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c Department of Mathematics, University of Malta, Malta
d State University of Novi Pazar, Vuka Karadžića bb, 36 300 Novi Pazar, Serbia
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Abstract

In the theory of (simple) graphs the concepts of the line and subdivision graph (as com-
pound graphs) are well-known. It is possible to consider them also in the context of (edge)
signed graphs. Some relations between the Laplacian spectrum of signed graphs and adja-
cency spectra of their associated compound (signed) graphs have been recently established
in the literature. In this paper, we study the relations between the corresponding eigenspaces.

Keywords: signed graph, line graph, subdivision graph, adjacency matrix, Laplacian, eigen-
values, eigenspaces.
AMS Classification: 05C50, 05C22.

1 Introduction

Let G = (V (G), E(G)) be a graph (simple, unless otherwise stated) of order n = |V (G)| and
size m = |E(G)|, and let σ : E(G) → {+,−} be a mapping defined on the edge set of G.
Then Γ = (G, σ) is a signed graph (or sigraph) and G is its underlying graph, while σ its
sign function (or signature). Furthermore, it is common to interpret the signs as the integers
±1. Hence, sometimes signed graphs are treated as weighted graphs, whose (edge) weights
belong to {+1,−1}. An edge e is positive (negative) if σ(e) = + (resp. σ(e) = −). If all
edges in Γ are positive (negative), then Γ is denoted by (G,+) (resp. (G,−)).

Most of the concepts defined for graphs are directly extended to signed graphs. For
example, the degree of a vertex v inG, denoted by deg(v), is also its degree in Γ. Furthermore,
if some subgraph of the underlying graph is observed, then the sign function for the subgraph
is the restriction of the original one. Thus, if v ∈ V (G), then Γ − v denotes the signed
subgraph having G − v as the underlying graph, while its signature is the restriction from
E(G) to E(G − v) (note, all edges incident to v are deleted). If U ⊂ V (G) then Γ[U ]
(with underlying graph G[U ]) denotes the (signed) induced subgraph arising from U , while
Γ− U = Γ[V (G) \ U ]. We also write Γ− Γ[U ] instead of Γ− U .

A cycle of Γ is said to be balanced (or positive) if it contains an even number of negative
edges. A signed graph is said to be balanced if all its cycles are balanced; otherwise, it is
unbalanced. For Γ = (G, σ) and U ⊂ V (G), let ΓU be the signed graph obtained from Γ
by reversing the signature of the edges in the cut [U, V (G) \ U ] (namely, σΓU (e) = −σΓ(e)
for any edge e between U and V (G) \ U , and σΓU (e) = σΓ(e) otherwise. The signed graph
ΓU is said to be (signature) switching equivalent to Γ, and the corresponding relation is an
equivalence relation. So switching equivalent signed graphs can be considered as (switching)
isomorphic graphs and their signatures are said to be equivalent. Observe also that switching
equivalent graphs have the same set of positive cycles. For other notation or definitions not
given here the reader is referred to [20].

Signed graphs, as the unsigned ones, can be studied by using matrix theory. If M (=
M(Γ)) is a real and symmetric matrix associated with Γ, then det(xI −M) is the character-
istic polynomial (or M -polynomial) of Γ with respect to M ; it is denoted by φM (x; Γ). The
eigenvalues of M , or equivalently the roots of φM (x; Γ), are also called the eigenvalues of Γ
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with respect to M . They are real, since M is real and symmetric. Together with their mul-
tiplicities, they comprise the spectrum of Γ (with respect to M) which is denoted by σ̂M (Γ).
Note that algebraic and geometric multiplicities of any eigenvalue of Γ are the same (since
M is real and symmetric). The multiplicity of the eigenvalue μ is denoted by mult(μ; Γ).
A non-zero vector x satisfying the equation Mx = μx, i.e. an eigenvalue equation, is the
eigenvector (or μ-eigenvector) of M , and also of Γ if it is considered as a vertex labelled
signed graph. The eigenspace of M for μ ∈ σ̂M (Γ) is the set EM (μ; Γ) = {x : Mx = μx}; it
is also an eigenspace of Γ for μ with respect to M . Finally, a basis of EM (μ; Γ) is called an
M -basis of Γ for μ; note, its size is equal to mult(μ; Γ).

In this paper, we assume that M is one of the following matrices:

• A – the adjacency matrix (recall, A = (aij), where aij = σ(ij) if vertices i and j are
adjacent, and 0 otherwise);

• L (= D − A) – the Laplacian matrix, where D = diag(d1, d2, . . . , dn) the diagonal
matrix of vertex degrees.

Accordingly, this gives rise to two possibilities to develop relevant spectral (signed) graph
theory – namely, the A-theory and the L-theory, respectively. In addition, the study of their
interrelations becomes a very important issue.

At this stage, it is worth mentioning that switching equivalent signed graphs have similar
adjacency and Laplacian matrices. In fact, any switching arising from vertex subset U
can be described by a diagonal matrix SU = diag(s1, s2, . . . , sn) with si = +1 for each
i ∈ U , and si = −1 otherwise. The matrix SU is sometimes called the state matrix. Hence,
A(Γ) = SUA(Γ

U )SU and L(Γ) = SUL(Γ
U )SU . A similar effect features with eigenvectors.

When we consider a signed graph Γ, from a spectral viewpoint, we are in fact considering
its switching isomorphism class [Γ]. For more details see Section 4 below.

In this paper we will consider both, the A-polynomial the L-polynomial of signed graphs.
For the sake of readability, we denote by

α(x; Γ) := φA(x; Γ) = det(xI −A(Γ)) and λ1(Γ) ≥ λ2(Γ) ≥ · · · ≥ λn(Γ)

the adjacency characteristic polynomial and the adjacency eigenvalues, respectively. Simi-
larly, for the Laplacian matrix, we have the following notation:

β(x,Γ) := φL(x; Γ) = det(xI − L(Γ)) and μ1(Γ) ≥ μ2(Γ) ≥ · · · ≥ μn(Γ) ≥ 0;

the last inequality holds since the Laplacian matrix is positive semidefinite (see the next
section).

