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Summary: Many materials, such as blood, emulsion paints, modern lubricating oils, plastics of
all kinds, and so on, have properties which are different from those of ordinary liquids and solids.
The response to stress of some of these materials can be spectacularly different from that of viscous
liquids and elastic solids; they can exhibit behaviour which cannot be adequately explained by the
simple mathematical laws of classical theories. This behaviour is the concern of rheologists.
The unusual behaviour of these materials is discussed and a brief review is made of some fairly recent
developments in the formulation of mathematical equations which can explain such behaviour.
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Introduction

The best example of a bouncing object is a rubber
ball or a billiard ball. Both these are made of solid
material and can be classified as bouncing solids. On
the other hand, water and beer are good examples of
flowing liquids. This ‘normal’ behaviour of solids
and liquids can be mathematically explained by the
classical theories of solid deformation (Hooke’s law
of elasticity) or liquid flow (Newton’s law of viscos-
ity). Here we exclude gaseous materials.

However, the behaviour suggested by the title of
this article is rather different from that of our daily
experience. Indeed many modern materials exhibit
behaviour which cannot be adequately explained by
any of the classical theories of solid deformation or
liquid flow. The field of study which deals with such
behaviour is rheology. The word rheology comes
from the Greek ρ̆ειν meaning ‘to flow’ and it is ap-
plied to the study of deformation and flow of mate-
rials which do not conform to simple mechanical
laws. In rheology we generally distinguish between
liquids and solids as those materials which change,
or do not change, their shape continually when sub-
jected to forces however small; that is, a liquid is one
which changes, while a solid is one which does not
change, its shape under its own weight; thus, for
example, ordinary table jelly is a solid, though when
shaken it shows the appearance of a mobile liquid.
Here we are in a field where the boundary between
liquids and solids is not very sharp. Indeed certain
materials exhibit some of the properties of ordinary
solids and some of the properties usually associated
with ordinary liquids – they have both elasticity and
viscosity in varying degrees.

Rheological Study Cycle

Our aim is to construct precise unambiguous state-
ment of all the deformation and flow properties of real
physical continuous materials which ideally describe
the behaviour of the material under all conditions of
motion and of stress. One way of achieving this is to
combine the effort of the experimental and the theo-
retical rheologists working in close collaboration in a
study cycle consisting of four important linked stages:

(i) Observation of behaviour of material experi-
mentally;

(ii) Formulation of mathematical laws to explain
observed behaviour;

(iii) Use of formulation to predict behaviour under
new conditions of stress;

(iv) Back to the laboratory to confirm (or other-
wise) predicted behaviour.

Prediction should be the basis on which crucial exper-
iment is planned to test the validity of the new for-
mulation. Any discrepancy between prediction and
experimental observation requires a repetition of the
cycle according to the following flow diagram:

Experimental

Theoretical

Observation
of behaviour

Formulation of
Mathematical laws

Confirmation
of predictions

Prediction of
new behaviour

Study Cycle
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Idealized Materials with Simple Properties

In our day to day experience with ordinary liquids
and solids we observe behaviour which lead to the
formulation of simple mathematical laws known as
the equations of state for the materials.

Liquids

• Flow or change shape under their own weight.
They need to be kept in containers;

• Do not have inherent elasticity;

• When disturbed they settle down slowly while
the applied energy is dissipated into heat;

• Easily divided into parts or droplets which do
not show sharp edges.

Equation of state is Newton’s law of viscosity
stress ∝ rate-of-strain or

p = ηe , (1)

if incompressible, where η is the (constant) coefficient
of viscosity.

Solids

• Do not flow but keep their shape, and do not
deform under their own weight;

• Elastic – some very extensible (rubber), some
not very extensible (steel);

• Spontaneously resume their shape after dilata-
tion. The applied energy is stored as elastic
energy and is recovered immediately;

• When broken by large forces, they show sharp
edges (bottle neck effect);

Equation of state is Hooke’s law of elasticity stress ∝
strain or

p = µE , (2)

where µ is the (constant) modulus of elasticity.

