
The Use-Case Diagram



Use-Case Diagrams (UCDs) (1/2)

• A use-case is…

– a simplification of (a part of) a business process model

– a set of activities within a system 

– presented from the point of view of the associated actors
(i.e. those actors interacting with the system)

– leading to an externally visible result

• What is the model supposed to do?

– offer a simplified and limited notation

– allow other diagrams used to support (realise) it

– combinatorial with prototypes as complementary 
information

– not intended to model functional decomposition



Use-Case Diagrams (UCDs) (2/2)

Components: use-cases and actors

– a use-case must always deliver a value to an actor

– the aggregate of all use-cases is the system's 

complete functionality

Goals:

– consolidate system functional requirements

– provide a development synchronisation point

– provide a basis for system testing

– provide a basic function-class/operation map



UCD Components

• The use case itself is drawn as an oval. 

• The actors are drawn as little stick 

figures.

• The actors are connected to the use 

case with lines.

Actor symbol
UseCase1

Use-case symbol

Relationships and connectors

System boundary

System

Actor1
«extend» «include»



UML Actors

• An actor
– Is a class that forms a system boundary

– participates in a use-case

– is not within our responsibility as systems 
analyst/s and/or designer/s

• Examples are
– end-users (roles)

– external systems (co-operations)

– time related events (events)

– external, passive objects (entities)



UML Actor Classification

⚫A primary actor uses the system's primary 
functions (e.g. a bank cashier);

⚫A secondary actor uses the system's 

secondary functions (e.g. a bank manager, 

system administrator);

⚫An active actor initiates a use-case;

⚫A passive actor only participates in one or 

more use-cases.



Identifying UML Actors

Ask yourself the following questions:

⚫Who are the system’s primary users?

⚫Who requires system support for daily tasks?

⚫Who are the system’s secondary users?

⚫What hardware does the system handle?

⚫Which other (if any) systems interact with the 
system in question?

⚫Do any entities interacting with the system 
perform multiple roles as actors?

⚫Which other entities (human or otherwise) might 
have an interest in the system's output?



«actor»

The guy

UML Actor Notation and 
Generalisation Examples

Staff

Clerical staff Academic staff Support staff



The guy



UML Use-Cases (UCs not UC 
Diagrams UCDs)

Definition: "A set of sequences of actions a system 
performs that yield an observable result of value to a 
particular actor.“

Use-case characteristics:

⚫ Always initiated by an actor (voluntarily or

⚫ involuntarily);

⚫ Must provide discernible value to an actor;

⚫ Must form a complete conceptual function.
(conceptual completion is when the end observable value is produced)



UC Description Criteria

Use-Case Number (ID) and Name
– actors

– pre- and post-conditions

– invariants

– non-functional requirements

– Behaviour modelled as:
- activity diagram/s

- decomposition in smaller UC 
diagrams

– error-handling and exceptions

– Rules modelled as:
- activity diagram/s

– services

– examples, prototypes, etc.

– open questions and contacts

– other diagrams

Use-case

Described by



UC Description Example
UC: Login authentication

⚫ User

⚫ Disable access - Enable access

⚫ Logged in user = valid user

⚫ Login delay; line security

⚫ Behaviour modelled as:
- activity diagram/s

- decomposition in smaller UC 
diagrams

⚫ Invalid login name; interrupt entry

⚫ Rules modelled as:
- activity diagram/s

⚫ Log, pass prompts; authenticate

⚫ examples, prototypes, etc.

⚫ open questions and contacts

⚫ other diagrams (realisations)

Example on the 
next slide

Example on the slide 
after the next

E.g. Collaboration 
diagram (tackled 

later on)

Example two 
slides further on



Activity Diagram from previous



Sub-UCs to Login Example



Sub-UCs to Login Example

«include»

User Data 

Acquisition

Authentication

Outcome 

Handling

«include»User



Rules Activity Diagram Example



Consolidating UC Descriptions

Ask yourself these questions:

⚫Do all actors interacting with a given UC have 

communication association to it?

⚫ Are there common roles amongst actors?

⚫ Are there UC similarities?

⚫ Are there special cases of a UC?

⚫ Are all system functions catered for by UCs?



UCD Relationships (1/2)

⚫ Association relationship

⚫ Extend relationship

⚫ Include relationship

⚫ Generalisation relationship

«include»

«extend»



UCD Relationships (2/2)

• Associations
• Links actors to their UCs

• Use (or include)
• Drawn from base UC to used UC, it shows inclusion of 

functionality of one UC in another (used in base)

• Extend
• Drawn from extension to base UC, it extends the 

meaning of UC to include optional behaviour

• Generalisation
• Drawn from specialised UC to base UC, it shows the 

link of a specialised UC to a more generalised one



UCD Definition Summary

Use-Case diagrams:

• show use-cases and actors

• connected by “associations”

• refined by inheritance stereotypes

– “uses”
• re-use of a set of activities (use-cases)

• partitioning of activities

• points to the re-used use-case

– “extends”
• variation of a use-case

• points to the standard use-case



UCD Relationship Example 
(1/2)



UCD Relationship Example 
(2/2)

«include»

Make 

Deposit

Get 

Customer 

Details

Make 

Electronic 

Deposit

«extend»

Make 

Interview

Elicit 

Customer 

Needs

Produce a 

Req. 

Statement

«extend»

«include»



What a UCD is - and what it isn’t

⚫ Attention focuser on the part of the business 
process that is going to be supported by the IS.

⚫ It is the end-user perspective model.

⚫ It is goal driven

⚫Helps to identify system services.

⚫ Are not used as DFDs.

⚫ Sequences, branching, loops, rules, etc. cannot 

(and should not) be directly expressed.

⚫ Are often combined with activity diagrams, which 

serve as their refinement.



UCD Case Study (1/3)

Vending Machine

• After client interview the following system 

scenarios were identified:
• A customer buys a product

• The supplier restocks the machine

• The supplier collects money from the machine

• On the basis of these scenarios, the following 

three actors can be identified:
Customer; Supplier; Collector (in this case Collector=Supplier)



UCD Case Study (2/3)



UCD Case Study (3/3)

⚫ Introducing annotations (notes) and constraints.



Testing UCs

⚫Verification
– Confirmation of correct development according to 

system requirements.

⚫Validation (only when working parts become 
available)

– Confirmation of correct system functionality 
according to end-user needs.

⚫Walking the UC
– This is basically, interchangeable role play by the 

system developers.


