Rings MA113

Definition: In ring R, a is a **divisor of zero** if it is a non-zero element and if $\exists b \in R$ such that ab = 0.

Definition: An **integral domain** is a commutative ring with no divisors of zero.

• \mathbb{Z} and $2\mathbb{Z}$ are integral domains but NOT fields.

Definition: A **division ring** or skew field is a ring in which every non-zero element has an inverse under TIMES.

- eg. The Real Quaternions.
- Definition: A field is a commutative division ring.

: a double Abelian group.

Theorem: A finite integral domain is a field.

Theorem: Every field is an integral domain.

Theorem: In an integral domain D if $\exists m \in \mathbb{Z}\&a \in D$ such that ma = 0, then $mx = 0 \forall x \in D$.

Definition: In an integral domain D the characteristic of D is the least positive integer m such that md = 0 for $d \in D$.

m is prime.

 Definition: A **homomorphism** defined on a ring R is a mapping from R to a ring \overline{R} such that

- i $\phi(a+b) = \phi(a) + \phi(b)$
- ii $\phi(ab) = \phi(a)\phi(b)$
- $\bullet\,$ Given a subgroup N of R under +

 $\exists \text{ homomorphism } \phi : R \longrightarrow \frac{R}{N}$ i $\phi(0) = \overline{0}$ ii $\phi(-a) = -\phi(a)$ iii $\phi(1) \neq \overline{1}$ If i \overline{R} is an integral domain

or

ii \overline{R} is arbitrary but ϕ is onto

then $\phi(1) = \overline{1}$

Definition: If $\phi: R \longrightarrow \overline{R}$ is a Homomorphism

• $\ker(\phi) = \{r \in R : \phi(r) = \overline{0}\}$

 $\phi(R)$ is a subring of \overline{R}

• PROPERTIES of $\ker(\phi)$ in R

i subgroup of R under +

ii absorbs all products (under .)

1 IDEALS

Definition: An ideal U of ring R

is a subset U of R

such that

i U is a subgroup of R under +

ii U absorbs products with its elements

Lemma: $\frac{R}{U}$ is a ring

i
$$(U+a)+(U+b) = U+a+b$$

- ii (U + a).(U + b) = U + ab
 - i U is a subgroup of R under +
 - ii U absorbs products with its elements

Lemma

- R Abelian $\Longrightarrow \frac{R}{U}$ Abelian
- Isomorphism Theorems
- Homomorphism $\phi: R \longrightarrow \overline{R}$ is onto with kernel U
- There is a 1-1 correspondence between the set of ideals of \overline{R} onto the set of ideals of R which contain U.
- R commutative $\Longrightarrow \overline{R}$ commutative.

Lemma: Ideal U is a subring of R

Lemma: The intersection of a finite number of ideals is an ideal.

Lemma: R[x] is a ring.

Lemma: A subring of an integral domain is an integral domain. *******************

Lemma: The GAUSSIAN INTEGERS $\mathbb{Z}[i]$ form an integral domain.

Lemma: If $\phi : R \longrightarrow \overline{R}$ is an isomorphism onto \overline{R} then so is $(\phi)^{-1}$ *******************

Theorem: A field has only two ideals.

Converse: If R is a commutative ring with 1 whose only two ideals are $\{0\}$ and R then R is a field

Theorem: If R is a commutative ring with 1 then R is a field \iff R has only two ideals.

Examples:

1. $\{0, 1\}$ is a field.

2. \mathbbm{Z} is not a field.

Definition:

An IDEAL M of ring R is MAXIMAL if $M \subseteq U \subseteq R \implies M = U$ or U = R

Lemma: In \mathbbm{Z} ideal< n > is maximal

 \iff

n is prime.

Lemma: If R is a ring and U an ideal then

Homomorphism $\phi: R \longrightarrow \frac{R}{U}$ is order-preserving.

i.e. If R has two ideals J⊂K then $\phi(J) \subset \phi(K)$

Theorem: If R is a commutative ring with 1 and M an ideal of R

then M is a maximal ideal $\iff \frac{R}{M}$ is a field.

 $\phi(J)\subset \phi(K)$

Examples:

1.

$$\frac{\mathbb{Z}}{\langle 3 \rangle} \text{ is a field.}$$
2.

$$\frac{\mathbb{Z}}{\langle 6 \rangle} \text{ is a not a field.}$$

Lemma: The homomorphic images of a field

are $\{0\}$ and F itself.

