
42

Chapter 4

HyperContext: A Framework for
Adaptive and Adaptable Hypertext

4.1 Introduction

HyperContext is a new framework for adaptive and adaptable hypertext. HyperContext

supports adaptive hypertext by providing users with individualised assistance during

information seeking. It supports adaptable hypertext by allowing users to contribute

towards the growth and organisation of information in the hyperspace. This chapter

discusses the structure which supports adaptive and adaptable hypertext. Chapter 5

discusses the actual adaptive and adaptable features of HyperContext.

HyperContext describes an approach to achieve adaptivity in a heterogeneous domain-

independent hypertextual information base. Its users will likewise be heterogeneous, and

they are likely to have short-term as well as long-term interests (and will use the hypertext

to find information related to both types of interest). They may also be considered as

experts in some domains, and novice in others. Thus, there will be no significant

difference between a typical HyperContext user and a typical WWW user.

An adaptive hypertext system supports individual users with different and changing

requirements in their search for information. An adaptable hypertext system can allow

users to contribute towards the structure of information and its organisation. To support

adaptability the hypertext system must allow users to add information to the hypertext and

to create associations, via hyperlinks, between any information in the hyperspace.

Adaptivity is supported by understanding individual users' information requirements and

presenting views of the hyperspace which best deliver to the user, or help the user find,

the required information.

43

According to Brusilovsky [15] an adaptive hypertext system must (at least semi-

automatically) adapt to the user. The two aspects of a hypertext which can adapt are nodes

and links, the basic building blocks of a hypertext. Nodes can be adapted by modifying

their content (adaptive presentation), whereas links can be adapted (adaptive navigation)

by hiding them, annotating them, recommending them, or dynamically changing their

destination (and thereby modifying the apparent structure of the hypertext).

In order to adapt to a user, something pertinent about that user must be known and

represented. Depending on the domain of the adaptive hypertext system it may be

sufficient to stereotype a user ([71], [72]), or it may be necessary to closely model a

user's beliefs, goals, and plans ([55], [57]). In Information Retrieval (IR), the

information typically known about the user is the query, or history of queries, submitted

and, if the IR system supports relevance feedback, the relevance judgements the user has

given to documents. In Chapters 3.3.1 and 3.4, we suggested that there may be a

considerable difference between a user's short-term and long-term interests. In IR there is

typically no distinction between the two. Generally, an IR system is not intended to have

a long-term relationship with its users, and so all interactions with it are treated in the

same way (however, adaptive IR systems, such as Adaptive HyperMan [70], do maintain

a long-term relationship with the user). Although some non-adaptive hypertext systems

(such as the WWW), and some adaptive hypertext systems (such as WebWatcher) have

only a short-term relationship with the user, an adaptive hypertext system can model and

update user interests over a number of separate encounters (user sessions). In hypertext,

unlike IR, there is no requirement for the user to explicitly provide any information which

may usefully represent an interest. The only information obtainable by observing user

interactions are the nodes (pages or documents) which the user has accessed, and the

links used to access those nodes. It is possible to observe, and perhaps draw conclusions

from, user behaviour while browsing ([22], [75]). In any event, a user model which

represents user interests and which differentiates between long- and short-term interests is

necessary in order to adapt a general-purpose hypertext to the user.

The user model's representation is highly dependent on the representation of information

in the hyperspace (information content and links). In IR, a user's query must be mapped

to the document representations so that a matching algorithm can determine which

documents are relevant. In Intelligent Tutoring Systems (ITSs), a user model is typically

a stereotype or an overlay model. In the former case, documents may be defined in terms

of attribute-value pairs corresponding to the stereotype. In the case of an overlay model,

the user model is tightly bound to the definition and organisation of the underlying

domain. In an adaptive general-purpose hypertext system, there should also be an

appropriate mapping between the representation of documents and links and the user

44

model for the user model to influence the node representation and structure of the

hypertext. A method of updating the user model is also necessary. A user model captures

only a snap-shot of a user at a particular time. Just as the user's interests can change over

time, so must the user model change accordingly. An ITS typically contains information

which can be used to update the user model (so that if the user has successfully completed

some task, the user model can be updated to reflect that the user is competent in the

knowledge and application of concepts associated with the task). Through relevance

feedback, an IR system can update the user query to modify under- or over-stated query

terms originally used to describe a relevant document. An adaptive general-purpose

hypertext system should define how and when to update the user model, to capture and

reflect changes in users' long- and short-term interests.