Recently, the signed graphs have been considered in [3] where the authors considered
formulas for computing the coefficients of the Laplacian polynomial. In the same paper
the authors defined the notion of signed line graph and signed subdivision graph, and they
obtained some formulas which relate the Laplacian polynomial of signed graphs to the adja-
cency polynomials of their compound graphs. In fact, such formulas for signed graphs are a
generalization of those given for unsigned graphs, which are well-known in the literature (see,
for example, [8]). In this paper, we focus our attention on the corresponding eigenspaces and
generalize the results given in [13]; namely, we investigate how the eigenspaces are related
between the original signed graphs and their compound derivates. As a byproduct, we gen-
eralize a result of Sachs (see [12]) which features only for regular unsigned graphs (for more
details, see [4], Theorem 3.36).

The remainder of the paper is organized as follows: in Section 2 we introduce some basic
facts needed in Section 3, which itself covers our main results. In Section 4 we discuss the
effects of switching and orientation on the eigenspaces of the observed compound (signed)
graphs. Finally, Section 5 contains some concluding remarks.
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2 Preliminaries

The definition of a signed line graph and a signed subdivision graph used here are given in
[3]. Here we reproduce them in order to make this paper more self-contained. It is worth
mentioning that in the literature different definitions of signed line graphs can be found. We
refer the reader to [17, 14, 18, 10] for more results on signed line graphs and their spectra.

In [3], bi-directed graphs are used to represent signed graphs. Bi-directed graphs first
appeared in [9], while their role with the theory of signed graphs was recognized in [16]. A
bi-directed signed graph is an ordered pair Γη = (Γ, η), where

(1) η : V (G)× E(G) → {+1,−1, 0}
is an orientation satisfying the following three conditions:

(i) η(u, vw) = 0 whenever u �= v, w;

(ii) η(v, vw) = +1 (or −1) if an arrow at v is going into (resp. out of) v (cf. Fig. 1);

(iii) η(v, vw)η(w, vw) = −σ(vw).

� �

� �

� �

� �

� �
− +

� �
+ −

� �
− −

� �
+ +

oriented edges: unoriented edges:

Fig. 1: Bi-directed edges.

Edges in each pair of oriented and unoriented edges from Fig. 1 are said to be mutually
doubly-inverted edges. So we have that positive edges are oriented edges, while negative
unoriented (see also Fig. 1). Thus each bi-directed graph gives rise to a signed graph. The
converse is also true, but then one arrow (at any end) can be taken arbitrarily, while not
the other arrow (in view of (iii) from above). Note, two bi-directed graphs lead to the same
signed graph whenever they differ only in some doubly-inverted edges.

The incidence matrix of Γη, denoted by B(Γη) or Bη, is an n × m matrix (bij), where
bij = η(vi, ej) for each vi ∈ V (G) and ej ∈ E(G). Usually, only Γ is given, and then η is
determined as explained above. Any row of the incidence matrix corresponding to vertex vi
contains deg(vi) non-zero entries, each equal to +1 or −1. On the other hand, each column
of the incidence matrix corresponding to edge ej contains two non-zero entries, each equal
to +1 or −1. Therefore, even in the case that multiple edges exist, we easily obtain that

(2) BηB
�
η = D(G)−A(Γη) = L(Γη),

where D(G) is the diagonal matrix of vertex degrees of G. In particular, if Γ = (G,+) (or
Γ = (G,−)) then we obtain the (standard) Laplacian (resp. signless Laplacian) matrix of G
(see also [8]). Needless to add, multiple edges, but not loops, if they exist in the underlying
graph are treated as all other edges. Observe also that in view of (2) the matrix L(Γη) is
positive semidefinite, as already noted in the previous section.

It is also easy to see that

(3) B�
η Bη = 2I +A(L(Γη)),

where L(Γη) is line graph of an oriented signed graph. It is noteworthy to say here that L(Γη)
has L(G) as its underlying graph, while the sign of the edge ef ∈ L(Γ) (e, f ∈ E(G)) in the
resulting signed graph is equal to σl(ef) = η(w, e)η(wf) if w is the unique common vertex of
the edges e and f in G; if the edges e and f have two vertices in common (i.e., G is a multi-
graph) then the signs are summed up leading to either a zero sign edge (so no edge), or two
parallel edges. Of course, this is rather a matrix than combinatorial definition of line graphs
of signed graphs (tailored for the spectral graph theory). For more details concerning line
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graphs of unsigned graphs and also Hoffman’s generalized line graphs the reader is referred
to [3, 2, 6]. It is noteworthy that generalized line graphs, as unsigned graphs, can be seen also
as line graphs (in the above sense) of some special class of bi-directed graphs with hanging
double edges (see [3, 2] for more details).

We now consider the subdivision graphs. As with line graphs, we will now extend to
signed graphs the well-known matrix representation of the adjacency matrix of subdivision
graphs, which, in block form, now reads

(4) A(S(Γη)) =

(
On Bη

B�
η Om

)
,

where Ot is the t×t zero matrix. It is easy to see that the underlying graph of S(Γη) is S(G),
while the signature σs is defined by σs(viej) = η(vi, ej) (note that V (S(G)) = V (G)∪E(G)).
An example of the line and subdivision graphs of a signed graph are depicted in Fig. 2. Here
and thereafter we denote positive edges by bold lines, and negative edges by dotted lines.
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Fig. 2: A signed graph and the corresponding signed line and subdivision graphs.

Remark 2.1. It is important to observe that any (random) orientation η to the edges of
Γ gives rise to the same matrix L(Γη) = L(Γ), while the matrices A(L(Γη)) and A(S(Γη))
do depend on η. It is not difficult to see that a different orientation η′ leads to matrices
A(L(Γη′)) and A(S(Γη′)), which are switching equivalent to A(L(Γη)) and A(S(Γη)), respec-
tively. From now on, the index η will be no longer specified.

