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Abstract. A graph G is singular if its adjacency matrix A(G) is singular.
We consider the multiplicity of the eigenvalue O for line graphs Lg and show
that it is at most one for Lt where T is a tree. Moreover, if Lt is singular, then
T is shown to be even. Furthermore, the Polynomial Reconstruction Conjecture,
a variant of Ulam’s Reconstruction Conjecture, is shown to be true for singular
line graphs of trees. The analysis gives rise to a partition of singular line graphs
of trees into two classes.

1. Introduction.

A graph G(V,€) has a set V = {v, v3,...,v,} of n vertices and
an edge set £ of m edges. Each edge joins a pair of distinct vertices.
A line graph L of a root graph G has m vertices. Two vertices are
adjacent in L¢ if and only if the corresponding edges in G have a
common vertex. A Krausz partition of a line graph Lg, is the set of
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cliques (maximal complete subgraphs) such that every edge of Lg is
in exactly one clique and every vertex of L¢ is in exactly two cliques.

The adjacency matrix A = (a;;) of a graph G, is the n x n
symmetrical matrix such that a;; = 1 when v; is adjacent to v;, and
a;j = 0, otherwise. The real numbers A for which there exist non-zero
values of x satisfying the equation

(1) AX = AX.

are called the eigenvalues of G. For a particular eigenvalue A, x
is called an eigenvector in the eigenspace of A. The characteristic
polynomial of A is denoted by ¢(G, 1) (= ¢(G)) and if I, denotes
the identity matrix, then

n

) ¢(G, 1) = Det(hl, — A) =[x — 1)

=zl

is a polynomial Zqiki with integer coefficients ¢;. The values
i=0

A, A2, ..., A, are, therefore, the eigenvalues of G and form the spec-

trum, Sp(G), of G.

If G is singular, then at least one of the eigenvalues of A is zero.
The kernel of the linear transformation A is called the Zero-space or
nullspace of A. An eigenvector x, in the zero-space of A is called a
kernel eigenvector and satisfies the equation

3) Ax=0

Since A is symmetrical, the algebraic multiplicity of an eigenva-
lue equals its geometric multiplicity and this common value, for the
eigenvalue zero, is the nullity of A, denoted by n(G).

In section 2, we establish two properties particular to singular line
graphs of trees. The first is that the nullity is one; the second is that
the order of the tree is even.

In section 3, we introduce Ulam’s Reconstruction Conjecture. A
variation of Kelly’s and Ulam’s reconstruction conjectures [2, 3], posed
by 1. Gutman and D. M. Cvetkovic (1974), is to reconstruct the
characteristic polynomial of a graph from the p-deck, the deck of
the characteristic polynomials of the one-vertex-deleted subgraphs [4].
Instead of the p-deck, we can start with the s-deck, the deck of the
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spectra of the one-vertex-deleted subgraphs, from which the p-deck
can be produced. A. Schwenk discusses this conjecture and refers to
it as problem D [6]. Positive results were established by S. Simic
in connection with the class of connected graphs having the smallest
eigenvalue in the p-deck bounded below by —2 [10]. These include
the set of line graphs of trees {Lr}. In section 4, we give a new proof
of the polynomial reconstruction conjecture (problem D) for singular
line graphs of trees. The proof also shows that the set of singular line
graphs of trees partitions itself into two disjoint classes, determined by
the presence or otherwise of a zero entry in the kernel eigenvector. We
show this classification in section 5. In the final section we pose two
problems on the structure of singular line graphs of trees.

Figure 1 - A Tree T and its line graph L.

1 2 3 r

G

e
Figure 2 - The Graph G,.
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Figure 3 - The Graph L(G,)) with NL(G)=r+1.

2. Trees with Singular Line Graphs.

The graph G,, shown in Fig.2, has a line graph (Fig.3) whose
nullity increases with r. The same holds for the nullity of the line
graph of pK, which is p. Thus the nullity of a line graph may assume
any positive integer and Vp € N,3 G with n(Lg) = p. We show
that if G is a tree, however, the nullity is bounded above and does
not depend on the size or configuration of the tree.

172 p 1 2 p
] ] ] “«o...0
pK, L(pK,)

Figure 4 - The Graph pK5 and its line graph.

There are two main results in this section. The first is the result
that the nullity of a singular line graph of a tree is at most one. The
second is that the order of a tree with a singular line graph is even.
The proofs use the Laplacian, Lap(G), of a graph G, which is D — A,
where D is the diagonal matrix whose non-zero entries are the degrees
of the vertices of the labelled graph G. A well-known result regarding
the Laplacian, which we have occasion to use in some proofs, is

The Matrix Tree Theorem: Let G be a labelled graph. All the

cofactors of Lap(G) are equal and their common value is the number
of spanning trees in G.

