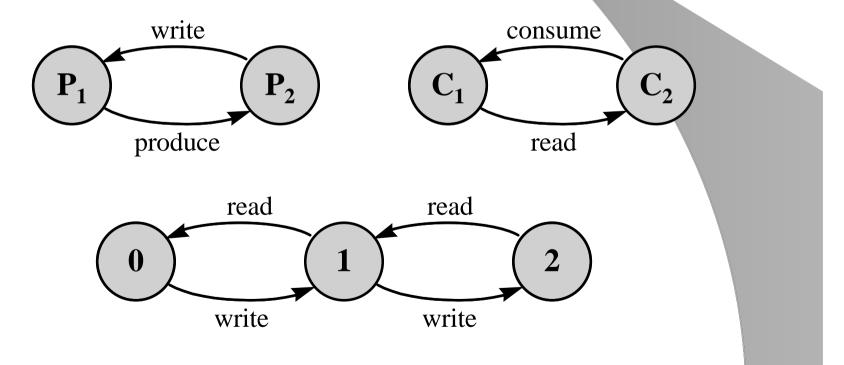
FSM limitations (computational power)

- Consider a car ABS (again) in particular the sub-system that calculates the actual brake pressure required. The range of pressures that can be handled by the servo units is potentially very great.
 - Therefore defining a state for every possible pressure value that can be required would be unusable!
- Consider modelling the behaviour of a simple 8-bit register - this requires 2⁸ distinct states!

FSM limitations (state explosion - 1)

• Consider a typical producer-consumer system modelled using three separate FSMs as follows:



FSM limitations (state explosion - 2)

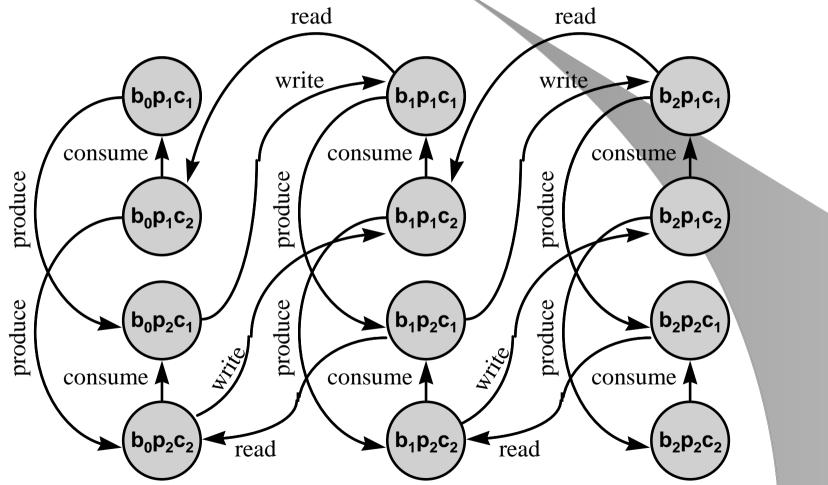
• Integrating parts of one system

The number of states for a composite FSM made up of **n** sub-systems each with \mathbf{m}_i states is $\mathbf{m}_1 \times \mathbf{m}_2 \times \dots \times \mathbf{m}_n$. In the case of the producer-consumer example this would mean the following:

The possible states of P (p_1, p_2) multiplied by the possible states of C (c_1, c_2) multiplied by the possible states of the buffer B - i.e. empty (b_0) , one entry (b_1) and two entries (b_2)

FSM limitations (state explosion - 3)

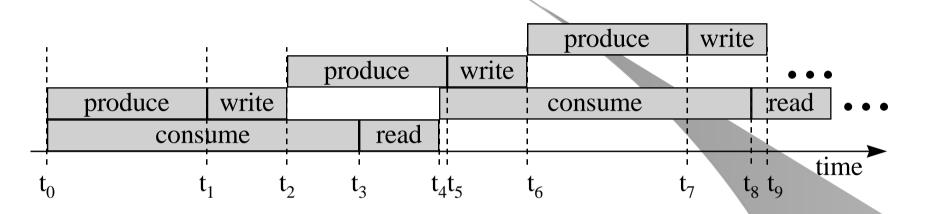
The resulting integrated FSM:



FSM limitations (modelling timing -1)