In adaptive general-purpose hypertext systems, the user model is applied to the

representation of documents and links to achieve adaptive presentation and adaptive

navigation respectively. Adaptive presentation can be achieved by modifying the content

of a document prior to its presentation to the user, or by dynamically creating the

document on-the-fly. Adaptive navigation can be achieved by dynamically determining a

link's destination; recommending links to additional documents not originally linked to by

the document's author (by adding context-free links to "See also" references); adaptive

ordering of author-provided context-free links; or by modifying a link's attributes (by

hiding it; changing the anchor text's colour; or changing the annotated textual description

of the document at the link destination). In order to dynamically determine a link's

destination, to recommend links, or to adaptively order context-free links, it is necessary

to compare the user model, which reflects a user's interests, with a representation of the

documents in the hypertext.

4.2 HyperContext: A three-layer approach

A hypertext network is a collection of content-bearing nodes and links. For simplicity and

clarity, the HyperContext framework is divided into three layers (figure 4.1).

The Structure Layer and Object Layer together represent the (multimedia) documents

referred to from within the hypertext, and their relationships. The Presentation Layer

contains the user model, prepares documents for presentation to the user, and provides an

environment within which the user can interact with HyperContext.

45

Object Layer

Structure Layer

Presentation Layer

Figure 4.1: The three layers of the HyperContext framework

The HyperContext framework's layers are similar to the Dexter Hypertext Reference

Model's layers [45]. HyperContext's Object Layer roughly corresponds to Dexter's

Within-Component Layer, except that the Object Layer does not contain the multimedia

documents themselves, but rather contains representations of them. The definition of the

multimedia documents themselves is beyond the scope of HyperContext. The Object

Layer representation of a multimedia document will, amongst other things, specify how

to manipulate a document of a given type (such as an HTML document stored on an

HTTP server) within HyperContext. The Structure Layer corresponds to Dexter's

Storage Layer, which specifies a network of nodes and links. Finally, Dexter's Run-time

Layer corresponds to HyperContext's Presentation Layer.

Although the model for the WWW does not directly correspond to either the Dexter

Model or the HyperContext framework, it is useful to present an example of

HyperContext, in terms of the WWW, briefly illustrating how and when interactions

between the three HyperContext layers would occur. One of the biggest discrepancies

between the Web on the one hand, and the Dexter Model and HyperContext framework

on the other, is that in the Web link destinations are embedded within the source

documents. In Dexter and HyperContext, link references are separated from the

documents. In effect, the WWW has two layers - the Object Layer is defunct, as the

Structure Layer would also contain the documents themselves. Nevertheless, with some

imagination and at a risk of being pedantic, we will proceed with our example.

If the HyperContext framework is used to describe the WWW, the Object Layer contains

descriptions of Web documents (rather than the documents themselves), details of the

location of the documents, and specifications of the documents' type (such as HTML and

GIF) and methods of retrieval (usually HTTP); the Structure Layer contains information

about how the documents are linked to form a hypertext network; and the Presentation

Layer processes the documents to resolve presentation requirements, such as how links

appear to the user, prior to the presentation of the document. The user interacts with the

46

hypertext through this layer. Clicking on the visual reference for a link in a displayed

document (to follow the link to another document) results in a request being passed to the

Structure Layer to resolve the link destination. Once the link destination has been

determined, the Structure Layer instructs the Object Layer to determine the location of the

Web document identified as the link destination. The Object Layer retrieves the document

according to the specified method in the document's description. The Object Layer then

returns the retrieved Web document to the Structure Layer. The Structure Layer passes

the Web document, along with any relevant structural information, back up to the

Presentation Layer. Prior to displaying the document to the user, the Presentation Layer

processes it according to the relevant structural, and user, information. This can include

requesting the retrieval of other Web documents which should be contained within the

document (in-line graphics, for example), processing HTML tags, and ensuring that the

document is displayed in accordance with user preferences.

HyperContext also describes how new documents can be added to the hypertext, and

how users can create links between arbitrary documents, even if the link author is not the

same as the document author. A document can be added to the hypertext by registering its

description and location with the Object Layer. Links are authored through the Structure

Layer. As the document itself exists outside of the HyperContext environment, it can be

modified only by the users who have access to it. However, any HyperContext user can

change a document's description in the Object Layer, and create or modify structural

information for it in the Structure Layer.

