
10/12/2011

1

University of Malta
Session 5

Software Maintenance and Process Scheduling

In this session we look at some fundamental concepts

behind software maintenance which highlight its importance

as a major component of software development. We then

move on to process control through the use of task

scheduling and its modelling.

Ernest Cachia

Department of Computer Science Faculty of ICT

University of Malta

Slide 2 of 28

Session Aims

The main aim of this session is to outline the maintenance
process in software engineering, to explain its various parts, to
provide a scientific framework for system evolution, and to
present a form of measurement of the maintenance effort. To
end, two methods used for project activity scheduling will be
explained.

• Introduce the ideas behind system maintenance in terms of overall

system development

• Lehman’s Laws of system evolution

• Maintenance measurement

• Activity scheduling methods

Faculty of ICT

Ernest Cachia

Department of Computer Science

10/12/2011

2

University of Malta

Slide 3 of 28

Session Contents

• Maintenance and system evolution

• Maintenance metrics

• System Complexity metrics

• Scheduling models

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 4 of 28

Common Views on Maintenance

Some basic misconceptions of maintenance:

• Can be considered after solution delivery

• Is something secondary to (and not as important as)
development

• Can be handled by less-competent developers

• Not that important to clients

• Not that costly

• Might never be needed anyway

Faculty of ICT

Ernest Cachia

Department of Computer Science

10/12/2011

3

University of Malta

Slide 5 of 28

The Truth Be Told…

The truth about maintenance in the modern system
development process:

• Must be a driving factor in the way a solution is built

• Is actually a mini development cycle in its own right

• The people who build the solution should be the ones who
maintain it

• Is often the clinching issue of many software development
contracts

• Should not be costly – however, if neglected can be even
more costly than the solution itself

• Is critical for the continued usefulness, and survival, of the
system

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 6 of 28

Maintenance in Development

25

5

10
60

Software Development Effort (as a percentage)

Analysis &
Design

Coding

Testing

All values in chart are approximated from various sources and rounded.

Faculty of ICT

Ernest Cachia

Department of Computer Science

10/12/2011

4

University of Malta

Slide 7 of 28

Reasons for High Maintenance Costs

• Reputation as being “second class development” amongst

software developers

• The widespread presence of legacy systems

• Innovation brings new errors with it

• Gradual degradation of long-standing and often-maintained

systems (this will be better explained in the part dealing with

Lehman’s Laws)

• Inaccurate and un-matching documentation

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 8 of 28

Highlighting the Importance of
Maintenance

Barry Boehm proposes the following stances (with some personal

adaptation):

• Link solution objectives to organisational goals

• Link software maintenance rewards to organisational

performance

• Make software members of operational teams take turns at

maintenance – create no distinction of roles

• Allow adequate budget and a good degree of independence

within teams handling maintenance

• Involve maintenance staff early in the software process and

during all stages of development.

Faculty of ICT

Ernest Cachia

Department of Computer Science

10/12/2011

5

University of Malta

Slide 9 of 28

Types of Maintenance

• Perfective

Bringing solution “up-to-scratch” with any minor changes in

requirements as well as improving its external quality attributes

• Adaptive

Changes brought about by technology and/or working environment

changes

• Corrective

Carrying out repairs in any development phase of the system

• Preventive

Making the solution easier to maintain and understand

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 10 of 28

Maintenance Categories

50

25

15

10

Maintenance by Type (as a percentage)

Perfective

Adaptive

Corrective

Preventive

All values in chart are approximated from various surveys and rounded.

Faculty of ICT

Ernest Cachia

Department of Computer Science

10/12/2011

6

University of Malta

Slide 11 of 28

A Maintenance Process Example

A maintenance process which uses the different types of

maintenance is the following:

Change

request

Impact

analysis
Plan

system

release

Implement

change
System

release

Perfective

maintenance

Adaptive

maintenance

Corrective

maintenance

Taken from Ian Sommerville
Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 12 of 28

Regression Testing

When parts of a system are changed, one must ensure that the

unchanged parts work as they did before. This is called

regression testing, and is made up of the following steps:

• Prepare a general purpose set of test cases (TCs) for the

existing system.

• Run the TCs on the existing version and save the results.

• Make program modifications.

• Now run the same TCs on the modified and save the results.

• Compare both sets of results (i.e. from existing and modified).

