
WICT PROCEEDINGS, DECEMBER 2008 1

Automatic Definition Extraction using Parser Combinators

Claudia Borg
Dept. of Artificial Intelligence

University of Malta
claudia.borg@um.edu.mt

Gordon J. Pace
Dept. of Computer Science

University of Malta
gordon.pace@um.edu.mt

Abstract

The automatic extraction of definitions from natural
language texts has various applications such as the
creation of glossaries and question-answering systems.
In this paper we look at the extraction of definitions
from non-technical texts using parser combinators in
Haskell. We argue that this approach gives a general
and compositional way of characterising natural lan-
guage definitions. The parsers we develop are shown
to be highly effective in the identification of definitions.
Furthermore, we show how we can also automatically
transform these parsers into other formats to be readily
available for use within an eLearning system.

Index Terms

Functional programming, definition extraction, nat-
ural language processing

1. Introduction

A definition — a term together with a description
of its meaning or the concept it refers to — can be
particularly useful in the understanding of new terms.
The extraction of definitions from natural language
texts can be useful for diverse applications, including
automatic creation of glossaries for the building of
dictionaries and in question answering systems.

We are interested in the use of definition extrac-
tion to support eLearning, where definitions can help
learners conceptualise new terms and understand new
concepts. Learning Objects (LOs) normally contain
implicit information in natural language form, which
would require a lot of work for the tutor to extract
manually. We propose techniques to extract these
definitions automatically, to support the tutor who
would then be able to refine, rather than create this

information from scratch. The main challenge is that
the text and definitions are typically non-technical ones
— as opposed to scientific, or technical texts in which
definitions are typically more structured both in terms
of linguistic form and layout.

In our framework we use parser combinators, a tech-
nique from functional programming, to enable us to
develop definition grammars in an abstract and compo-
sitional way, enabling a fast and effective development
and testing cycle of the parsers in order to refine
them. Furthermore, using this approach, we consume
multiple streams of input concurrently, carrying not
only the actual text, but also linguistic information
extracted through external tools, to identify features
indicating definitions.

This work was done in collaboration with an EU-
funded FP6 project LT4eL1. The project is described
in more detail in [MLS07], and aims at enhancing
Learning Management Systems by using language
technologies and semantic knowledge.

2. Background

Rule-based approaches to definition extraction tend
to use a combination of linguistic information and cue
phrases to identify definitions. In [KM01] and [SW06]
the corpora used are technical texts, where definitions
are more likely to be well-structured, and thus easier
to identify definitions. Other work attempts definition
extraction from eLearning texts [WM07] and [GB07]
and the Internet [KPP03]. Non-technical texts tend to
contain definitions which are ambiguous, uncertain or
incomplete compared to technical texts.

In eLearning, LOs are generally created by tutors
in different text formats. A corpus of LOs, gath-
ered within the LT4eL project, has been converted
to XML with additional linguistic information, and

1. Language Technologies for eLearningwww.lt4el.eu

2 WICT PROCEEDINGS, DECEMBER 2008

manual tagging of over 450 definitions. Furthermore,
the definitions have been separated in three different
categories to support the identification process:

1) Definitions containing the verb ‘to be’ as a
connector.
E.g.: ‘A joystick is a small lever used mostly in
computer games.’

2) Definitions containing other verbs as connectors
such as ‘means’, ‘is defined’ or ‘is referred to
as’.
E.g.: ‘the ability to copy any text fragment and
to move it as a solid object anywhere within a
text, or to another text, usually referred to as cut-
and-paste.’

3) Definitions containing punctuation features sep-
arating the term being defined and the definition
itself.
E.g.: ‘hardware (the term applied to computers
and all the connecting devices like scanners,
modems, telephones, and satellites that are tools
for information processing and communicating
across the globe).’