HyperContext is not a mathematical model for adaptive hypertext. It is a description,

rather than a prescription, of a layered approach to adaptive general-purpose hypertext,

but is not intended to be a formalisation against which it is possible to compare other

models or implementations of adaptive hypertext. A prototype based on HyperContext

has been implemented, and is described in Chapter 7. We have experimented with a

number of elements of the framework and prototype. The experiments, and their results,

are described in Chapter 9.

4.3 Interpreting information in context: the Structure and
Object Layers

In a most flexible adaptive hypertext system, knowledge of a user is applied to

knowledge of the information contained in an information-base to generate a relevant

information-containing node. Rather than being limited to specific anchors in the node

which are linked, a user is free to communicate any requirement to which the system will

47

dynamically attend. Indeed, the system may even anticipate user needs and will satisfy

them in advance.

In the adaptive hypertext literature, the process of selectively presenting information to

users is variously referred to as personalising [60], adapting [14], or individualising [31],

the information. In HyperContext, we call this process interpreting the information.

Information is not interpreted arbitrarily - something causes the interpretation to happen.

We call the cause of the interpretation of information context. Context and its rôle in

HyperContext are discussed in greater detail in Chapter 6. For the time being, we

describe context as the influencing factor which causes information to be interpreted in

one way rather than another.

When a node is interpreted the intention is to draw (from anywhere in the hyperspace)

information relevant to the user closer to the node being interpreted. Part of the process of

interpreting a node involves describing the node in a way that is relevant to the user.

Another part of the process is changing the apparent location of the node in hyperspace so

that it is closer to information that the user will find relevant, and further away from

information the user would find irrelevant. This is similar to relevance feedback

techniques in Information Retrieval systems which represent information using a vector

space model [63]. In vector-based IR systems, documents in the information base are

conceptually represented in n-dimensional space. A query is plotted into this n-

dimensional space and the query's nearest neighbours are those documents which are

most similar to the query. (A similarity measure, such as the cosine similarity measure

[78], is used to compute this distance). Relevance feedback is a process whereby either

the user's query is made more similar to the descriptions of documents in the vector space

(conceptually moving the query closer to some documents and further away from others)

([74], [49], [78]), or else it can be used to change the descriptions of documents in the

vector space to make them more, or less, similar to the query (conceptually moving

documents towards, or away from, the query in the vector space) [10]. In hypertext

systems, another document can be brought closer to a node by linking to it, and an

already linked to document can be moved further away from a node by removing the link.

This approach is, obviously, not as fine-grained a solution as that used in vector-based IR

models.

If we take an extreme view, we can say that a node does not have a location in

HyperContext hyperspace until it is interpreted. A less extreme view might be that a node

occupies a potentially large but countable number of locations in the same hyperspace, but

the node must be manifested in only one location each time it is accessed, which location

is determined by the context in which it is interpreted. This is a small departure from the

48

vector-based model of IR, because in that model a document certainly cannot be imagined

in more than one location and generally remains fixed in that location until the vector

space is re-computed. In HyperContext, a node's location in hyperspace is described by

the path taken to access the node, and the location of the node's children. A node is

interpreted in HyperContext's Presentation Layer (Section 4.5), but a node's possible

interpretations exist in the Structure Layer.

HyperContext is a descriptive framework for adaptive and adaptable hypertext. As a

framework, it should not constrain specific implementations of HyperContext to use one

particular design approach over another. For example, in a specific implementation

document interpretations need to be represented using a data structure. HyperContext

describes how document representations are used to achieve adaptability and adaptivity in

hypertext, but it should distance itself from how the documents should be represented.

On the other hand, different implementations of HyperContext should be inter-operable,

so some minimum standard needs to be imposed. To lay the way for inter-operability

without imposing design restrictions, the HyperContext framework distinguishes

between internal and external services and structures. HyperContext imposes a standard

for internal services and structures, and requires that properly defined interfaces are used

to interact with, and convert data between, arbitrary external services and structures.

Internal and external services and structures will be identified when appropriate,

otherwise all references to services and structures are assumed to be internal.

Implementors can choose arbitrary external representations, so long as they provide

translators to transform the representations from the external formats to HyperContext's

internal formats.

