
Software Measurement

Mark Micallef

mmica01@um.edu.mt

Brief Course Overview

� Introduction to Measurement Theory

� Measurement as applied Software

� Examples of Various Metrics,
Measures and Indicators

Introduction to Measurement Theory

What is measurement?

Measurement is the process by which
numbers or symbols are assigned to
attributes of entities in the world
according to clearly defined rules.

The importance of Measurement

Can software be measured?Can software be measured?

Is it software measurement useful?Is it software measurement useful?

How do you measure software?How do you measure software?

The importance of Measurement

� Measurement is crucial to the progress of

all sciences, even Computer Science

� Scientific progress is made through

� Observations and generalisations…

� …based on data and measurements

� Derivation of theories and…

� …confirmation or refutation of these theories

� Measurement turns an art into a science

Uses of Measurement

� Measurement helps us to understand

� Makes the current activity visible

� Measures establish guidelines

� Measurement allows us to control

� Predict outcomes and change processes

� Measurement encourages us to improve

� When we hold our product up to a measuring

stick, we can establish quality targets and aim to

improve

Some propositions

� Developers who drink coffee in the
morning produce better code than
those who do drink orange juice

� The more you test the system, the
more reliable it will be in the field

� If you add more people to a project, it
will be completed faster

Abstraction Hierarchy

Theory

Proposition

Hypothesis

Data Analysis

Abstract
World

Empirical
World

An assumption or set of assumptions which

are taken to be true.

An proposed explanation of a phenomenon.

Take measurements, carry out studies,

look at past data, etc.

Proof or refute the hypothesis.

Example: Proving a theory

Theory

Proposition

Hypothesis

Data Analysis

Abstract
World

Empirical
World

Adding more developers to a late project will only

make it later.

If a project misses one or more milestone deadlines, it is
considered to be late.

•Project p has n developers working on it

•Project p missed a deadline be x days (x > 0)

•If we add m developers (m > 0), then when the milestone

is reached, the project would be y days late (y > x)

The greater the difference between the current time and the
missed milestone, the later the project is said to be.

Carry out studies, analyse data from past projects,…

Verify or disprove the theory

Definitions (1/2)

� Theory - A supposition which is supported

by experience, observations and empirical

data.

� Proposition – A claim or series of claims

which are assumed to be true.

� Hyptohesis – A proposed explanation for a

phenomenon. Must be testable and based

on previous observations or scientific

principles.

Definitions (2/2)

� Entities – Objects in the real world.
May be animate, inanimate or even
events.

� Attributes – Characterisics / features /
properties of an entity

Example

Entity: Program

Attributes
- Time to Develop

- Lines of code

- Number of Defects

Levels of Measurement

Various scales of measurements exist:

� Nominal Scale

� Ordinal Scale

� Interval Scale

� Ratio Scale

The Nominal Scale (1/2)

Catholic

Muslim

JewishOther

Joe

Rachel

Michelle

Christine

Michael James

Example: A religion nominal scale

Clyde Wendy

The Nominal Scale (2/2)

� The most simple measurment scale

� Involves sorting elements into
categories with regards to a certain
attribute

� There is no form of ranking

� Categories must be:
� Jointly exhaustive

� Mutually exclusive

The Ordinal Scale (1/2)

1st Class

2nd Class

3rd ClassFailed

Joe

Rachel

Michelle

Christine

Michael James

Example: A degree-classification ordinal scale

Clyde Wendy

The Ordinal Scale (2/2)

� Elements classified into categories

� Categories are ranked

� Categories are transitive A > B & B > C � A > C

� Elements in one category can be said to be better
(or worse) than elements in another category

� Elements in the same category are not rankable in
any way

� As with nominal scale, categories must be:
� Jointly exhaustive

� Mutually exclusive

Interval Scale

� Indicates exact differences between measurement
points

� Addition and subtraction can be applied

� Multiplication and Division CANNOT be applied
� We can say that product D has 8 more crashes per

month but we cannot say that it has 3 times as
more crashes

Temperature of Different CPUs

0°C 30°C 60°C 120°C

CPU A CPU B CPU C Product

D

86°F 140°F

Ratio Scale

� The highest level of measurement available

� When an absolute zero point can be located

on an interval scale, it becomes a ratio scale

� Multiplication and division can be applied

(product D crashes 4 times as much per

month than product B)