Since BB� and B�B share the non-zero eigenvalues, from (3) and (4) we get:

Theorem 2.2 ([3]). Let Γ be a signed graph of order n and size m, and let α and β be its ad-
jacency and Laplacian characteristic polynomials, respectively. Then the following relations
hold

1o α(x;L(Γ)) = (x+ 2)m−nβ(x+ 2; Γ),

2o α(x;S(Γ)) = xm−nβ(x2; Γ).

Remark 2.3. From the above theorem, if Γ is a connected signed graph (of order n and size
m) we obtain that mult(−2;L(Γ)) = m−n+1 if Γ is balanced; otherwise mult(−2;L) = m−n.
Moreover, λi(L(Γ)) = μi(Γ)−2 whenever μi(Γ) �= 0; otherwise λi(L(Γ)) = −2. Similarly, we
obtain that mult(0;S(Γ)) = m−n+2 if Γ is balanced; otherwise mult(0;S(Γ)) = m−n, and
moreover that λi(S(Γ)) =

√
μi(Γ), and λm+n+1−i(S(Γ)) = −√

μi(Γ) whenever μi(Γ) �= 0;
otherwise λi(S(Γ)) = 0.
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3 Main results

In the previous section (see Theorem 2.2) we mentioned the relations between the char-
acteristic polynomials of signed graphs (with respect to the Laplacian matrix) and their
compound signed graphs (with respect to the adjacency matrix). So it is natural to ask
how the corresponding eigenspaces of these signed graphs are interrelated. In Subsection
3.1 we establish the connections between the L-eigenspaces of a signed graph Γ and the A-
eigenspaces of its signed line graph L(Γ). In Subsection 3.2 we establish, for a given signed
graph Γ, the connection between the following eigenspaces (i) the A-eigenspaces of S(Γ) and
(ii) the L-eigenspaces of Γ and the A-eigenspaces of L(Γ).

Without loss of generality, we will assume in the sequel that Γ is connected (for discon-
nected signed graphs we can apply component-wise the results for connected case). Note also
that if Γ is connected, then the same holds for both compound (signed) graphs considered in
this paper. As already indicated, we will write, for the incidence matrix Bη, just B. Clearly,
the signed subdivision graph and the signed line graph are both expressed in terms of the
same incidence matrix. Orientation will be revisited in Section 4, where we analyze the effect
of switching and orientation on the eigenspaces of compound graphs.

3.1 The relation between EL(μ; Γ) and EA(λ;L(Γ))
Let Γ = (G, σ) be a signed graph of order n and size m, and let B (= Bη) be the n × m
incidence matrix of Γ. Hence we have

(5) BB� = D(G)−A(Γ) = L(Γ), B�B = 2I +A(L(Γ)).
Recall that the spectrum of B�B can be obtained from the spectrum of BB� by adding to
(or subtracting from) it the number 0 repeated m−n times if m > n (or, respectively, n−m
times if n > m). Therefore, if

μ1 ≥ μ2 ≥ · · · ≥ μn ≥ 0 and λ1 ≥ λ2 ≥ · · · ≥ λm ≥ −2,

are the L-eigenvalues of Γ and the A-eigenvalues of L(Γ), respectively, then μi = λi + 2 for
i = 1, 2, . . . ,min{m,n}; for i > min{m,n} then either μi = 0 (if any) or λi = −2 (if any)
(cf. also Remark 2.3).

To find relations between the eigenspaces corresponding to Γ and L(Γ), we consider their
eigenvectors. For the sake of readability, we write AL for A(L(Γ)). We next distinguish two
cases depending on λ and μ.

Case 1: μ = λ+ 2 �= 0 (so λ �= −2).

We first prove two claims:

Claim 1: If x ∈ EL(μ; Γ) \ {0} then B�x ∈ EA(λ;L(Γ)) \ {0}.
Multiplying the first equality of (5) by x, the μ-eigenvector of Γ, we obtain BBTx = L(Γ)x =
μx. Putting y = B�x we obtain μx = By. Clearly, x ∈ IRn and y ∈ IRm, and both are non-
zero vectors. Next we have that B�By = B�(BB�x) = B�Lx = μB�x = μy. Therefore,
by the second equality in (5), we obtain that ALy = (μ − 2)y = λy. Hence, y = B�x �= 0
is a λ-eigenvector of L(G), and the claim follows.

Claim 2: If y ∈ EA(λ;L(Γ)) \ {0} then By ∈ EL(μ; Γ) \ {0}.
Multiplying the second equality in (5) with y, the λ-eigenvector of L(G), we obtain (AL +
2I)y = B�By = (λ + 2)y. So B(B�By) = (λ + 2)(By). Putting x = By, and using the
first equality in (5), we obtain Lx = (λ + 2)x = μx. If x = 0, then By = 0, and therefore
λ = −2, a contradiction. So, x = By �= 0 is a μ-eigenvector of L(Γ), and the claim follows.

From the above claims, if μ �= 0, or equivalently if λ �= −2, we have that the above
two vector spaces are isomorphic. Now, we say that two eigenvectors x ∈ EL(μ; Γ) and
y ∈ EA(λ;L(Γ)) are μ-partners if

(6) μx = By and y = B�x.
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Similarly, we say that two eigenvectors x ∈ EL(μ; Γ) and y ∈ EA(λ;L(Γ)) are λ-partners if

(7) x = By and (λ+ 2)y = B�x.

Two eigenvectors x and y as above are partners if they are either μ-partners or λ-partners.

Case 2: μ = 0 and λ = −2.