Internally, an interpretation is composed of a description, or representation, of the node in

context, and a set of out-links. An out-link has an anchor in the source node and a

destination. An interpretation is composed of a vector of weighted terms which describe

the node in this context. The term weight indicates the term's relative importance to the

interpretation. The same term in different interpretations can have different weights,

reflecting greater or lesser importance of the term in each interpretation. Indeed, terms

may be zero-weighted in some interpretations, while not in others. The non-zero

weighted terms which describe an interpreted node are called labels. If the interpreted

node has out-links then the anchor for the source of each link will be one of the

interpretation's labels. A label with the same name cannot occur more than once, and

cannot be the source of more than one link in a given interpretation. As terms are labels

only if they are non-zero weighted, zero-weighted terms cannot be used as the source of a

link. Labels and links are stored separately from the node's actual content. They can be

49

accessed, modified, searched and otherwise processed without the need to retrieve the

multimedia document which the interpretation represents.

Two functions are available to retrieve interpretations and links for a node from the

Structure Layer. These are getInterpretation(N, C), and getLinks(N, C). The function

getInterpretation(N, C) retrieves the label weights of node N in the context C, and so

describes node N in the context C. Similarly, getLinks(N, C) retrieves the links of node

N in the context C. A link is a node1-label-node2 triple, which represents the label in

node node1 acting as the link source, and the node node2 which is the destination of the

link.

A context provides an environment within which a node can be interpreted. The context

must have some kind of discriminatory power which will allow the node to be interpreted

correctly. At its most expressive, a context could be a precise representation of a user's

state, essentially enabling a machine to interpret information just as that particular user

would. However, it is not yet likely that a user's state can be accurately modelled to this

desirable degree of precision in heterogeneous hypertexts. Nonetheless, the user is an

important aspect of an adaptive system and must, sooner or later, be taken into account.

In the Structure Layer, however, the user is not represented - at least, not directly. We

require something more easily computable and consistent to provide context. Following a

link in HyperContext causes the node at the link's destination to be interpreted. It seems

sensible, then, that context is closely associated with the process of information access.

The most immediate information available is the identity of source node from which

access is made, and the label in the source node which acts as the link anchor in the

source node.

A context, then, is a node-label pair. Interestingly, a context only has an effect when a

link is followed. We know, from the earlier discussion of interpretations, that labels are

dependent on interpretations. In one interpretation of a node, a label may have a non-zero

weight, whereas in another interpretation of the same node, the same label may have a

zero-valued weight. We also know that labels become the source of links only once a

node has been interpreted, so that in one interpretation a label may be the source of a link

which leads to child N; in another interpretation the same label may be the source of a link

which leads to child N+2; in other interpretations it may be free; and in yet others the

label may have a zero-valued weight, and so cannot be used as a link source. Therefore, a

context can have an effect only when it is actually applied by following a link from a node

on a label to a child. The context determines how the child will be interpreted.

50

L

N-1

N

N-2
L-1

Figure 4.2: The interpretation of node N-1

In figure 4.2, three interpretations (N-2, N-1, and N) are shown. Some context (which is

unspecified in the diagram) has given rise to the interpretation N-2. In that interpretation

label L-1 is linked to N-1. In the context of (N-2, L-1), interpretation N-1 is linked to N

on label L. In their respective interpretations, labels L and L-1 must have non-zero

weights (because they are used as link sources). getInterpretation(N-1, (N-2, L-1))

would retrieve label L as its result, and getLinks(N-1, (N-2, L-1)) would retrieve (N-1,

L, N).

L

N-1

N+2

N-3

L-1

Figure 4.3: A different interpretation of node N-1

Consider the scenario when node N-1 also has an interpretation in the context (N-3, L-1),

as depicted in figure 4.3. Label L is once again non-zero weighted in

getInterpretation(N-1, (N-3, L-1)), but this time getLinks(N-1, (N-3, L-1)) retrieves

(N-1, L, N+2) as its result. Conceptually, the label L in all interpretations of N-1 behaves

as a multi-headed link, where the context of N-1 determines the actual destination of the

link.

In theory, an arbitrary context can be applied to an arbitrary node to obtain an

interpretation and a set of links for that node. In practice, as is described in Chapter 5.2, a

user assists in the creation of an interpretation, the selection of labels in the interpretation

51

to act as link sources, and the selection of link destinations1. Interpretations are stored in

the Structure Layer, and are available to future HyperContext users. If an interpretation

for some context applied to some node already exists in the Structure Layer, then it is

retrieved, otherwise one of two things can happen: either the user can create an

interpretation for the node in that context, or else the function can retrieve a context-free

universal interpretation for the node.