Three Dimensional Stressing

In general, we take a set of Cartesian coordinate
axes Ox1, Ox2, Ox3 using suffixes 1, 2, 3 instead of
writing Ox,Oy,Oz (see, for example, Vector Analy-
sis, Camilleri, 1994) to combine the different equa-
tions corresponding to shearing in different planes
and write invariant equations involving the stress ten-
sor pik (i, k = 1, 2, 3) and the rate-of-strain tensor eik
or strain tensor Eik.

Equations of state (1) and (2) then take Cartesian
tensor form

pik = ηeik and pik = µEik . (3)

In both cases the equations of state are linear al-
gebraic relations involving second-order symmetric
(p12=p21, etc.) tensors and physical constants. Hence
each of relations (3) represent nine equations, of
which only six are different. Using these simple equa-
tions engineers have managed over the years to build
ships, bridges, dams, cathedrals, towers, etc.

Materials with Complicated Properties

There are other materials whose behaviour under
stress is spectacularly different from that of classical
idealized materials. The following are a few exam-
ples of easily observed violations of the more familiar
behaviour.

(a) Blood is non-Newtonian

(b) Merrington Effect (c) Weissenberg Effect
Rubber Solution is non-Newtonian

whole blood

blood plasma

when blood flows through

capillary tube

red cells
migrate towards
axis of tube

rate of flow

viscosity

(a) While the viscosity of blood plasma is constant
for all rates of flow, the viscosity of “whole
bloodÔ is not constant but decreases as the
rate of flow increases. Also, when blood flows
through a capillary tube the red cells migrate
towards the axis of the tube reducing the ef-
fective viscosity. This is very fortunate in-
deed, otherwise we would need far more power-
ful heart pumps.

(b) Merrington (1943) observed that rubber solu-
tion ‘swells radially outwards’ on emerging
from a capillary tube whereas Newtonian liq-
uids exhibit the opposite effect known as ‘vena
contracta’.

(c) Weissenberg (1947, 1948, 1950) observed that
when certain liquids (such as sweetened con-
densed milk) are sheared between rotating
coaxial cylinders they tend to migrate to-
wards the inner cylinder resulting in a higher
level there. When stirred with a rod condenced
milk tends to ‘climb’ the rod; it has been sug-
gested to use condensed milk to catch mice,
since the poor mouse which finds itself in a shal-
low pool of such a liquid would get more entan-
gled the harder it tries to get away. On the
other hand, when a Newtonian liquid is stirred
with a rod it tends to move away from the rod
leaving a hollow there.

(d) Again when the stirring rod is removed cer-
tain liquids, such as polymer solutions, tend
to ‘recoil back’ and part of their deformation
is gradually recovered – they are said to have
an elastic memory. Newtonian liquids would
continue to rotate until all energy is dissipated
into heat.
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(e) A material known as ‘bouncing putty’ looks and
feels very much like ordinary plasticine. Yet it
is mobile enough to flow under its own weight
and must therefore be classified as a liquid. A
piece of this material flows into a pool with a
smooth upper surface within minutes of being
placed on a table, yet it may be bounced on
the table like a rubber ball with no visible flat-
tening at its point of contact with the table. It
shows very different response to slow and to
rapid shearing; when handled slowly it flows
even through a fine mesh, but when snapped
suddenly it feels elastic and shows sharp edges
(bottle neck effect) where it breaks.

In fact we have a whole spectrum of materials which
exhibit both viscous and elastic properties in varying
degrees. In formulating the equations of state, here
we consider a model of the material called a disperse
system which in the simplest form consists of two
uniform component materials.

Disperse Systems Model

Elastico-viscous Liquid

continuous phase
is a viscous liquid

Visco-elastic Solid

continuous phase
is an elastic solid

dispersed cavities
containing viscous liquid

dispersed solid particles
(Suspension)

The first material, the disperse phase, which may
be solid or liquid, is made up of small bits dispersed
at random in the second, the continuous phase, which
may also be liquid or solid and which fills all the space
between the dispersed bits of the first phase. If both
phases are liquid they are taken to be immiscible,
one of which or both having elastic properties and
the dispersion is referred to as an emulsion.

