
The UML Class Diagram

• Is a static diagram (describes system
structure)

– Combines a number of model elements:
• Classes

• Attributes

• Operations (methods)

• Associations

• Aggregations

• Compositions

• Generalisations

A UML Class

Name

Attributes

Operations

Properties of class diagrams:
- Static model;
- Models structure and behaviour;
- Used as a basis for other diagrams;
- Easily converted to an object diagram.

Determining Classes (1/2)

● Is there data that requires storage,
transformation or analysis?

● Are there external systems interacting with the
one in question?

● Are any class libraries or components being use
(from manufacturers, other colleagues or past
projects)?

● Does the system handle any devices?

● Does the system model organisational
structures?

● Analyse all actor roles.

Determining Classes (2/2)

• Textual Analysis (based on Dennis, 2002)

• A common or improper noun implies a class

• A proper noun or direct reference implies an object (instance of a

class)

• A collective noun implies a class made up of groups of objects from

another class

• An adjective implies an attribute

• A “doing” verb implies an operation

• A “being” verb implies a classification relationship between an

object and its class

• A “having” verb implies an aggregation or association relationship

• A transitive verb implies an operation

• An intransitive verb implies an exception

• A predicate or descriptive verb phrase implies an operation

• An adverb implies an attribute of a relationship or an operation

UML Class Attributes (1/2)

 Very system dependent

Describe characteristics of objects belonging to
that class

Can be informative - or confusing

Has a definite type
– Primitive (Boolean, integer, real, enumerated, etc.)
– language specific
– other classes
– any user defined type

Has different visibility, including:
– public (viewed and used from other classes)

– private (cannot be accessed from other classes)

UML Class Attributes (2/2)

• Can be given a default value

• Can be given class-scope

• Can list possible values of enumeration

• Directly implementable into most modern
programming languages with object-oriented
support (e.g. Java)

Attribute syntax:

Visibility name:type=init_value{property_string}

UML Class Attribute Examples

UNIXaccount
+ username : string
+ groupname : string
+ filesystem_size : integer
+ creation_date : date
- password : string

UNIXaccount
+ username : string
+ groupname : string = “staff"
+ filesystem_size : integer
+ creation_date : date
- password : string

Invoice
+ amount : real
+ date : date = current date
+ customer : string
+ specification : string
- administrator : string = "unspecified"
- number_of_invoices : integer

Invoice
+ amount : real
+ date : date = current date
+ customer : string
+ specification : string
- administrator : string = "unspecified"
- number_of_invoices : integer
+ status : status = unpaid { unpaid, paid }

UML Class-to-Java Example

Public class UNIXaccount
{
public string username;
public string groupname = "csai";
public int filesystem_size;
public date creation_date;
private string password;
static private integer no_of_accounts = 0
public UNIXaccount()
{
//Other initialisation
no_of_accounts++;

}
//Methods go here

};

UNIXaccount

+ username : string

+ groupname : string = “staff"

+ filesystem_size : integer

+ creation_date : date

- password : string

- no_of_accounts : integer = 0

Operations (Methods)

Figure

- x : integer = 0

- y : integer = 0

+ draw()

Public class Figure
{
private int x = 0;
private int y = 0;
public void draw()
{
//Java code for drawing figure

}
};

Figure fig1 = new Figure();
Figure fig2 = new Figure();
fig1.draw();
fig2.draw();

Constraints on Operations

report ()

BurglarAlarm

isTripped: Boolean = false

PoliceStation

1 station

*

{ if isTripped
then station.alert(self)}

alert (Alarm)

Association Examples

Person Car
Drives **

Driver Company
car

Person Car**
Adult Company

car

Employee
Drives 1 1

DriverDriver

Person Person
Married to

Husband Wife

Domestic
appliance

Family
member

·Turns onHeater

· Cleans

Toaster Dad
· Tunes

ChildRadio

Mum

Qualified and "Or" Associations

Person Car*Plates

User PID Process HostIP-addr* *

Item of
clothing

Male
person

0..*

Female
person

0..*
{or}

1

1

Ordered and Ternary Associations

Library Books*1..*
{ordered by date}

Member

{ordered by surname}
*

1..*

Person EstablishmentBank card

Client0..*

No qualified or aggregation
associations allowed in ternary.