Recall first, as already adopted, that Γ is connected. It is well-known that μ = 0 holds if
and only if Γ is balanced (see, for example, [15]). On the other hand, Γ = (G, σ) is balanced
if and only if V (G) = V1 ∪ V2, with V1 ∩ V2 = ∅, where negative edges have one end vertex
in V1 and the other one in V2, and positive edges have both end vertices within the same
Vi (i = 1, 2) [11]. In the latter case, we say that V1 and V2 are two color classes in Γ. The
L-eigenvector x related to μ = 0 has entries −1 for vertices from one color class, while +1
otherwise. But then the corresponding vector y = B�x is equal to 0, and so y is not an
eigenvector for L(Γ). In other words, x does not have partners.

The A-eigenspace of L(Γ) for λ = −2 is described in detail in [1], and we refer the readers
to this paper for the details of the results described below. The eigenspace of −2 in signed
line graphs can be directly obtained from a connected spanning signed subgraph Φ whose
signed line graph does not have −2 as an eigenvalue (the so-called signed foundation). A
foundation Φ is either a spanning tree whenever Γ is balanced, or it is a unbalanced unicyclic
graph. From one-edge extensions of the foundation Φ, namely Φ+e, we obtain three kinds of
spanning subgraphs of Γ: those containing either a balanced cycle, or the double-unbalanced
infinite graph, or the double-unbalanced dumbbell (i.e. graphs obtained from two unbalanced
cycles joined by a path, possibly of length zero – see Fig. 3). By properly weighting the edges
of Φ+e (that is a subgraph of Γ) we get a (−2)-eigenvector for L(Γ). The edges corresponding
to nonzero entries of the (−2)-eigenvector are called heavy edges, while the others are the
light edges. Let Θ be the subgraph of Φ + e consisting of all heavy edges of Φ + e. Since Θ
consists of heavy edges, then Θ is said to be the heavy subgraph of Φ+e (in [1], it is called the
core). For each e ∈ E(Γ \Φ) we get a different Φ+ e (with a corresponding heavy subgraph
Θ) from which we build a (−2)-eigenvector, which will be linearly independent from those
similarly obtained. We have that Θ is either a balanced cycle, or a double-unbalanced infinite
graph, or a double-unbalanced dumbbell (see again Fig. 3).
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Fig. 3: Three types of heavy subgraphs.

The following theorems are proved in [1].
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Theorem 3.1. Let Θ be a balanced cycle and ΘL be its signed line graph. Then, under the
above notation (see Fig. 3), the vector a = (a0, a1, . . . , aq−1)

�, where

ai = (−1)i
[ i∏
s=1

ν(s)
]
a0 (i = 0, 1, . . . , q−1) and ν(s) = σL(es−1es) = η(s, es−1)η(s, es),

is an eigenvector of ΘL for −2. Moreover, it can be extended to a (−2)-eigenvector of L(Γ)
by putting zeros at all other entries.

Theorem 3.2. Let Θ be a double-unbalanced infinite graph and ΘL be its signed line graph.
Then, under the above notation (see Fig. 3), the vector a′+̇a′′, where a′ = (a′0, a

′
1, . . . , a

′
q′−1)

�,
a′′ = (a′′0 , a

′′
1 , . . . , a

′′
q′′−1)

�, and

a′i = (−1)i
[ i∏
s=1

ν(s)
]
a′0 (i = 0, 1, . . . , q′ − 1);

a′′i = (−1)i
[ i∏
s=1

ν(s)
]
a′′0 (i = 0, 1, . . . , q′′ − 1);

is an eigenvector of ΘL for −2 provided a′0 �= 0 is arbitrary and a′′0 = −ν̂(0′, 0′′)a′0, where
ν̂(0′, 0′′) = η(0′, e′0)η(0

′′, e′′0). Moreover, it can be extended to a (−2)-eigenvector of L(Γ) by
putting zeros at all other entries.

Theorem 3.3. Let Θ be a double-unbalanced dumbbell and ΘL be its signed line graph. Then,
under the above notation (see Fig. 3), the vector a′+̇b+̇a′′, where a′ = (a′0, a

′
1, . . . , a

′
q′−1)

�,
b = (b0, b1, . . . , bp−1)

�, a′′ = (a′′0 , a
′′
1 , . . . , a

′′
q′′−1)

�, and

a′i = (−1)i
[ i∏
s=1

ν(s)
]
a′0 (i = 0, 1, . . . , q′ − 1),

bi = (−1)i
[ i∏
s=1

ν(s)
]
b0 (i = 0, 1, . . . , p− 1),

a′′i = (−1)i
[ i∏
s=1

ν(s)
]
a′′0 (i = 0, 1, . . . , q′′ − 1),

is an eigenvector of ΘL for −2 provided b0 �= 0 is arbitrary, a′0 = − 1
2 ν̂(0, 0

′)b0 and a′′0 =
− 1

2 ν̂(p, 0
′′)c0, where ν̂(0, 0′) = η(0, e′0)η(0, f0) and ν̂(p, 0′′) = η(p, fp−1)η(0

′′, e′′0) . Moreover,
it can be extended to a (−2)-eigenvector of L(Γ) by putting zeros at all other entries.

From the above construction (using also linearity) it follows that By = 0 for any vector
y ∈ EA(−2;L(Γ)), and therefore y has no partners.

Summarizing the above considerations from Cases 1 and 2 (see also [1]), we obtain the fol-
lowing results for connected signed graphs (easy to extended to disconnected signed graphs):

Theorem 3.4. Let B = Bη be the incidence matrix of a connected signed graph Γ = Γη.
Then we have:

1o {x1,x2, . . . ,xs} is a L-eigenbasis of Γη for μ �= 0 if and only if {B�x1, B
�x2, . . . , B

�xs}
is an A-eigenbasis of L(Γ) for μ− 2;

2o {y1,y2, . . . ,yt} is an A-eigenbasis of L(Γη) for λ �= −2 if and only if {By1, By2, . . . , Byt}
is a L-eigenbasis of Γη for λ+ 2.