The approach within LT4eL to identify definitions
was through manual observation of grammatical pat-
terns, based on the linguistic information available
in the annotated texts. However, this proved to be
a tedious task, and required expert knowledge. Our
approach makes it easier, even for non-linguist, to
experiment with and develop grammars to identify
definitions.

3. Parser Combinators for Definition Iden-
tification

3.1. The Approach

We propose an infrastructure to define and experi-
ment with parsers embedded inside the general purpose
functional programming language Haskell. The system
works on textual LOs, and attempts to identify defini-
tions at sentence level. The architecture of our system,
as portrayed in figure 1 takes the plain text sentence by
sentence, as a stream of words, augmented by streams
of linguistic information about the individual words.

The main challenge in using parsers to develop
discriminating algorithms for imprecise concepts such
as definitions is one of abstraction and effective assess-
ment of the parsers. We use parser combinators, devel-
oped in the functional programming community, to de-
scribe our definition discriminators for each definition
class. Since the parser combinators are builtwithin the
host language, we develop a whole testing framework

to test candidate parsers on manually tagged data.
Furthermore, since the parsers are also data structures
within the host language, we also develop a number of
non-standard2 interpretations of the parsers. Currently,
we can analyse the parsers to assess the use of the
different streams, and translate parsers into lxtransduce
[Tob05] equivalents. Although not all parsers can be
translated directly and automatically, we have found
that the parsers we have developed can all be handled
by the translator. We envisage the translation of parsers
into other formats as the need arises — currently,
lxtransduce is used in LT4eL for definition extraction.

3.2. Parser Combinators

Combinator-based programming, where a set of
basic objects are defined, together with operators to
combine them to produce more complex instances
has frequently been used to embed domain-specific
languages. One domain in which the combinator ap-
proach has been successfully applied is that of parsing.
In [HM92] and [Wad85], parser combinators were
introduced for Haskell [Jon03], using which, one can
compose complex parsers from simpler ones. Further-
more, the core-combinator code for parsing is itself
very simple and easy to follow, making it possible
to change and add new basic-parsing combinators as
other parsing requirements not originally needed arise.

A parser can be seen to be a function which reads
an input stream of tokens (of a particular type), and
which, after consuming part of the input, returns back a
result and the remaining unconsumed part of the input
stream. In the case of a non-deterministic parser, a list
of such possibilities would be returned. The basic type
of a parser which consumes a stream of data of type
a, and returns a value of typeb, would thus be the
parametrised typeParser a b:

type Parser a b = [a] -> [(b,[a])]

The list of results enables, not only the possibility
of representing non-determinism (by returning multiple
results), but also representing failure (by returning the
empty list). One advantage of using such a polymor-
phic type in our case, is that our different streams
(words in the sentence, morphological information,
part of speech information, etc) can be of different
types. Furthermore, we combine these different streams
into one stream of tuples of information to enable their
consumption in parallel.

Parsers can be easily packaged as monads, which
offer a reusable structure for functional programs,

2. The standard interpretation of a parser is considered to be its
application to a input stream of text to produce an output.

BORG et al.: AUTOMATIC DEFINITION EXTRACTION USING PARSER COMBINATORS 3

Learning objects text platform
E−Learning

parserdescription
Parser lxtransduce

linguistic information

parsers
User programmed

Text enriched with

Linguistic
tools

Figure 1. Workflow of definition extraction

enabling the expression of sequentiality in parser com-
binators [Wad85]. However, for simplicity of presen-
tation, here we use a simpler notation.

