MAT3105 Linear Algebra Project 2005/2006

The purpose of this project is to investigate line graphs of trees and determine an eigenvector for the eigenvalue zero for those that are singular.

A graph $G(\mathcal{V}, \mathcal{E})$ has a non-empty vertex set \mathcal{V} and an edge set \mathcal{E} consisting of pairs of distinct vertices. A tree is a graph without cycles. For the line graph L_G of a graph G, the vertex set $\mathcal{V}(L_G) = |\mathcal{E}(G)|$ and two vertices in L_G are adjacent if and only if the edges in G have a common vertex. Thus the line graph of the star $K_{1,n-1}$ on n vertices is the complete graph K_{n-1} .

Figure 1: A star and its Line Graph

Also the line graph of a tree consists of adjacent complete graphs (cliques) and two cliques share at most one vertex.

For a graph G on n vertices, the adjacency matrix $\mathbf{A}(G) = \mathbf{A} = (a_{ij})$ of G is the $n \times n$ symmetric matrix such that

$$a_{ij} = \begin{cases} 1 & \text{if } \{i, j\} \text{ is an edge of } G\\ 0 & \text{otherwise} \end{cases}$$

Figure 2 shows four trees:

Figure 2: Trees

- 1. Label the vertices of each tree.
- 2. Call the Mathematica package << DiscreteMath'Combinatorica'
- 3. Write down the adjacency lists of the trees and transform to the line graphs.
- 4. Determine the determinant det $(L_T v_i)$ of the adjacency matrix of each one-vertex deleted subgraph of L_T '
- 5. By using the 'Drop' command or otherwise, find the adjugate $adjug(L_T)$ of L_T .

It is established in [1] that the nullity of the line graph of a tree is at most one.

- 1. Why are the columns of $adjug(L_T)$ eigenvectors of $A(L_T)$ for a singular line graph of a tree?
- 2. If each one-vertex deleted subgraph of the line graph of a tree is singular, why is L_T non-singular?

With reference to the four trees T_1 , T_2 , T_3 , T_4 above, discuss the relevance of the one-vertex deleted subgraphs of the line graphs $\{L_T - v_i\}$, to the nullspace of the adjacency matrix of L_T .

Reference

[1]

Sciriha, I., On Singular Line Graphs of Trees, Congressus Numeratium, 135 (1998) 73-91.