THE RESULTS SHOULD BE IDENTICAL.

Faculty of ICT

Ernest Cachia

Department of Computer Science

10/12/2011

7

University of Malta

Slide 13 of 28

Lehman’s Laws of System Evolution

Meir Manny Lehman (while Professor at Imperial College, University of

London), together with colleagues, proposed a set of distinct

behavioural patterns governing software system evolution. These

patterns came to be known as Lehman’s Laws.

Lehman’s Laws are 8 in all. However only 5 are

widely accepted, and of these usually only the

first 2 are most commonly quoted. These are the

following:

1) Continuing change
Software must continually evolve, or grow useless.

2) Increasing complexity
The structure of evolving software tends to degrade.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 14 of 28

Maintenance Cost

Technical factors effecting maintenance cost
• Module independence (maintainability)

• Programming language (understandability)

• Programming style (understandability)

• Program validation and verification (i.e. correction avoidance)

• Documentation (understandability)

• Configuration management (i.e. structured evolution)

Non-technical factors effecting maintenance cost
• Application domain familiarity (i.e. clear comprehension)

• Staff stability (i.e. the builders are the maintainers)

• Program age (i.e. structure degradation)

• External environment (i.e. real-word dependence)

• Hardware stability (i.e. technology advancement)

Faculty of ICT

Ernest Cachia

Department of Computer Science

10/12/2011

8

University of Malta

Slide 15 of 28

Maintenance Cost Estimation

Annual Change Traffic (ACT) is the fraction (%) of a

software product’s source instructions which undergo

change during a (typical) year either through addition or

modification (taken from Ian Sommerville)

• Annual Maintenance Effort (AME) is calculated as follows:

AME = ACT x PM

where PM represents the estimated or actual development

effort in person (or programmer)-months for the whole system

Beside the point: After this, AME can be used as effort

input to the Intermediate COCOMO-1 method.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 16 of 28

Maintenance Effort Estimation Example

Let us assume that a 90pm were required to develop a

system. Furthermore, it is estimated that the annual change

traffic (ACT) is 15% (i.e. approx. 15% of code will change in

the course of a year)

Therefore, the annual maintenance effort (AME):

AME = 0.15 * 90pm = 13.5pm

A possible problem to this approach (Sommerville):

What would the ACT value for new systems be?

Faculty of ICT

Ernest Cachia

Department of Computer Science

10/12/2011

9

University of Malta

Slide 17 of 28

Modularity

Definition: “One of a set of separate parts which, when combined,
form a complete whole” (Cambridge on-line dictionary)

In may classifications, this is a recurring factor
influencing system maintenance.

Modularity influences system complexity which
directly effects system maintainability

The metrics used to measure system complexity are:

• Coupling (defined as the 5 levels of coupling)

• Cohesion (defined as the 7 levels of cohesion)

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 18 of 28

Project Scheduling

Definition: “A list of planned activities or things to be done

showing the times or dates when they are intended to happen

or be done” (Cambridge on-line dictionary)

A software project is made up of activities, and these must

happen according to plan – i.e. scheduled.

Schedulable components:

• Activities

• Resources (including the human variety)

• Time (durations and deadlines)

• Products (intermediate and final)

Faculty of ICT

Ernest Cachia

Department of Computer Science

10/12/2011

10

University of Malta

Slide 19 of 28

Activity On Arrow Diagrams

We need to be able to clearly model activities to be able to

schedule them. One approach is to use an Activity On Arrow

(AOA) style diagram.

A prime example of such (AOA) diagrams is the Project

Evaluation and Review Technique (or PERT) chart.

• Diagram components (symbols)

– Nodes (drawn as circles)

– Links (drawn as directed arcs)

• Symbol meanings

– Nodes: Start/Stop events (points)

– Links: Activities

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 20 of 28

AOA Chart Construction Rules

• Must contain only one start and one end node

• A link has duration (optionally shown)

• A node has no duration (simply start/stop point)

• Time flows from left to right

• Nodes are numbered sequentially

• Loops are not allowed (by concept)

• “Dangles” are not allowed (except in the case of the

one and only end node)

Faculty of ICT

Ernest Cachia

Department of Computer Science

10/12/2011

11

University of Malta

Slide 21 of 28

AOA Chart Example (1/3)

1 2 3

4

5 6 A

B

C

D

F

E

G

H

Explanation:

The above project (or part of) consists of eight activities (“A”~“H”).