If the continuous phase of the dispersion is a liq-
uid and the dispersed phase consists of solid parti-
cles it is referred to as a suspension. In this case
the dispersion as a whole is essentially a liquid and
we talk about an elastico-viscous liquid. On the
other hand, if the continuous phase of the dispersion
is a solid with dispersed cavities filled with viscous
liquid, the dispersion as a whole is essentially a solid
and we talk about a visco-elastic solid.

Elastico-Viscous Liquids

For our purpose here it easiest to consider
mainly dipersions having continuous liquid phase
i.e. elastico-viscous liquids. The case of essentially
solid dispersions or visco-elastic solids follow analo-
gous arguements.

Slow, Steady Rates of Deformation

Einstein (1906, 1911) considered a suspension of in-
elastic solid spherical particles, of concentration c,
in a Newtonian liquid of viscosity η and found that

at very small, steady (time-independent) rates of
shear it behaves as a liquid of viscosity η0 given by

η0 = η(1 + 2.5c). (4)

Taylor (1932) found that, again at very small,
steady rates of shear, the viscosity of an emulsion
of liquid droplets of viscosity η′, with concentration
c, in a liquid of viscosity η is

η0 = η

(

1 +
η + 2.5η′

η + η′
c

)

. (5)

The equation of state for these ‘hypothetical liquids’
is

pik = 2η0eik , (6)

which is still a linear algebraic equation and the liq-
uids are characterized by one physical constant η0
which is, of course, a function of the constants of the
component materials and the concentration c. Note
that (4) is a special case of (5) as η/η′ → 0. The
models of Einstein and Taylor exhibit no elasticity of
shape at all (all component materials assumed inelas-
tic) so that when all deforming forces are suddenly
released such materials retain their shape without re-
coil.

Small, Variable Deformation

Fröhlich and Sack (1946) considered a suspension of
Hookean elastic solid spheres of elastic modulus µ
uniformly dispersed in a Newtonian liquid of viscosity
η, and showed that, at small variable rates of shear,
the equation of state relating the viscous stress pik to
the rate-of-strain eik takes the form

(

1 + λ1
∂

∂t

)

pik = 2η0

(

1 + λ2
∂

∂t

)

eik (7)

with (λ1 > λ2 > 0), where η0 = η(1 + 2.5c),

λ1 =
η(3 + 5c)

2µ
, λ2 =

η(3− 7.5c)

2µ
.

It is to be noted that the equations are now linear
differential equations involving rate-of-change with
respect to time, i.e. they are time-dependent. The
class of liquids characterized by (7) are referred to
as liquids of type1 since the equation involves first
derivatives. It is characterized by three physical con-
stants; a relaxation time λ1 , a retardation time λ2 ,
and viscosity η0 . These materials exhibit both vis-
cous and elastic properties. On the application of
external stresses the suspended elastic particles will
now be deformed absorbing some energy, but the de-
formation requires time which depends on the viscos-
ity of the continuous liquid phase. On removal of the
external stress, the particles require time to recover
their undeformed shape and release the stored elastic
energy.

Oldroyd (1953) showed that the properties of an
idealized dilute emulsion with liquid droplets replac-
ing the elastic spheres are quantitatively the same
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as for the corresponding suspension. The investiga-
tions were extended by Oldroyd (1955) to include the
effect of an interfacial film everywhere between the
boundaries of the two phases, such as that introduced
when a trace of stabilizer is added to an emulsion. He
found that, if the film has any inherent elasticity, the
equation for pik (again for slow, variable deformation)
takes the form

(

1 + λ1
∂

∂t
+ ν1

∂2

∂t2

)

pik = 2ηo

(

1 + λ2
∂

∂t
+ ν2

∂2

∂t2

)

eik

(8)
possibly with more additional derived terms on each
side. The class of liquids characterized by (8) are
referred to as liquids of type 2 since the equation
involves second derivatives. These liquids are char-
acterized by 5 physical constants λ1, λ2, ν1, ν2 and η0.
Liquids characterized by an equation of the form

