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Abstract

The properties of singular graphs obtained in a previous paper "On

the construction of graphs of nullity one", lead to the characterization

of graphs of small rank. The minimal configurations that are contained

in singular graphs were identified as "grown" from certain cores. A core

of a singular graph G is a subgraph induced by the vertices correspond-

ing to the non-zero components of an eigenvector in the nullspace of

the adjacency matrix of G. In this paper it is shown that an arbitrary

singular graph Z without isolated vertices has core-sizes correspond-

ing to a minimal basis for the nullspace of A bounded below by 2 and

above by r(Z) + 1, r(Z) being the rank of Z. For r(Z) ≥ 6, these

bounds are sharp.
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1 Introduction

All the graphs we consider are simple. The adjacency matrix A(G) or

A of a graph G with vertex set V(G) = {v1, v2, . . . , vn}, is often represented

by (R1, R2, . . . , Rn)
T where Ri is the ith row vector of A corresponding to

vertex vi.

A graph is said to be singular if its adjacency matrix A is a singular matrix;

then {v0 : Av0 = 0} is the nullspace of A denoted by E0(A). The nullity

of G, denoted by η(G), is the dimension of E0(A), which is the multiplicity

of the zero eigenvalue of A, since A is symmetric. The rank of a graph G,

denoted by r(G), is the rank of its adjacency matrix A which is n(G)−η(G)

where n(G) denotes the order of G.
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2 Core Space

Definition: Let u ∈ Rn. Then the weight of u denoted by wt(u) is

the number of non-zero entries of u.

Definition: A kernel eigenvector v0 of a singular graph with adja-

cency matrix A, is a non-zero vector in the nullspace E0(A).

Definition: If G is a singular graph, with adjacency matrix A and

v0 6= 0 is a vector in E0(A), then the subgraph of G induced by the

vertices corresponding to the non-zero components of v0, denoted by

χv0, is said to be the core (w.r.t v0). The number of vertices of the

core is called its core-order. The set of vertices V(G\χ) is called the

periphery of G

(w.r.t v0) and is denoted by P.

Remark: The set of cores corresponding to the set of vectors in E0(A) is

called the core-space C0(G).

In [1], M.Brown et al defined the graph singularity κ(G) = κ of a

singular graph G as the least core-order in the graph. In [5], the structure

of singular graphs having one core of core-order up to 5 was investigated. In

[6], the concept of a core-space and of a minimal basis, in which the core-

order sequence is unique, was discussed. The first term of the sequence is κ

and its last term is defined as the core-width τ . These terms will be defined

formally in the next section. Graphs can be classified according to τ and

then more finely according to the corresponding core.

In this paper we determine bounds on the core orders for an arbitrary sin-

gular graph Z without isolated vertices. We show that, for r(Z) ≥ 6, these

bounds are sharp. Moreover, we classify graphs according to their rank and

extend the list of minimal configurations given in [5] to cover all those of

rank up to 6.

3 Minimal Basis for the core-space

Definition: Let B = (u1,u2, . . . ,uη) be a basis for E0(A) where A is
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the adjacency matrix of a singular graph G. The sequence of cores

B′ = (χu1 , χu2 , . . . , χuη) is called a core basis for G.

The convention adopted will be to write an ordered basis such that the

weights of its vectors are in non-decreasing order.

Definition: Let B be an ordered basis (u1,u2, . . . ,um) for a subspace

of Rn of dimension m. The sequence of weights t1, t2, . . . , tm of the

vectors in B is said to be the weight-sequence of B.

Definition: Let G be a graph with adjacency matrix A. If the weight-

sequences of all bases for E0(A) are in ascending lexicographic order

then a basis B = (u1,u2, . . . ,uη) with a minimal weight-sequence S =

(t1, t2, . . . , tη) is called a minimal basis for E0(A). The corresponding

minimal core basis for C0(G) is B′ = (χu1 , χu2 , . . . , χuη). The weight-

sequence S is called the core-order sequence of G. The first term

of the sequence is defined as the singularity κ(G), (the order of χu1)

and the last term as the core-width τ(G), (the order of χuη).

Definition: Let G be a graph with core space C0(G). A core of largest

order in a minimal basis for C0(G) is called a min-max core.

The following theorem is proved in [6].

Theorem 1: Let G be a graph with adjacency matrix A. Let

B1 = (u1,u2, . . . ,uη) be a minimal basis for E0(A) and

B2 = (w1,w2, . . . ,wη) be another ordered basis for E0(A) with weight-

sequences t1, t2, . . . , tη and s1, s2, . . . , sη respectively. Then ti ≤ si,∀i.
This theorem shows that the core-order sequence which depends on a mini-

mal core basis is unique and thus it is well-defined.

