
1 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

CSA2090:
Systems Programming

Introduction to C

Dr. Christopher Staff
Department of Computer Science & AI

University of Malta

Lecture 7:
Input and Output



2 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

Aims and Objectives

• Input and Output
• Source File Organisation



3 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

File I/O under UNIX

• Whenever you do file i/o, C interacts with
the operating system to satisfy your request

• Files in C are streams of bits or bytes
• You can think of interactions being buffered

through special areas in memory



4 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

File Pointers and Descriptors

• A file pointer is a special data type for files
– supports opening and closing streams
– reading and writing streams (when legal)

• File descriptors are integers that point into a
table of information about opened files

• see file.c



5 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

Input and Output Redirection

• UNIX allows input and output to be
redirected using < and >

• E.g., cat .cshrc > myconfig
• E.g., cat < myconfig
• Filters can be written in C that read from

stdin and write to stdout
• See line_nums.c



6 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

Interactive Output

• Writing to files is usually buffered
• The file is only written to when the buffer is

flushed
– When a \n is encountered
– When the buffer is filled

• If your program crashes before a buffer is
flushed, then...



7 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

Interactive Output

• To force output, use
– stderr instead of stdout
– fflush(stdout)
– setbuf(stdout, NULL)

•setbuf(stdout, !NULL) to resume buffering



8 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

Interactive Input

• scanf and gets are unsafe, because you
cannot check the size of input before you
receive it

• sscanf and fgets are safer, but now fgets will
leave newline characters in the input string



9 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

Source File organisation

• Preprocessor facilities
• Multiple source files
• Make



10 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

C Preprocessor

• Any directive starting with #
• Source file inclusion

– #include
• Macro replacement

– #define
• Symbolic constants: #define TRUE 1
• Macro: #define MAX(x,y) ((x) > (y) ? (x) : (y))



11 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

C Preprocessor

• Conditional inclusion
– #ifdef, #else, #endif
– #if defined(DEBUG)... #endif
– #if 0... #endif (useful for “switching off” code,

instead of commenting it out)



12 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

Multiple Source Files

• Keeps programs modular
• Allows multiple programmers to work

simultaneously on same program
• Allows library files to be written
• Can separate out parts of code that are

platform dependent (e.g., i/o routines)



13 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

Multiple Source Files

• Functions can be kept in separate source
files

• However, function prototypes, global
variables, symbolic constants, etc., needed
by multiple source files will be defined in a
header file

• The header file will be #included into each
source file using it

• See multi.h, multi1.c, multi2.c



14 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

Make

• With all these source files knocking all over
the place, it’s easy to lose track of file
dependencies

• And we also don’t need to recompile
everything, every time, unless individual
components have changed

• Enter Make



15 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

Make

• A makefile describes how executable files are
obtained
pgm: a.o b.o #target:dependencies

cc -Aa a.o b.o -o pgm #tab!
a.o: incl.h a.c

cc -Aa -c a.c
b.o: incl.h b.c

cc -A -c b.c



16 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

Make

• Typing make in a directory containing one
makefile will execute it from the beginning

• You can run from any part by typing make
target, e.g., make a.o

• See Love 15.3 for another example...



17 of 17
cstaff@cs.um.edu.mt University of Malta

CSA2090: Lecture 7
© 2004- Chris Staff

Conclusion

• That’s it!