- An FSM is a "snapshot" of a system at a particular instant in time
- An FSM assumes one action (transition) per instant in time
- Asynchronous (i.e. potentially concurrent) actions can be of different duration (*eg.* p = t; c = 2t; r = w = t/4)
- This aspect (concurrent action timing) of system operation is not clearly captured by FSMs

FSM limitations (modelling timing -2)



$t_0: t_1: $	t ₅ : <b<sub>0,p₂,c₂> t₆: <b<sub>1,p₁,c₂></b<sub></b<sub>
$t_2: $	t ₇ : <b<sub>1,p₂,c₂></b<sub>
t ₃ : <b<sub>1,p₁,c₁> t₄: <b<sub>0,p₁,c₂></b<sub></b<sub>	t ₈ : <b<sub>1,p₂,c₁> t₉: <b<sub>1,p₁,c₁></b<sub></b<sub>

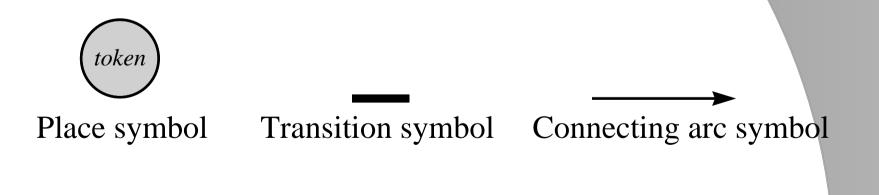
The states at times t_0 and t_4 are the same $\langle b_0, p_1, c_2 \rangle$ as are also the states at times t_1 and $t_5 \langle b_0, p_2, c_2 \rangle$, states t_2 and $t_6 \langle b_1, p_1, c_2 \rangle$, states t_3 and $t_9 \langle b_1, p_1, c_1 \rangle$. However, looking at the graph it is clear that they do not refer to the same actions. This fact is not captured adequately by the FSM.

Petri Net (PN) components

- Graphical formalism of system behaviour specification
- Constituents:
 - finite set of *places* **P**
 - finite set of *transitions* **T**
 - finite set of *directed arcs* A (these connect either places to transitions or vice-versa)
- PN marking imposing a state on the PN.
- Tokens used to mark a PN

Petri Nets specs

- Referred to as: **PN**
- To model: Asyncronous systems
- Type: Formalised notation
- Popularity: Medium
- Notation: Relatively simple and intuitive



PN "evolution" rules (1)

- PN evolution implies movement of tokens
- A PN does not change shape as it evolves
- A transition may have one or more input or output places
- Input places $\{I\} \subset \{P\}$ • Output places $\{O\} \subset \{P\}$ • $p_1 \quad p_2 \quad p_n$ • $p_1 \quad p_2 \quad p_n$ • $p_1 \quad p_2 \quad p_n \in O$ • $p_1 \quad p_2 \quad p_n \in O$

PN "evolution" rules (2)

• Transition enabled \Rightarrow

At least **one** token in **each** ot transition's imput places.

• Transition "firing" \Rightarrow

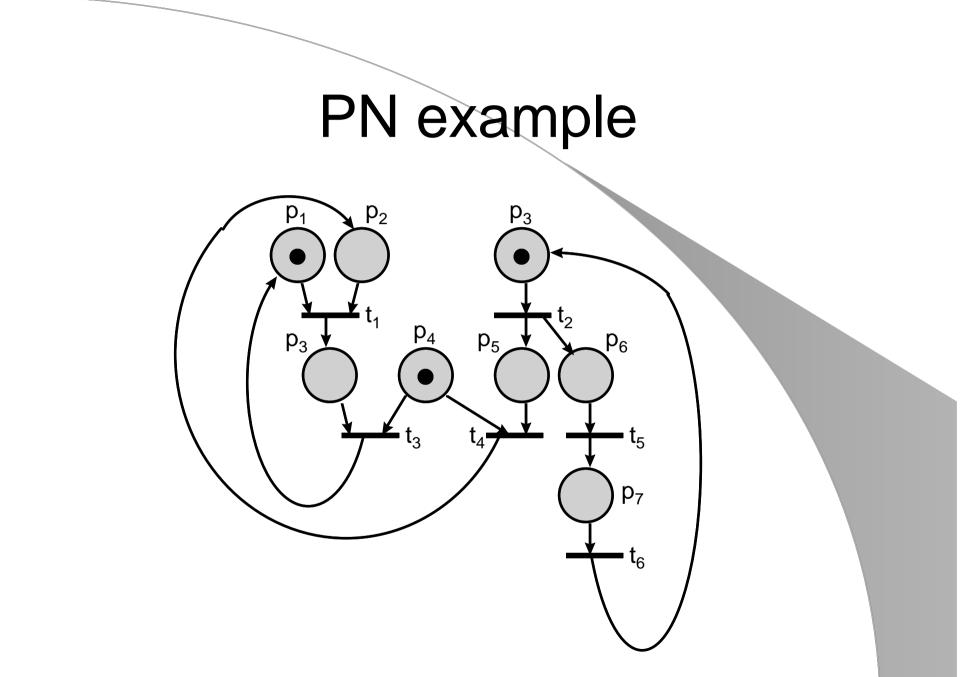
Only enabled transitions can fire.