The graph Y in Fig. 1 has order 8 and nullity 4. A minimal basis for the core-

space C0(G) relative to the labelling in the diagram is given by R1 + R2 =

R3 + R4 = R5 + R6; R2 = R7; R3 = R8. However R2 − R7 + R3 − R8 = 0

corresponds to a core of order τ(G) which if included in a basis would not

give a minimal core-order sequence and is therefore not a min-max core.
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Figure 1: The graph Y .

4 Minimal Configuration

Definition: A connected graph T is an extension of a graph G if G

is an induced subgraph of T such that

1. n(G) < n(T )

2. < V(T )− V(G) > is null.

T is also said to be extended from G.

Definition: A singular graph Γ of order n ≥ 3, having a core χ

and periphery P := V(Γ)− V(χ) is a minimal configuration, of core-

number n(χ), if the following conditions are satisfied:

(i) η(Γ) = 1,

(ii) P = ϕ or P induces a null graph,

(iii) and in the case when P 6= ϕ, the deletion of v ∈ P increases the

nullity of Γ.

Definition: A minimal configuration is called a nut graph if P = ϕ.

Since P = ϕ or P induces a null graph, it follows that a minimal configura-

tion Γ is connected [7]. In a nut graph each entry of a kernel eigenvector is

non-zero.

Lemma 1: Let Γ be a minimal configuration of core-number p. Then

κ = τ = p.

Proof: The core-order sequence S of the core-basis for Γ, is {p}. Since κ

is the first term and τ the last term of S, the result follows.\\
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In related work [3, 7], it is shown that for r(G) ≥ 6, the upperbound r(G)+1

for τ(G) can be attained by nut graphs.

Lemma 2: Let G be a nut graph of order n.

Then κ(G) = τ(G) = r(G) + 1 = n.

Proof: Since G is a minimal configuation, it has only one core χ. Since

P = φ, then χ = G. Thus κ(G) = τ(G) = n(χ) = n(G) = n.\\

Figure 2: Minimal Configurations

Thus B and Λ, in Fig. 2, are two minimal configurations with cores

C4 and C4+̇K2 respectively and kernel eigenvectors (1, 1,−1,−1, 0)t and

v0 = (1,−1,−1, 1, 1,−1, 0, 0, 0)t respectively. M.Ellingham defines a basic

subgraph of a graph G as the subgraph induced by the vertices correspond-

ing to a set of r(G) linearly independent row vectors of A(G) [2]. It follows

that a basic subgraph is non-singular. In [4] it is shown that a diagonal entry

Aii of the adjoint of the adjacency matrix of a graph of nullity one, corre-

sponding to a vertex vi of a core, is non-zero and that that corresponding to

a vertex of the periphery is zero. Each of these diagonal entries corresponds

to the determinant of the adjacency matrix of the subgraphs obtained when

a vertex of the core is deleted. Thus the possible basic subgraphs of a min-

imal configuration are obtained by deleting each of the vertices of the core

in turn.

5 Construction of a Core Basis

Henceforth a singular graph without isolated vertices will be denoted by Z.

Lemma 5.1 Let χ be a core in a minimal basis for C0(Z). If χ is not

itself a minimal configuration, then there is a minimal configuration,
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extended from χ, which is a (not necessarily vertex-induced) subgraph

of Z.

Lemma 5.2 Let Z have core χw and let H be a minimal configuration

such that H = χw or H is extended from core χw, and H is a subgraph

of Z. Then r(H) ≤ r(Z).

Theorem 5.3 Let Z be of order n and rank r, with adjacency matrix

A. Let the first r row vectors of A be linearly independent vectors.

Then there are η(Z) = n− r cores in a basis for C0(Z). One such basis

is given by the cores corresponding to the linear relations between each

of the last η(Z) row vectors and a subset of the first r row vectors of

A.

Proof: Since the maximum number of linearly independent row vectors of

A is r, each of the η(Z) row vectors Rj , j > r, is linearly dependent on a

subset of the first r row vectors of A. Each linear relation corresponds to

a kernel eigenvector in the nullspace of A. Since each of these η(Z) kernel

eigenvectors corresponds to a core with a unique vertex vj (described by row

vector Rj , j > r), these η(Z) kernel eigenvectors are linearly independent

and so form a basis B for E0(A). The η(Z) cores corresponding to the kernel

eigenvectors in B form a basis for the core-space C0(Z).