The getInterpretation and getLinks functions retrieve a node's context-free universal

interpretation whenever the node has not previously been specifically interpreted in a

given context or when the node's context cannot be determined. A node's context cannot

be determined if a user accesses a node directly, without specifying a context in which to

interpret the node. This is similar to accessing a Web document through a Web browser

by specifying the document's URL, rather than by following a link to the document. In

HyperContext, the process of accessing a node requires it to be interpreted, and as

interpretations are applied in context, non-specification of a context implies that it will be

accessed in the universal context, called bottom. HyperContext is a closed world in

which the context bottom always applies unless it is overridden by a specific context. In

figures 4.2 and 4.3 above, nodes N-2 and N-3 respectively were interpreted in an

unspecified context. We now know that the nodes would have been interpreted in the

context bottom (figure 4.4).

The Structure Layer is composed of the context bottom, an arbitrary number of

interpretations of nodes, and an arbitrary number of links. Links always connect a parent

interpretation to a child interpretation (both of which may be different interpretations of

the same node) on a specific label. The contexts of a node may be retrieved through the

contexts(N) function, as a list of node-label pairs and bottom. If a context C is not in

contexts(N), and the Structure Layer receives a request to access node N in the context

C, then the node N will be interpreted in the context bottom, unless the user creates a

new interpretation for N in the context C (Chapter 5.2).

It is assumed that all the information required to interpret a node is available in the context

immediately containing that node. This means that in the structure depicted in figure 4.4,

node N is interpreted in the context of (N-1, L) only, and not in the context of (N-1, L),

where N-1 is interpreted in the context (N-2, L-1), where N-2 is interpreted in the

context bottom.

1 We discuss the issue of automatically interpreting documents in arbitrary contexts versus user-created
interpretations in Chapter 6.3.

52

L

N-1

N

N-2
L-1

bottom

Figure 4.4: Node N-2 interpreted in the context bottom

The reasons for this assumption are entirely pragmatic. If we consider, for a moment, that

the possible interpretations of a node are dependent on the regressive interpretations of its

ancestors (on a specific path of traversal) then in order for a node to be successfully

interpreted we must have the influencing factors of its ancestors explicitly available at the

moment of interpretation. This would add a significant overhead to the process of

interpretation. More importantly, given that HyperContext users assist in the creation of

interpretations, the creation of an interpretation would require the user to be explicitly

aware of the interpretations of the node's ancestors on a particular path. This would add a

considerable cognitive overhead. We reduce the complexity of the problem by making the

assumption that all the information required to interpret a node is available in that node's

immediate context, and that a user can create an interpretation of a node irrespective of the

interpretations of that node's ancestors. In Chapter 5.8 we begin a discussion about the

process of determining a user's interests in order to automatically identify and locate

relevant information. We will show how interpretations of nodes on an access path can

help identify terms that describe a user's interest, and, significantly, that these terms

should be used to identify relevant information which the user has not already visited on

the current path of traversal.

A side-effect of the assumption that all the information needed to interpret a node is

available in the context immediately containing that node is that it is possible for many

interpretations of the same parent to give rise to the same context within which to interpret

the same destination document. For example, consider that for all contexts Ci to Cn in

contexts(N) the intersection of getLinks(N, Cj) and getLinks(N, Ck) (where i ≤ j, k ≤
n and j ≠ k) is the link (N, L, N+5). This signifies that in both interpretations of N in the

contexts Cj and Ck, label L is linked to node N+5. If label L is traversed from either

53

context in order to access node N+5 using getInterpretation(N+5, (N, L)), then the

same interpretation of N+5 will be retrieved. The is true regardless of in how many

different interpretations of N label L is linked to node N+5. This discussion is continued

in Chapter 6.4.

The Object Layer is the interface between the Structure Layer and multimedia documents

residing outside HyperContext. Each object in the Object Layer represents a single

multimedia document and contains details of the document's location, its type, and which

protocol to use to access the document. In the Structure Layer, the getLinks function

retrieves node1-label-node2 triples, denoting the label in the interpreted node1 which

is the source of a link to the destination node2. The Object Layer is responsible for

binding the label to the actual region in the multimedia document which will be displayed

as the link anchor. An object in the Object Layer is called a profile, and is retrieved

through the getProfile(N) function.