� For all practical purposes almost all interval

measurement scales are also ratio scales

Measurement Scales Hierarchy

� Scales are hierarchical

� Each higher-level

scale possesses all

the properties of the

lower ones

� A higher-level of

measurement can be

reduced to a lower one

but not vice-versa

Ratio

Interval

Ordinal

Nominal

Most Powerful

Analysis Possible

Least Powerful

Analysis Possible

Measures, Metrics and Indicators

� Measure – An appraisal or ascertainment by
comparing to a standard. E.g. Joe’s body
temperature is 99°fahrenheit

� Metric – A quantitative measure of the degree to
which an element (e.g. software system) given
attribute.
� E.g. 2 errors were discovered by customers in 18 months

(more meaningful than saying that 2 errors were found)

� Indicator – A device, variable or metric can indicate
whether a particalar state or goal has been
achieved. Usually used to draw someone’s
attention to something.
� E.g. A half-mast flag indicates that someone has died

Example of a Measure

0

20

40

60

80

100

0 2 4 6 8 10 12 14

Time (Hours)

T
e
m

p
.

Example of a Metric

0

10

20

30

40

50

0 2 6 9 12 15 18

Months since release

B
u
g
s

.

Example of a Indicator

0

10

20

30

40

50

60

70

80

90

0 2 6 9 12 15 18

Time (Hours)

T
e
m

p
.

Indicator of maximum safe temperature

Some basic measures (1/2)

� Ratio

� E.g. The ratio of testers to developers in

our company is 1:5

� Proportion

� Similar to ratio but the numerator is part

of the denominator as well

� E.g. Number of satisfied customers

Total number of customers

Some basic measures (2/2)

� Percentage
� A proportion or ration express in terms of per hundred

units

� E.g. 75% of our customers are satisfied with our product

� Rate
� Ratios, proportions and percentages are static measures

� Rate provides a dynamic view of a system

� Rate shows how one variable changes in relation to
another (one of the variables is usually time)

� E.g. Lines of Code per day, Bugs per Month, etc

Reliability and Validity of Measurements

� Reliability – Refers to the consistency
of a number of measurements taken
using the same measurement method

� Validity – Refers to whether the
measurement or metric really
measures what we intend it to
measure.

Reliability and Validity of Measurements

Reliable but not valid Valid but not reliable Reliable and Valid

Measuring Software

What makes quality software?

� Cheap?

� Reliable?

� Testable?

� Secure?

� Maintainable?

� …

What makes quality software?

� There is not clear-cut answer

� It depends on:
� Stakeholders

� Type of system

� Type of users

� …

� Quality is a

multifaceted concept
Different ideas about a quality car

Different Quality Scenarios

� Online banking system

� Security

� Correctness

� Reliability

� Air Traffic Control System

� Robustness

� Real Time Responses

� Educational Game for Children

� Userfriendliness

The 3 Ps of Software Measurment

With regards to software, we can measure:

� Product

� Process

� People

Measuring the Product

� Product refers to the actual software

system, documentation and other

deliverables

� We examine the product and measure a

number of aspects:

� Size

� Functionality offered

� Cost

� Various Quality Attributes

Measuring the Process

� Involves analysis of the way a product is
developed

� What lifecycle do we use?

� What deliverables are produced?

� How are they analysed?

� How can the process help to produce
products faster?

� How can the process help to produce better
products?

Measuring the People

� Involves analysis of the people
developing a product

� How fast do they work?

� How much bugs do they produce?

� How many sick-days do they take?

� Very controversial. People do not like
being turned into numbers.

The Measuring Process

Products

Processes

People

Measurement
Programme

Non-intrusive

Data Collection

Results, Trends,

Reports, etc

Modifications

Collecting Software Engineering Data

� Challenge: Make sure that collected data

can provide useful information for project,

process and quality management without
being a burden on the development team.