• EMBEDDING of a ring R in an integral domain

 \mathbbm{Z} can be embedded in the field of quotients $\mathbb{Q}.$

Theorem: Every integral domain can be embedded in a FIELD

EUCLIDEAN RING

Examples:

- 1. Z
- 2. GAUSSIAN INTEGERS
- 3. Polynomial Rings

Definition: A EUCLIDEAN RING R is an integral domain in which a a non-zero element d(a) called NORM is defined on all non-zero elements $a \in R$ such that

- 1. $d(a) \le d(ab) \ \forall a, b \in R, \ a \ne 0, b \ne 0$
- 2. $\forall a, b \in R, a \neq 0, b \neq 0,$ $\exists t, s \in R \text{ such that} a = bt + r$ where d(r) < d(b) or r = 0.

Examples:

- 1. In $\mathbb{Z} d(a) = |a|$
- 2. In the Gaussian Integers $\mathbb{Z}[i]$, $d(a+ib) = a^2 + b^2$
- 3. In a field F if d(a) = 1 for each non-zero $a \in F$
- 4. In $\mathbb{Q}[x]$ if d(f) = deg(f)
- 5. In $\mathbb{Z}[\sqrt{-d}] d(a + b\sqrt{d}) = |a^2 db^2|$
- 6. In $\mathbb{Z}[\sqrt{d}] d(a+b\sqrt{d}) = a^2 + db^2$

Theorem: If R is a Euclidean ring and A an ideal of R

Then $A = \{ax : x \in R\}$

Definition: A PRINCIPAL ideal U of integral domain R with unit element 1

is a subset U of R such that $U = \langle a \rangle = Ra$

Definition: A PRINCIPAL ideal domain or p.i.d. is an integral domain ${\cal R}$ with unit element 1

in which every ideal is principal

Theorem: A Euclidean ring has the unit element 1

Theorem: A Euclidean ring is a principal ideal ring.

The converse is false.

• ER \subseteq p.i.d. \subseteq UFD

2 NUMBER THEORY

• In a ring R, a divides b denoted by a/b

if $\exists c \in R$ s.t. ac = b.

- g.c.d. of a, b (denoted by a/b) is d if
 - i d/a and d/b

ii $\forall c \in R \ c/a \text{ and } c/b \implies c/d$

Now R is a ring with 1.

- DEFINITIONS:
- u is a UNIT iff $\exists v \in R$ s.t. uv = vu = 1
- a, b are ASSOCIATES iff $\exists a \text{ unit } u \in R \text{ s.t. } a = ub$
- π is IRREDUCIBLE in R iff $\pi \neq 0$, $\pi \not a$ unit and $\pi = ab \Longrightarrow a$ or b is a unit
- p is PRIME in R iff $p \neq 0$, p $\not a$ unit and $p/ab \Longrightarrow p/a$ or p/b
- In fields each element is a unit. So Primes and irreducibles are not defined.
- l.c.m. of a, b is l if

i a/l and b/lii $\forall c \in R \ a/c$ and $b/c \implies l/c$

- $d \in \mathbb{Z}$ is SQUARE FREE if $d \neq 1$ and $x^2/d, x \in \mathbb{Z} \Longrightarrow x = 1$
- $(\mathbb{Z}[\sqrt{d}], +, .)$ where d is SQUARE FREE is an integral domain. Norm $(a + b\sqrt{d}) = N(\alpha) = |a^2 - db^2|$ $N(\alpha) = |a^2 - db^2| \in \mathbb{Z}$ $N(\alpha) = 0 \iff \alpha = 0$ $N(\alpha\beta) = N(\alpha)N(\beta)$ $N(\alpha) \le N(\alpha\beta)$ u is a unit in $(\mathbb{Z}[\sqrt{d}], +, .)$ $\implies N(u) = 1$

- EUCLIDEAN ALGORITHM
- To find g.c.d. of a, b

```
b = aq_0 + r_1 \text{ where } d(r_1) < d(a)

a = r_1q_1 + r_2 \text{ where } d(r_2) < d(r_1)

\vdots

r_{n-1} = r_nq_n
```

- then $(a,b) = r_n$
- THEOREM: In a EUCLIDEAN Ring
- π irreducible $\Longrightarrow \pi$ prime.
- THEOREM: In a UFD
- π irreducible $\iff \pi$ prime.
- Lemma: In a EUCLIDEAN Ring
- d(a) < d(ab) if b is not a unit.