Theorem 3.5. Let Γ = Γη be a connected graph. Then we have:

1o If μ = 0, then Γη = (V1 ∪ V2, E) is balanced and the corresponding L-eigenspace of Γη

is spanned by (x1, x2, . . . , xn)
�, where xi = −1 if vi ∈ V1, and xi = +1 if vi ∈ V2.

2o If λ = −2, then the corresponding A-eigenspace of L(Γ) is spanned by the vectors
constructed by the procedure given in Theorems 3.1, 3.2 and 3.3.
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Related to the Theorem 3.5(ii) it is worth mentioning:

Remark 3.6. Note that, if Γ is balanced, we obtain m− n+ 1 independent balanced cycles.
Otherwise, if Γ is unbalanced, we first construct all possible cycles (m− n+1 in total), keep
those which are balanced, fix one unbalanced and adjoin to it in turn other unbalanced cycles
to form either infinite graphs or dumbbells. In this way we obtain m− n independent heavy
subgraphs (note, one unbalanced cycle is not counted). Clearly, these heavy subgraphs, in
both cases (balanced or unbalanced ones), give rise to the independent eigenvectors, which
give the desired eigenbasis.

Finally, we add that we have now (in view of Theorems 3.4 and 3.5) resolved the situations
which were not covered for non-regular graphs related to Sachs’s theorem mentioned in
Section 1.

3.2 Relations among EA(λ;S(Γ)), EL(μ; Γ) and EA(λ;L(Γ))
Assume, as in the previous subsection, that μ1, μ2, . . . , μn are the L-eigenvalues of Γ, while
λ1, λ2, . . . , λm are the A-eigenvalues of L(Γ). Then the A-eigenvalues of S(Γ) are ±√

μi

(i = 1, 2, . . . , s), for some s ≤ n; all other eigenvalues are equal to 0 (cf. Theorem 2.2). Note
also that all non-zero L-eigenvalues of Γ and the corresponding A-eigenvalues S(Γ) have the
same multiplicities. Next, if both μi and λi exist for some i, then μi = λi + 2.

Case 1: the A-eigenspaces of S(Γ) are known.

Now, our goal is to deduce, from the A-eigenspaces of S(Γ), the L-eigenspaces of Γ and the
A-eigenspaces of L(Γ). To do this, we need some additional notation. Given a vector v ∈ IRn

whose entries are indexed by V , the vertex set of some signed graph, let U ⊂ V . Then v(U)
denotes its restriction to U . If |U | = t < n, then v(U) ∈ IRt.

Consider now Γ = (G, σ) of order n and sizem. Let λ̂ ∈ σ̂A(S(Γ)), and let z ∈ EA(λ̂;S(Γ))
be an A-eigenvector of S(Γ) for λ̂. Recall that V (S(Γ)) = V (Γ)∪E(Γ). Denote by V1 the set
of vertices in S(Γ) originating from the vertices of Γ (say, the black vertices) and by V2 the
set of vertices originating from E(Γ) (say, the white vertices). Let x = z(V1) and y = z(V2)
be the restrictions of z to V1 and V2, respectively. Without loss of generality, we can assume
that the first n entries of z correspond to the vertices, while the remaining m entries to the
edges of Γ. So we can write z = x+̇y. Clearly, x ∈ IRn and y ∈ IRm. Since A(S(Γ))z = λ̂z,

then A2(S(Γ))z = λ̂2z. We also have that

A2(S(Γ)) =
(

BB� On

Om B�B

)
=

(
L(Γ) On

Om A(L(Γ)) + 2Im,

)
= L(Γ)+̇(A(L(Γ)) + 2Im).

where B = Bη. With the above decompositions of A2(S(Γ)) and of z in mind, we obtain

L(Γ)x = λ̂2x and (A(L(Γ)) + 2Im)y = λ̂2y.

Since μ = λ̂2 and λ = μ− 2 (= λ̂2 − 2), we have

(8) L(Γ)x = μx and A(L(Γ))y = λy.

In what follows, recall that Γ is connected and, of course, S(Γ) is connected as well, and
viceversa.

We next distinguish two subcases depending on λ̂ and μ.

Subcase 1.1: λ̂ �= 0.

We first claim that x and y are non-zero vectors. Otherwise, if y = 0, applying the eigenvalue
equations (at the black vertices in S(Γ)), we obtain x = 0, a contradiction (since x �= 0).

Therefore y �= 0. Similarly, we obtain that x �= 0. So, if λ̂ ∈ σA(S(Γ)) \ {0} and z ∈
EA(λ̂;S(Γ)) \ {0}, then

μ ∈ σL(Γ) \ {0}, x ∈ EL(μ; Γ) \ {0},
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and
λ ∈ σA(L(Γ)) \ {−2}, y ∈ EA(λ;L(Γ)) \ {0}.

Assume next that the eigenvalue λ̂ in question is positive, and that its multiplicity is
k. Let z1, z2, . . . , zk be linearly independent A-eigenvectors associated with λ̂. Without
loss of generality, we can assume that they are mutually orthogonal. Consider next the
vectors x1,x2, . . . ,xk, the restrictions of the zi (1 ≤ i ≤ k) to V1, and also y1,y2, . . . ,yk,
the restrictions of the zi (1 ≤ i ≤ k) to V2. Then, as already proven (see (8)), they are
L-eigenvectors in Γ for μ �= 0 and A-eigenvectors in L(Γ) for λ �= −2, respectively. We now
prove, using orthogonality, that they are linearly independent. To this aim, consider two
mutually orthogonal vectors zi and zj (i �= j). Let zi = xi+̇yi and zj = xj+̇yj .
Then, by orthogonality, we have

zi · zj = xi · xj + yi · yj = 0,

where · stands for the scalar product. On the other hand, since S(Γ) is bipartite, it is not

difficult to see that if λ̂ �= 0 is an A-eigenvalue for S(Γ) with corresponding eigenvector

zi = xi+̇yi , then −λ̂ is an eigenvalue as well with corresponding eigenvector z′i = xi+̇y′
i,

where y′
i = −yi. Therefore, again by orthogonality, we have

xi · xj − yi · yj = 0.