The duration of each activity is not indicated. The project starts at

node one and ends at node six. The derived duration of activity “A”

is the time difference between node two and node one; the derived

duration of activity “B” is the time difference between node four and

node 1; and so on.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 22 of 28

AOA Chart Example (2/3)

1

3

2

4

5

Read

sources

Start word

processor

Type personal

notes

Write some

rev. questions

.

Explanation:

There are four activities in all. A student reads from various sources

and starts a word-processor to then type in some personal notes and

furthermore, manually writes some questions on paper to remember

to ask the lecturer. IN PRACTICE reading and writing questions can

proceed separately from starting the word processor to type in some

personal notes. THEREFORE…

Faculty of ICT

Ernest Cachia

Department of Computer Science

10/12/2011

12

University of Malta

Slide 23 of 28

AOA Chart Example (3/3)

1 3

2

4

5

Read

sources

Start word

processor

Type personal

notes

Write some

rev. questions

.

3a

Dummy

link

Please note, that a dummy link has zero duration time and

uses absolutely no resources.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 24 of 28

PERT Chart Nodes

Earliest

date

Latest

date

PERT Chart (milestone) node

Activity ID and duration
PERT Chart activity

Faculty of ICT

Ernest Cachia

Department of Computer Science

10/12/2011

13

University of Malta

Slide 25 of 28

PERT Chart Example (1/2)

Activity Duration (units) Dependencies

Task 1 10

Task 2 12

Task 3 17 Task 2

Task 4 25 Tasks 1 & 3

Task 5 35 Tasks 1 & 3

Task 6 18 Tasks 4 & 5

Let us take the table below, representing various

activities in a hypothetical project, as an example.

A PERT chart model of this sequence of activities

is shown on the next slide.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 26 of 28

PERT Chart Example (2/2)

0

0

10

29

12

12

29

29

Task 3 (17)

54

64

T
a

s
k
 4

 (
2
5

)

Task 5 (35) 64

64

82

82

The “critical path” is the one that contains activities that would cause

project delay on the whole had they to be delayed themselves.

In this example: Tasks 2, 3, 5, and 6.

Faculty of ICT

Ernest Cachia

Department of Computer Science

10/12/2011

14

University of Malta

Slide 27 of 28

Gantt Chart Example

Time

(units)

1
2

3
4
5
6

Activity

10 0 30 20 50 40 70 60 80 90

Critical

path

Gantt charts are a form of bar chart published by

Henry Laurence Gantt (an American mechanical

engineer) in 1910.

Faculty of ICT

Ernest Cachia

Department of Computer Science

University of Malta

Slide 28 of 28

Summary (Session 5)

• An introduction to software system maintenance

• Types of maintenance

• Software evolution through two of Lehman’s Laws

• Maintenance measurement and regression testing

• Coupling and cohesion as complexity/maintainability metrics

• An introduction to scheduling

• Scheduling through PERT and Gantt charts

Faculty of ICT

Ernest Cachia

Department of Computer Science

10/12/2011

15

University of Malta

Slide 29 of 28

Barry W. Boehm

Back to originating slide

Dr. Barry Boehm served within the U.S. Department of Defense (DoD) from 1989

to 1992 as director of the DARPA Information Science and Technology Office and

as director of the DDR&E Software and Computer Technology Office. He worked

at TRW from 1973 to 1989, culminating as chief scientist of the Defense Systems

Group, and at the Rand Corporation from 1959 to 1973, culminating as head of

the Information Sciences Department. He entered the software field at General

Dynamics in 1955.

His current research interests involve recasting software engineering into a

value-based framework, including processes, methods, and tools for value-based

software definition, architecting, development, validation, and evolution. His

contributions to the field include the Constructive Cost Model (COCOMO), the

Spiral Model of the software process, and the Theory W (win-win) approach to

software management and requirements determination. He has received the

ACM Distinguished Research Award in Software Engineering and the IEEE

Harlan Mills Award, and an honorary ScD in Computer Science from the

University of Massachusetts. He is a Fellow of the primary professional

societies in computing (ACM), aerospace (AIAA), electronics (IEEE), and

systems engineering (INCOSE), and a member of the U.S. National Academy of

Engineering.

Faculty of ICT

Ernest Cachia

Department of Computer Science