1..*Credit card Shop1..*

Another Ternary Association
Example

PlayerTeam

Year

Record

goals for
goals against
wins
losses

goalkeeper

season

team

ties

Association Classes

Host

Printer
1..*

Network

Network adapter

1

*

1

QueueAdapter

Print spooler

Notary

Client Contract

Purchaser Real-estate

Computer

Association by Aggregation

Alternative Notation for
Composition Association

Car

Wheels

Body

Engine

Wiring

*

*

*

* Note that association
multiplicity is shown
within the classes

Roles in Aggregation

Zoo

Mammal Bird

Falcon0..* 0..* 0..*

Zoo
Monkey[0..*]: Mammal
Giraffe[0..*]: Mammal
Human[1..*]: Mammal
Falcon[0..*]: Bird
Cage[1..*]: Equipment

Equipment

1..* Cage 1..*

My family

Family
member

E
rn

e
s
t

F
io

n
a

My family
Ernest: Family member
Fiona: Family member

Abstract Classes

Abstract Classes and
Generalisation Example

Aircraft
{abstract}

Make
Seats
Engine type

Start() {abstract}
land() {abstract}

Jet plane

Make
Seats
Engine type

Start()
land()

Helicopter

Make
Seats
Engine type

Start()
land()

Start jet engines

Lower flaps
& landing gear

Start blades

Decrease
prop speed

Aggregation and Generalisation

Figure

{abstract}

Position: Pos

Draw() {abstract}

Group

Draw()

Polygon

Draw()

Canvas
Consists of*

Electronic

*Consists of

Line

Draw()

Circle

Draw()

Consists of *

Implementing it (e.g. in Java)
abstract public class Figure
{
abstract public void Draw();
Pos position;

}
public class Group extends Figure
{
private FigureVector consist_of;
public void Draw()
{
for (int i = 0; i < consist_of.size(), i++)
{
consist_of[i].draw();

}
}

}
public class Polygon extends Figure
{
public void Draw()
{
/* something similar to group

only using lines instead */
}

}

public class Line extends Figure
{
public void Draw()
{
/* code to draw line */

}
}
public class circle extends Figure
{
public void Draw()
{
/* code to draw circle */

}
}

Constrained Generalisations

• Overlapping

● A type of inheritance whereby sharing of common
sub-classes by other sub-classes is allowed.

• Disjoint (the default)

● The opposite of overlapping.

• Complete

● A type of inheritance whereby the existing sub-
classes are said to fully define a given super-class.
No further sub-classing may be defined.

• Incomplete (the default)

● Further sub-classes can be added later on to more
concretely specify a given super-class.

Overlapping Generalisation

Electronic
device

Radio
receiver

Monitor
unit

TV set

Amplifier

{overlapping}

Complete Generalisation

University
faculty

component

University
department

University
institute

{complete}

Person

Man Woman

{complete}

Expressing Rules in UML

• Rules are expressed using constraints and
derivations

●Constraints were mentioned earlier (e.g. or-

associations, ordered associations, inheritance

constraints, etc.)

●Derivations are rules governing how entities can

be derived (e.g. age = current date - DOB)

Example of Derived Associations

Airport Flight Aircraft

Passenger

Turbo-prop
aircraft

Jet-turbine
aircraft

Uses uses

/1 class passenger

Fixed-wing
passenger craft

Is
 o

n

Name
Surname
Age
Nationality
Destination
Ticket price
/1 class passenger

Passenger

{1 class passenger = = (Ticket price > 400)}

N.B. Relation cardinality is omitted for example clarity

/1 class passenger

Another Example of a Derived
Association

Shop Order

Customer

Processes

/bulk-buying customer

P
la

c
e
s

Wholesaler Supplies

/supermarket

Name
Address
Owner
Category
Date of registration
Area
/Supermarket

Shop

{Supermarket = = (Area > 200 && Category = "dept")}

N.B. Relation cardinality is omitted for example clarity

Example of a Constraint
Association

Database

Organisation

Employee

E
n

try
 in

Member of

{subset}

M
a
in

ta
in

s

N.B. Relation cardinality is omitted for example clarity

Project manager of

Association Class

Class Dependencies

«friend»
ClassA ClassB

ClassC

«instantiate»

«call»

ClassD

operationZ()
«friend»

ClassD ClassE

«refine»
ClassC combines

two logical classes

Concrete Dependency Example

Controller

Diagram
Elements

Domain
Elements

Graphics
Core

«access»

«access»

«access»

«access»

«access»

Class Diagram Example

Element

Carbon Hydrogen

<<covalent>>

<<covalent>>C

C

C H

Instantiation of Class Diagram
(in previous slide)

:Carbon :Carbon

:Hydrogen

:Hydrogen

:Hydrogen

:Hydrogen

:Hydrogen:Hydrogen

Another Class Diagram Example

+getOrderStatus
+setOrderStatus
+getLineItems
+setLineItems
+getCreditApproved
+setCreditApproved
...

OrderBean
{abstract}

LineItem

{abstract}

Product

1

*

1

*

<<interface>>
EntityBean

CreditCard
{abstract}

Customer

MyOrder

MyLineItem

MyCreditCard

*

1

*

buyer

order

order

item

item

commodity

Try This Yourselves…

• Create a class diagram to represent a
arbitrary interconnection of computers

 Create a class diagram to represent a hierarchical
directory system in any OS