Based on this parser type, one can define a number
of basic parsers (such asreturn x, which returns
value x without consuming any of the input stream,
and sat cond, which consumes one element from
the input stream and returns it if it satisfies the given
conditioncond, otherwise fails):

return x ys = [(x,ys)]

sat cond [] = []
sat cond (y:ys)

| cond y = [(y,ys)]
| otherwise = []

Based on such basic parser combinators which en-
able combining of a number of parsers into more
complex ones (such as|> which composes two parsers
in sequence,<+> which composes two parsers to
match with either of the two, and<&> which composes
two parsers in conjunction). For instance, the code
for the sequential composition of two parsers applies
the first parser, and then,for each possible successful
parse,applies the second parser on the remaining input
stream, concatenating all the results, and returning the
pair of results returned by the two parsers. Note that
non-determinism is thus automatically handled within
the composition operator:

(parser1 |> parser2) ys =
[((x,y), ys’’)
| (x,ys’) <- parser1 ys
, (y,ys’’) <- parser2 ys’
]

Non-determinism is implemented simply by catenat-
ing the possibilities of the parsers:

(parser1 <+> parser2) ys =
parser1 ys ++ parser2 ys

Based on these parsers, we can define more complex

parsers, such as, for example,star which accepts any
number of repetitions of a given parser:

star parser =
(parser |> star parser) <+> return ()

The last combinator we will use in this paper is
the conjunction, or parallel parsing of two parsers —
defined to succeed if and only if both parsers succeed
on the given input, without returning any concrete
value and without consuming any input:

(parser1 <&> parser2) ys
| null (parser1 ys) ||

null (parser2 ys) = []
| otherwise = [((), ys)]

3.3. Definition Parsers

Using these basic parsers and parser combinators,
we can define a number of basic parsers for our
domain. The input will be a stream of quadruples,
consisting of (i) the actual word; (ii) morphological
information; (iii) part-of-speech information; and (iv)
the lemma of the word. One can thus define basic
parsers such asisNoun and posIs using thesat
parser:

posIs x = sat (\(_,_,pos,_) -> pos == x)
isNoun = posIs "NN"

Note that the condition passed as a parameter to
sat is a lambda expression which returns the third
item in the four-tuples in the input streams. Based on
these underlying parsers, one can define grammatical
structure parsers. The following example shows how
simple noun phrases may be parsed:

nounPhrase =
(isDeterminer |>

star isAdjective |>
isNoun

) <+>
(star isAdjective |>

(isPluralNoun <+> isProperNoun)

4 WICT PROCEEDINGS, DECEMBER 2008

)

Finally, on the basis of these linguistic structures, we
define classes of definitions. The following example is
a parser for the definition of a noun using an ‘is a’
definition:

nounDefinition =
star isNotVerb |>
isNoun |>
star isNotVerb |>
isToBe |>
star isAdverb |>
nounPhrase

These definitions are refined using extra checks on
the structure and words in the sentence being parsed:

definition_IsA
= posIsNot "wrb"

<&> doesNotInclude (lemmaIs "example")
<&> doesNotInclude (wordIs "not")
<&> (verbDefinition <+> nounDefinition)

3.4. Non-Standard Interpretations

As can be seen in the examples we have given, the
combinators are used to compositionally describe a
definition parser progressively. The parsers are sim-
ply functions which can be applied to input streams,
consuming the data, and returning results. However,
it is desirable to be able to process parsers in alter-
native ways for other purposes. Although functions
are first-class objects in functional languages, thus
enabling higher order descriptions, they cannot be
compared or pattern-matched. We thus overload the
parser combinators so as to allow other interpretations
of the parser, to enable the creation of a structure
which can be analysed and traversed. Currently, we
have two alternative interpretations — an analysis to
assess dependency on different linguistic information
(the constituent parts of the tuples coming in on the
stream), and an automatic translation of a given parser
into lxtransduce [Tob05] input. The latter is used to
link our parser to the eLearning tool.

4. Evaluation

The table below shows our results — a total of
16,042 sentences from non-technical LOs were used,
with 79 is-a definitions, 133 verb definitions and 126
punctuation definitions. The remaining sentences are
all non-definitions.

