CSA2090:

Systems Programming
Introduction to C

[ecture 7/:
Input and Output

Dr. Christopher Staff

Department of Computer Science & Al
University of Malta

==}
] e

CSA2090: Lecture 7 1of 17

. . I
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta &




Aims and Objectives

e Input and Output

e Source File Organisation

=111
—t—

CSA2090: Lecture 7 2 of 17

c A ]
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta &




File I/O under UNIX

* Whenever you do file 1/0, C interacts with
the operating system to satisfy your request

e Files in C are streams of bits or bytes

* You can think of interactions being buffered
through special areas in memory

=111
—t—

CSA2090: Lecture 7 30f 17

c A ]
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta &




File Pointers and Descriptors

* A file pointer 1s a special data type for files
— supports opening and closing streams

— reading and writing streams (when legal)

o File descriptors are integers that point into a
table of information about opened files

e see file.c

==}
] e

CSA2090: Lecture 7 4 of 17

c A ]
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta &




Input and Output Redirection

UNIX allows input and output to be
redirected using < and >

E.g., cat .cshrc > mycontig
E.g., cat < myconfig

Filters can be written 1n C that read from
stdin and write to stdout

See line_nums.c

==}
] e

CSA2090: Lecture 7 50f17

c A ]
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta &




Interactive Output

* Writing to files 1s usually buffered

* The file 1s only written to when the buffer 1s
flushed

— When a \n is encountered
— When the buffer is filled

e If your program crashes before a buffer 1s
flushed, then...

==}
] e

CSA2090: Lecture 7 60of 17

. . I
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta &




Interactive Output

* To force output, use
—stderr instead of stdout
—fflush(stdout)

—setbuf (stdout, NULL)
- setbuf (stdout, !NULL) toresume buffering

==}
] e

CSA2090: Lecture 7 7of 17

c A ]
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta &




Interactive Input

e scanf and gets are unsafe, because you
cannot check the size of input before you
receive it

e sscanf and fgets are safer, but now fgets will
leave newline characters in the input string

—1=FH

of e

CSA2090: Lecture 7 8 of 17 - {3
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta \g




Source File organisation

* Preprocessor facilities

e Multiple source files
e Make

=111
—t—

CSA2090: Lecture 7 9of 17

c A ]
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta &




C Preprocessor

* Any directive starting with #

e Source file inclusion

— #include

 Macro replacement

— #define
e Symbolic constants: #define TRUE 1
e Macro: #define MAX(X,y) ((x) > (y) 7 (x) : (y))

=111
i

CSA2090: Lecture 7 10 of 17

c A ]
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta &




C Preprocessor

e (Conditional inclusion
— #ifdeft, #else, #endif
— #if defined(DEBUG)... #endif

— #11f O... #endif (useful for “switching off” code,
instead of commenting it out)

=111
—t—

CSA2090: Lecture 7 11 of 17

c A ]
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta &




Multiple Source Files

Keeps programs modular

Allows multiple programmers to work
simultaneously on same program

Allows library files to be written

Can separate out parts of code that are
platform dependent (e.g., 1/0 routines)

==}
] e

CSA2090: Lecture 7 12 of 17

c A ]
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta &




Multiple Source Files

* Functions can be kept in separate source
files

 However, function prototypes, global
variables, symbolic constants, etc., needed
by multiple source files will be defined in a
header file

e The header file will be #included into each
source file using it

e See IIllllti.h, multil.c, multi2.c =13

] e

CSA2090: Lecture 7 13 0of 17

c A ]
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta &




Make

* With all these source files knocking all over
the place, 1t’s easy to lose track of file
dependencies

 And we also don’t need to recompile
everything, every time, unless individual
components have changed

e Enter Make

==}
] e

CSA2090: Lecture 7 14 of 17

c A ]
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta &




Make

e A makefile describes how executable files are
obtained

pgm: a.o b.o #target:dependencies
cc -Aa a.o b.o -o pgm #tab!
a.o: incl.h a.c
cc -Aa -c a.c
b.o: incl.h b.c
cc -A -c b.c

HH
—t—

CSA2090: Lecture 7 150f 17

c A ]
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta &




Make

 Typing make 1n a directory containing one
makefile will execute it from the beginning

* You can run from any part by typing make
target, e.g., make a.o

 See Love 15.3 for another example...

=111
—t—

CSA2090: Lecture 7 16 of 17

c A ]
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta &




Conclusion

e That’s it!

H

—t—

CSA2090: Lecture 7 17 of 17

c A ]
© 2004- Chris Staff cstaff@cs.um.edu.mt University of Malta &




