Zeolites with unusual mechanical properties

Joseph N. Grima, Michelle Wood, Andrew Alderson, Kenneth E. Evans

Department of Chemistry, Faculty of Science, University of Malta, Msida MSD 06, MALTA

E-mail: joseph.grima@um.edu.mt
Tel: (+356) 2340 2274 / 5
WWW: http://staff.um.edu.mt/jgri1
Malta & its University

Malta: Size: 126 square miles, Population: 380,000

The University: Traces its origin to the founding of the *Collegium Melitense* in 1592.

http://staff.um.edu.mt/jgri1 • joseph.grima@um.edu.mt
AUXETIC Materials:

Auxetic materials are materials with a **negative Poisson’s Ratio**, i.e. materials that become fatter when stretched and thinner when squashed.

\[
\text{Poisson's ratio, } \nu = -\left(\frac{\text{lateral strain}}{\text{axial strain}} \right)
\]

CONVENTIONAL

AUXETIC

http://staff.um.edu.mt/jgri1 • joseph.grima@um.edu.mt
Advantages of Auxetic Materials

When compared to conventional materials, auxetics ...

> Are harder to indent
> Have an increased shear stiffness
> Have a natural ability to form doubly curved surfaces
> Have a higher plane fracture toughness
> Can be used as tunable filters
What gives rise to a negative Poisson’s ratio?

Auxetic behaviour is a result of co-operation between:

> **Geometric features** in the macro/micro/nano structure of the material,

> The **deformation mechanisms**.

e.g. honeycomb structure

http://staff.um.edu.mt/jgri1 • joseph.grima@um.edu.mt

Why look at zeolites?

- Zeolites have highly geometric nanostructures, i.e. there is the possibility of auxetic behaviour.

- Very little experimental data is available on the single crystalline mechanical properties of zeolites.

- The use of zeolites as molecular sieves – the possibility of having tunable molecular sieves.
Initial Study(*):

(1) Using a proprietary package (Cerius², MSI Inc.).

(2) Initial configurations: the SiO₂ equivalents and the empty frameworks as supplied in the literature. No cations and water molecules were included in this initial study.

(3) Mechanical properties were calculated through force-fields supplied with Cerius².

Methodology was validated against published data (SOD, α-cristobalite)

Thomsonite, $\text{Na}_4\text{Ca}_8[\text{Al}_{20}\text{Si}_{20}\text{O}_{80}] \cdot 24\text{H}_2\text{O}$

Poisson’s Rations from simulations on $\text{Si}_{40}\text{O}_{80}$

<table>
<thead>
<tr>
<th>Force-field</th>
<th>ν_{xy}</th>
<th>ν_{yx}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burchart1</td>
<td>-0.55</td>
<td>-0.55</td>
</tr>
<tr>
<td>BKS2</td>
<td>-0.33</td>
<td>-0.53</td>
</tr>
<tr>
<td>Universal3</td>
<td>-0.33</td>
<td>-0.40</td>
</tr>
<tr>
<td>CVFF4</td>
<td>-0.46</td>
<td>-0.46</td>
</tr>
</tbody>
</table>

http://staff.um.edu.mt/jgri1 • joseph.grima@um.edu.mt
THO: Minimum energy configurations: Burchart force-field.

Idealised ‘rotating squares’: \(\nu = -1 \)

\[\sigma_x = 0 \text{ GPa} \]

\[\sigma_x = 1 \text{ GPa} \]

http://staff.um.edu.mt/jgri1 • joseph.grima@um.edu.mt
Results: **THO**

- The rotating squares deformation mechanism in action
The ‘Rotating Squares’ mechanism:

Idealised ‘RS’ model*:

![Diagram showing rotating squares at 20°, 50°, and 90°.]

Poisson's ratio = -1

Requirements:

(1) rigid square-like unit
(2) flexible hinges

http://staff.um.edu.mt/jgri1 • joseph.grima@um.edu.mt
The ‘Rotating Squares’ mechanism: Filters

Load True Stress in the vertical (or horizontal) direction

$\theta_{init} = 90^\circ$ $\theta_{init} = 30^\circ$ $\theta_{init} = 0^\circ$

Radius of sphere

square size

http://staff.um.edu.mt/jgri1 • joseph.grima@um.edu.mt
The ‘Rotating Squares’ mechanism in THO:

RIGID ‘SQUARE’
... cage-like structure

FLEXIBLE ‘HINGE’
... Si-O-Al groups
Deviations from the idealised RS behaviour

Idealised Rotating Squares Model: Poisson’s ratio for loading in any direction in the plane is -1 (i.e. ν is independent of loading direction).