For graph Y of Fig.1, κ(G) = 2 corresponding to cores of order 2 one of which

is < v2, v7 >. We have shown that given a graph Z with a kernel eigenvector

x0 there exists a subgraph of Z which is one of a set of particular minimal

configurations given in [5], that depend on x0 and its corresponding core of

Z. The four minimal configurations extended from the cores K2, K2, C4,

C4 in a minimal basis for C0(Y ) are P3, P3, Λ and Λ respectively, where Λ

is shown in Figure 2.

Theorem 5.4

2 ≤ κ(Z) ≤ τ(Z) ≤ r(Z) + 1. (1)
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Proof: Let Z be labelled so that the first r row vectors of the adjacency

matrix A are linearly independent. A kernel eigenvector corresponds to a

relation between Rj , j > r(Z) and a subset of the first r row vectors as in

the proof of Theorem 5.3. A corresponding core will therefore have at most

r + 1 vertices.

These kernel eigenvectors correspond to a basis B for E0(A) (not necessarily

minimal). Let the weight-sequence of B be (t1, t2, . . . , tη). Each term of a

weight sequence of a minimal basis does not exceed the corresponding term

in a weight sequence of another basis [6]. Since τ(Z) is the last term of a

minimal weight-sequence, it follows that τ(Z) ≤ tη ≤ r(Z) + 1. Since the

smallest possible core is K2 with 2 vertices [5], the result follows.

6 Graphs of Rank at most 3

Theorem 6.1 A graph is of rank 0 iff it is an empty graph. The nullity

of an empty graph is its order.

Theorem 6.2 There are no graphs of rank 1.

Theorem 6.3 The only graphs Z of order n and rank 2 are the com-

plete bipartite graphs Kr,n−r, 1 ≤ r ≤ bn2 c. In this case

κ(Z) = τ(Z) = 2. Only K2 = K1,1 is non-singular and of rank 2.

Proof: Let G be a graph of order n and rank 2. Then A(G) has two

linearly independent row vectors R1, R2. If n(G) = 2, then G = K2, which

is non-singular. If n(G) > 2 then each of the row vectors Rj , j ≥ 3 is a

linear combination of the first two and G is singular. Let G = Z. Then

(α1, α2, 0, . . . , 0, αj , 0, , 0, . . . , 0)
t is an eigenvector in the zero eigenspace of

A. From [5], we know that possible solutions are given by

i) R1 + R2 = Rj =⇒ n(G) ≥ 5 & rank ≥ 4. The minimal configuration in

this case is P5. Since we require r(Z) = 2, this kernel relation is not possible.

ii) For j ≥ 3, Rj = R1 or Rj = R2. Thus Z = Kr,s which has rank 2.
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Theorem 6.4 The only graphs Z of rank 3 are the complete tripartite

graphs Ka,b,c with κ(Z) = τ(Z) = 2. The only graph of rank 3 which is

non-singular is K1,1,1 = K3.

Proof: Let G be a graph of rank 3 with adjacency matrix A. Let R1, R2, R3

be linearly independent row vectors of A. If n(G) = 3 then G = K3. If

n(G) > 3, then ∀j ≥ 4, ∃(α1, α2, α3, 0, .., αj , 0, ..0)
t ∈ E0(A). Let G = Z. If

τ(Z) = 4 then from [5], we know that the possible cores are C4 and K4 when

the corresponding minimal configurations have ranks 4 and 6 respectively

and so by Lemma 5.2, r(Z) ≥ 4 and r(Z) ≥ 6 for the respective cores.

Thus for r(G) = 3, τ(Z) ≤ 3. Let τ(Z) = 3. Then from [5], we know that

there exists a labelling such that R1 + R2 = R3 and hence r(Z) ≥ 4, again

too large. Thus τ(Z) ≤ 2. Hence R1, R2, R3 are linearly independent and

∀J ≥ 4, RJ = RI , I ∈ {1, 2, 3}. Hence Z is Ka,b,c.

It is convenient to classify singular graphs according to a min-max core from

which they can be "grown". For a graph G of nullity one, κ(G) = τ(G) and

G is necessarily in one class. In [5], we show that larger graphs called

intermediate configurations and maximum configurations can be "grown"

from a minimal configuration with core χ as extensions of χ. These are

included in the class determined by a min-max core.

The following table shows the results obtained above.

Graphs of rank at most 3.

