
140

Chapter 9

HyperContext Evaluation

9 .1 Introduction

In this chapter the experiments to justify the HyperContext approach to adaptive hypertext

are described. We conducted a series of experiments to show that the short-term user

model can adequately represent a user's interests (Section 9.4), and that relevant

information can be located faster with adaptive navigation support than without (Section

9.5). The final experiment consisted of users giving relevance feedback on documents

recommended by Adaptive Information Discovery after traversing paths through a

HyperContext hyperspace (Section 9.7).

The experiments on the short-term user model were conducted in a HyperContext

hypertext created using Apple Inc.'s HyperCard, while other experiments where

conducted using methods from the HyperContext prototype described in Chapter 7 and

the HyperContext hypertext described in Chapter 8.

9 .2 Background

Although hypertext systems have been in existence for many years, there are as yet no

standard formal methods for testing them. Obtaining performance results in simulated or

"live" experiments for adaptive hypertext systems is even more difficult, partly because

adaptive hypertexts are a relatively new technology, and partly due to the reliance on

subjective feedback from users.

Hypertext is a recent reading and information organisation method, where additional

information that a user might want to access is provided via a hyperlink. In non-adaptive

hypertext systems, to ensure that all users can access all the information they might need

141

at any point in hyperspace, it is necessary to totally connect all nodes, essentially linking

everything to everything else. However, good hypertext design requires that the users are

not overloaded with choice. A node containing precisely the information the user requires

may be just a couple of links away, but without additional support the user may have

great difficulty locating it. Adaptive hypertext systems attempt to provide a solution to this

problem by anticipating what the user might find relevant, and by subverting links which

might otherwise distract or confuse the user, or which would lead to non-relevant

information. General-purpose adaptive hypertext systems (as opposed to Intelligent

Tutoring Systems which use hypertext as their underlying model1) usually require the

services of an information retrieval system to locate relevant information, and a user

model to represent the user's interests. Both the fields of user modelling and information

retrieval tend to suffer from problems with accuracy as the representation of information

tends away from being based on domain knowledge. Conversely, the more domain

knowledge is included within an information retrieval or user modelling system, the more

expensive they become. The HyperContext framework attempts to provide a reasonably

cheap method of determining and representing user interests and information without

relying on domain knowledge, through the use of separate subjectively created

interpretations of information in context. An interpretation represents terms which are

relevant to the interpretation of the document in context, eliminating, or reducing, the

ambiguity of relevance of terms which occurs in approaches similar to those taken by

Ruthven and van Rijsbergen [76].

9 .3 Setting the boundaries

The HyperContext hypertext, as explained in Chapter 8.7, has been constructed

automatically rather than being built, over time, by a community of users. Although the

approach to the creation of interpretations of information is consistent throughout the

hypertext, the obvious benefits of the intelligent selection of terms to describe an

interpretation is missing. However, for the purposes of the experimentation, we must

accept that the interpretations we have generated are accurate, and that a user who is

dissatisfied with an interpretation could, in an extended implementation of the framework,

modify the interpretation or create an new one.

1 See the discussion in Chapter 3.2.

142

9 .4 The short-term user model

9 . 4 . 1 Creating a test-bed

We show that based on a path of traversal through interpretations of documents we can

use the modified Rocchio method of formula 5.4 to derive a salient interpretation, and

then combine the salient interpretations of a context session to derive a description of a

potentially relevant document. In this experiment, a document is judged to be relevant if it

is sufficiently similar to a query obtained from the user model (using the cosine similarity

measure), and if the user has not already encountered the document (regardless of

context) during the context session.

For this series of experiments, we decided to construct a new HyperContext hypertext,

which is described below, rather than use the HyperContext hypertext described in

Chapter 8, as we required a simpler environment within which to conduct the

experiments. In Sections 9.5 and 9.7, we take the solutions derived from these

experiments and apply them to the HyperContext hypertext of Chapter 8.

The experiments described in this section were conducted using a HyperContext

hypertext created with Apple Inc.'s HyperCard, running on an Apple PowerBook

5300cs. Given the criteria we have for relevance, we decided to automate the experiment,

rather than using test subjects. The over-riding reason is that we require that the results

obtained are repeatable.

A hypertext of interpreted documents was automatically constructed from representations

of letters of the English alphabet, using a vocabulary of 15 terms (character features) and

five discrete values per feature. Figure 9.1 depicts the representations of the characters

"A" and "E". Each letter is divided into 15 regions, and each region is filled with one of

white space, "/", "\", "|", or "-", whichever would ultimately result in a reasonable overall

character resemblance.

Once all 26 letters had been described in this way, a numeric string representation of each

letter was obtained by replacing a symbol with its numeric equivalent, from the top-left to

the bottom-right feature. White space is replaced by 0, "|" by 1, "/" by 2, "-" by 3, and "\"

by 4. The numeric string representing the character "A" in figure 9.1a is

"233341333110001". The numeric string derived in this stage for each letter forms the

interpretation of the character in the context bottom.

143

a b

c d

Figure 9.1: The characters "A" (a) and "E" (b) shown divided into 15 regions (c), (d)

A HyperContext hypertext was automatically constructed from 610 unique one-, two- and

three-letter words, by creating nodes and links according to the following algorithm:

for each word

 for each letter in the word

if the letter is the first character of the word then

if a node does not exist for the letter then

create a new node with the interpretation of the letter in the context

bottom

end if

else (if the letter is not the first character of the word)

if a node does not exist for the letter in context of the previous letter then

create a new node with an interpretation of the letter

end if

create a link from the node representing the previous letter in context to the

node representing the current letter

end if

end (for each letter in the word)

end (for each word)

An interpretation of a letter in context is created by replacing randomly selected features in

the numeric string representing the letter in the context bottom with zero (white space).

For example, an interpretation of the letter "A" in some context other than bottom could

be "203040303010000".

Figure 9.2 shows two nodes. On the left, the letter "A" is interpreted in the context of

bottom (bottom is represented by "-"). On the right, the letter "C" is interpreted in the

context of "A". "A" in the context of bottom represents "A" whenever it is the first

144

character of a word. "C" in the context of "A" represents "C" in each word where "A" is

the preceding character. The rendition of the letter is a graphic representation of the

numeric string representing the interpretation of the letter in context. The links are the

letters which follow the current letter in context, so "C" in the context of "A" is only ever

followed by the letters "E" or "T" (from the words "ace" and "act"). In all, there are 282

nodes in the hypertext.

Figure 9.2: Example nodes and links to letters interpreted in context

One difference between this test HyperContext hypertext and the HyperContext

framework, is that in the framework a context is represented by a node-label pair. In

this experimental hypertext, we have dropped label from the context. If we were to

represent label, we could use one of the 15 character features (see figure 9.1). However,

we are already able to partition the hyperspace using node only to represent the context

(figure 9.3), which is sufficient for the purposes of the experiment. Using label as well

would serve to increase the number of interpretations. To comply with the HyperContext

framework, we can say that the name of a link's destination letter is the name of the link.

