Guidelines for transforming DFD models to Structure Chart models
The Reasons

- To move from an abstract system representation to a more physical one.
- To offer some guidelines to this procedure.
- To reduce ambiguity which may arise from subjective interpretations.
- To move from data flow concepts to program structure concepts.
General Steps Involved

1. The type of data flow is established
 - What is the nature of the data flowing between processes?

2. Determine flow boundaries (switch points)
 - Input↔Output boundaries
 - Hub↔Action boundaries

3. Map the abstract DFD on to a particular program structure
 - Transformational structure
 - Transactional structure
4. Define a valid control structure
 - Also known as “first-level” factoring
 - Depends on whether transformational or transactional models are used.
 - “Call-and-return” for transformational
 - “Call-and-act” for transactional

5. Refine (tune) the resulting structure
 - Also known as “second-level factoring”
 - Map IO flow bounded parts of DFD
6. Supplement and tune the final architectural structure

- Apply basic module independence concepts (i.e. Explode or implode modules according to coupling/cohesion requirements) to obtain an easier implementation.

- Please also visit the slides on the web-site “www.sei.cmu.edu/ata/ATAM/index.htm” for a more comprehensive and interesting approach to architectural analysis known as “Architectural Trade-off Analysis – ATA”.

Transformational Analysis (aka Transformational Mapping)

Context level (level 0) Example

- Control panel
- Sensors
- SafeHome system*
- Control panel display
- Alarm
- Telephone line

* Example taken from “Software Engineering – A Practitioner's Approach” by R. S. Pressman.
Level 2 Example (Monitor sensors)

1. **Assess against setup**
 - Configuration data
 - Sensor id, type and location
 - Sensor status and setting

2. **Read sensors**
 - Sensor id and setting

3. **Format for display**
 - Sensor information
 - Format for display
 - Alarm data

4. **Gen. alarm signal**
 - Alarm type
 - Telephone number

5. **Dial phone**
 - Dial tones
 - Dial phone
 - Sensor id, type and setting

6. **Telephone number**
 - Dial tones
 - Configuration data

7. **Diagonals**
 - Sensor status
 - Alarm data
 - Configuration data
Level 3 Example (Assess against setup)

- Acquire response info.
- Estab. alarm conds.
- Select phone number

- Sensor id and setting
- Alarm cond. Code, sensor id, and timing info.
- List of numbers
- Telephone number

- Sensor id, type and location
- Alarm data
- Configuration data
Level 3 Example (Format for display)

Sensor id, type and location \rightarrow Format display \rightarrow Formatted id, type and location \rightarrow Generate display \rightarrow Sensor information
Level 3 Example (Dial phone)

1. Telephone number
2. Setup conn to phone net
3. Tone-ready telephone number
4. Gen. pulses to line
5. Dial tones
Putting Level 3 Together

This DFD exhibits definite transform flow character.

- Afferent branch (input)
- Central transform (processing)
- Efferent branch (output)
First-Level Factoring

Monitor sensors

Sensor input controller

Alarm conditions controller

Alarm output controller
These are all the processes in the efferent branch:
Second-Level Factoring (2)

For the efferent branch:

- Monitor sensors
 - Sensor input controller
 - Alarm conditions controller
 - Alarm output controller
 - Format display
 - Generate alarm signal
 - Setup conn. to phone net
 - Generate pulses to line

Now, do the same for the other branches (i.e. Afferent and Central)...
Second-Level Factoring

- Estab. alarm conds.
- Configuration data
- List of numbers
- Sensor id, type and location
- Telephone number
- Alarm output controller
- Alarm cond. controller
- Sensor input controller
- Establish alarm conds
- Select phone number
- Select phone number
- Monitor sensors

For central transform:
Finally, for the afferent branch:

- Read sensors
 - Sensor status
 - Sensor id and setting
- Acquire response info.
 - Configuration data
 - Alarm cond. Code, sensor id, and timing info.
- Monitor sensors
 - Sensor input controller
 - Alarm conds controller
 - Alarm output controller
 - Acquire response info.
 - Read sensors
Some degree of refinement can sometimes be carried out on the initial “rough-cut” of the system's structure.

- Monitor sensors
 - Implode & assimilate (inherent functionality)
 - Sensor input controller
 - Read sensors
 - Implode (single flow)
 - Establish alarm conditions
 - Alarm output controller
 - Generate alarm signal
 - Generate pulses to line
 - Setup connection to phone net
 - Implode (triviality and single flow)
Transactional Analysis (aka Transactional Mapping)

- First step of this analysis is exactly the same as for transformational – i.e. refine the DFD.
- The initial “SafeHome*” example will be used.
- The level one DFD will be decomposed to level two as necessary.
- A “transactional centre” will then be determined.

* Taken from “Software Engineering – A Practitioner's Approach” by R. S. Pressman.
Level 2 Example (Interact with user)
Level 2 Example (Process password)

- Read password
- Compare password with file
- Produce error msg

Configuration data

Password
Four digits
Valid id msg
Invalid password
Error msg
Level 2 Example (Configure system)

Sys parameters and data

Configure request → Read system data → Build config file

Raw conf data

Configuration data
Putting Level 2 Together

This DFD exhibits transaction flow character.

Transaction centre (dispatching)
Transaction Structure Mapping

user interaction

- Read user cmd
- Invoke cmd processing
 - Enable/disable sys.
 - Configuration controller
 - Password controller
Fully refining the DFD could yield the following structure:

- **user interaction**
 - Read user cmd
 - Invoke cmd processing
 - Enable/disable sys.
 - Read system data
 - Build config file
 - Configuration controller
 - Password controller
 - Read password
 - Compare password with file
 - Produce error msg
 - Display msgs & status