
© 2001. Chris Staff. Department of Computer Science and AI, University of Malta.

CSA402: Lecture 17 1

CSA402

Lecture 17

The Architecture of a

 Generic AHS:

Personal WebWatcher

References

Mladenic, D. (1996), Personal WebWatcher: design and implementation. Available on-
line at
http://www.cs.cmu.edu/afs/cs/project/theo-4/text-learning/www/pww/papers/PWW/pwwTR.ps.Z

Mladenic, D. (1999), Machine learning used by Personal WebWatcher. Available on-
line at
http://www.cs.cmu.edu/afs/cs/project/theo-4/text-learning/www/pww/papers/PWW/pwwACAI99.ps.gz

Additional information about Personal WebWatcher can be found at
http://www.cs.cmu.edu/afs/cs/project/theo-4/text-learning/www/pww/index.html

© 2001. Chris Staff. Department of Computer Science and AI, University of Malta.

CSA402: Lecture 17 2

Overview

• We have seen the goals and objectives
of Adaptive Hypertext Systems

• We have seen how research into ITS
has influenced ITS-based AHS
architecture

• We have seen how to represent user
interests through User Modeling

• We have seen how Information
Retrieval can be used to search for
relevant documents based on a user
query

• Today, we will see how Personal
WebWatcher recommends documents
to a user, based on an analysis of the
documents that a user browses

© 2001. Chris Staff. Department of Computer Science and AI, University of Malta.

CSA402: Lecture 17 3

Personal WebWatcher

• Personal WebWatcher was inspired by
WebWatcher

• WebWatcher analyses user interactions
in a Web site to offer an improved
service to future users of that site

• WebWatcher is not a personal assistant

• Personal WebWatcher (PWW) is a
personal search assistant

• PWW observes users of the WWW and
suggests pages that they may be
interested in

• PWW learns the individual interests of
its users from the Web pages that the
users visit

• The learned user model is then used to
suggest new HTML pages to the user

© 2001. Chris Staff. Department of Computer Science and AI, University of Malta.

CSA402: Lecture 17 4

Architecture of Personal WebWatcher

(From Mladenic, D. 1998 Personal WebWatcher: design and implementation)

• PWW consists of two main parts:

• a Web proxy server
• a learner

• The proxy saves URLs of visited
documents to disk

• The learner uses them to generate a
model of user interests

© 2001. Chris Staff. Department of Computer Science and AI, University of Malta.

CSA402: Lecture 17 5

The Proxy Server

• Consists of three main parts:

• the proxy itself (together with a
fetcher that retrieves a document)

• the adviser
• the classifier

• When a user requests a Web page, the
proxy fetches, adding advice if it is in
HTML format

• Advice is added by the adviser, which
extracts hyperlinks from the document
and sends them to the classifier

• The classifier compares the linked-to
documents to the user model, and, if
there is a close enough match between
a user interest and the target document,
it will recommend the link to the user

© 2001. Chris Staff. Department of Computer Science and AI, University of Malta.

CSA402: Lecture 17 6

The Learner

• The learner has two modes of
operation

• LEARNER: in which it learnes a
new user model from scratch

• UPDATER: in which it updates an
existing user model

• In LEARNER mode the learner must
decide how to define the domain

• In UPDATER mode, the domain is
already defined, and so knows which
terms to use to represent a document in
vector space.

• In either mode, the learner processes
the document that the user visited
and the documents lying one link
away from the visited document

• It processes visited documents as
positive examples of the user's interest,
and non-visited documents as negative
examples

• The learner operates "off-line"

© 2001. Chris Staff. Department of Computer Science and AI, University of Malta.

CSA402: Lecture 17 7

The Learner model

(From Mladenic, D. 1998 Personal WebWatcher: design and implementation)

© 2001. Chris Staff. Department of Computer Science and AI, University of Malta.

CSA402: Lecture 17 8

The Model of User Interests

• The model is used to predict if some
document is a positive example
(relevant) or a negative example (non-
relevant) to a user interest

• The model is applied to documents
linked to from a user-requested
document

• The hyperlinks in the requested
document are marked up accordingly

• However, because it is time-consuming
to process the linked-to documents in
real-time, an estimation is made based
on the hyperlink in the requested
document...

UserHL →{pos, neg}

Is the hyperlink a positive or negative example
of the user interests?

© 2001. Chris Staff. Department of Computer Science and AI, University of Malta.

CSA402: Lecture 17 9

• The hyperlink must be marked up in
some way to attempt to capture
information related to the destination
document - PWW uses an extended
representation of a hyperlink

• Apart from the hyperlink's anchor text,
the extended representation includes
underlined words, words in a window
around the link source (e.g, the
sentence), and words in headings above
the hyperlink.

• Because the learner learns off-line,
documents that the user has visited and
unvisited hyperlinks from those
documents can be processed to
compare the predicted results to the
actual user behaviour

UserDOC : Document →{pos, neg}
Using the model generated from documents to

predict "interestingness" of hyperlinks

• PWW can also predict document
content based on a given hyperlink

DocumentHL : Hyperlink →document

© 2001. Chris Staff. Department of Computer Science and AI, University of Malta.

CSA402: Lecture 17 10

Representing documents in PWW

• PWW has two overall objectives:

• To learn about user interests from
full-text representations of
documents

• To recommend links to user based
on predictions of the interestingness
of documents at the destination of
hyperlinks

• In IR, documents are typically
represented as TFIDF-vectors

• PWW operates largely on HTML
documents, which have a structure

• Users may also want to add terms
(which do not appear in the HTML
document) to the document
representation (e.g., WebWatcher)

• PWW uses TFIDF-vector together with
success feedback (did the user follow a
recommended link?)

© 2001. Chris Staff. Department of Computer Science and AI, University of Malta.

CSA402: Lecture 17 11

• If the advice was poor, then use
additional information to change
advice to reflect what the user actually
did.

• Term weight in the TFIDF vector is
derived using mutual information
between term frequency and class
value (using Quinlan's Decision Trees)

• Mutual information assigns higher
weights to terms which are better at
distinguishing between interesting and
uninteresting documents (based on
observation)

The Learning Algorithm

• PWW compares a Naive (simple)
Bayesian classifier on frequency
vectors with the k-Nearest Neighbour
approach to generate a model of user
interests

• The Bayesian Classifier on boolean
vectors assumes term independence

© 2001. Chris Staff. Department of Computer Science and AI, University of Malta.

CSA402: Lecture 17 12

• It defines the probability of class c for
some document doc that contains term
w as proportional to

P(c)ΠwP(c|w)

• Yang's variation of k-Nearest
Neighbour defines the relevance of
class c given document doc as

rel(c|doc) = i
k
=∑ 1 similarity(doc,Di) P(c|Di)

• PWW experiments show that k-Nearest
Neighbour gave slightly better results
than the Naive Bayesian Classifier, but
that the overall difference between the
two learning algorithms was not
significant (Mladenic, 1999)