Category Precision Recall F-Measure

is-a 32% 86% 46%
verb 40% 40% 40%
punct 25% 52% 34%

Overall 31% 55% 39%

Our results are comparable to other work mentioned
in this area. We obtain higher precision and recall for
the is-a category than [GB07], [WM07] and a much
higher precision than [GB07] (12%) but lower recall
(73%) for the verb category. [WM07] obtain better
results in the latter category (precision = 45%; recall =
76%). In punctuation category, we manage to obtain a
much better precision than [WM07] with a lower recall
(precision = 10%; recall = 68%). In [SW06] the corpus
used consists of technical texts, and only the first two
categories are considered. Considering that technical
texts are generally more well-structured, our overall
results over these two categories (precision 35%, recall
57%) compares favourably to theirs (precision 34%,
recall 70%).

The main problem in the domain of definition ex-
traction is that there are far more non-definitions than
definitions. In the case of eLearning, the question that
we have to ask is what is the ratio of definitions vs.
non-definitions that a tutor is willing to be prompted
with to make the tool of definition extraction usable.
The balance between recall and precision is quite
subjective and different requirements would be set by
both the domain of the LOs and by the tutors who use
the tools.

5. Conclusions

We have outlined a definition extraction system
using parser combinators in Haskell. We develop ef-
fective parsers, which can be plugged in directly into
an eLearning system, to support glossary creation and
question-answering with minimal additional work to
be performed by the tutor.

Although the definition extraction is only performed
once on a repository of LOs, these can be very large
and thus it is important to address efficiency issues.
Since we apply the definition parsers at a sentence
level, non-determinism fanout is not a big problem.
Furthermore, since we seek only one match for the
parser, the lazy reduction strategy used in Haskell
ensures that not all possible parser matchings are
generated. In practice, once the linguistic information
is extracted, large documents can be analysed in a
fraction of a second.

There are various issues we plan to address in
the future. We are currently looking into the use of

BORG et al.: AUTOMATIC DEFINITION EXTRACTION USING PARSER COMBINATORS 5

statistical, and machine learning techniques to aid the
development of grammars. We are also looking into
the use of additional linguistic information, such as
phrase chunking, with parsing now being performed
in an asynchronous manner across streams. These
techniques present new challenges which still need
to be addressed. However, we strongly believe that
the combinator based approach can help hide away
all these intricacies within the basic combinators, thus
leaving the parsers essentially unchanged.

References

[GB07] Rosa Del Gaudio and António Branco. Automatic
Extraction of Definitions in Portuguese: ARule-
based Approach. InRANLP workshop: Natural
Language Processing and Knowledge Representa-
tion for eLearning Environments, 2007.

[HM92] G. Hutton and E. Meijer. Monadic parser com-
binators. Journal of Functional Programming,
2(3):323–343, 1992.

[Jon03] Simon Peyton Jones.Haskell 98 Language and Li-
braries: the Revised Report. Cambridge University
Press, 2003.

[KM01] Judith Klavans and Smaranda Muresan. Evaluation
of the DEFINDER System for Fully Automatic
Glossary Construction. InProceedings of the
American Medical Informatics Association Sympo-
sium (AMIA), 2001.

[KPP03] Judith L. Klavans, Samuel Popper, and Rebecca
Passonneau. Tackling the internet glossary glut:
Automatic extraction and evaluation of genus
phrases. InSIGIR’03 Workshop on Semantic Web,
2003.

[MLS07] Paola Monachesi, Lothar Lemnitzer, and Kiril
Simov. Language Technology for eLearning. In
First European Conference on Technology En-
hanced Learning, 2007.

[SW06] Angelika Storrer and Sandra Wellinghoff. Auto-
mated detection and annotation of term definitions
in german text corpora. InLREC, 2006.

[Tob05] Richard Tobin. Lxtransduce A replacement for fs-
gmatch. Technical report, University of Edinburgh,
2005.

[Wad85] P. Wadler. How to replace a failure by a list of
successes.FPCA, 201:113–128, 1985.

[WM07] Eline Westerhout and Paola Monachesi. Extracting
of Dutch Definitory Contexts for elearning pur-
poses. InCLIN 2007, 2007.