� Try to be as unintrusive as possible

� Try to make data collection automatic

� Can expensive

� Sometimes difficult to convince management

Collecting Software Engineering Data

A possible collection methodology:

1. Establish the goal of data collection

2. Develop a list of questions of interest

3. Establish data categories

4. Design and test data collection

forms/programs

5. Collect and validate data

6. Analyse data

Examples of Metrics Programmes (1/3)

Motorola
� 7 Goals

� Improve Project Planning
� Increase defect containment
� Increase software reliability
� Decrease defect density
� Improve customer service
� Reduce the cost of non-conformance
� Increase software productivity

� Various Measurement Areas
� Delivered defects, process effectiveness, software

reliability, adherance to schedule, time that problems
remain open, and more…

Examples of Metrics Programmes (2/3)

IBM
� IBM have a Software Measurement Council

� A set of metrics called 5-Up are defined and
deal with:
� Customer Satisfaction

� Postrelease Defect Rates

� Customer problem calls

� Fix response time

� Number of defective fixes

Examples of Metrics Programmes (3/3)

Hewlett-Packard

� Heavily influenced by defect metrics

� Average fixed defects/working day

� Average engineering hours / fixed defect

� Average reported defects/working day

� Defects / testing time

� …

Product Metrics

What can we measure about a product?

� Size metrics

� Defects-based metrics

� Cost-metrics

� Time metrics

� Quality Attribute metrics

Size Metrics

� Knowing the size of a system was
important for comparing different
systems together

� Software measured in lines of code
(LOC)

� As systems grew larger KLOC
(thousands of lines of code) was also
used

The problems with LOC (1/3)

� Same system developed with different
programming languages will give
different LOC readings

Video Rental
System

FoxPro
2 KLOC

Pascal
5 KLOC

Assembly
15 KLOC

The problems with LOC (2/3)

� Same system developed by different
developers using the same language
will give different LOC readings

Video Rental
System

Developer A
2 KLOC

Developer B
1.2 KLOC

Developer C
2.5 KLOC

The problems with LOC (3/3)

� To calculate LOC you have to wait
until the system is implementet

� This is not adequate when
management requires prediction of
cost and effort

� A different approach is sometimes
necessary…

Function Points

� Instead of measuring size, function
points measure the functionality
offered by a system.

� Invented by Albrecht at IBM in 1979

� Still use today: http://www.ifpug.org

Overview of Function Points (1/3)

� Function Points gauge the functionality
offered by a system

� A Function can be defined as a collection of
executable statements that performs a
certain task

� Function points can be calculated before a
system is developed

� They are language and developer
independant

Overview of Function Points (2/3)

� A function point count is calculated as a
wieghted total of five major components that
comprise an application…
� External Inputs

� External Outputs (e.g. reports)

� Logical Internal Files

� External Interface Files – files accessed by the
application but not maintained by it

� External Inquiries – types of online inquiries
supported

Overview of Function Points (3/3)

� The simplest way to calculate a
function point count is calculated as
follows:

(No. of external inputs x 4) +

(No. of external outputs x 5) +

(No. of logical internal files x 10) +

(No. of external interface files x 7) +

(No. of external enquiries x 4)

Function Points Example (1/2)

1

2

External Inputs

External Outputs

1 Logical Internal Files

1 External Enquiries

Consider the following system specs:

Develop a system which allows customers
to report bugs in a product. These reports
will be stored in a file and developers will
receive a daily report with new bugs which
they need to solve. Customers will also
receive a daily status report for bugs which
they submitted. Management can query the
system for a summary info of particular
months.

Function Points Example (2/2)

External Inputs: 1

External Outputs: 2

Logical Internal Files: 1

External Interface Files: 0

External Enquiries: 1

Total Functionality is (1x4) + (2x5) +
(1x10) + (0x7) +(1x4) = 28

Function Point Extensions

� The original function points were sufficient
but various people extended them to make
them more expressive for particular
domains.