Molecular Modelling on THO (Si$_{40}$O$_{80}$): Poisson’s ratio in the xy plane for loading in x-direction is only c. –0.40, and this depends on loading direction (becomes less auxetic on axis rotation).

http://staff.um.edu.mt/jgri1 • joseph.grima@um.edu.mt
Improved ‘RS’ analytical model:

Variables: d_1, d_2, ϕ and θ

(+ associated stiffness constants)

http://staff.um.edu.mt/jgri1 • joseph.grima@um.edu.mt
Development of the model:

Tensile load (σ_x)

Shear load (τ_{xy})

\[
\nu_{XY} = \nu_{YX} = -\left[1 + 4 \left(\frac{k_{\theta}}{k_{\phi}} \right) \right]^{-1}
\]

Key:
- d_1
- d_2
- θ
- ϕ

http://staff.um.edu.mt/jgri1 • joseph.grima@um.edu.mt
Comparison of AM with molecular modelling data:

Molecular Modelling:

\[E^* = 23.9 \text{GPa} \]
\[G^* = 8.02 \text{GPa} \]
\[\theta = 148.6^\circ \]

(*on-axis)

Compute the stiffness constants:

\[k_\theta = 0.23 \]
\[k_\phi = 7.43 \]

Compare Poisson’s ratios:

Molecular Model

Analytical Model

http://staff.um.edu.mt/jgri1 • joseph.grima@um.edu.mt
Other auxetic zeolites with a similar nanostructure:

similar properties ... more confidence in results.

http://staff.um.edu.mt/jgri1 • joseph.grima@um.edu.mt
Problem:

Real zeolites have interstitial cations (and water).

What is their effect?
Methodology\(^{(i)}\):

(1) Software = Cerius\(^2\)

(2) Force-field based simulations using force-fields supplied with Cerius\(^2\) and modifications of them.

(3) Modelling concentrated on the following zeolites with a RS nanostructure:

\[> \text{NAT} > \text{EDI}, \]

modelled as (a)
\textit{dehydrated zeolites} (b) \textit{hydrated}. In both cases the cations were added\(^{(ii)}\). Results were compared to those obtained on the SiO\(_2\) equivalents and the empty frameworks.

\(^{(i)}\) Methodology was validated against the published data of SOD.
\(^{(ii)}\) The coordinates for the water molecules and cations were obtained from Treacy and Higgins, 2001
Results: **NAT**

- Auxetic behaviour was retained with the addition of cations and water, but to a lesser degree:

 Empty NAT framework > *NAT framework with cations* > *NAT framework with cations + water*

- Properties could still be explained in terms of the ‘Rotating Squares’ deformation mechanism.
Results: **NAT**

- The rotating squares deformation mechanism in action

NAT Framework + cations

(dehydrated)

![Diagram showing the NAT framework and loading direction.](image-url)
Results: NAT

- The rotating squares deformation mechanism in action

NAT Framework + cations + water
Results: **NAT** - The Poisson’s ratio in the XY plane

<table>
<thead>
<tr>
<th>ν_{xy}</th>
<th>SiO$_2$ equivalent (empty framework)</th>
<th>NAT framework + cations (dehydrated)</th>
<th>NAT framework + cations & water</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>most auxetic</td>
<td></td>
<td>least auxetic</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

... similar behavior: maximum ν_{xy} auxeticity at 45° to main axes.
Results: **NAT** - The mech. properties in the XY plane

<table>
<thead>
<tr>
<th></th>
<th>On-Axes</th>
<th>45° to main axes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E_x</td>
<td>ν_{xy}</td>
</tr>
<tr>
<td>SiO$_2$ equivalent</td>
<td>23.98</td>
<td>-0.24</td>
</tr>
<tr>
<td>Empty framework</td>
<td>19.29</td>
<td>-0.24</td>
</tr>
<tr>
<td>Framework + Cations</td>
<td>20.18</td>
<td>-0.11</td>
</tr>
<tr>
<td>framework + cations + water</td>
<td>31.16</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Diagram:

- (1) Empty framework
- (2) Framework + Cations
Explanation of Results: NAT

1. Auxeticity present in all cases because ‘rotating squares’ deformation mechanism is operational in all cases. This confirms the important relationship between the framework nanostructure and the mechanical properties.

2. Reduced auxeticity is probably due to interactions between the interstitial molecules and cations and the zeolite framework, effectively limiting the framework’s flexibility and therefore making the structures more stiff.
Results: **EDI**

- Similar trends were observed for EDI. However, the structure was observed to be stiffer and less auxetic than the NAT structure.
<table>
<thead>
<tr>
<th></th>
<th>(dehydrated)</th>
<th>(hydrated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions:

- A number of auxetic zeolites have been identified.

- In THO, NAT and EDI, this unusual behavior was explained in terms of a simple ‘rotating squares’ model.

- Auxeticity is maximum in the empty frameworks. However, some auxetic behavior is retained in the presence of cations and water molecules as ‘RS’ deformation mechanism is still operational.