Definition: A UNIQUE FACTORIZATION domain or UFD is an integral domain with unit element 1

- in which every element a which is not zero or a unit
- is a unique product of a finite number of irreducible elements. (up to associates)

THEOREM: pid \implies UFD.

Lemma: In a EUCLIDEAN Ring R

 $d = \mathrm{g.c.d}(\mathbf{a}, \mathbf{b}) \Longrightarrow d = \lambda a + \mu b$

Lemma: In an integral domain with unit element 1

a/b and $b/a \implies a = ub$ where u is a unit.

Lemma: In a commutative ring with unit element 1 the relation a is an associate of b is an equivalence relation. Equivalence class [a] is the set of associates of a.

Lemma: NORM(1) is MINIMUM norm.

- Norm(u)=Norm(1) for all units.
- $Norm(a) = Norm(ab) \iff b$ is a unit
- $Norm(a) < Norm(ab) \iff b$ is NOT a unit

Lemma: A unit generates R

Lemma: In a EUCLIDEAN Ring R

an element is either a unit or can be written as the product of a finite number of PRIMES

• Proof by induction on Norm(a)

Lemma: x = g.c.d. of a,b and x = associate of $y \iff both x$ and y are g.c.d.'s

Definition: a, b are RELATIVELY PRIME if (a,b)=u.

• a, b are RELATIVELY PRIME \iff (a,b)=1

UNIQUE FACTORIZATION THEOREM

THEOREM: : In a EUCLIDEAN Ring R

Every element is a unit or else

can be expressed UNIQUELY as THE FINITE PRODUCT OF Primes (up to ASSOCIATES)

Lemma: In a EUCLIDEAN Ring R

Lemma: $In\mathbb{Z}$, p prime, (c,p)=1,

and $x^2 + y^2 = cp \implies \exists a, b \in \mathbb{Z}$ such that $a^2 + b^2 = p$

• $3^2 + 7^2 = 2 \times 29 \implies 1^2 + 1^2 = 2$ and $2^2 + 5^2 = 29$

BECAUSE $p = a^2 + b^2 = (a + bi)(a - bi)$ is not irreducible in $\mathbb{Z}[i]$

FERMAT'S LITTLE THEOREM: :

THEOREM: : $a^p = a \mod p, a \in \mathbb{Z}$, p prime.

WILSON'S THEOREM: :

THEOREM: : $(p-1)! = -1 \mod p$, p prime.

FERMAT'S 4n+1 THEOREM: :

THEOREM: : If p is prime and p=4n+1, n\in\mathbf{Z}

then

- $x^2 = -1 \mod p$

Lemma: Ideal U is a subring of R

Lemma: The intersection of a finite number of ideals is an ideal.

Lemma: R[x] is a ring.

Lemma: A subring of an integral domain is an integral domain.

Lemma: The GAUSSIAN INTEGERS $\mathbb{Z}[i]$ form an integral domain.

• The Gaussian primes are $\{x + iy : x^2 + y^2 = prime \in \mathbb{Z}\}$ and p + i0 : pisaprimeoftheform4n + 3.

Lemma: If $\phi: R \longrightarrow \overline{R}$ is an isomorphism onto \overline{R} then so is $(\phi)^{-1}$

Theorem: A field has only two ideals.

Converse: If R is a commutative ring with 1 whose only two ideals are {0} and R then R is a field

Theorem: If R is a commutative ring with 1

then

R is a field

 \iff

R has only two ideals

Examples:

1. $\{0, 1\}$ is a field.

2. \mathbbm{Z} is not a field.

Definition:

An IDEAL M of ring R is MAXIMAL if $M\subseteq U\subseteq R \implies M=U$ or U=R

Lemma: In \mathbbm{Z}

ideal < n > is maximal

 \iff

n is prime.