� Examples
� General System Characteristics (GSC)

Extension

� 3D Function Points for real time systems

� Object Points

� Feature Points

The GSC Function Points Extension (1/3)

� Reasoning: Original Function Points do not

address certain functionality which systems

can offer

� E.g. Distributed functionality, performance

optimisation, etc

� The GSC extension involves answering 14

questions about the system and modifying

the original function point count accordingly

The GSC Function Points Extension (2/3)

1. Data communications

2. Distributed Functions

3. Performance

4. Heavily used

configuration

5. Transaction rate

6. Online Data Entry

7. End-user Efficiency

8. On-line update

9. Complex Processing

10. Reusability

11. Installation ease

12. Operational Ease

13. Multiple sites

14. Facilitation of Change

The GSC Function Points Extension (3/3)

� The analyst/software engineer assigns a

value between 0 and 5 to each question

� 0 = not applicable and 5 = essential

� The Value-Adjustment Factor (VAF) is then

calculated as:

∑
=

+=

14

1

01.065.0
i

CiVAF

You then adjust the original function point count as follows:

FP = FC x VAF

GSC Example (1/2)

1. Data communications

2. Distributed Functions

3. Performance

4. Heavily used
configuration

5. Transaction rate

6. Online Data Entry

7. End-user Efficiency

8. On-line update

9. Complex Processing

10. Reusability

11. Installation ease

12. Operational Ease

13. Multiple sites

14. Facilitation of Change

5

0

1

0

1

5

0

3

1

0

2

3

4

0

Total GSC Score = 25

Consider the bug-reporting system for which we already looked at and
suppose the analyst involved answers the GSC questions as follows…

GSC Example (2/2)

� As you may remember, when we calculated the function point
count for this system, we got a result of 28.

� If we apply the GSC extension, this count will be modified as
follows.

VAF = 0.65 + (0.01 x 25) = 0.9

FC = 28 x 0.9 = 25.2

� Note that the GSC extension can increase or decrease the
original count

� In larger systems, the GSC extension will have a much more
significant influence on the Function Point Count.

Defect Density

� A metric which describes how many defects

occur for each size/functionality unit of a

system

� Can be based on LOC or Function Points

sizesystem

defects

_

#

Failure Rate

� Rate of defects over time

� May be represented by the λ (lambda)

symbol

)()(

)()(

112

21

tRtt

tRtR

×−

−
=λ

where,

t1 and t2 are the beginning and ending of a specified

interval of time

R(t) is the reliability function, i.e. probability of no failure

before time t

Example of Failure Rate (1/2)

Calculate the failure rate of system X
based on a time interval of 60 days.
The probability of no failure at time day
0 was calculated to be 0.85 and the
probability of no failure on day 5 was
calculated to be 0.20.

Example of Failure Rate (2/2)

013.0

51

65.0

85.060

2.085.0

=

=

×

−
=λ

)()(

)()(

112

21

tRtt

tRtR

×−

−
=λ

Failures per day

Mean Time Between Failure (MTBF)

� MTBF is useful in safety-critical applications

(e.g. avionics, air traffic control, weapons,

etc)

� The US government mandates that new air

traffic control systems must not be

unavailable for more than 30 seconds per

year

λ

1
=MTBF

MTBF Example

Consider our previous example where we

calculated the failure rate (λ) of a system to

be 0.013. Calculate the MTBF for that

system.

λ

1
=MTBF

= 76.9 days

This system is expected to fail every 76.9 days.

McCabe’s Cyclomatic Complexity Metric

� Complexity is an important attribute to measure
� Measuring Complexity helps us

� Predict testing effort

� Predict defects

� Predict maintenance costs

� Etc

� Cyclomatic Complexity Metric was designed by McCabe in
1976

� Aimed at indicating a program’s testability and
understandability

� It is based on graph theory
� Measures the number of linearly independent paths

comprising the program

McCabe’s Cyclomatic Complexity Metric

The formula of cyclomatic complexity is:

M = V(G) = e – n + 2p

where

V(G) = cyclomatic number of Graph G

e = number of edges

n = number of nodes

p = number of unconnected parts of the

graph

Example: Cyclomatic Complexity

Consider the following flowchart…

Calculating cyclomatic complexity

e = 7, n=6, p=1

M = 7 - 6 + (2x1) = 3

Num=Rnd()

Input n

n?