Remark For a tree, the number of spanning trees is one. Thus each
entry of the adjoint of Lap(7T) is one.
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We shall now prove a number of lemmas that lead to the result
that the nullity of the line graph of a tree is at most one.

LEMMA 2.1. [Grone, Merris and Sunder [5]] For a bipartite graph
G with adjacency matrix, A, the Laplacian, D — A, of A, has the same
eigenvalues as the matrix A +D. O

Remark 2.2. We note that this result holds for a tree, which is
necessarily bipartite.

The following lemma follows from the well known relation between
the characteristic polynomial of a line graph and that of the root graph
[1];

¢(Lg, M) = (A +2)""$(A(G) + Dg, A +2).

LEMMA 2.2. Let G be a graph and let Lg be its line graph. Let
D¢ be the diagonal matrix whose entries are the degrees of the vertices
of G. The multiplicity of the eigenvalue zero in Sp(Lg) is equal to
the multiplicity of the eigenvalue 2 of A(G) + Dg. O

COROLLARY 2.1. Let G be a bipartite graph and let Lg be its
line graph. Then Lg is singular if and only if 2 is an eigenvalue of
Lap(G).

Proof. This follows from Lemmas 2.1 and 2.2. 0

Remark 2.3. A characterisation of trees with singular line graphs
would settle a query raised -by Grone et al , namely: “Which trees
have a Laplacian with eigenvalue 27”. [5]

The following result is well known in the theory of polynomial
rings.

LEMMA 2.3. Let f(x) be the polynomial TR, SR I 1
with integer coefficients a;. If x = £ is a rational root (reduced to
its lowest terms) of the equation f(x) =0, then p divides ay and q
divides a,,. O

COROLLARY 2.2. Let G be a graph such that A is unimodular. If
A is a rational eigenvalue in the spectrum of G, then A is the integer
1 @r —L,
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Proof. We recall that a matrix is unimodular if it is an integer ma-
trix whose determinant is +1. If the characteristic polynomial ¢ (G, 1)
of Ais a,M"+a,_ A" 14+...4ap, then a, =1 for all G and ag = +1
since A is unimodular. Thus by Lemma 2.3, the stated result follows.
O

LEMMA 2.4. If T is a tree on n vertices such that Ly is singular
and 3x # 0 s.t. Lap x = 2x then X has no zero entries.

Proof. Let x be an eigenvector of Lap(T) corresponding to an
eigenvalue 2. Suppose that some entry of x is zero and let 7 be
labelled so that the vertex corresponding to this zero entry is the nth
vertex v, of degree p(v,). There are p(v,) subgraphs (each of which
1s a tree T;) coalesced at v,. As shown in Fig.4, this means that the
trees 11,15, ..., T,q,, share the common vertex v,.

Figure 5 - A tree T with the nth entry of x, s.t. Lap(7T)(x)=2x, being zero.

For a labelling of T

By =0 0 0 *
L3 0 *
Lap(T) = .
0 0 0 .- Lp(v,,) *
EE e 3 * p(vy)

where L; corresponds to the ith subgraph 7; — v, which is 7; with
the vertex v, deleted. Let x be the vector (X;, X,, vv o K00 0) Whete
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X;, itself a vector, corresponds to L;. The relation Lap(T)(x) = 2x
implies that L;(x;) = 2x; for each L;. Thus there exists L; with
X; # 0 and eigenvalue 2. Now L, differs from Lap(7, — v,) in
the diagonal entry corresponding to v; € V(I;), where v; is the
vertex of T; which in T is a neighbouring vertex of v,. But the
determinant Det(L,) =Det(Lap(7; — v,))+Det(L;;) where L;; is the
submatrix of L; obtained by deleting the jth row and column of L.
The matrix L;; is the same as that obtained by deleting the jth row
and column of Lap(7; — v,) so that by the Matrix Tree Theorem,
since Ty — v, has only one spanning tree, Det(L;;) = 1. Also since
all Laplacians are singular, the term Det(Lap(7; — v,)) is zero. Thus
the eigenvalue 2 satisfies L;x; = ux; and is a root of the equation
Det(AL, — Ly) = A? + b, A? ' + ...+ bjA+£1 =0, where L; is of
order p x p. By Lemma 2.3, u = %1 is the only rational root, a
contradiction.

