automatically building

and evaluating dictionary resources. In Proceedings of the Language Resources

and Evaluation Conference. 18, 30, 33, 111, 132

Park, Y., Byrd, R.J. & Boguraev, B.K. (2002). Automatic glossary ex-

traction: beyond terminology identification. In Proceedings of the 19th inter-

national conference on Computational linguistics , 1–7, Association for Compu-

tational Linguistics, Morristown, NJ, USA. 18, 30, 33, 111

Prager, J., Radev, D. & Czuba, K. (2001). Answering what-is questions by

Virtual Annotation. In HLT ’01: Proceedings of the first international confer-

ence on Human language technology research, 1–5. 26, 27

Przepiórkowski, A., Degórski, L., Spousta, M., Simov, K., Osenova,

P., Lemnitzer, L., Kubon, V. & Wójtowicz, B. (2007). Towards the

automatic extraction of definitions in Slavic. In Proceedings of the BSNLP

workshop at ACL 2007 . 21, 33, 132

Sang, E.T.K., Bouma, G. & de Rijke, M. (2005). Developing Offline Strate-

gies for Answering Medical Questions. In Proceedings of the AAAI-05 Workshop

on Question Answering in Re stricted Domains , 41–45. 29, 31, 33

Shaw, W.C. (1922). The Art of Debate. Allyn and Bacon. 3

169

REFERENCES

Smith, T.C. & Witten, I.H. (1995). A Genetic Algorithm for the Induction

of Natural Language Grammars. In Proceedings IJCAI-95 Workshop on New

Approaches to Learning for Natural Language Processing, Canada, 17–24. 40

Spasić, I., Nenadić, G. & Ananiadou, S. (2004). Learning to Classify

Biomedical Terms through Literature Mining and Genetic Algorithms. In In-

telligent Data Engineering and Automated Learning (IDEAL 2004), vol. 3177

of LNCS , 345–351, Springer-Verlag. 39

Storrer, A. & Wellinghoff, S. (2006). Automated detection and annota-

tion of term definitions in german text corpora. In Language Resources and

Evaluation Conference. 19, 20, 30, 33, 132

Tobin, R. (2005). Lxtransduce A replacement for fsgmatch. Tech. rep., Univer-

sity of Edinburgh. 62, 80

Toutanova, K. & Manning, C.D. (2000). Enriching the Knowledge Sources

Used in a Maximum Entropy Part-of-Speech Tagger. In Joint SIGDAT Con-

ference on Empirical Methods in Natural Language Processing and Very Large

Corpora (EMNLP/VLC-2000), Hong Kong . 62

Walter, S. & Pinkal, M. (2006). Automatic Extraction of Definitions from

German Court Decisions. In Workshop on Information Extraction Beyond The

Document , 20–28. 20, 21, 30, 33

Westerhout, E. & Monachesi, P. (2007a). Combining pattern-based and

machine learning methods to detect definitions for elearning purposes. In Nat-

ural Language Processing and Knowledge Representation for eLearning Envi-

ronments Workshop. 22, 30, 31, 67

Westerhout, E. & Monachesi, P. (2007b). Extracting of Dutch Definitory

Contexts for elearning purposes. In CLIN 2007 . 33

Westerhout, E. & Monachesi, P. (2008). Creating glossaries using pattern-

based and machine learning techniques. In LREC2008 . 23, 30, 111

170

REFERENCES

Witten, I.H. & Frank, E. (2005). Data Mining: Practical machine learning

tools and techniques . Morgan Kaufmann. 23, 135

Wyard, P.J. (1991). Context Free Grammar Induction Using Genetic Algo-

rithms. In ICGA, 514–519. 40

171

	Introduction
	Definitions in eLearning
	What is a Definition?
	Definitional Properties
	Motivation for Automatic Definition Extraction
	The Thesis in Context

	Proposed Approach and Results Achieved
	Existing Solutions for Definition Extraction
	Approach Taken by LT4eL
	Proposed Solution
	Results Achieved

	Outline of Dissertation

	Background
	Definition Extraction
	Grammar and Rule-based Extraction
	Machine Learning Techniques
	Definition Extraction from the Internet
	Answering Definitional Questions
	Summary

	Evolutionary Algorithms
	Genetic Algorithms
	Genetic Programming
	Grammar Representation
	Summary

	Conclusion

	Genetic Algorithms and Genetic Programming: An Introduction
	Evolutionary Algorithms
	Properties of Evolutionary Algorithms
	The Individuals of a Population and Their Fitness
	Selection Method
	Roulette Wheel
	Stochastic Universal Sampling and Sigma Scaling
	Elitism
	Boltzmann Selection
	Rank Selection
	Tournament Selection

	Crossover and Mutation
	Convergence

	Genetic Algorithms
	Encoding the Individual
	Genetic Operators

	Genetic Programming
	Encoding the Individual
	Genetic Operators with Trees
	Fitness and Selection Techniques

	Conclusion

	Language Technologies and Definition Extraction for eLearning
	Introduction
	Corpus Preparation
	Rule-Based Definition Extraction
	Categorising Definitions
	Results of Manually Crafted Rules

	Machine Learning Tasks
	Conclusion

	Experiment Design and Methodology
	Experiment Overview
	Experiment One: Genetic Algorithm
	Feature Description
	Learning Weights
	Fitness Function
	Other Configuration Aspects

	Experiment Two: Genetic Programming
	Representation of the Individual
	Fitness of the Individual

	Conclusions

	Genetic Algorithms for Definition Extraction
	Experiment Description
	Experiment Settings
	Feature Set Used

	Results
	Count Fitness Functions
	CountZero Technique
	CountShifted Technique

	Distance Fitness Functions
	DistanceZero Technique
	DistanceShifted Technique

	Evaluation
	Convergence and Selection Technique Performance
	Results Summary for Best Performing Techniques
	Different Values of Kappa in the F-measure Metric
	Experiments with Kappa Set to 0.5
	Experiments with Kappa Set to 0.1
	Experiments with Kappa Set to 2.0
	Experiments with Kappa Set to 32.0
	Conclusion on Results with Kappa Values

	The Meaning of an Individual
	Classification of Sentences
	Definitions Classified as Non-definitions
	Non-definitions Classified as Definitions

	Conclusion

	Genetic Programming for Definition Extraction
	Experiment Description
	Encoding of the Individual
	General GP Configuration
	Linguistic Objects and Structure of Rules
	Definitional Categories

	Results and Evaluation
	GP Results for the Is-a Category
	GP Results for the Verb Category
	GP Results for the Punctuation Category
	Learning Rules for All Definitions

	Conclusion

	Evolutionary Algorithms for Definition Extraction
	Combining the Experiments for Definition Extraction
	Results and Evaluation
	Conclusion

	Conclusions and Future Work
	Genetic Algorithms in Definition Extraction
	Genetic Programming in Definition Extraction
	Future Work in Definition Extraction
	Conclusions

	Rules Learnt by The Genetic Program
	Is-a Category
	GP Experiments with a Small Set of Features
	GP Experiments with a Larger Set of Features
	GP Experiments with Multiple Runs

	Verb Category
	Linguistic Objects with Verb Parts-of-speech
	Linguistic Objects with a Generic Verb Object
	Linguistic Objects with Verb and Word Categories

	Punctuation Category
	All Categories

	References