Structure
Layer

Object
Layer

bottom

interpretations
and links of P.
...in bottom

interpretations
and links of N.
... in bottom
... in P
... in ...

profile of N

location
label1, anchor
label2, anchor

HyperContext

Multimedia
document

P N

N

Figure 4.5: The Structure and Object Layers and their interaction with the outside world

54

The relationships between the Structure Layer and Object Layer, and the Object Layer's

interaction with multimedia documents in the universe outside HyperContext is shown in

figure 4.5.

HyperContext is explicitly distributed. The Object and Structure Layers can be distributed

across many HyperContext servers. Normally, however, a multimedia document and its

profile and interpretations will reside on the same server, although hosting each on

different servers is also supported.

4.4 A description of HyperContext in terms of the city
metaphor

HyperContext's Structure and Object Layers are the building blocks of an adaptive

hypertext system. In previous chapters, we used the metaphor of a city's streets and

corners to describe links and nodes in a normal (non-adaptive) hypertext. Although this

metaphor is suitable for describing (relatively) static hypertexts, and the interactions of

town-dwellers and users of static hypertexts within their respective environments,

HyperContext requires a more fluid analogy before we can return to this metaphor.

Imagine that we are immersed in a virtual building. As we interact with the building, we

have the impression that it is solid and pre-built. In reality, however, the environment is

created for our individual pleasure as we interact with it. It is similar to modern computer-

based adventure games: the map shows us only where we have been - the rest remains to

be discovered, and as such, it could take any form. However, whereas in an adventure

game the unknown areas are there to test our skills to the limits, in our example the

building is subservient and always tries to aid our progress rather than impede it.

Imagine that within a virtual room (corresponding to an interpretation in HyperContext),

virtual doors (links) indicate exit points from the room, and walking through a door will

place us in another room. Imagine that the doors do not have fixed locations in space, but

they are located wherever seems best for us. We know that if a door exists, it will lead us

to another room that we want to visit. In the underlying model of the virtual building,

rooms are described without doors, and consequently, without any detail about the

connections between the rooms. Rooms are doorless until we enter them, and when we

enter a room, doors simply appear in the right locations, leading to other rooms. The

presence of doors, and the rooms they lead to, are conditioned by our requirements, so it

is not even necessarily the case that the door through which we enter a room will be there

once we are in the room. Two different people entering the same room may see doors in

different locations, and even if a door appears to be in the same location, it may lead each

55

person to a different room. Doors allow people to move from one room to another, and

all rooms are potentially accessible from any other room. Doors are like worm-holes in

space - they may appear anywhere, and may lead anywhere. Unlike worm-holes,

however, a door will always lead to somewhere the traveller wants to go.

Is there a need for a room to have more than one door or exit point? If we can ensure that

all doors from a room would lead to other suitable rooms for the traveller, then perhaps

all we would ever need to provide is one door which leads to the room which the traveller

would have selected anyway. After all, a traveller cannot simultaneously exit a room

through two or more different doors. As long as the traveller has the choice to not walk

through a door, even if it is the only one available, then we cannot guarantee that the

traveller will walk through it. She may decide to go back to a previously visited room,

leave the building through the fire escape, or even close her eyes and conjure herself up in

another room. Do we even need doors to move from room to room? Why can the traveller

not move freely through walls, floors, and ceilings, always ending up in the best room to

be in? Let's assume, for the time being, that a user will press the index finger of her left

hand against the part of the floor, ceiling, or wall through which she wishes to pass, and

she will be transported to, and placed in the centre of, the most appropriate room.

How does the building know when and where to take the traveller? There needs to be

some kind of expression from the traveller which the building can use to determine which

room is the most appropriate to take her next and when she wants to go there. The

traveller makes her wish to go to another room explicit by touching the wall with the

index finger of her left hand. She needs to externalise the requirement, using some form

of expression of intention which the building can recognise. Likewise, there needs to be

some way of binding the expression of intention to visit another room with the room

which is best to visit next. This expression of intention can take any form, as long as the

traveller and the virtual building agree upon it. In hypertext systems, clicking on a link

not only means that the user wishes to access another document, but it also means that the

user wishes to be transported to whatever document the link leads to. Consequently, the

building and the traveller might agree that she will collect objects from each room she

visits and that when she touches the wall to visit another room, the building will select the

room which is most relevant to the combination of objects she has in her possession.