From the latter two conditions we obtain xi ·xj = 0 and yi ·yj = 0, and our claim follows. By
simple counting, we conclude that we have found k linearly independent μ-eigenvectors for Γ.
Also, we have found k linearly independent A-eigenvectors for L(Γ). In other words, if μ �= 0
we have found a basis for EL(μ; Γ), and if λ �= −2 we have found a basis for EL(λ;L(G)).

Subcase 1.2: λ̂ = 0.

Then μ = 0 and λ = −2, and (8) is reduced to

L(Γ)x = 0 and A(L(Γ))y = −2y.

Note now that x and y cannot be both 0-vectors (since z = x+̇y �= 0). Also note that x

and y, as components of z, are not related by x = By as in the case for λ̂ �= 0. In oother
words, if x is substituted with x′ (for which L(Γ)x′ = 0), or if y is substituted with y′ (for
which A(L(Γ))y′ = −2y′), then any of the resulting vectors, say z′ �= 0, is an A-eigenvector

of S(Γ) for λ̂ = 0. The latter can be verified from the corresponding eigenvalue equations

(for λ̂ = 0 in S(Γ)). We can also say that x and y have no partners.

Recall that Γ is connected. By Theorem 2.2, the multiplicity of λ̂ = 0 in S(Γ) is m−n+2
if Γ is balanced, and m − n otherwise. Assume first that Γ is balanced. As in the previous
subcase, let z1, z2, . . . , zk be mutually orthogonal A-eigenvectors associated with λ̂ = 0, while
the vectors x1,x2, . . . ,xk and y1,y2, . . . ,yk are the restrictions of the zi (1 ≤ i ≤ k) to V1

and V2, respectively. According to (8), the xi are in EL(0; Γ) and the yi are in EA(−2;L(Γ)).
If all the xi (1 ≤ i ≤ k) are 0-vectors, then the vectors zi (1 ≤ i ≤ k) cannot span the
A-eigenspace of S(Γ) of dimension m − n + 2 (since the vectors yi (1 ≤ i ≤ k) can span a
subspace of dimension at most m− n+ 1). So, the vectors xi should span just the EL(0; Γ).
On the other hand, if all the vectors yi (1 ≤ i ≤ k) span a space of dimension less than
m−n+1 then the vectors zi (1 ≤ i ≤ k) cannot span the A-eigenspace of S(Γ) of dimension
m− n+ 2 (since the vectors xi span a subspace of dimension just 1). So the vectors xi and
the vectors yi span the eigenspaces of dimensions 1 and m−n+1, respectively (as required).
Finally, assume that Γ is unbalanced. Then all the vectors xi are 0-vectors, and we deduce
that the vectors yi span the subspace of dimension m− n.

The above conclusions can be summarized as follows:

Theorem 3.7. Let S(Γ) = (V1∪V2, E) be the signed subdivision graph of a connected signed
graph Γ, where V1 are the vertices originating from Γ, while V2 are the inserted vertices. Let

{z1 = x1+̇y1, z2 = x2+̇y2, . . . , zk = xk+̇yk}
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be an A-eigenbasis of S(Γ) for λ̂ ≥ 0, where xi = zi(V1) and yi = zi(V2) (1 ≤ i ≤ k).

If λ̂ =
√
μ > 0 then

1o {x1,x2, . . . ,xk} is an eigenbasis for EL(μ; Γ), and
2o {y1,y2, . . . ,yk} is an eigenbasis for EA(λ;L(Γ)), where λ = μ− 2.

If λ̂ = 0 then

3o {x1,x2, . . . ,xk} spans EL(0; Γ), and
4o {y1,y2, . . . ,yk} spans EA(−2;L(Γ)).

Remark 3.8. Note first that in Theorem 3.7, the statements 1o and 2o hold by taking λ̂ < 0,
as well.
The following facts deserve to be mentioned for the vectors xi (1 ≤ i ≤ k) in 3o, and for the
vectors yi (1 ≤ i ≤ k) in 4o, from the above theorem.

• If Γ is balanced then k = m − n + 2. In fact, the non-zero vectors xi (1 ≤ i ≤ k)
are collinear with a vector described in Theorem 3.5 1o. So the dimension of the L-
eigenspace of Γ for 0 is 1. Next, either just one of the yi (1 ≤ i ≤ k) is a 0-vector, or
none. In the former case we have only one choice for the A-eigenbasis of L(Γ) for −2,
while in the latter m− n+ 2 choices (each of the vectors yi is a linear combination of
the remaining ones). The dimension of the A-eigenspace of L(Γ) for −2 is m− n+ 1.
Therefore, we obtain k = m− n+ 2.

• If Γ is unbalanced then k = m − n. In fact, each vector xi (1 ≤ i ≤ k) is a 0-vector,
while EL(0; Γ) is trivial. Now the vectors yi form an eigenbasis for EA(−2;L(Γ)). So,
k = m− n.

Case 2: either the L-eigenspaces of Γ, or the A-eigenspaces of L(Γ) are known.

Our goal now is to deduce, from the L-eigenspaces of Γ or A-eigenspaces of L(Γ), the A-
eigenspaces of S(Γ). So, we actually consider the reverse problem with respect to Case
1.

We first prove the following (expected) result:

Lemma 3.9. Let S(Γ) = (V1 ∪ V2, E) be the signed subdivision graph of a connected signed
graph Γ, where V1 are the vertices originating from Γ, while V2 are the inserted vertices. If
z is an A-eigenvector of S(Γ) for λ̂ �= 0 then we have:

(i) z = z(V1) +̇ B�z(V1), or

(ii) z = Bz(V2) +̇ z(V2).