Lemma: If R is a ring and U an ideal

then

Homomorphism $\phi: R \longrightarrow \frac{R}{U}$

is order-preserving.

i.e. If R has two ideals J \subset K

then

$$\phi(J) \subset \phi(K)$$

• $\ker(\phi) = U \subset \mathbf{J}$

Theorem: If R is a commutative ring with 1 and M an ideal of R then

M is a maximal ideal

$$\iff \frac{R}{M} \text{ is a field.}$$

$$\phi(J) \subset \phi(K)$$

Examples:

1.

$$\frac{Z}{\langle 3 \rangle} \text{ is a field.}$$
2.

$$\frac{\mathbb{Z}}{\langle 6 \rangle} \text{ is a not a field.}$$

Lemma: The homomorphic images of a field

are $\{0\}$ and F itself

EMBEDDING of a ring R in an integral domain Z can be embedded in the field of quotients Q

Theorem: Every integral domain can be embedded in a FIELD

Theorem: If R is a Euclidean ring and A an ideal of R

Then $A = \{ax : x \in R\}$

Definition: A PRINCIPAL ideal U of integral domain R with unit element 1

is a subset U of R such that $U = \langle a \rangle = Ra$

Definition: A PRINCIPAL ideal domain or p.i.d. is an integral domain ${\cal R}$ with unit element 1

in which every ideal is principal

Theorem: A Euclidean ring has the unit element 1

Theorem: A Euclidean ring is a principal ideal ring.

The converse is false.

 $\mathrm{ER}{\subseteq}\mathrm{p.i.d.}\subseteq\mathrm{UFD}$

3 NUMBER THEORY

In a ring R, a divides b denoted by a/b

if $\exists c \in R$ s.t. ac = b.

g.c.d. of a, b (denoted by a/b) is d if

i d/a and d/bii $\forall c \in R \ c/a$ and $c/b \implies c/d$

Now R is a ring with 1.

DEFINITIONS:

u is a UNIT iff $\exists v \in R$ s.t. uv = vu = 1

a, b are ASSOCIATES iff $\exists a \text{ unit } u \in R \text{ s.t. } a = ub$

 π is IRREDUCIBLE in R iff $\pi \neq 0, \ \pi \not a$ unit and $\pi = ab \Longrightarrow a \text{ or } b$ is a unit

p is PRIME in R iff $p \neq 0$, p /a unit and $p/ab \Longrightarrow p/a$ or p/b

In fields each element is a unit. So Primes and irreducibles are not defined.

l.c.m. of a, b is l if

- i $\,a/l$ and b/l
- ii $\forall c \in R \ a/c \text{ and } b/c \implies l/c$

$$d \in \mathbb{Z}$$
 is SQUARE FREE if

 $d \neq 1$ and $x^2/d, x \in \mathbb{Z} \Longrightarrow x = 1$

$$(\mathbb{Z}[\sqrt{d}], +, .)$$
 where d is SQUARE FREE

is an integral domain.

$$Norm(a + b\sqrt{d}) = N(\alpha) = |a^2 - db^2|$$

$$N(\alpha) = |a^2 - db^2| \in \mathbb{Z}$$

$$N(\alpha) = 0 \iff \alpha = 0$$

$$N(\alpha\beta) = N(\alpha)N(\beta)$$

$$N(\alpha) \le N(\alpha\beta)$$

u is a unit in $(\mathbb{Z}[\sqrt{d}],+,.)$

$$\implies N(u) = 1$$

EUCLIDEAN ALGORITHM

To find g.c.d. of a, b $b = aq_0 + r_1$ where $d(r_1) < d(a)$ $a = r_1q_1 + r_2$ where $d(r_2) < d(r_1)$: $r_{n-1} = r_nq_n$ then $(a, b) = r_n$

THEOREM: In a EUCLIDEAN Ring

 π irreducible $\implies \pi$ prime.

THEOREM: In a UFD

 π irreducible $\Longleftrightarrow \pi$ prime.

Lemma: In a EUCLIDEAN Ring

d(a) < d(ab) if b is not a unit.

Definition: A UNIQUE FACTORIZATION domain or UFD is an integral domain with unit element 1

in which every element a which is not zero or a unit

is a unique product of a finite number of irreducible elements. (up to associates)

THEOREM: pid \implies UFD.

Lemma: In a EUCLIDEAN Ring R

 $d = \text{g.c.d}(a,b) \Longrightarrow d = \lambda a + \mu b$

Lemma: In an integral domain with unit element 1

a/b and $b/a \implies a = ub$ where u is a unit.

Lemma: In a commutative ring with unit element 1

the relation a is an associate of b is an equivalence relation.

Equivalence class [a] is the set of associates of a.