Output

“Right”

Output

“Too Big”
Output

“Too Big”n>num

n<num

n=num

McCabe’s Cyclomatic Complexity

� Note that the number delivered by the
cyclomatic complexity is equal to the
number of different paths which the program
can take

� Cyclomatic Complexity is additive. i.e. M(G1
and G2) = M(G1) + M(G2)

� To have good testibility and maintainability,
McCabe recommends that no module have
a value greater than 10

� This metric is widely used and accepted in
industry

Halstead’s Software Science (1/3)

� Halstead (1979) distinguished software
science from computer science

� Premise: Any programming task consists of
selecting and arranging a finite number of
progam “tokens”

� Tokens are basic syntactic units
distinguishable by a compiler

� Computer Program: A collection of tokens
that can be classified as either operators or
operands

Halstead’s Software Science (2/3)

� Halstead (1979) distinguished software
science from computer science

� Primitives:
n1 = # of distinct operators appearing in a program

n2 = # of distinct operands appearing in a program

N1 = total # of operator occurences

N2 = total # of operand occurences

� Based on these primitive measures,
Halstead defined a series of equations

Halstead’s Software Science (3/3)

Vocabulary (n) n = n1+n2

Length (N) N = N1 + N2

Volume (V) V = N log2(n) � #bits required to
represent a program

Level (L) L = V* / V � Measure of abstraction and
therefore complexity

Difficulty (D) D = N/N*
Effort (E) E = V/L
Faults (B) B = V/S*

Where:

V* = 2 + n2 x log2(2 + n2)

M* = average number of decisions between errors (3000 according to
Halstead)

Other useful product metrics

� Cost per function point

� Defects generated per function point

� Percentage of fixes which in turn have
defects

Process Metrics

Why measure the process?

� The process creates the product

� If we can improve the process, we indirectly

improve the product

� Through measurement, we can understand,

control and improve the process

� This will lead to us engineering quality into the

process rather than simply taking product quality

measurements when the product is done

� We will look briefly at a number of process metrics

Defect Density During Machine Testing

� Defect rate during formal testingis usually positively
correlated with the defect rate experienced in the
field

� Higher defect rates found during testing is an
indicator that higher defect rates will be
experienced in the field

� Exception: In the case of exceptional testing effort
or more effective testing methods being employed

� It is useful to monitor defect density metrics of
subsequent releases of the same product

� In order to appraise product quality, consider the
following scenarios

Defect Density During Machine Testing

Scenario 1: Defect rate during testing is the
same or lower than previous release.

Reasoning: Does the testing for the current release deteriorate?

Quality Prospect

is positive

You need to

perform more

testing

No Yes

Defect Density During Machine Testing

Scenario 2: Defect rate is substantially higher
than that of the previous release

Reasoning: Did we plan for and actually improve testing effectiveness?

Quality Prospect

is positive

Quality prospect

negative. Perform

more testing.

Yes No

Defect Arrival Pattern During Testing

� Overall defect density during testing is
a summary indicator

� However, the patter of defect arrivals
gives more information

� Even with the same overall defect rate
during test, arrival patterns can be
different

Two Different Arrival Patterns

WEEK

Defect

Arrival

Cumulative

Rate

WEEK

Defect
Arrival

Cumulative
Rate

WEEK

Defect

Arrival
Rate

WEEK

Defect

Arrival
Rate

Interpretting Defect Arrival Patterns

� Always look for defect arrivals
stabilising at a very low level.

� If they do not stabilise at a low rate,
risking the product will be very risky

� Also keep track of defect backlog over
time. It is useless detecting defects if
they are not fixed and the system re-
tested.