In figure 9.2 we can say that the interpretation of "C" in the context of "A" is really the

interpretation of "C" in the context of node "A" and label "C", as label names can be

arbitrary as long as they uniquely identify a link.

This hypertext is used to determine whether a user model derived from paths of traversal

can be used to identify a letter which has not already been encountered on the path of

traversal, and which is sufficiently similar to a query derived from the user model to be

considered relevant. This implies that an information retrieval method is used to determine

the degree of relevance. We use the cosine similarity measure (formula 9.1) to determine

degree of relevance.

145

Figure 9.3: "t" is accessible from "c" only when "c" is accessed in the context of "a"

In formula 9.1, t ranges over a vocabulary of size N of terms, qt is the weight of the tth

term in the query, and dt is the weight of the tth term in the document being evaluated.

The document with the highest cos(θ) is the document most similar, and consequently

most relevant, to the query.

cos(θ) =
qt

t =1

N

∑ × dt

qt
2 × dt

2

t =1

N

∑
t =1

N

∑
Formula 9.1

The weight of a term in a document is normally calculated using the TFxIDF metric

referred to in Chapter 5.2. The Term Frequency is multiplied by the Inverse Document

Frequency to obtain the degree of importance of the term to the document, taking into

account the overall distribution of the term throughout the document collection. In this

experiment, each letter is represented by 15 features, each of which may contain one of

the five values " ", "/", "-", "|", and "\". We analyse the interpretations of the letters in the

context bottom to determine how good a feature with a particular value is at identifying a

letter. The more frequently a feature has the same value in the representation of different

letters the less discriminatory the feature-value pair is, and the less likely we are to

correctly identify a single letter based on that pair alone. Figure 9.4 shows the weighted

values for "-" for each feature. The higher the value of a feature, the better the chances of

uniquely identifying a letter with a "-" for that feature, because fewer letters share that

feature.

Each value is obtained by dividing 26 (the number of letters in the English alphabet) by

the number of times the corresponding feature value occurs in a letter. For instance,

feature 15 in figure 9.4 has the value 26. A "-" occurs in feature 15 of all letters only

once, in the letter "I". On the other hand, feature 3 in figure 9.4 has the value 1.625, as

16 letters have the value "-" in feature 3. Consequently, given no other information, the

146

presence of "-" in feature 15 uniquely identifies the letter it belongs to as the letter "I", but

a "-" in feature 3 is a poor discriminator.

Figure 9.4: The weights for "-" (value 3 in the numeric string representation)

9 . 4 . 2 Automatically generating paths of traversal

A path is traversed by randomly selecting a start node of a letter in the context bottom

and randomly selecting a link to another letter in the context of the start node. An available

link from that interpreted letter to another letter is randomly selected. This process

continues until an interpreted letter with no links is reached. A total of 599 paths with an

average path length of 4.52 were automatically generated.

9 . 4 . 3 Description of the experiments

In order to determine the most consistent approach to deriving the user model based on

paths of traversal, we tested three hypotheses, each performed in two categories. To

construct a model of a short-term interest we first obtain a salient interpretation of an

accessed interpretation before combining it with the salient interpretations of previously

accessed interpretations from the same context session.

The three hypotheses for the derivation of the salient interpretation are called

interpretation+, interpretation-, and plain (which are described below). In Chapter

147

5.8.2 we describe a weighted scale of confidence which is used to weight a salient

interpretation's ability to predict a relevant document. The nearer to the start of the context

session the less confidence we have in the salient interpretation's ability to predict a

relevant document. The later a salient interpretation occurs in a context session, the

greater the confidence we have in it. Consequently, each hypothesis is also tested with

weighted and unweighted salient interpretations.

Finally, we use control to provide a benchmark against which we can compare the

performance of the three hypotheses for predicting a relevant document.

interpretation+

This hypothesis predicts that a salient interpretation which represents an interest in the

document can be derived by using the features of the accessed interpretation of a

document which occur infrequently in other interpretations of the same document. These

pertinent features of the accessed interpretation are extracted using formula 5.2, which is

repeated here as formula 9.2 (see Chapter 5.8.1 for an explanation of the terms).

Isalient = αIsel − βIave Formula 9.2

interpretation-

On the other hand, interpretation- predicts that the pertinent features of the accessed

interpretation actually distract attention from what the user is likely to be interested in,

because if the interest is in the pertinent features of the accessed interpretation, then the

context session would probably not be extended. Consequently, we use features of the

average interpretation for this document as an indicator of what the interest might be,

reducing the effect of the accessed interpretation's pertinent features (formula 5.4,

repeated as formula 9.3).

Isalient = αIave − βIsel Formula 9.3

plain

plain predicts that the user is interested in precisely the description of the accessed

interpretation, regardless of the distribution of terms in other interpretations of the same

document. In plain, Isalient = βIsel.

148

For the interpretation+, interpretation- and plain experiments the value of α and β is

1.

control

In the control experiments, the salient interpretation of each letter in a path is represented

by its interpretation in the context bottom. We consider this to be an adequate control

experiment because in typical Information Retrieval Systems with relevance feedback,

there is only one representation, or interpretation, available for each document.

9 . 4 . 4 Generating a query from the user model

The HyperContext framework provides for a query to be generated from the user model

according to the requirements of the external information retrieval (IR) system through an

interface. The query terms are presented to the IR interface as a vector of weighted terms.

In this experiment, we use a vector-based information retrieval system built around the

cosine similarity measure given in formula 9.1. A query takes the form of a 15 term

vector obtained from the 15-digit numeric string representing the user model which is

then compared to the 15-digit representations of each letter of the alphabet in the context

bottom2. The letter which has the highest similarity to the query is considered relevant.

Occasionally, either no letter is sufficiently similar to the query, or else more than one

letter has the same degree of similarity to the query.

9.4.5 Results

Figures 9.5 and 9.6 show the numbers of predictions as raw data and in percentage terms

respectively. For each of the values for interpretation+, interpretation-, plain, and

control, the left-hand column (+) represents results obtained using the weighted

confidence scale, and the right-hand column (-) represents results obtained without using

the confidence scale.

No Prediction is the number of times the experiment failed to predict any letter at all.

The Letter in Word and Letter Last are the number of times the predicted letter had

already been encountered in the path of traversal, and of these, the number of times the

predicted letter was the same as the last letter encountered in the path. Finally, results are

given for the number of times a previously unseen letter was predicted.