(

1 + α1
∂

∂t
+ α2

∂2

∂t2
+ . . .+ αN

∂N

∂tN

)

pik

= 2ηo

(

1 + β1
∂

∂t
+ β2

∂2

∂t2
+ . . .+ βN

∂N

∂tN

)

eik ,

(9)

where the constant η0 is the limiting viscosity at small
rates of shear and α1, β1α2, β2, . . . , αN , βN are con-
stants such that αN and βN do not both vanish, are
referred to as liquids of type N . Oldroyd (1962)
showed that in general, a dilute emulsion consisting
of a liquid of type M dispersed in a liquid of type
N, with constant interfacial tension between the two
components is an elastico-viscous liquid of type (at
most) 1 + 2M + 3N.

Linear differential equations of the forms (7) to
(9) may also be simulated by mechanical models con-
sisting of springs and dashpots in series and in paral-
lel – see, for example, Hydrodynamics of Elastico-
Viscous Liquids, Camilleri (1965).

It is noted that for slow steady shearing equa-
tions (7) to (9) would reduce to the Newtonian vis-
cosity relation (6).

Finite Rates of Deformation

In obtaining the equations of state (7) to (9) we re-
stricted attention to small variable rates of defor-
mation and it is found that these equations are not
adequate to describe behaviour at finite rates of de-
formation. Any quantity associated locally with a
fluid, such as the temperature of the fluid, or a stress
or rate-of-strain component, changes in general at a
different rate according to whether we measure it at
a fixed point in space over an interval of time, or
measure it in a certain macroscopic element of fluid
(which is moving in space) over the same instant of
time. In ordinary hydrodynamics we distinguish be-
tween the rate of change with respect to time at a
fixed point (∂/∂t) and the rate of change with re-
spect to time following the material particle (D/Dt).

Thus for the scalar density ρ we have

Dρ

Dt
=

∂ρ

∂t
+ vi

∂ρ

∂xi
, (10)

where vi (= v1, v2, v3) is the velocity of the element
and summation is understood over the repeated suffix
i according to the usual summation convention.

The derivative D/Dt measures the rate of change
with respect to time relative to a moving coordinate
system whose origin is moving with the material par-
ticle. It allows for the translation of the material
element and is sufficient when differentiating scalar
quantities. When it comes to vector or tensor quan-
tities (which are associated with directions) we must
take a rate of change of the components relative to
a rotating coordiate system which is moving and
rotating with the material element.

A time derivative of a tensor pik that corrects for
the translation as well as the rotation of the fluid ele-
ment is Oldroyd material derivative D/Dt, given
by (Oldroyd, 1958)

D
Dt

pik =
∂

∂t
pik + vj

∂

∂xj
pik + ωijpjk + ωkjpij (11)

where the linear motion of the fluid element is ac-
counted for by its velocity vector vi and the angular
motion by the vorticity tensor ωik measured by

ωik =
1

2

(

∂vk
∂xi

− ∂vi
∂xk

)

. (12)

A time derivative of a tensor pik relative to a con-
vected coordinate system which moves, rotates and
deforms with the material is Oldroyd convected
derivative V/Vt, defined by (Oldroyd, 1950)

V
Vt

pik =
D
Dt

pik + eijpjk − ekjpij . (13)

This corrects also for the straining of the material
which is measured by the rate-of-strain tensor

eik =
1

2

(

∂vk
∂xi

+
∂vi
∂xk

)

. (14)

For a tensor pik, the derivative V/Vt differs from
D/Dt only in the addition of simple products of pik
and eik. It can be shown (see Tensor Analysis,
Camilleri, 1999) that we may obtain universally valid
constitutive equations of state – that is, equations
with a physical significance for the material indepen-
dent of any particular frame of reference and inde-
pendent of the motion of the material as a whole
in space – if we replace the partial time-derivative
∂/∂t in equations of state (7) to (9) by the convected
time-derivative V/Vt or the material time-derivative
D/Dt, both of which are eligible for inclusion into
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constitutive equations. The simplest possible gener-
alization of equation (9) which is valid for all condi-
tions of motion and stress takes the form
(

1 + α1
D
Dt

+ α2
D2

Dt2
+ . . .+ αN

DN

DtN

)

pik

= 2ηo

(

1 + β1
D
Dt

+ β2
D2

Dt2
+ . . .+ βN

DN

DtN

)

eik .