We now show that each entry of an eigenvector of Dy + A(T)
corresponding to the eigenvalue 2 is also non-zero. By Lemma 2.1,
D7 + A(T) has the same eigenvalues as Lap(T). Let the tree T be
the bipartite graph (V;, V,, £), labelled such that the top rows of A(T)
correspond to the vertices of set V;. Let P be the diagonal matrix such
that the non-zero entries corresponding to the vertices V; are 1 and
those corresponding to the vertices V, are —1. Then P~!(Lap(T))P is
Dy + A(T). Also

DODr+AT)H)=) ———— ———— ————

where D, and D, are degree diagonal matrices corresponding to V; and
V, respectively and C, C' describe the edges between the two subsets
of vertices in the tree T. If (u,v)" is a conformal partition of x and
u
v

Lap(7T)(x) = ux, and Lap(T)( ) = 2(3)

u u
then (Dy 4+ A(T)) (_V> = 2<_V>.

So each entry of an eigenvector of Dy + A(T'), corresponding to
eigenvalue 2, iS non-zero. O
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THEOREM 2.1. n(L7) = 1.

Proof. Since the dimension of the 2-space of Dy 4+ A(T) is one,
the dimension of the nullspace of Ly is at most one. O

THEOREM 2.2. If Ly is singular, then T is even.

Proof. The characteristic polynomial ¢ (Lap(T), 1) of Lap(T) is

Det(ul — Lap) = p(p — p2)..(t = fhim)-

The absolute value of the coefficient of w in ¢ (Lap(T), 1) is the
trace of the adjoint of Lap(7). By the Matrix Tree Theorem each entry
of the adjoint of the Laplacian is the number of spanning trees, which
is one for a tree. Thus, if 7 has n vertices, then the coefficient of
in ¢(Lap(T), u) is *n.

Since the nullity of the Laplacian of a connected graph is one,
the coefficient of w in ¢(Lap(T), n) is also numerically equal to the
product of its non-zero eigenvalues of Lap(7T). But by Corollary 2.1,
for a singular line graph, Lg, 2 is an eigenvalue of Lap(G). So it
follows that 2 divides n. o

COROLLARY 2.3. The line graph of an odd tree is non-singular. O

Remark 2.4. The converse is false. A counter example is K3
whose line graph is K3 which is non-singular.

3. Ulam’s Reconstruction Conjecture.

Ulam’s Reconstruction Conjecture: Every graph with at least 3
vertices is reconstructible.

Equivalently, for n > 3, given a deck D of n cards, each showing
a subgraph G — v as v runs through the n vertices of G, the graph
G can be recovered. This problem has been solved for various classes
of graphs but is still open in general. For regular graphs it is trivially
true as can be seen from the example in Fig 6.

From the deck D we deduce that n = 6. Also the number of
edges in each card is 6 so that the same number of edges are deleted
with each vertex. Thus the parent graph G is regular. It is thus clear
that regularity is recognisable from D. To recover G, it suffices to add
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NS,
N ?
1 2 3 2 5 6

Figure 6 - The deck of a regular graph.

a vertex to one of the subgraphs and join it to those vertices in the
subgraph which have the minimum degree.

v

Figure 7 - Reconstruction of a regular graph.

Hence for regular graphs the conjecture is true. The case for
regular graphs is very simple but the problem has proved to be very
difficult for the arbitrary graph and is still open after about half a
century of history.
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4. The Polynomial Reconstruction Conjecture.

Figure 8 - The Polynomial Deck of a graph G.

The Polynomial Reconstruction Conjecture is a variant of Ulam’s
Reconstruction Conjecture. It states that: Every graph with at least 3
vertices is polynomial reconstructible.

Equivalently, for n > 3, given a p-deck PD of n cards, each
showing a characteristic polynomial ¢(G — v) as v runs through the
n vertices of G, the characteristic polynomial ¢(G) can be recovered.
This problem is still open in general but has been solved for some
classes of graphs such as regular graphs [4] and for graphs whose
one-vertex deleted subgraphs have eigenvalues bounded below by —2
[10]. The latter class includes the singular line graphs of trees which
we consider here. We give a new proof that gives rise to a partition of
singular line graphs of trees into two disjoint classes and raises some
new questions.

A useful result which enables the recovery of most of the terms
of the characteristic polynomial of the parent graph G from the PD
is the following:

LEMMA 4.1.