2 In a normal HyperContext environment, the most relevant interpretation in any context would be
identified.

149

Plain: Interpretation+:

No Prediction+ 15 2 - No Prediction+ 358 319 -

Letter in Word+ 302 344 - Letter in Word+ 121 138 -

Letter Last+ 136 92 - Letter Last+ 32 27 -

Unseen Letter+282 253 - Unseen Letter+120 142 -

Control: Interpretation-:

No Prediction+ 0 0 - No Prediction+ 108 158 -

Letter in Word+ 477 467 - Letter in Word+ 148 135 -

Letter Last+ 254 166 - Letter Last+ 88 86 -

Unseen Letter+122 132 - Unseen Letter+343 306 -

Figure 9.5: Results in raw figures

The number of times an unseen letter was predicted has already been reported in Chapter

6.7.1. interpretation- predicted an unseen letter 57.3% of the time, followed by plain

with 47.1%, interpretation+ (20%) and control (20.4%), when the weighted

confidence scale is used. If the number of times an already encountered letter is taken into

account, then we see that control overwhelmingly favours letters already encountered

(79.6%), and significantly when the recommended letter is a letter already encountered in

the path, it is the same as the last letter in the path 53.3% of the time. When the

confidence scale is not used, although an encountered letter is recommended 78% of the

time, the number of times it is the same as the last letter in the path is just 35.6%.

Plain: % % Interpretation+: % %

No Prediction+ 2.5 0.0 - No Prediction+ 59.8 53.3 -

Letter in Word+ 50.4 57.4 - Letter in Word+ 20.2 23.0 -

Letter Last+ 45.0 26.7 - Letter Last+ 26.5 19.6 -

Unseen Letter+ 47.1 42.2 - Unseen Letter+ 20.0 23.7 -

Control: % % Interpretation-: % %

No Prediction+ 0.0 0.0 - No Prediction+ 18.0 26.4 -

Letter in Word+ 79.6 78.0 - Letter in Word+ 24.7 22.5 -

Letter Last+ 53.3 35.6 - Letter Last+ 59.5 63.7 -

Unseen Letter+ 20.4 22.0 - Unseen Letter+ 57.3 51.1 -

Figure 9.6: Results in percentage terms

150

We also require that the number of times a letter is recommended is significantly high.

control and plain virtually always make a prediction, interpretation+ fails to make a

prediction 59.8% of the time, and interpretation- 18% of the time.

If the confidence scale is not used, then the number of times a predicted letter has already

been encountered in the path of traversal increases in all cases except for interpretation-

and control. However, in interpretation- without the confidence scale, the number of

unseen predictions drops from 57.3% to 51.1%, although in control it rises slightly from

20.4% to 22%.

9 . 4 . 6 Prediction performance

In this section, we take the results of Section 9.4.5 and compare the observed frequency

of predicting an unseen letter to the probability of randomly predicting an unseen letter.

In a random environment, the probability of predicting an unseen letter is 1 - P, where P

is the probability of predicting a seen, or already encountered, letter. P is N

26
, where N is

the number of unique letters in the traversed path, and 26 is the number of letters in the

alphabet. When the path consists of one letter, the probability of predicting the same letter

is 1
26

, so the probability of predicting a different letter is 1 - 1
26

. When the paths consists

of all 26 letters, then the probability of predicting a different letter is 0 (1 - 26
26

), and when

there are 13 unique letters in the traversed path, the probability of predicting one of the

other 13 letters is 1 - 13
26

, or 0.5.

The data created in Section 9.4.1 consisted of 599 paths of traversal each containing from

2 to 9 unique letters. Table 9.1 provides the probabilities of randomly predicting a letter

not already encountered in the path and the actual observations from control and

interpretation- using the weighted scale of confidence.

Table 9.1 shows that the Rocchio method employed in control is generally reluctant to

move the centroid from the representation of the average letter of the traversed path,

regardless of path length. On the other hand, the modified Rocchio method of

interpretation- generally has a significantly better chance of doing so. Although

interpretation- falls short of the probabilities of a purely random environment, it does

have the significant advantage that it will always predict the same letter for a given path,

regardless of how frequently that path is traversed. In a purely random environment,

subsequent traversals of the same path would normally result in the prediction of different

letters.

151

No. of unique

letters in path of

traversal

N

% no. of

paths of N

Probability of predicting

an unseen letter

1 - (N/26)

Actual observations

from interpretation-

Actual observations

from control

2 6.0 0.92 0.64 0.19

3 40.9 0.88 0.69 0.24

4 22.7 0.85 0.50 0.20

5 13.0 0.81 0.50 0.15

6 10.7 0.77 0.48 0.16

7 4.2 0.73 0.44 0.16

 83 1.7 0.69 0.10 0.20

 93 0.8 0.65 0.20 0.40
 Table 9.1: Comparison of probabilities of recommending an unseen letter

All in all, the most consistent approach to deriving the user model is that afforded by

interpretation- to generate the salient interpretation, in combination with the weighted

confidence scale.

9 .5 Locating relevant information

9 . 5 . 1 Ideal empirical study scenario

Ideally, the HyperContext hypertext is tested using groups of users to determine whether

an adaptive hypertext constructed using the HyperContext framework gives advantages

over and above a non-adaptive hypertext.

Originally, an empirical study was planned using three groups of six users, after a

selection process to categorise users as novice, intermediate and advanced information

seekers. Each group would consist of two novice, two intermediate and two advanced

information seekers. One group would form the control group, and use the non-adaptive

version of HyperContext described in Chapter 7.8, to provide baseline measurements.

The other two groups would use the adaptive HyperContext. Each group would have

identical sets of tasks to perform, estimated to last approximately 2.5 hours in all, and

performance data about the efficiency with which each task was executed would be

automatically logged by measuring the number of nodes accessed, and the number and

duration of deviations from the "ideal" paths from the start node to the target node.

3 These values are based on too small a sample to be considered accurate.

152

A number of factors affected the prospects of conducting such an empirical study. While

some factors were concerned with logistics, the major set-back is that some of the

HyperContext prototype has not been implemented as a multi-user system, meaning that it

is not possible to run concurrent user sessions. Sequential user experiments also proved

impractical to organise. However, the spirit of the empirical study has been retained, and

the number of tasks has been increased, but the experiments have been automated.

9 . 5 . 2 Automatic evaluation of the HyperContext hypertext

The spirit of the automated experiments is that required information can be located faster

in an adaptive HyperContext hypertext than in a non-adaptive HyperContext version.

Starting from a given root node, which is always the root document

www.w3.org/Overview.html, we count the number of nodes that are accessed before a

given target node is located. The experiment is conducted 73 times, using randomly

selected, but unique, documents which are not direct children of, but which are reachable

from, the root node. Each experiment has four phases. In the first phase, we see how

many nodes must be accessed using a brute-force hybrid depth-first search through a

non-adaptive hypertext (consisting of document interpretations in the context bottom

only). In the third, we count the nodes accessed using the same hybrid search method

applied to the adaptive hypertext (consisting of separate document interpretations for each

context). The second and fourth phases employ a link ordering algorithm in the non-

adaptive and adaptive hypertexts respectively.