Rank Minimum Core Kernel Graph Singularity Core-width

r(G) order eigenvector κ(G) τ(G)

0 1 (1, 1, ...1)t Kn

1 − − − −
2 2 − − K2

2 3 K2 (−1, 1, 0, ..)t Kr,n−r 2 2

3 3 − − K3

3 4 K2 (−1, 1, 0, ..)t Ka,b,c 2 2
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7 Graphs of Rank 4, 5

Graphs of rank 2 and of rank 3 are the complete multipartite graphs and

their cores are empty graphs. Graphs of larger rank can have cores other

than the empty graph.

Theorem 7.1 If a graph Z is of rank 4, then Z is one of the graphs

in List #1 with kernel eigenvector x0, and the corresponding minimal

configuration Γ as a subgraph.

List #1: Minimal configurations Γ which are subgraphs of Z.

x0 core Core-width of Z Γ

(1,−1, 1,−1, 0, ..)t C4 4 Λ of Fig. 2

(1, 1,−1, 0, ..)t K3 3 P5

(−1, 1, 0, ..)t K2 2 P3

Proof: Let A(Z) = A and let R1, R2, R3, R4 be linearly independent row

vectors of A. Then ∀j ≥ 5, (α1, α2, α3, α4, 0, .., 0, αj , 0, .., 0)
t ∈ E0(A),

αj 6= 0. Suppose αi 6= 0, ∀i ∈ {1, 2, 3, 4}. Let χ be the corresponding

core on 5 vertices. Then µ = η(χ) ≥ 3. If χ is the core of a minimum

configuration, Γ, which is a subgraph of Z, then n(Γ) = 5 + µ− 1 ≥ 7 and

so r(Z) ≥ 6. Thus for r(Z) = 4, τ(Z) ≤ 4 when n(Γ) = 7, 5, or 3 and

χ = K4, C4, K3, K2. If Γ is a subgraph of Z, then n(Γ)−1 = r(Γ) ≤ r(Z).

So from [5], we deduce that only the graphs in List # 1 are possible.

Theorem 7.2 A graph Z is of rank 5 iff Z is one of the graphs in List

#1 with the corresponding Γ as a subgraph.

Proof: Since the nullity µ of cores of order 6 is at least 2, for Z with core-

width 6, r(Z) = 5 + µ− 1 ≥ 6. Thus for r(Z) = 5, τ(Z) ≤ 5. From [5], we

know that if τ(Z) = 5, then µ ≥ 3 and r(Z) ≥ 6. It follows that τ(Z) ≤ 4

and so the same cores as for rank 4 are admissible.
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8 Graphs of Rank 6

The nullity µ of the cores of the minimal configurations of core order 6,

ranges from 2 to 6. The rank of a minimal configuration Γ is given by

r(Γ) = τ + µ − 2. Since µ ≥ 1, for r(Γ) = 6, it follows that τ ≤ 7. More

precisely, (τ, µ) = (7, 1), (6, 2), (5, 3) or (4, 4). In [5], we have described all

the minimal configurations with core orders at most 5. Here we determine

the cores of order 6 and choose the ones with nullity 2 to obtain the minimal

configurations of rank 6. The cores of order 7 and nullity one are precisely

the three nut graphs of order 7.

Figure 3: Cores of order 6.

Theorem 8.1 Cores χ6 on 6 vertices are the graphs in Fig. 3.

Figure 4: Nut graphs of order 7.

Theorem 8.2 There are no nut graphs of order 6 or less, and three

nut graphs of order 7 shown in Fig. 4.
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Figure 5: Graphs with core-width 6 and rank 6.

Theorem 8.3 If a singular graph Z is of rank 6, then Z is one of the

graphs in List #1 above or one of the graphs in List #2 below with

the corresponding Γ as a subgraph.

Proof: By direct checking the condition can be proved sufficient. To prove

that it is necessary, let Z be a graph of rank 6 with adjacency matrix A.

Let R1, R2, R3, R4, R5, R6 be a set of linearly independent row vectors of A.

Then ∀j ≥ 7, x0 = (α1, α2, . . . , α6, 0, ..αj , 0..)
t ∈ E0(A), αj 6= 0. Then

core-width τ(Z) ≤ 7.

If there exists a minimal basis B for E0(A) such that x0 ∈ B, αi 6= 0, ∀i
and the corresponding core χx0 has nullity µ then a minimal configuration

Γ "grown" from it has order 7 + (µ− 1) and is of rank 5 + µ. For r(Z) = 6,

(τ, µ) = (7, 1). Thus n(Γ) = τ(Z) = 7. Thus Z is a nut graph of rank 6.

The graph Γ = χx0 is one of the three graphs shown in Fig. 4.