The traveller carries a bag of objects and whenever she touches a wall the building will

select a room based on the contents of the bag. How can the building, and the traveller,

know that the room selected is, in fact, the most appropriate room available? If previous

travellers can give feedback and somehow influence the choice made, then this may make

the choice made more acceptable to the traveller. For example, based on previous

56

travellers' experiences, if the traveller's current bag contains certain objects then the

traveller will be taken to a particular room ([50], [61], [2]). Otherwise, as is the case with

HyperContext, previous travellers can create doors which lead to particular rooms, based

not directly on the collection of objects in their bag, but on where the traveller was

previously and which object in the current room the traveller reaches out for. It is

important to note that in HyperContext we are not discarding the bag of objects that the

traveller has collected. The contents of the bag will have an important rôle to play.

However, unlike WebWatcher, Mathé and many others, the bag of objects is not the most

important aspect of the adaptive hypertext system - the structure, or rather, the possible

structures, of the hypertext are just as important. If previous travellers have influenced the

structure of the building, then it makes sense to show travellers doors, rather than merely

letting the traveller press her index finger against a wall, because the presence of a door

will inform her that previous travellers, who entered the room in the same way that she

just did, found the doors and their destinations useful.

If we return to the analogy of city streets and street corners, then although street corners

(documents) exist in the underlying model of the city, visitors see and interact with virtual

representations of them. Streets are created by previous visitors who see a need to

connect corners. Rather than becoming a fixed part of the representation, a street and its

destination are dependent on the visitor's location. Whenever a visitor approaches a street

corner, the dynamic personalised city planner, using information from previous visitors

and the knowledge of how the current visitor reached the corner, will determine which

virtual streets are appropriate to build. Two visitors at the same street corner, will, if they

arrived at the corner in different ways, potentially see different streets leading away from

the corner, and even if they see the same street, following it may lead each visitor to a

different corner.

The city's street corners are represented in HyperContext's Object Layer. The

interpretations of street corners and the streets themselves exist in the Structure Layer. As

a visitor walks through the city, the Presentation Layer interprets the corner that the

visitor is at, shows the visitor the streets that can be followed from that corner, and

determines the destination of each street.

4.5 Interacting with HyperContext: the Presentation Layer

The Presentation Layer acts as the interface between the user and HyperContext. The user

makes requests for information, which the Presentation Layer passes to the Structure

Layer, and prepares the information for presentation to the user. The Presentation Layer

is responsible for collecting and manipulating information about the user. The short- and

57

long-term user models obtain their information from the interactions the user has with the

Presentation Layer. The Structure Layer supports browsing between interpretations of

information. The society of HyperContext users determines how information can be

interpreted and organised, creating the contexts in which the information exists. Users

browse through the hyperspace which has been constructed by previous HyperContext

users.

As we will see in Chapter 5, the Presentation Layer takes advantage of the adaptable

nature of the Structure Layer to provide users with adaptive navigation support. The

Presentation Layer can use a user's long- and short-term interests to recommend links and

paths to information in context; extrapolate a user's short-term interest based on paths of

traversal; and support the user in the creation of new interpretations of information. In

this section, we will discuss the properties of the Presentation Layer which enable this

level and type of support.

The main data structure manipulated by the Presentation Layer is the context session. The

context session records a path or chain of interpretations the user has visited. This

information is used to update the short-term user model, which can provide feedback to

the user's long-term user model. The short-term user model is used to establish the user's

current interests, so that relevant nodes, paths, and links to relevant information can be

suggested or recommended to the user.

user backtracks
out of N3

N3

N1

N2

N4

N5

bottom

L1

L2

L3

L4

context session contains:
(((bottom), N1), ((N1, L1), N2),
((N2, L3), N4), ((N4, L4), N5))

Figure 4.6: A context session without the user's visit to N3 in the context (N2, L2)

The context session is a list of context-node pairs, which records a chain of nodes the

user has accessed, and in which context each node was accessed. The context session is

not necessarily an exact record of a user's activity during the context session. If a user

58

backtracks out of an interpretation, the context-node details for that visit are deleted

from the context session (figure 4.6).