For brevity, the four phases are referred to by the following acronyms: phase 1 is NABF

(Non-Adaptive Brute Force); phase 2 is NAO (Non-Adaptive Ordered); phase 3 is ABF

(Adaptive Brute Force); and finally, phase 4 is AO (Adaptive Ordered).

There are four possible outcomes when comparing the results of NABF and ABF:

• they require the same number of node accesses;

• ABF is faster, because some earlier links have been deleted;

• ABF is slower, because the first link to the target document in the original

hypertext has been deleted, but there is another, later, path to it in the adaptive

hypertext;

• ABF fails because a link to the target document has been deleted.

Ideally, the average number of nodes accessed is less in ABF than in NABF.

153

In NAO and AO, rather than accessing nodes using a brute-force search method based on

the natural link order, we first use a link ordering algorithm to order links according to

relevance. The link ordering algorithm is based on the comparison of the salient

interpretations of a node's children to the target node. The nodes are then accessed in

order of similarity to the target document, rather than their order of occurrence. Although

link ordering by similarity is trivial when the target node is a child of the currently

accessed node, its overall success or failure depends on its ability to direct search during

the earlier stages of the context session. For example, consider that the root document has

ten children, and using the brute-force approach to reach the target it is necessary to

traverse the fifth link. If the link ordering algorithm incorrectly re-orders the links so that

the required link would be traversed later rather than earlier, then more nodes will need to

be accessed prior to the target being reached (when compared to the brute-force adaptive

and non-adaptive approaches). Conversely, if the required link is traversed earlier, then

less nodes will be accessed on the way to reaching the target.

We use a hybrid depth-first approach to the hypertext traversal. As the hypertext contains

many navigational links, a pure depth-first search would result in greater search times for

the target document, because several links which naturally occur earlier are navigational

links enabling the browser to rapidly relocate to landmark nodes such as the root node.

The hybrid approach is actually based on a breadth-first approach. The disadvantage of a

pure breadth-first search is that all nodes at each level need to be checked until the level

which contains the target node is reached. For example, if the target node is three levels

from the root node, then all nodes at the intermediate levels need to be accessed,

regardless of how well, or badly, the links have been ordered. The benefit of the link

ordering algorithm would only be seen at the comparison of siblings of the target node.

The hybrid depth-first search algorithm maintains a structure which represents the order

in which nodes are to be accessed. Once the target node has been located, we revisit the

structure to remove nodes which need not have been accessed, so that we can count the

number of nodes which must be visited to reach the target, based on the link order.

Consider the structures in figure 9.7.

154

1

2 3 4

5 6 7 8 9 1 0

1

2 3 4

6 7 8 9 1 0

1

2 3 4

6 7 8 9 1 05

1

2 3 4

6 7 8 9 1 05

(a) (b)

(c)

Node in blue indicates
node must be accessed

Figure 9.7: Locating a target node (a) target node found by brute-force breadth-first
search. (b) represents the nodes which need to be accessed with prior knowledge of the

level depth of the target node. (c) represents the nodes to access with optimal link
ordering.

Figure 9.7a represents the nodes which must be accessed using a brute-force breadth-first

method. Figure 9.7b represents the nodes which would have been accessed had an n

look-ahead depth-first strategy been used. n is a "magic" number which represents the

level depth of the target node from the root node. For example, if n = 0, there is no look-

ahead (the root node is the target node); if n = 1 we look-ahead to the root node's

children; and if n = 2 we look-ahead to the root node's grandchildren. In figure 9.7b, if

we know in advance that the target document is a grandchild of the root node, using the

magic look-ahead level, there would be no need to access node 4. The hybrid depth-first

search strategy builds a tree structure representing the nodes that are accessed using a

breadth-first search until the target node is located (for example, the blue coloured nodes

in figure 9.7a). The shortest path in the tree to the target node from the root is identified

(represented in figure 9.7c). The tree is then revisited to remove all those nodes which

exist on the right-hand side of the shortest path (figure 9.7b). The remaining nodes are

those which must be accessed by the hybrid depth-first search. Figure 9.7c also shows

the optimal ordering of the links by the link ordering algorithm. The level depth

represents the minimum number of nodes which must be accessed to reach the target node

from the root using the shortest path.

155

Another difference between a pure depth-first approach and the hybrid approach we have

adopted is depicted in figure 9.8. The hybrid approach will locate the shortest path

between the root node and the target and count the number of nodes to the left of this path

(including the nodes in the path), rather than the minimum number of intervening nodes.

In figure 9.8, the target node, node 8, is linked to from nodes 3 and 5, at level 2 and

level 3 respectively. As the hybrid depth-first approach is really a modified breadth-first

approach, the search will terminate when node 8 linked to from the node 3 is located. A

pure depth-first approach would have first located the target node at level 3 (via node 5)

which would have been found after accessing less intervening nodes than the target node

at level 2. HyperContext is able to direct users along the path which requires the least

number of intervening nodes (that is, to the target node at level 2), or to the target node

which is located first by a parallel search algorithm in Information Retrieval-in-Context

and Adaptive Information Discovery. For the purposes of these experiments, we are less

interested in algorithmic efficiency than we are in effective link ordering. We are more

interested in demonstrating that the link ordering algorithm using interpretations of

information is more useful than a link ordering algorithm which does not distinguish

between descriptions of the same information in different contexts.

1

2 3 4

5 6 7 9 1 0

1

2 3 4

6 7

8

9 1 0

(a)

1

2 3 4

5 6 7 9 1 0

1

2 3 4

6 7

8

9 1 0

(b)

Level 0

Level 1

Level 2

Level 3

(includes node 8)

Figure 9.8: Difference between pure and hybrid depth-first searches. Pure depth-first

search (a) will locate node 8 more efficiently than hybrid depth-first (b)

The NAO and AO phases of each experiment are conducted on the adaptive and non-

adaptive versions of HyperContext using a link ordering algorithm. NAO acts as the

control. The brute-force phases on both the non-adaptive and adaptive hypertexts (NABF

and ABF) act as an upper bound on the corresponding link ordering algorithm. Ideally,

the link ordering experiments should, on average, out-perform the brute-force phases.

The target node's level depth acts as a lower bound. The performance of experiments on

156

the adaptive hypertext should also tend to out-perform the performance of the

corresponding experiments on the non-adaptive hypertext.

The experiments on the adaptive hypertext can fail to locate a target node because a node

which is reachable from the root node in the non-adaptive hypertext may become

unreachable as a result of the conversion to an adaptive hypertext. We have chosen to

exclude unreachable nodes and nodes which are immediately accessible from the root

node from the performance results of the experiments. Inclusion of these nodes would

merely serve to skew the results. Therefore, of the 170 nodes in the hypertext, 70 are not

tested because they are children of the root node, and a further 27 are not tested because

they are unreachable from the root node in the adaptive hypertext.

9 . 5 . 3 Description of the experiments

An experiment consists of four requests to locate a given target document in context

from some start document in context. The start document is always the document

www.w3.org/Overview.html in the context bottom.