For τ(Z) = 6 the possible graphs have one of the cores χ6 given by Theorem

8.1. A minimal configuration Γ in Z is of order 6+(µ−1) and rank 5+(µ−1)

where µ = η(χ6). Since r(Γ) ≤ r(Z) = 6, µ ≤ 2. Thus (τ, µ) = (6, 2). The

minimal configurations for cores H1 and H2 whose nullity is 2 in each case
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are given in Fig. 5. Since the other cores of order 6 have nullity greater than

2, the rank of the minimal configurations grown from them is more than 6

and so they are not admissible.

bf List #2: The minimal configurations Γ in a graph Z of rank at least

6.

x0 core τ(Z) Γ

(−1,−1,−1,−1, 1, 1, 1, 0, . . . , 0)t X 7 X [Fig. 4].

(−1,−1,−1,−1, 1, 1, 1, 0, . . . , 0)t X2 7 X [Fig. 4].

(−1,−1,−1,−1, 1, 1, 1, 0, . . . , 0)t X3 7 X [Fig. 4].

(−2,−2, 1, 1, 1, 1, 0, . . . , 0)t H1 6 [Fig. 5].

(1, 1,−1,−1,−1, 1, 0, . . . , 0)t H2 6 [Fig. 5].

(−1,−1, 1, 1,−1, 1, 0, . . . , 0)t H2 6 [Fig. 5].

(−1,−1, 1, 1,−2, 2, 0, . . . , 0)t H2 6 [Fig. 5].

(1, 1,−1,−1, 1, 0, ..)t C4+̇K1 5 [Fig. 6].

(2, 1,−2,−1, 1, 0, ..)t C4+̇K1 5 [Fig. 6].

(1,−1,−1, 1, ,−2, 0, ..)t C4+̇K1 5 [Fig. 6].

(1, 1,−2, 1,−1, 0, ..)t K2,3 5 [Fig. 6].

(1,−1, 1,−1, 0, ..)t K4 4 P7 and Γ1 [Fig. 7].

(1, 1,−1, 1, 0..)t K4 4 S(K1,3) [Fig. 7].

(1, 1,−2, 1, 0, ..)t K4 4 H(K4) [Fig. 7].

(2, 1,−1,−1, 0, ..)t K4 4 1C6 [Fig. 7].

For τ(Z) = 5, (τ, µ) = (5, 3). So at least one of the minimal configurations

given in Fig. 6 (with a core C4+̇K1 or K2,3) is a subgraph of Z. For τ(Z) =

4,

(τ, µ) = (4, 4) or (4, 2). So at least one of the minimal configurations given

in Fig. 7 (with a core K4) or Λ of Fig. 2 (with core C4) is a subgraph.

For τ(Z) ≤ 3, the possible graphs of rank 6 are of the same structure as

those of rank less than or equal to 5 given in List #1.
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Figure 6: Graphs with core-width 5 and rank 6.

Figure 7: Graphs with core-width 4 and rank 6.

9 Bounds for the Core-Order-Sequence

The following thoerem has been proved.

Theorem 9.1 If r(Z) is 2 or 3, then κ(G) = τ(G) = 2.

If r(Z) is 4 or 5, then κ(G) ≥ 2 and τ(G) ≤ 4.

Lemma 9.2 For a given τ(G) ≤ 6, a lower bound for the rank of an
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arbitrary graph G is τ(G). The sharp bound is τ(G) if τ(G) is even

and τ(G) + 1 if τ(G) is odd.

Lemma 9.3 For a given τ(G) ≥ 7, a lower bound for the rank of an

arbitrary graph G is τ(G) − 1. This bound is sharp for each value of

τ(G) in this range.

Proof: A nut graph exists for each core order at least seven [3, 7]. So the

graph G can have a min-max core χ which is a nut graph provided τ(G) ≥ 7

when n(G) ≥ n(χ) = τ(G) and r(G) ≥ r(χ) = τ(G)− 1. Equality occurs for

nut graphs.

For graphs of rank 6 or higher, the core-width has an upper bound that

depends on the rank and that can be attained.

Theorem 9.4 If r(Z) ≥ 6, then κ(Z) ≥ 2 and τ(Z) ≤ r(Z) + 1. Both

bounds are attained.

Proof: From [7], we know that a nut graph G exists for n(G) ≥ 7, in

which case τ(G) = r(G) + 1 = n(G). From Lemma 5.2, and Theorem 5.4,

the result follows.

The rank of a singular graph Z imposes bounds on the core-width τ(Z) but

not on the order n(Z). For a given rank r > 1 of an arbitrary graph G, n(G)

is bounded below by r but is not bounded above since for example vertices

that have the same set of neighbours can be added without changing the

rank or core-width of the resulting graph.
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