The Use-Case Diagram

Course Registration System

Student \

—C__D

Register For Course

T~ >

Drop Course

L~ Add A Course

Administrator <

-

Cancel A Course

T~

Delete A Course

Instructor



Use-Case Diagrams (UCDSs) @

A use-case is...
— a simplification of (a part of) a business process model
— a set of activities within a system

— presented from the point of view of the associated actors
(i.e. those actors interacting with the system)

— leading to an externally visible result

« What is the model supposed to do?
— offer a simplified and limited notation
— allow other diagrams used to support (realise) it

— combinatorial with prototypes as complementary
iInformation

— not intended to model functional decomposition



Use-Case Diagrams (UCDS) )

Components: use-cases and actors
— a use-case must always deliver a value to an actor
— the aggregate of all use-cases is the system's
complete functionality
Goals:
— consolidate system functional requirements
— provide a development synchronisation point
— provide a basis for system testing
— provide a basic function-class/operation map




UCD Components

« The use case Itself iIs drawn as an oval.

* The actors are drawn as little stick
figures.

* The actors are connected to the use
case with lines.

System

Use-case symbol

Actor symbol
% System boundary
extend» * \ginclude»
Actorl . _
Relationships and connectors




UML Actors

* An actor

—Is a class that forms a system boundary

— participates in a use-case

— IS not within our responsibility as systems

analyst/s and/or designer/s

 Examples are

— end-users (roles)

— external systems (co-operations)

— time related events (events)

— external, passive objects (entities)



UML Actor Classification

® A primary actor uses the system's primary
functions (e.g. a bank cashier);

® A secondary actor uses the system's
secondary functions (e.g. a bank manager,
system administrator);

® An active actor Initiates a use-case;

® A passive actor only participates in one or
more use-cases.



ldentifying UML Actors

Ask yourself the following questions:

® \Who are the system’s primary users?

® \Who requires system support for daily tasks?
® \Who are the system’s secondary users?

® \What hardware does the system handle?

® \Which other (if any) systems interact with the
system in question?

® Do any entities interacting with the system
perform multiple roles as actors?

® \Which other entities (human or otherwise) might
have an interest in the system's output?




UML Actor Notation and
Generalisation Examples

=
L AT
N

1 X1

Clerical staff ~ Academic staff ~ Support staff



UML Use-Cases (UCs not UC
Diagrams UCDSs)

Definition: "A set of sequences of actions a system

performs that yield an observable result of value to a
particular actor.”

Use-case characteristics:

® Always initiated by an actor (voluntarily or
® involuntarily);

® Must provide discernible value to an actor;
® Must form a complete conceptual function.

(conceptual completion is when the end observable value is produced)



UC Description Criteria

[Lescribed b}

Use-Case Number (ID) and Name

actors

pre- and post-conditions

Invariants

non-functional requirements

Behaviour modelled as:
activity diagram/s

decomposition in smaller UC
diagrams

error-handling and exceptions
Rules modelled as:

activity diagram/s
services
examples, prototypes, etc.
open guestions and contacts
other diagrams



UC Description Example

UC: Login authentication
User

P Login Disable access - Enable access
o, 1 dutneniication Logged in user = valid user

Login delay; line security

User Behaviour modelled as:
activity diagram/s
Example on the decomposition in smaller UC
nexﬁslide diagrams
Example on the slide Invalid login name,_lnterrupt entry
ext Rules modelled as:

after the

activity diagram/s
Log, pass prompts; authenticate

slides further on
—E.g. Collaboration

diagram (tackled other diagrams (realisations)
later on)




Activity Diagram from previous

‘——%@ear screen and display system IOQE<\
\
@splay login prom@
J
@et user login na@
y
@splay password prom@

Get password

Authenticate

[invalid login]
%splay error messa@

“

[valid login]

@splay welcoming messchtivate user sessi@——/>©




Sub-UCs to Login Example

User data
acquisition

Authentication

User

Outcome handling



Sub-UCs to Login Example

User Data
Acquisition

«include»

Authentication

«include»

Outcome
Handling



Rules Activity Diagram Example

Valid string

[input_data=invalid]

[input_data=valid]

@thenticated inp@

[Iogin_data=inva|id]\f
/\Negative Outco@

[login_data=valid]

N N\
Positive outcome
(ke ) ®




Consolidating UC Descriptions

Ask yourself these questions:

® Do all actors interacting with a given UC have
communication association to I1t?

® Are there common roles amongst actors?
® Are there UC similarities?
® Are there special cases of a UC?

® Are all system functions catered for by UCs?



UCD Relationships )

® Association relationship

® Extend relationship

«extend»

® Include relationship

&

«include»

S

® Generalisation relationship




UCD Relationships )

Associations
* Links actors to their UCs

Use (or include)

 Drawn from base UC to used UC, it shows inclusion of
functionality of one UC in another (used in base)

Extend

« Drawn from extension to base UC, it extends the
meaning of UC to include optional behaviour

Generalisation

« Drawn from specialised UC to base UC, it shows the
link of a specialised UC to a more generalised one



UCD Definition Summary

Use-Case diagrams:
* show use-cases and actors
« connected by “associations”
 refined by Inheritance stereotypes

— “uses’
* re-use of a set of activities (use-cases)
* partitioning of activities
* points to the re-used use-case

— “extends”
e variation of a use-case
* points to the standard use-case



UCD Relationship Example

(1/2)

Bank Employee

System
<— * : —
\1
1

Close Account

Bank Clerk Bank Manager Account DB

Open Account




UCD Relationship Example

(2/2)
_ Get
«include» Customer
Vake Detalls
Deposit «extend» Make

Electronic
Deposit

Elicit
Customer
Needs

«extend»

Make
Interview

«include» Produce a

Req.
Statement



What a UCD iIs - and what it isn’t

® Attention focuser on the part of the business
process that is going to be supported by the IS.

® |t is the end-user perspective model.
® |t is goal driven

® Helps to identify system services.

® Are not used as DFDs.

® Sequences, branching, loops, rules, etc. cannot
(and should not) be directly expressed.

® Are often combined with activity diagrams, which
serve as their refinement.




UCD Case Study ws

Vending Machine

 After client interview the following system
scenarios were identified:
* A customer buys a product
* The supplier restocks the machine
* The supplier collects money from the machine
* On the basis of these scenarios, the following

three actors can be identified:
Customer; Supplier; Collector (in this case Collector=Supplier)



UCD Case Study e

Vending Machine

Buy a product
Restock machine /
Customer ’ Supplier

Collect money .




UCD Case Study @)

® [ntroducing annotations (notes) and constraints.

Vending Machine

Buy a product

Restock machine {supplief=owner} ’
Custlpmer ) / Supplier
I
|
|
: Collect money i ~
System belongs

{customer=employee} to company where
it is located




Testing UCs

Verification

— Confirmation of correct development according to
system requirements.

Validation (only when working parts become
available)

— Confirmation of correct system functionality
according to end-user needs.

Walking the UC

— This is basically, interchangeable role play by the
system developers.