Each experiment has four phases: non-adaptive brute-force (NABF), non-adaptive

ordered (NAO), adaptive brute-force (ABF), and adaptive ordered (AO). We are

particularly interested in the results of AO when compared to NAO. The brute-force

phases provide upper bounds for the corresponding ordered phases.

The non-adaptive phases (NABF and NAO) always use the interpretation of a document

in the context bottom to act as the salient interpretation of the document, and to obtain the

interpreted document's out-links. On the other hand, the adaptive phases (ABF and AO)

use the actual description of the interpreted document in context, and also obtain the

document's out-links from its interpretation. In the adaptive phases, the salient

interpretation of a accessed document is obtained using interpretation- (see Section

9.4.2 and Chapter 5.8.1).

The results of the experiments are obtained and evaluated in two stages. First an

automatic node locator is invoked, with parameters to identify the target interpretation

and to indicate which phase of the experiment to run. The locator produces output which

identifies whether target was located, the level depth at which it was located, the number

of nodes which were visited (using pure breadth-first search), and the number of nodes

visited using the hybrid depth-first approach. It also produces some other output useful

for debugging purposes, but irrelevant for the performance comparisons. The second

157

stage is the automatic results evaluator, which compares the data produced by the locator

and which evaluates the overall performance of each phase of each experiment.

9.5.4 Results

These results are based on the evaluation of an automatically generated HyperContext

hypertext, without any attempt to improve the descriptions of interpretations and quality

of links.

The first result, given in table 9.2, reports the number of experiments in which ABF

outperformed NABF.

Phase No. of successes

Adaptive brute-force: 49

Non-adaptive brute-force: 18

Same: 6

Table 9.2: Comparison of results of ABF and NABF

In ABF and NABF, links are accessed in the order in which they appear in the document.

The main reason for the improvement is due to the removal of links from the adaptive

version of the hypertext to nodes which are considered to be irrelevant.

Phase No. of successes

Non-adaptive ordered: 64

Non-adaptive brute-force: 8

Same: 1

Table 9.3: Comparison of results of NAO and NABF

Tables 9.3 and 9.4 compare NAO with NABF and AO with ABF, to demonstrate the

effectiveness of the link ordering algorithm on the non-adaptive version of the

HyperContext hypertext and the adaptive version, respectively.

Phase No. of successes

Adaptive ordered: 32

Adaptive brute-force: 40

Same: 1

Table 9.4: Comparison of results of AO and ABF

158

Table 9.3 shows a dramatic improvement in node locatability in the same non-adaptive

hypertext when link ordering is utilised, based on the similarity between each of a node's

link destinations and the target node.

Whereas in table 9.3 the link ordering algorithm outperforms brute-force more often than

not (in the non-adaptive hypertext), in table 9.4 the adaptive brute-force method often

outperforms the link ordering algorithm in the adaptive hypertext. The link ordering

algorithm is advantageous 43.8% of the time. 54.7% of the time, the brute-force method

is more advantageous as the link ordering algorithm incorrectly demoted the link leading

to the target document. However, we must remember that these results are obtained from

an automatically constructed adaptive hypertext. HyperContext is a social hypertext which

can be modified to reflect usage. Such changes are highly unlikely to result in any

improvements to results obtained by the non-adaptive version of the hypertext, but they

can have a dramatic effect on the link ordering algorithm for the adaptive version of the

hypertext. Interpretations can be modified, and new links in context can be created, both

of which can positively effect the link ordering and brute-force algorithms in the adaptive

hypertext. However, unless nodes' descriptions in the context bottom are modified,

these modifications will have no impact on the respective algorithms' performance in the

non-adaptive hypertext.

Phase No. of successes

Adaptive ordered: 32

Non-adaptive ordered: 39

Same: 2

Table 9.5: Comparison of results of AO and NAO

Similarly, the link ordering algorithm in the non-adaptive hypertext performs better than

the same algorithm in the adaptive hypertext (table 9.5).

In table 9.2, we compared the results of adaptive brute-force with non-adaptive brute-

force. The former phase outperformed the latter in a significant number of experiments.

In table 9.5 we compare the results of the link ordering algorithm in the non-adaptive and

adaptive hypertexts, and we see that the balance is slightly in favour of the non-adaptive

ordered phase of the experiments. Given that in tables 9.4 and 9.2 we saw that the

adaptive brute-force phase also tended to perform better than the adaptive ordering and

non-adaptive brute-force phases, the temptation might be to consider that the adaptive

brute-force approach provides enough of an advantage over the link ordering algorithm to

discount the link ordering algorithm as an effective method of recommending links. The

adaptive brute-force approach alone demonstrates that using multiple interpretations of

159

information can provide an advantage by automatically partitioning the hyperspace into

relevant and non-relevant interpretations of nodes. In normal HyperContext usage, link

ordering is not directly used to perform link recommendation. However, link ordering

does demonstrate that when retrieval is based on interpretations of information, there is a

general increase in performance. Furthermore, in 43.8% of the experiments in which

adaptive ordering is used (compared to adaptive brute-force and non-adaptive ordered)

there is an improvement. This provides additional evidence that using multiple

interpretations and deriving the salient interpretation using interpretation- is a valid

approach.

Tables 9.6 and 9.7 are provided for completeness. Table 9.6 shows that adaptive

ordering is more advantageous than the non-adaptive brute-force approach, as we have

come to expect.

Phase No. of successes

Adaptive ordered: 55

Non-adaptive brute-force: 18

Same: 0

Table 9.6: Comparison of results of AO and NABF

Table 9.7 confirms that the adaptive brute-force phase continues to outperform any

ordered phase, although the link ordering algorithm continues to perform well in more

than 40% of the experiments.

Phase No. of successes

Adaptive brute-force: 41

Non-adaptive ordered: 30

Same: 2

Table 9.7: Comparison of results of ABF and NAO

9 . 5 . 5 Breakdown of the results according to path length

It is important to remember that the automatic conversion of the non-adaptive hypertext

into an adaptive hypertext has had an impact on the physical dimensions of the hypertext,

and the organisation and connectivity of nodes within it. This in turn means that a node

located at one level in the non-adaptive hypertext can occur at a different level in the

adaptive hypertext. The conversion process does not create new links, although it can

remove links. For example, in figure 9.9a, node d is reachable from nodes b and c.