Proof. If z = x+̇y, where x = z(V1) and y = z(V2), then Lx = μx and ALy = λy. On
the other hand, using eigenvalue equations, we immediately get y = B�x (when considering
equations at vertices from V2) and x = By (when considering equations at vertices from V1),
and the proof follows.

Remark 3.10. Note that, if we know the eigenspace EL(μ; Γ) for μ �= 0, or the eigenspace
EA(λ;L(Γ)) for λ �= −2, then we can construct (using Lemma 3.9) the corresponding A-

eigenspace of S(Γ) for λ̂ > 0 (recall, λ̂ =
√
μ =

√
λ+ 2). In addition, if λ̂ < 0, then

EA(λ̂;S(Γ)) can be obtained from EA(−λ̂;S(Γ)). Observe, each eigenvector for −λ̂ can be
obtained by a reflection with respect to a hyperplane, determined by color classes, of an
eigenvector for λ̂.

We have already observed that for λ̂ = 0, if z = x+̇y is an associated A-eigenvector for
S(Γ), then x and y are not related. So x is either 0, or is constructed as in Theorem 3.5 1o;
similarly, y is either 0, or is is constructed as in Theorem 3.5 2o. So, it follows that we can
get the required number of A-eigenvectors (distinguishing balanced and unbalanced signed
graph Γ) to form EA(0;S(Γ)).

The above conclusions can be summarized as follows:

10



Theorem 3.11. Let Γ be a connected signed graph, and let {x1,x2, . . . ,xk} be a L-eigenbasis
of Γ for μ �= 0. Then

{z1 = x1+̇(±B�x1), z2 = x2+̇(±B�x2), . . . , zk = xk+̇(±B�xk)}

is an A-eigenbasis of S(Γ) for λ̂ = ±√
μ.

Analogously, we have:

Theorem 3.12. Let Γ be a connected graph, and let {y1,y2, . . . ,yk} be an A-eigenbasis of
L(Γ) for λ �= −2. Then

{z1 = y1+̇(±By1), z2 = y2+̇(±By2), . . . , zk = yk+̇(±Byk)}

is an A-eigenbasis of S(Γ) for λ̂ = ±√
λ+ 2.

Now, we assume that λ̂ = 0. Then we have:

Theorem 3.13. Let Γ be a connected signed graph. If Γ is balanced, let x1 be a L-eigenvector
of Γ for μ = 0; otherwise, if Γ is unbalanced, let x1 = 0. Let {y1,y2, . . . ,yk} be an A-
eigenbasis of L(Γ) for λ = −2. Then

{x1+̇0, 0+̇y1, 0+̇y2, . . . ,0+̇yk} \ {0}

is an A-eigenbasis of S(Γ) for λ̂ = 0.

4 Switching and eigenvector components

In respect to signed graphs, as well-known, switching appears to be an important concept.
Effects of switchings (on the eigenvectors, and so on the eigenspaces) within compound
signed graphs have been already considered in [1] for the eigenvalue −2 of the signed line
graphs. Here, we revisit the discussion on the the effects of switching and orientation on
the eigenspaces of the compound (signed) graphs, and we include the signed subdivision
graph in our considerations. In fact, we shall analyze what happens to the eigenspaces of the
compound (signed) graphs when switching and/or orientation are applied to the root signed
graph.

Let D be a diagonal matrix, whose i-th diagonal entry is di. It is well-known that in the
product DA (or AD), all entries in the i-th row (resp. j-th column) are multiplied by di
(resp. dj). In particular, if di = ±1 for each i (or dj = ±1 for each j), then all entries i-th
row (resp. j-th column) change the sign whenever di (resp. dj) is equal to −1.

We first discuss the effects of switching to a signed graph Γ. Let Γ′ = ΓU , where U ⊂ V
Now we have to consider both the effects of switching and orientation. As already known,
switching produces an edge sign switching on the cut [U,Γ \ U ], and such a switching is
represented by the matrix SU = D1 = diag(d1, d2, . . . , dn), where di = 1 if vi ∈ U and
di = −1 otherwise. It has been already observed that D1A(Γ)D1 = A(Γ′) and D1L(Γ)D1 =
L(Γ′). Hence, we immediately deduce the following result.

Theorem 4.1. Let x be a λ-eigenvector (μ-eigenvector) of A(Γ) (resp., L(Γ)). If Γ′ = ΓU is
obtained from the switching D1, then D1x is a λ-eigenvector (μ-eigenvector) of A(Γ′) (resp.,
L(Γ′)).

Next, we consider the effects of switching and double-inversions on the incidence matrix
B = Bη of the bi-directed graph Γη. Let B′ = B(Γ′

η′), for some orientation η′ of Γ′ = ΓU .
The matrix D1 has an impact on the matrix Bη which can be seen as reversal orientation of
arrows at switched vertices. In other words, the matrix D1B results in a incidence matrix
B̄ = (η̄(v, e)), where η̄(v, e) = −η(v, e) if v ∈ U , otherwise η̄(v, e) = η(v, e). On the
other hand, B′ and B̄ are two (possibly) different orientations of the same signed graph Γ′.
Hence, they can differ only in double-inversion of edges in the sense of Fig. 1 (otherwise the
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orientations would not lead to the same signature of Γ′). Let Ē ⊆ E be the set of doubly-
inverted edges, or equivalently the edges whose orientation in η̄ is different from η′, and let
D2 be the diagonal matrix such that B′ = B̄D2 (now, if ej ∈ Ē then dj = −1, otherwise
dj = +1). If so, we have that B′ = D1BD2.

Example 4.2. Let Γ = (G, σ) be the graph depicted in Fig. 4 and consider any corre-
sponding bi-directed graph Γη. Consider next Γ′, a signed graph switching equivalent to Γ
and a corresponding bi-directed graph Γ′

η′ . We will compute the matrices D1 and D2 which
transform Bη in to B′

η′ .
Assume that the signed graph Γ′ is obtained by switching with respect to U = {v2, v3}.