The context session is not necessarily a precise account of a user's activities as it is

possible for nodes the user has accessed to be ignored. A primary reason for this is that

we assume that there is always a path from the node from which the user began searching

to one which contains the information sought, so if a user accesses a node which is not

on this path, then we will ignore it. Although this is obviously an enormous assumption,

and one which is probably incorrect some of the time, we will stand by it. Only minor

modifications to the framework are required to represent the context session as a graph,

instead of a linear path, but it is probably harder to detect when the information seen in a

backed out of node actually contributes information which is necessary to accurately

determine the user's interests than to simply ignore it. The user is ultimately always in

control of HyperContext, and is able to direct HyperContext to use or ignore an

interpretation which would otherwise have been incorrectly discarded or included. With

reference to the context session depicted in figure 4.6, the user could have instructed

HyperContext that N3 should be included in the context session (even though it was

backtracked from) and that N4 should be ignored (even though the user subsequently

followed a link from it).

The main purpose of a context session is to capture a user's directed search for

information. If the nature of a path is that as the path grows, children provide greater and

greater detail about information contained in the parents, then a user's interests will

become clearer and clearer to an observer, even if that interest is not communicated

directly from the user to the observer. The nature of such a hierarchical organisation of

information is, however, that as long as the user has a choice of paths from a given node,

then there is an equal chance that the user will choose any of the nodes subsequently

accessible from that node. In general hypertexts, there is no guarantee that children will

provide more detail about their parents - indeed, a child could provide an overview of

material discussed in detail in the parent, or even be a fairly arbitrary association,

apparently taking the user further away from specific information. However, in

HyperContext, users create interpretations by describing what information in the node is

relevant. It is not necessarily the case that the description provided for a node in the

context of one of its parents is directly relevant to one of the node's grandparents.

However, by comparing interpretations of nodes that the user has accessed in the current

context session, it may be possible to extrapolate general information about what the user

is interested in, and it is this information which constitutes the user's short-term interests,

along with any stated declarations the user may have made (Chapter 5.8).

59

We have previously observed that unless we can establish when a user's short-term

interest has changed from one topic to another, especially if the change is gradual, there is

a danger that automatic or automated attempts to capture the user's interests are likely to

significantly misrepresent the user (Chapter 3.4). Consequently, a context session

terminates either at the end of a user session, or else when a context switch is detected. A

context switch can occur in any of three instances - the first instance is when a user

accesses a node in the context bottom, the second is when the user, while visiting a node

in a particular context, asks for that same node to be interpreted in a different context, and

the final instance is when the user hyperleaps (jumps) to an arbitrary node in an arbitrary

context instead of following a link to it. A single browsing session can contain several

context sessions, each context switch representing the end of the user's short-term

interest in the associated topic.

So long as a context switch has not occurred, each time the user accesses a node the

context session and the user model reflecting the user's short-term interests are modified.

The user can choose to influence HyperContext by explicitly requesting that specific

nodes are to be used or ignored in the context session, and the user can also explicitly

pre-declare an interest as well as directly modify the user model reflecting the interest.

The long-term user model can be used to instantiate a user's short-term user model (rather

than have the short-term user model starting each context session with no information in

it). The short-term user model can be used to update the user's long-term user model.

Both of these interactions between the short- and long-term user models are outside the

current scope of the HyperContext framework.

The interactions between the context session, short-term user model and the Structure

Layer are described in more detail in Chapter 5.

4.6 Summary

We have described the HyperContext framework in terms of the structures required to

support adaptive and adaptable hypertext using multiple interpretations of information.

The framework is composed of three separate but interacting layers which bind

HyperContext document representations to real documents stored outside HyperContext

(the Object Layer); represent interpretations of documents and the links between them (the

Structure Layer); and provide the interface between the user and HyperContext (the

Presentation Layer).

60

The important constructs the framework provides are profile, interpretation, label,

link, context, bottom, and the context session. A document's profile is its

representation in the Object Layer. A document's interpretation is a description of the

document in a context, and is represented in the Structure Layer. The description is

composed of a vector of label weights, and links. A link is represented by the triple

node1-label-node2, and a context is a node-label pair. A document can be accessed

in the special context bottom to obtain a context-free universal interpretation of it. The

context session is maintained by the Presentation Layer to record a user's directed path of

traversal through hyperspace and is used to determine a user's short-term interests. A

context session ends whenever a context switch occurs.

The layers communicate through function calls. The Presentation Layer requests a

document interpretation through getInterpretation(node, context). The document's

links associated with the interpretation are retrieved through getLinks(node, context).

All of the contexts for which a document has an interpretation are obtained using the

contexts(node) function. The Structure Layer obtains details of the document's location

in the universe outside HyperContext, and link-anchor text binding information by

submitting a getProfile(node) request to the Object Layer.