160

During the conversion process, node d is considered irrelevant when reached from node

b, so the link is removed. In figure 9.9b, node d is still reachable from node a (the root

node), but whereas in the non-adaptive hypertext, node d first occurs at level 2, in the

adaptive hypertext, node d first occurs at level 3. In an experiment to locate node d from

node a, NABF and NAO will locate node d at level 2, while ABF and AO will locate the

node at level 3. In this section we show the aptitude of each phase of the experiments at

locating the target node at different level depths in the hypertext. In tables 9.8 to 9.12

inclusive, the reason that NABF and NAO fail to register any successes at level depth 4 is

due to all nodes being reachable by level 3 in the non-adaptive hypertext. However, in the

cases were the adaptive phases register successes at level 4, this still means that the non-

adaptive phases took longer than the adaptive phases to locate the target node even though

in the non-adaptive hypertext the target node exists at level 3 or higher.

c d

(a)

b

a

d

c

(b)

b

a

d

Level 0

Level 1

Level 2

Level 3

Figure 9.9: Effect of link deletion during the conversion process. Node d will first be
located at level 2 in the non-adaptive hypertext (a), but at level 3 in the non-adaptive

hypertext (b)

This stage of the evaluation of the experiments consists of separating the results according

to the level depth of the target node, to see the overall performance of each phase at each

level and when each phase is successful (table 9.8).

Phase \ Level 2 3 4 Total

non-adaptive brute-force 3 0 0 3

non-adaptive ordered 19 9 0 28

adaptive brute-force 0 15 9 24

adaptive ordered 2 12 1 15

Total 24 36 10 70

Table 9.8: Number of successes by phase by level depth of target node

161

The non-adaptive brute-force phase proved the best algorithm in just 3 of 70 experiments.

All of NABF's successes occur when the target node is 2 levels from the root (i.e., one

of the root's grandchildren). The phase with the overwhelming success at locating a target

node when it is a grandchild of the root node is the non-adaptive ordered phase, with 19

of 24 successes at this level. Furthermore, this phase of the experiment is the most

successful overall, with a total of 28 successes in 70 experiments. However, most of its

successes occur when the target node is close to the root node. As the target node

increases in distance from the root node, the adaptive algorithms register their successes.

When the target node is located at level 3, the combined adaptive solutions register 27

successes, compared to the combined non-adaptive 9 successes. At level 4, the combined

adaptive solutions are successful in all 10 experiments. In the remaining 3 experiments,

successes were tied between two phases, in each case, and so they have not been

included in table 9.8. A summary of the results of these three experiments is provided in

table 9.9, although no conclusions are drawn from them, except for noting that the trends

identified in table 9.8 are generally followed.

Phase \ Level 2 3 4 Total

non-adaptive brute-force 0 0 0 0

non-adaptive ordered 1 1 0 2

adaptive brute-force 0 0 2 2

adaptive ordered 1 0 1 2

Total 2 1 3 6

Table 9.9: Summary of the three "invalid" experiments

The overall sample size is not large (70 "valid" experiments4, out of only 73

experiments), and the path length is short (all of the target nodes were first located at most

3 levels from the root in the non-adaptive hypertext, and 5 levels from the root in the

adaptive hypertext), so generalising the results may be both presumptuous and premature.

However, if we accept that we must be cautious when interpreting the results, an apparent

trend in the experiments is that as the path length increases the adaptive solutions provide

better results. We can re-interpret the results presented in Section 9.5.4, which indicated

that the non-adaptive ordered phase (NAO) of the experiments was the most successful

when compared to the general performance of the other phases. From table 9.8, we can

see that although NAO has the highest number of individual successes, the combined

adaptive phases just outperform the combined non-adaptive phases, and the adaptive

phases, both combined and individually, outperform their non-adaptive counterparts at all

levels other than when the target node is a grandchild of the root node.

4 A "valid" experiment is an experiment which has just one successful phase.

162

9 . 5 . 6 Comparison of number of nodes visited by the different phases

In this section we report the average number of nodes that are visited in each phase using

the pure breadth-first and hybrid depth-first search strategies, to demonstrate the

effectiveness of the hybrid depth-first approach. Table 9.10 shows these results for each

phase across all 73 experiments regardless of whether the phase was the successful

phase.

From table 9.10 we see that NAO visited the least number of nodes, when using both the

breadth-first and hybrid depth-first approaches. ABF and AO were, on average, each

within 2 nodes of NAO using the breadth-first approach. This margin increased, on

average, in both phases using the hybrid depth-first approach, with ABF visiting nearly 4

nodes less than AO on average.

Nodes Visited

Phase Breadth-First Depth-First

NABF 117.22 45.83

NAO 99.42 29.88

ABF 101.38 32.88

AO 99.97 36.42

Table 9.10: Average number of nodes visited overall by phase

NABF visited a significantly larger number of nodes than any other phase in either

approach.

Level 2 3 4 5

Phase B D B D B D B D

NABF 81.40 17.72 138.85 60.48 0 0 0 0

NAO 71.36 7.36 114.04 41.60 0 0 0 0

ABF 75.50 20.59 120.00 33.09 127.83 43.33 138.50 70.50

AO 73.77 29.68 100.42 34.29 126.89 45.89 130.00 59.00
Table 9.11: Average number of nodes visited in each phase, broken down by the level at
which target node is located, using both the pure breadth-first (B) and hybrid depth-first

(D) approaches

In table 9.11, the results of table 9.10 are broken down into the number of nodes visited

at each level. Here we see that the adaptive phases visit more nodes using the hybrid

depth-first (D) approach to reach target nodes at level 2, than the non-adaptive phases.

This trend is reversed at level 3. Comparative results are unavailable for levels 4 and 5,

163

because in the non-adaptive phases all nodes are reachable by level 3. However, the

hybrid depth-first results for the adaptive phases at levels 4 and 5 compare favourably

with the hybrid depth-first results for the non-adaptive phases at level 3. Also, as the path

length increases, the AO results improve consistently when compared to the average

number of nodes visited by ABF. However, the number of target nodes located at level 5

(two nodes) is too small to predict that this trend would continue as the path length

increases beyond five levels. The number of nodes located at each level for the adaptive

and non-adaptive phases is provided in table 9.12.

Hypertext\
Level 2 3 4 5

Non-Adaptive 25 48 0 0

Adaptive 22 31 18 2

Table 9.12: Number of nodes at each level by hypertext

In table 9.13, we again provide the average number of nodes visited by each phase

broken down by level depth, except that we count nodes only for successful phases in

each experiment (consequently there are no results at level 5, as all target nodes are

located by level 3 in the non-adaptive phases, and by level 4 in the adaptive phases). The

actual number of successes by each phase at each level is presented in table 9.8.

Level 2 3 4

Phase B D B D B D

NABF 82.00 16.33 0 0 0 0

NAO 67.26 4.11 116.67 38.44 0 0

ABF 0 0 99.73 30.80 131.11 36.11

AO 67.50 6.50 92.17 25.33 123.00 35.00
Table 9.13: Average number of nodes visited during successful phase, broken down by
level at which target node is located. The average number of nodes is presented for both

the pure breadth-first (B) and hybrid depth-first (D) approaches

The final data we present in this section compares the performance of each phase, broken

down by level, for when the target node located by each phase is found at the same level.

This table should be compared with table 9.8. In 20 of the 70 valid experiments, the

target nodes were located at different levels by the adaptive and non-adaptive phases.