(15)

The equations of state (7) to (9) are linear differential
equations and liquids characterized by them are often
referred to as linear elastico-viscous liquids. But, in
view of relation (11), the material derivative destroys
the linear nature of equation (15). The first material
derivative involves simple contracted products of the
rate-of-strain with itself and with stresses, and higher
material derivatives involve products of higher degree
in stress and rate-of-strain taken together. Other gen-
eralizations of equation (15) involve such products of
degree up to (N + 1). In particular the most general
constitutive equation of state for liquids of type 1 is
(

1 + λ1
D
Dt

)

pik + κ1eikpjj + κ2(eijpjk + ekjpij)

+ κ3ejnpjnδik

= 2η0

(

eik + λ2
Deik
Dt

+ 2κ4eijejk + κ5ejnejnδik

)

,

(16)

first suggested by Oldroyd (1958), which involves
eight physical constants characterizing a wide spec-
trum of materials. The corresponding generalization
for liquids of type2 which include third-order prod-
ucts in stress/rate-of-strain taken together was ob-
tained by Camilleri (1965) and involves no less than
thirty physical constants.

The class of liquids characterized by constitutive
equations of state (16) are capable of exhibiting the
kind of non-Newtonian behaviour that is often ob-
served in real liquids as, for example, a variation
of apparent viscosity with the rate of steady shear-
ing (Oldroyd, Strawbridge & Toms, 1950), the Weis-
senberg climbing effect (Lux-Weiner & Scoenfield-
Reiner, 1952), a distribution of normal stresses cor-
responding to an extra tension along the streamlines
(Roberts, 1954), and secondary transverse circulatory
flow in the section between non-intersecting cylinders
of various shapes (Camilleri & Jones, 1965, 1966).

Visco-Elastic Solids

In an analogous way, dispersions which are essentially
solid, having a solid continuous phase in which spher-
ical cavities, filled with liquid or with solid of another
material, are characterized by a single shear modulus
µ0 if examined in equilibrium or at sufficiently small
rates of shear.

Mackenzie (1950) considered the case of a contin-
uous phase with shear modulus µ and bulk modulus

κ and found that the presence of scattered small holes
results in a disperse system of shear modulus

µ0 = µ

[

1− 5(3κ+ 4µ)c

9κ+ 8µ

]

.

Hashin (1955) considered the presence, instead, of
scattered small rigid spherical inclusions which re-
sulted in an increased shear modulus

µ0 = µ

[

1 +
5(3κ+ 4µ)c

6(κ+ 2µ)

]

.

Oldroyd (1956) found that for small variable rates of
shear the equation of state for visco-elastic disperse
systems is of the form

(

1 + α1
∂

∂t
+ α2

∂2

∂t2
+ . . .+ αN

∂N

∂tN

)

pik

= 2µo

(

1 + β1
∂

∂t
+ β2

∂2

∂t2
+ . . .+ βN

∂N

∂tN

)

Eik ,

(17)

replacing the equation pik = µ0Eik, representing
Hooke’s law, which in this system is valid only in
equilibrium. Equation (17) may be generalized to a
universally valid constitutive equation by replacing
the partial derivatives with the material or convected
derivatives, the simplest generalization being

(

1 + α1
D
Dt

+ α2
D2

Dt2
+ . . .+ αN

DN

DtN

)

pik

= 2µo

(

1 + β1
D
Dt

+ β2
D2

Dt2
+ . . .+ βN

DN

DtN

)

Eik ,

(18)

To conclude, we shall expect a wide range of ma-
terials to be characterized by differential constitutive
equations of the form (15) representing what is fun-
damentally liquid behaviour, or of the form (18) rep-
resenting basically solid behaviour. The physical con-
stants in the equations will distinguish between dif-
ferent materials of the same class. In steady flow
at small rates of shear or at constant small shear
(that is, at constant shear stress in either case), the
differential equations will reduce to those for the cor-
responding classical idealized material.
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