• PN evolution \Rightarrow

Every firing leads to a new PN (i.e. system) state. This is to PN evolution.

• Evolution result (apart from new state) \Rightarrow

One token is removed from each input place and **one** is inserted into each output place.



Some PN modelled situations (1)

• Firing sequence

The string of transitions $< t_1, t_2, ..., t_n >$ where t_1 is enabled in the PN's initial marking.

A possibility in the previous example: <t₂, t₄, t₁>

• Nondeterminism

The possibility of more than one evolution path given an initial marking.

Possibilities in the previous example: <**t**₂, **t**₄, **t**₁> *or:* <**t**₂, **t**₅, **t**₆, **t**₂, **t**₅, **t**₆, **t**₂,...>

Some PN modelled situations (2)

• Deadlock

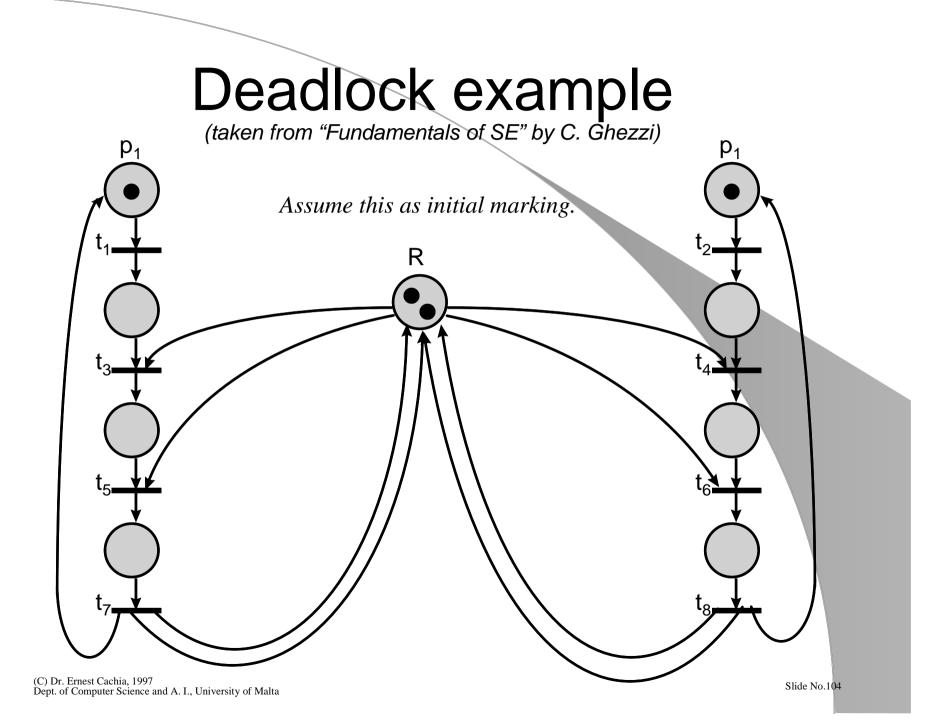
In terms of a system modelled using a PN, deadlock is the situation in which no transitions are enabled within a given marking. The PN stops evolving.

• Livelock

A situation in which deadlock can **never** occur (i.e. the PN will never reach a "conclusive" state).

Starvation

A situation in which part of a system can never proceed due to another part using a resource it needs.



Deadlock example analysis

• Normal system progress: The PN evolves according to firing sequence: <t₁, t₃, t₅, t₇,...> or <t₂, t₄, t₆, t₈,...> • Deadlock situation: The PN evolves according to firing sequence: <t₁, t₃, t₂, t₄, d> or $< t_2, t_4, t_1, t_3, d >$