In table 9.8, the inclusion of the twenty experiments which resulted in the target node

being located at different levels in the different hypertexts suggested that as the path

length increases, the adaptive phases register an advantage over the non-adaptive phases.

164

In table 9.14 we remove these experiments from the results to see their effect. Once

again, the sample size and the path lengths involved are too small to provide a safe basis

from which to generalise. However, when the target node is located at level 2, the non-

adaptive phases are clearly more successful than the adaptive phases. At level 3,

however, the adaptive phases are more successful than the non-adaptive phases.

Phase \ Level 2 3 Total

NABF 3 0 3

NAO 16 2 18

ABF 0 15 15

AO 2 12 14

Total 21 29 50

Table 9.14: Successes by phase when target is at the same level

9 .6 Observations

In Section 9.4.5 we presented the results of experiments with several hypotheses to

establish which is more suitable for establishing a salient interpretation of a user's

interests in the current document in context, and how to combine the salient

interpretations in a context session to represent a user's short-term interests. In Sections

9.5.4 and 9.5.5 we present the results of experiments to determine whether multiple

interpretations of information can adequately partition a hyperspace to assist with adaptive

navigation to lead the user to relevant information. The two sets of experiments were

performed on different HyperContext hyperspaces.

From the first set of experiments, we concluded that using interpretation- in conjunction

with a weighted scale of confidence generally performed significantly better than the

control experiments at recommending a relevant node which had not been previously

encountered in the context session. Indeed, the control experiments generally

recommended a node that had already been encountered in the context session.

In the second set of experiments, we used two different approaches to automatically

search through an adaptive HyperContext hypertext and a non-adaptive hypertext. The

adaptive approaches used interpretation- to derive a salient interpretation of the current

document in context, and compared the salient interpretation to the description of the

target document in order to recommend a path to the target document. The non-adaptive

approaches re-used the interpretation of documents in the context bottom whenever a

document was accessed. The interpretation of a document in the context bottom was

165

compared to the interpretation in the context bottom of the target document to recommend

a path. We concluded that although using a link ordering algorithm (based on the

similarity of a link's destination document to the target document) in the non-adaptive

hypertext is the most successful overall, these successes occur mainly when the target

document is a grandchild of the root document. When the target document is further away

from the root document, the adaptive approaches are more successful.

The final question left to answer is whether the model of a user's short-term interests can

sufficiently accurately represent the user's short-term interests, while the user is browsing

through an adaptive HyperContext hypertext, to recommend a document which is relevant

to the user. Ideally, this is answered by monitoring the experiences of users interacting

with the HyperContext prototype. However, as explained in Section 9.5.1, this is not

currently possible. Instead, we randomly generate a number of context sessions using the

adaptive hypertext. At the end of each context session we derive two user models. The

first user model, UMadaptive, is derived using interpretation-. The second user model,

UMcontrol, is derived using control. Both user models are derived in conjunction with

the weighted scale of confidence. Each user model is then used to generate a user query

and the first relevant document found, which has not already been encountered in the

context session, is recommended to the user. The user is asked to give a relevance

judgement for each recommended document.

The experiments are described further in Section 9.7, together with a presentation of the

results.

9 .7 Recommending documents using AID

Eleven paths through the HyperContext hypertext described in Chapter 8 are randomly

selected. Each path is exactly 5 nodes long. The first node in each path is the hypertext's

root document www.w3.org/Overview.html in the context bottom. A subsequent link

is randomly selected from the interpreted document's out-links, and the destination

document is accessed in context. If the destination of a randomly selected link has already

been accessed during the same context session, we reject the link and randomly select

another one. This process continues until either an interpretation with no out-links is

reached, or once the path is five nodes long. If the final path is less than 5 nodes long, the

entire path is rejected. We chose paths of length 5 to be consistent with the maximum

lengths of paths which were tested during the experiments to determine which strategy

was best at locating relevant information (see Section 9.5). Some documents used in the

experiment occur in more than one path.

166

Once a path of length 5 has been selected, two user models UMadaptive and UMcontrol are

automatically generated, using interpretation- and control (Section 9.4.3) respectively

to create the salient interpretations for each accessed interpretation. The salient

interpretations are then weighted according to the scale of confidence (Chapter 5.8.2 and

Section 9.4.3) and averaged to derive each user model (using formula 5.5). The eight

terms with the highest weights are extracted from each user model to generate the user

queries, and the queries are submitted to SWISH-E ([48], described in Chapter 8.4),

where they are executed against a centralised inverted index of all interpretations of all

documents in the hyperspace. The search results are examined to extract the highest

ranking document which has not already been visited during the context session. If either

query fails to identify an unseen relevant document, the path is discarded. If both queries

identify the same unseen relevant document, the path is also discarded.

Each path of five documents together with the two recommended documents are packaged

into a set, and are hosted on a Web server. All the links in each document are removed,

and the next document in the path is accessed through a button which is displayed at the

end of each document. A CGI script traces a user's progress through the path of five

documents. When the user has reached the last document in the path, she is informed that

the next document is the first recommended document. After the user has read this

document, she is asked to give a relevance judgement, and, once she has given her

feedback, she is then shown the second recommended document. She is once again asked

to give a relevance judgement for the second recommended document, after which she is

thanked for her participation and invited to evaluate another set of documents.

Although a user is told that the recommended documents have been recommended by

different methods, he cannot tell whether the first or the second document has been

recommended by UMadaptive. In some sets, the UMadaptive recommendation is shown

first, and in others it is shown second.

1 Highly relevant

2 Quite relevant

3 Quite non-relevant

4 Highly non-relevant

Table 9.15: Relevance judgements

One of four relevance judgements can be awarded to each recommended document (table

9.15). It is possible for both the document recommended by the adaptive user model and

167

the one recommended by the control user model to be awarded identical relevance

judgements.

At the start of a new evaluation session, the session is given a unique session, or user,

number, by incrementing the value of the last evaluation session. The set to be evaluated

is also automatically assigned, by incrementing the value of the last set that was

evaluated. This means that if the last session identifier was 51, and the set that was

evaluated in that session was set 7 (corresponding to the seventh path), then the next

session will be assigned the identifier 52 and set 8 will be evaluated, regardless of

whether the same user had participated in session 51 or any other session. It is possible

for the same user to evaluate the same set on more than one occasion. The user is not told

which set she is evaluating.

Members (both students and staff) of the B.Sc. (Hons.) Information Technology degree

at the University of Malta were invited by electronic mail to participate in the evaluation,

which was conducted from October 12th, 2000 to November 6th, 2000. The evaluations

were conducted on-line. We did not request personal information from participants, and

we did not record the number of actual users who participated. The data captured by the

CGI script consists of the session, or user, number, the set under evaluation, the

document number in the path, the relevance judgement (if appropriate), and a time stamp

(table 9.16).