Phase-Based Defect Removal Pattern

� An extension of the defect density
metric

� Tracks defects at all phases of the
lifecycle

� The earlier defects are found, the
cheaper they are to fix

� This metric helps you monitor when
your defects are being found

Phase-Based Defect Removal Pattern
Example

0

10

20

30

40

50

60

Design

Review 1

Design

Review 2

Code

Inspection

Unit

Testing

System

Testing

0

10

20

30

40

50

60

Design

Review 1

Design

Review 2

Code

Inspection

Unit

Testing

System

Testing

Project A

Most defects found

before testing

Ideal situation

Project B

Most defects found

during testing

More expensive to

fix

Should be corrected

Other useful process metrics

� Fix response time
� Average time to fix a defect

� Percent delinquent fixes
� Fixes which exceed the recommended fix

time according to their severity level

� Fix quality
� Percentage of fixes which turn out to be

defective

People Metrics

Why measure people?

� People metrics are of interest to

management for:

� Financial purposes (e.g. Putting Joe on project A

will cost me Lm500 per function point)

� Project management purposes (e.g. Michele

needs to produce 5 function points per day in
order to be on time)

� HR problem identification (e.g. On average,
developers produce 5 defects per hour. James

produces 10. Why?)

Warning on People Measurement

� People do not like being measured
� In many cases, you will not be able to look at a

numbers and draw conclusions.

� For example, at face value, Clyde may take a
longer time to finish his work when compared to
colleagues. However, further inspection might
reveal that his code is bug free whilst that of his
colleagues needs a lot of reworking

� Beware when using people metrics. Only use them
as indicators for potential problems

� You should never take disciplinary action against
personell based simply on people metrics

Some people metrics…

For individual developers or teams:

� Cost per Function Point

� Mean Time required to develop a
Function Point

� Defects produced per hour

� Defects produced per function point

Object Oriented Design Metrics

0 2000 4000 6000 8000 10000

Cost ($)

Operation

Acceptance Test

Testing

Coding

Design

Requirements

P
h

a
s
e

Min

Max

Why measure OO Designs?

� OO has become a very popular paradigm

� Measuring the Quality of a design helps us identify
problems early on in the life cycle

� A set of OO Design metrics were proposed by Chidamer
and Kemerer (MIT) in 1994.

Unique OO Characteristics (1/2)

� Encapsulation
� Binding together of a collection of items

� State information
� Algorithms
� Constants
� Exceptions
� …

� Abstraction and Information Hiding
� Suppressing or hiding of details
� One can use an object’s advertised methods

without knowing exactly how it does its work

Unique OO Characteristics (2/2)

� Inheritance
� Objects may acquire characteristics of one or

more other objects

� The way inheritance is used will affect the
overall quality of a system

� Localisation
� Placing related items in close physical proximity

to each other

� In the case of OO, we group related items into
objects, packages, ets

Measurable Structures in OO (1/5)

� Class

� Template from which objects are created

� Class design affects overall:

� Understandability

� Maintainability

� Testability

� Reusability is also affected by class design

� E.g. Classes with a large number of methods tend to
be more application specific and less reusable

Measurable Structures in OO (2/5)

� Message

� A request made by one object to another object

� Receiving object executes a method

� It is important to study message flow in an OO

system

� Understandability

� Maintainability

� Testability

� The more complex message flows between
objects are, the less understandable a system is

Measurable Structures in OO (3/5)

� Coupling

� A measure of the

strength of association
established by

connections between
different entities

� Occurs through:

� Use of an object’s
methods

� Inheritance

Class A

Class B Class C

Class D

Measurable Structures in OO (4/5)

� Cohesion
� The degree to which

methods in a class are
related to each other

� Effective OO designs
maximise cohesion because
they promote encapsulation

� A high degree of cohesion
indicates:
� Classes are self contained

� Fewer messages need to be
passed (more efficiency)

int Method1(a, b);

int Method2(a, b);

String Method3();

void Method4(a, b);

Class A

Measurable Structures in OO (5/5)

� Inheritance
� A mechanism which allows an object to

acquire the characteristics of one or more
other objects

� Inheritance can reduce complexity by
reducing the number of methods and
attributes in child classes

� Too much inheritance can make the
system difficult to maintain

Weighted Methods Per Class (WMC)

� Consider the class C with methods m1, m2,

… mn.

� Let c1, c2 … cn be the complexity of these

methods.