Lemma: NORM(1) is MINIMUM norm.

Norm(u)=Norm(1) for all units.

 $Norm(a)=Norm(ab) \iff b$ is a unit

 $Norm(a) < Norm(ab) \iff b$ is NOT a unit

Lemma: A unit generates R

Lemma: In a EUCLIDEAN Ring R

an element is either a unit or can be written as the product of a finite number of PRIMES

Proof by induction on Norm(a)

Lemma: x = g.c.d. of a,b

and $x = associate of y \iff both x and y are g.c.d.'s$

Definition: a, b are RELATIVELY PRIME if (a,b)=u.

a, b are RELATIVELY PRIME \iff (a,b)=1

UNIQUE FACTORIZATION THEOREM

THEOREM: : In a EUCLIDEAN Ring R

Every element is a unit or else

can be expressed UNIQUELY as THE FINITE PRODUCT OF Primes (up to ASSOCIATES)

Lemma: In a EUCLIDEAN Ring R

IDEAL Ra is MAXIMAL \Longrightarrow a is PRIME.

Lemma: In \mathbb{Z} , p prime, (c,p)=1,

and $x^2 + y^2 = cp \Longrightarrow \exists$ a, b $\in \mathbb{Z}$ such that $a^2 + b^2 = p$

 $3^2 + 7^2 = 2 \times 29 \implies 1^2 + 1^2 = 2$ and $2^2 + 5^2 = 29$

BECAUSE $p = a^2 + b^2 = (a + bi)(a - bi)$ is not irreducible in $\mathbb{Z}[i]$

FERMAT'S LITTLE THEOREM: :

THEOREM: : $a^p = a \mod p, a \in \mathbb{Z}$, p prime.

WILSON'S THEOREM: :

THEOREM: : $(p-1)! = -1 \mod p$, p prime.

FERMAT'S 4n+1 THEOREM: :

THEOREM: : If p is prime and p=4n+1, n\in\mathbf{Z}

then

 $x^2 = -1 \mod p$

 $p = a^2 + b^2$

Lemma: Ideal U is a subring of R

Lemma: The intersection of a finite number of ideals is an ideal.

Lemma: R[x] is a ring.

Lemma: A subring of an integral domain is an integral domain.

Lemma: The GAUSSIAN INTEGERS $\mathbbm{Z}[i]$ form an integral domain.

The Gaussian primes are $\{x + iy : x^2 + y^2 = prime \in \mathbb{Z}\}$ and p + i0 : pisaprime of the form <math>4n + 3.

Lemma: If $\phi: R \longrightarrow \overline{R}$

is an isomorphism onto \overline{R}

then so is $(\phi)^{-1}$

Theorem: A field has only two ideals.

Converse: If R is a commutative ring with 1

whose only two ideals are $\{0\}$ and R

then R is a field

Theorem: If R is a commutative ring with 1

then

R is a field

 \iff

R has only two ideals

Examples:

Dr. I. Sciriha 29

- Rings
 - 1. $\{0,1\}$ is a field.
 - 2. \mathbbm{Z} is not a field.

Definition:

An IDEAL M of ring R is MAXIMAL if $M \subseteq U \subseteq R \implies M = U$ or U = R

Lemma: $In\mathbb{Z}$

ideal < n > is maximal

 \iff

n is prime.

Lemma: If R is a ring and U an ideal

then

Homomorphism $\phi: R \longrightarrow \frac{R}{U}$

is order-preserving.

i.e. If R has two ideals $\mathbf{J}{\subset}\mathbf{K}$

then

 $\phi(J)\subset \phi(K)$

 $\ker(\phi) = U \subset \mathbf{J}$

Theorem: If R is a commutative ring with 1

and M an ideal of R

then

M is a maximal ideal

 \Leftrightarrow

$$\frac{R}{M}$$
 is a field.

$$\phi(J) \subset \phi(K)$$

Examples:

1. $\frac{\mathbb{Z}}{\langle 3 \rangle} \text{ is a field.}$ 2. $\frac{\mathbb{Z}}{\langle 6 \rangle} \text{ is a not a field.}$

Lemma: The homomorphic images of a field

are $\{0\}$ and F itself

EMBEDDING of a ring R in an integral domain

Z can be embedded in the field of quotients Q

Theorem: Every integral domain

can be embedded in a FIELD