22 11 1 Thu Oct 12 23:23:08 MET DST 2000
22 11 2 Thu Oct 12 23:26:07 MET DST 2000
22 11 3 Thu Oct 12 23:27:58 MET DST 2000
22 11 4 Thu Oct 12 23:29:58 MET DST 2000
22 11 5 Thu Oct 12 23:31:20 MET DST 2000
22 11 6 Thu Oct 12 23:32:34 MET DST 2000
22 11 7 3 Thu Oct 12 23:36:13 MET DST 2000
22 11 0 3 Thu Oct 12 23:37:26 MET DST 2000

Table 9.16: A sample set evaluation log file

The last entry in table 9.16 (which has 0 for the document number in the path) is a record

of the relevance judgement given to the previous document (the second recommended

document). Similarly, the penultimate record is a request for document 7 of set 11 (the

second recommended document) together with the relevance judgement (3) given to the

previous document which was the first recommended document.

The time stamp is recorded for a number of reasons. Initially, we wanted to be able to

identify if a user had "rushed" through the set without actually reading the documents, so

that the evaluation could be eliminated as invalid. Subsequently, as we processed the

168

results, we realised that significantly different time lapses were recorded against the same

documents in different sessions, and in different sets. There are many possible

interpretations for a short reading time. The two likeliest interpretations which can affect

the interpretations of the results are that the document may previously have been read by

the user while she was previously evaluating a set, or that the reader is skim reading

through the set. We are reasonably confident that we are able to distinguish between the

two interpretations. If a short time lapse is associated with just one or two documents in a

set, and those documents occur in other sets, then we assume that the evaluator

previously read the document while evaluating another set. On the other hand, if all the

documents in a set have a short associated time lapse, then we assume that the evaluator is

skim reading through the set5. We concluded that if a set is skim read, then the evaluator

would have a surface understanding of the content, otherwise the evaluator would have a

deep understanding of the content6.

57 evaluation sessions were recorded. Of these, 30 were invalidated as the evaluator did

not complete the evaluation. The results of the 27 valid evaluations are provided as an

aggregate (table 9.17).

The overall results are inconclusive, mainly due to the small number of evaluations. Most

of the sets have only 2 evaluations, and only two sets have 4 evaluations. Overall, the

document recommended by UMcontrol is considered more relevant than the one

recommended by UMadaptive (48%). The document recommended by UMadaptive is

favoured in only 22% of the evaluations. In the remaining 30% of the evaluations, the

UMadaptive recommendations are considered as relevant as the UMcontrol

recommendations. This is quite significant, if we bear in mind that care was taken to

ensure that control and adaptive recommended different documents. In tables 9.18 and

9.20 we break down the results to show the effect of displaying one of the recommended

documents before the other, and the effect that skim reading appears to have on the

results.

5 There is the possibility that the user previously evaluated this set, or that all documents in the set were
encountered by the user while evaluating other sets, but we still consider this set to have been skim read.
6 Of course, if the evaluator is a speed reader, then these conclusions are invalid. Although we note the
possibility that some of the evaluators may be speed readers, we discount it in our interpretation of the
results.

169

Set No. No. of

Evaluations

UMadaptive > UMcontrol UMcontrol > UMadaptive UMadaptive = UMcontrol

1 2 1 0 1

2 4 0 4 0

3 2 0 1 1

4 4 2 2 0

5 3 0 3 0

6 2 0 1 1

7 3 2 0 1

8 1 0 0 1

9 2 1 0 1

10 2 0 2 0

11 2 0 0 2

Total 27 6 13 8

Table 9.17: Aggregated results of the AID evaluation

Whether the document recommended by UMadaptive or by UMcontrol was shown first

appears to be significant (table 9.18). The UMcontrol recommendation is overwhelmingly

favoured if it is shown first (64%). This drops to 31% when UMcontrol is shown second.

UMcontrol shown first UMadaptive shown first

UMadaptive >UMcontrol 3 3

UMcontrol > UMadaptive 9 4

UMcontrol = UMadaptive 2 6

Total 14 13

Table 9.18: Performance according to which recommended document was shown first

On six occasions when the UMadaptive recommendation was shown first, the UMcontrol

recommendations were considered equally relevant. However, on only one of these

occasions was it impossible for the evaluator to give the UMcontrol recommendation a

better relevance judgement (because the evaluator had already given the UMadaptive

recommended document a relevance judgement of "Highly Relevant").

170

Skim read Deep read

UMadaptive >UMcontrol 2 4

UMcontrol > UMadaptive 9 4

UMcontrol = UMadaptive 3 5

Total 14 13

Table 9.19: Performance according to skim or deep reading a document set

The amount of time spent reading a set of documents was also significant (table 9.19).

The quickest reading time for a set was 47 seconds, whilst the longest recorded reading

time was 34 minutes and 6 seconds. We compared the actual reading time for each set of

documents to the sum of the average reading time per document in each set. There was

usually a large disparity between the actual and the average reading times. We consider a

document set to have been skim read if the actual reading time was less than the average,

otherwise we consider the set to have been deep read.

Roughly half the document sets evaluated were skim read. Of these, the UMcontrol

recommended document was given a better relevance judgement 64% of the time. This

again drops to just 31% when the document sets are deep read. When the document set is

read deeply, the number of times that the document recommended by UMadaptive is at

least as relevant as the document recommended by UMcontrol almost doubles.

UMadaptive shown first UMcontrol shown first

Skim read Deep read Skim read Deep read

UMadaptive >UMcontrol 1 2 1 2

UMcontrol > UMadaptive 3 1 6 3

UMcontrol = UMadaptive 2 4 1 1

Total 6 7 8 6

Table 9.20: Performance according to skim or deep reading, and document order

The breakdown of skim or deep reading according to which recommended document was

shown first also showed a consistent trend against favouring UMcontrol when the

document sets were deep read (table 9.20).

Although the overall results are inconclusive, one point in HyperContext's favour is that

whereas the results for UMcontrol cannot change, those for UMadaptive may change

significantly if interpretations of documents are created by HyperContext's user

community.

171

Finally, although the results do not necessarily reflect this observation, we are interested

in the possibility of HyperContext and HyperContext-like adaptive hypertexts supporting

not one, but two, models of a user's short-term interest, the first based on UMadaptive,

and the second based on UMcontrol. Apart from noticing that which recommended

document was given a higher relevance judgement appeared to be influenced by whether

the document set was skim read, we also noticed significant differences between the user

models which were constructed in each case. In the case of UMcontrol, the query extracted

from the user model reflected terms which tended to be very visible in the documents in

the set (for example, terms which occur frequently throughout each document, or which

occur in the documents' titles or headings). On the other hand, the query extracted from

the user model based on UMadaptive tended to contain terms which required a closer

inspection of the documents to see why they were selected. These differences in the user

models, and the corresponding relevance judgements given to the recommended

documents, suggest that depending on whether a document has been skim read or read

thoroughly, a user's interest in the document may be different and would therefore

require different descriptions.