∑
=

=

n

i

icWMC
1

Weighted Methods Per Class (WMC)

� Refers to the complexity of an object
� The number of methods involved in an object is an

indicator of how much time and effort is required to
develop

� Complex classes also make their child classes
complex

� Objects with large number of methods are likely to
be more application-specific and less reusable

� Guidelines: WMC of 20 for a class is good but do
not exceed 40.

� Affects:
� Understandability, Maintainability, Reusability

Weighted Methods Per Class (WMC)

Depth of Inheritance Tree (DIT)

� The Depth of Inheritance of a class is its

depth in the inheritance tree

� If multiple inheritance is involved, the DIT

of a class is the maximum distance

between the class and the root node

� The root class has a DIT of 0

Dept of Inheritance Tree (DIT)

Animal

DogCat

DomesticAnimal

PigCow

FarmAnimal

TigerLion

WildAnimalDIT = 1 DIT = 1

DIT = 2 DIT = 2

DIT = 0

Depth of Inheritance Tree (DIT)

� The deeper a class is in the hierarchy, the
greater the number of methods likely to
inherit from parent classes – more
complex

� Deeper trees � More Reuse

� Deeper trees � Greater Design
Complexity

� DIT can analyse efficiency, reuse,
understandability and testability

Depth of Inheritance Tree (DIT)

Number of Children (NOC)

� A simple metric

� Counts the number of immediate
subclasses of a particular class

� It is a measure of how many
subclasses are going to inherit
attributes and methods of a particular
class

Number of Children (NOC)

� Generally it is better to have depth than
breadth in the class hierarchy
� Promotes reuse of methods through inheritance

� Classes higher up in the hierarch should
have more subclasses

� Classes lower down should have less

� The NOC metric gives an indication of the
potential influence of a class on the overall
design

� Attributes: Efficiency, Reusability, Testability

Number of Children (NOC)

Coupling Between Objects (CBO)

� Another simple metric

� CBO for a particular class is a count of
how many non-inheritance related
couples it maintains with other classes

Coupling Between Objects (CBO)

� Excessive coupling outside inheritance hierarchy:
� Detrimental to modular design

� Prevents reuse

� The more independent an object is, the easier it is
to reuse

� Coupling is not transitive

� The more coupling there is in a design, the more
sensitive your system will be to changes

� More coupling � More Testing

� Rule of thumb: Low coupling but high cohesion

Coupling Between Objects (CBO)

Response for a Class (RFC)

RFC = |RS|

where RS is the response set of a class

RS = {Mi} ∪∪∪∪ {Ri}

Mi = All the methods in a class

Ri = All methods called by that class

Response for a Class (RFC)

� If a large number of methods can be
invoked in response to a message,
testing and debugging becomes more
complicated.

� More methods invoked � More
Complex Object

� Attributes: understandability,
maintainability, testability

Response for a Class (RFC)

Lack of Cohesion in Methods (LCOM)

� Consider a class C1 with methods M1,
M2, … Mn

� Let {Ii} be the set of instance variables
used by methods Mi

� There are n such sets: {I1}, {I2}, … {In}

LCOM = The number of disjoint sets
formed by the intersection of the n sets

Lack of Cohesion in Methods (LCOM)

� Cohesiveness of methods within a
class is desirable
� Promotes Encapsulation

� Lack of cohesion implies that a class
should be split into 2 or more classes

� This metric helps identify flaws in a
design

� Low Cohesion � Higher Complexity

Lack of Cohesion in Methods (LCOM)

Conclusions

� We have examined a set of metrics which allow you
to analyse the quality of OO Designs

� Thresholds:
� We can provide guidelines

� However, each project may have different needs

� When possible, try to plot metric results on graphs.
� Easier to interpret

Conclusions

� Many other metrics exist and measure

� Different quality attributes

� Different types of systems

� Different process attributes

� Different people attributes

� Beyond the scope of this short course

Conclusions

� As a result of this course, we hope this that
you now:
� Appreciate the uses of measurement in general

and the need to apply it to software

� Have a good idea of what steps may be involved
in setting up a measurement programme

� Know a few metrics which you can use in the
industry

� Understand OO metrics in some detail and are
able to interpret them in practice

Conclusions

� Watch out for a metrics assignment
covering 30% of your marks