The state matrix corresponding to the switching is D1. The switching on Γη produced the
bi-directed graph Γ′

η̄. The edges of Γ′
η̄ which are doubly-inverted are Ē = {e2, e3, e6} give

rise to the matrix D2. Hence, we have that B′
η′ = D1BηD2.
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Fig. 4: Switching and double-inversion on equivalent bi-directed graphs.

From the above bi-directed graphs we obtain that

Bη =

⎛⎜⎜⎜⎜⎝
1 −1 0 0 1 0
0 1 1 0 0 −1
1 0 −1 1 0 0
0 0 0 −1 −1 0
0 0 0 0 0 −1

⎞⎟⎟⎟⎟⎠ and B′
η′ =

⎛⎜⎜⎜⎜⎝
1 1 0 0 1 0
0 1 1 0 0 −1
−1 0 −1 −1 0 0
0 0 0 −1 −1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎠ .

By comparing B(Γ′
η′) and B(Γ′

η̄), the doubly-inverted edges are Ē = {e2, e3, e6}, hence the
“transition” matrices are

D1 = diag(1,−1,−1, 1, 1) and D2 = diag(1,−1,−1, 1, 1,−1).

It is easy to verify that
B′

η′ = D1BηD2.
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Recall that two switching equivalent signed graphs do not necessarily produce signed line
graphs or signed subdivision graphs with exactly the same signature. However, they produce
switching equivalent compound signed graphs. The same holds for their induced (signed)
subgraphs. We now survey the impact of switchings and double-inversions on the eigenspaces
of the compound (signed) graphs.

Let us first discuss the effects of switching and double-inversion on the signed line graph.
From the above discussion, let B̂ = Bη̂ be the incidence matrix of a bi-directed graph Γ̂ = Γη̂

arising from both of the above actions on Γ = Γη, i.e. from switching and double inversions.
Then

B̂ = D1BD2.

Recall that
B�B = 2I +A(L(Γ)).

Therefore

B�B = D2(D2B
�D1)(D1BD2)D2 = D2B̂

�B̂D2 = 2I +D2A(L(Γ̂))D2,

and consequently
A(L(Γ)) = D2A(L(Γ̂))D2,

showing that the adjacency matrix of the line graph of a bi-directed graph is independent of
the switching and only double inversion is relevant. Assume now that x is a λ-eigenvector
for A(L(Γ)). Then it immediately follows that

A(L(Γ̂))D2x = λ(D2x),

whence x̂ = D2x is a λ-eigenvector for A(L(Γ̂)) (clearly, it is a non-zero vector). We sum-
marize the above fact in the following theorem.

Theorem 4.3. Let L(Γη) and L(Γ′
η′) be two signed line graphs obtained from switching

equivalent bi-directed graphs. Let B (B′) be the incidence matrix of Γη (resp., Γ′
η′) with B′ =

D1BD2. If x is a λ-eigenvector of A(L(Γη)), then D2x is a λ-eigenvector for A(L(Γ′
η′)).

Finally, for the subdivision graph S(Γ), in view of (8) we just need to combine the
switching and double-inversion for both the L-eigenspaces of L(Γ) and the A-eigenspaces of
A(L(Γ)), as already discussed in Theorems 4.1 and 4.3. In particular we get that if Γη and
Γ′
η′ are two bi-directed graphs, leading to switching equivalent signed graphs Γ and Γ′ with

incidence matrices B = B(Γη) and B′ = B(Γ′
η′) such that B′ = D1BD2, then

(9) (D1+̇D2)A(S(Γη))(D1+̇D2) = A(S(Γ′
η′)).

Therefore, we get the following result.

Theorem 4.4. Let S(Γη) and S(Γ′
η′) be two signed subdivision graphs obtained from switch-

ing equivalent bi-directed graphs. Let B (B′) be the incidence matrix of Γη (resp., Γ′
η′) with

B′ = D1BD2. Let x = y+̇z be a λ-eigenvector of A(S(Γη)), where y and z are the compo-
nents corresponding to V (Γ) and E(Γ), respectively. Then x̂ = D1y+̇D2z is a λ-eigenvector
for A(L(Γ′

η′)).

Proof. Observe that from (9) we get(
O D1BD2

(D1BD2)
� O

)
=

(
O B′

B′� O

)
.

Let x = y+̇z be a λ-eigenvector of A(S(Γη)). From A(S(Γη))x = λx we get

A(S(Γη))x =

(
O B
B� O

)(
y
z

)
=

(
Bz
B�y

)
= λ

(
y
z

)
,
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which implies {
Bz = λy;
B�y = λz.

Consider now x̂ = D1y+̇D2z. We have

A(S(Γ′
η′))x̂ =

(
O D1BD2

(D1BD2)
� O

)(
D1y
D2z

)
=

(
D1Bz
D2B

�y

)
=

(
D1λy
D2λz

)
= λx̂.

Hence x̂ is a λ-eigenvector for A(L(Γ′
η′)).

To conclude, it is worth to observe that switching and double-inversions preserve the
moduli of eigenvector entries.

5 Conclusion

In this paper we have generalized the main results from [13], which featured for unsigned
graphs, to signed graphs. Most of these results are formally the same, but now proved with
more work in view of some technical difficulties when passing from unsigned graphs to signed
graphs.

The following issues now also deserve to be mentioned:

(i) We have not paid any attention regarding the properties of being “main” or “non-main”
for some eigenvalues (as is discussed in [13]) since this is not so important for signed
graphs. However, these can be also considered here especially for signed line graphs
(for the eigenvalue −2) and signed subdivision graphs (for the eigenvalue 0: this is left
for readers interested in such topic).

(ii) We have also restricted our considerations to situations in which our “basic” signed
graph has no multiple edges (loops are not allowed, as well). Then some results can
be generalized on the lines of the papers [1, 2, 3], so that the so-called generalized line
graphs (whose root graphs can be interpreted as signed multigraphs) and their signed
counterparts are, in addition, included in our considerations.
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