(4) $'(G,2) =) (G —v,1) o
PD

Thus by integrating (4), we obtain ¢ (G), save for the constant term.
Thus a boundary condition is required to determine ¢ (G) completely.

LEMMA 4.2. If an eigenvalue Ay is known then ¢(G, xy) =0. O



THE TWO CLASSES OF SINGULAR LINE GRAPHS OF TREES 177

Remark 4.1. Let the eigenvalues of G be Ay, A5, ..., A, and those
of G —v for a vertex v of G be uj, w2, ..., 1,. By the Interlacing
Theorem the values can be shown as follows:

An An—1 e Ay A
® ® L ® @®
o [} = o @
Mn—1 Hn—2 -+ M2 %31
LEMMA 4.3. If Wi = M+l then Ajpd = b5 0

This proves the following theorem:

THEOREM 4.1. If there is a card of PD with a repeated factor
then ¢(G) is reconstructible. O

Equivalently if in the deck of spectra, there is a card with a repeated
eigenvalue, then ¢(G) is reconstructible.

DEFINITION 4.1. A singular graph is said to be a nut graph if a
kernel eigenvector of the graph has no zero entries.

LEMMA 4.4. The nullity of a nut graph G is one.

Proof. All eigenvectors of G are multiples of each other, since
otherwise a linear combination of two such eigenvectors, which is also
an eigenvector, could have a zero entry. Thus the nullity of G is one. O

COROLLARY 4.1. A nut graph has no pendant edges.

Proof. Let G be a singular graph of nullity one with a pendant
edge xy such that x is the vertex of degree greater than 1. The entry
of the kernel eigenvector corresponding to x is zero. Thus G is not a
nut graph. O

The following result follows.

THEOREM 4.2. If Ly is a nut graph, then its terminal cliques are
K., r>23. O

The following theorem is proved in [8].
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THEOREM 4.3. If Ly is singular and a kernel eigenvector has no
zero entries then it is a nut graph. Otherwise Jv s.t. Lt —v has the
eigenvalue zero repeated. O

THEOREM 4.4. [7] A line graph L with two terminal K,s, r > 3,
has the eigenvalue —1 repeated in Sp(Lg — v) for some v. O

Thus the s-deck of a singular Ly has a card with an eigenvalue
repeated.

THEOREM 4.5. If Ly is singular then 3v s.t. Ly — v has the
eigenvalue zero or —1 repeated. m|

Thus from the p-deck of a singular Ly, we can deduce one of
the eigenvalues of Ly. This provides the required boundary condition
that determines ¢(L7).

THEOREM 4.6. The characteristic polynomial of a singular Lt is
reconstructible from PD. O

Since the unknown constant term in the characteristic polynomial
of G is (—1)"DetA, which is zero for a singular graph, recognition
of a singular graph from the p-deck is sufficient for polynomial re-
construction. An algorithm has been developed that recognises singular
line graphs of trees.

Algorithm: [9] Given a PD, the algorithm determines

1. whether the PD is the legitimate p-deck of the line graph of a
tree,

2. whether Ly is singular.

Thus singular Lrs are recognisable and therefore reconstructible
from their PD.

5. Classification.

The discussion on the eigenvalues of singular line graphs of trees,
above, shows that this set of graphs can be partitioned into two classes:
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i) one class is the Lrs which are nut graphs and which have‘ a
vertex-deleted subgraph with a repeated —1 in its spectrum;

ii) the second is the singular L7s which have an eigenvector with a
zero entry and thus exhibit a repetition of the zero eigenvalue in
one card of the deck.

Singular Line Graphs of Trees

T 1
CLASS 1 CLASSII

| I
Nut Graphs A card of the s-deck

has zero repeated
l
Successive deletions of cut vertices
and of pendant edges leaves

| |
isolated vertex nut graph
or isolated vertices.

6. Open problems.

This study was motivated by the desire to characterize the trees
whose line graph is singular. We have established that no odd tree has
a singular line graph. We were also interested in the possible repeated
eigenvalues that appear in the deck of spectra of the vertex-deleted
subgraphs of singular line graphs of trees. We have shown that at least
one vertex-deleted subgraph has the eigenvalue —1 or O repeated. This
has proved the polynomial reconstruction conjecture for singular line
graphs of trees.

There still remains the problem to characterize which even trees
have a singular line graph. Moreover, while constructing those line
graphs of trees which are expected to be singular, it proved to be very
difficult to construct one with a large terminal clique. In view of this
we pose the following conjecture:

Conjecture 6.1. If Lz is singular then terminal K,s are small; i.e.
r<3. O
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