Functions

Dr. Joseph N. Grima

domain and range of functions... 4	
2.1 The greatest possible domain .. 4	
2.3 The range...	
3 Composite functions .. 5	
4 Inverse functions .. 6	
4.3 One-to-one functions...	
\| 4.4 Plots of $\mathrm{f}(\mathrm{x})$ and their inverses. .. 9	
5.1 The linear function .. 9	
5.2 The quadratic function .. 9	
5.3 The exponential and loga	

1 Definition of a well defined function

An expression for y in terms of a variable x can be referred to as a 'function of x ' if for each unique value of x in the set X (the domain, see section 2 below there is one and only one corresponding value of y.

For example:

(a) $y=x^{2}-1$ can represent a function of x (see fig. 1a) over all of \mathbb{R}, and we can write:

$$
\begin{aligned}
& f(x)=x^{2}-1 \quad x \in \mathbb{R} \\
& (\operatorname{read} f \text { of } x \text { is equal to } \ldots)
\end{aligned}
$$

or

$$
\begin{aligned}
& f: x \rightarrow x^{2}-1 \quad x \in \mathbb{R} \\
&(\operatorname{read} f \text { maps } x \text { onto } \ldots)
\end{aligned}
$$

(b) $y=\sin (x)$ can represent a function of x (see fig. 1b) over all of \mathbb{R} and we can write:

$$
f(x)=\sin (x) \quad x \in \mathbb{R}
$$

or

$$
f: x \rightarrow \sin (x) \quad x \in \mathbb{R}
$$

(c) The possible values of y for a given $x \geq-1$ such that $y^{2}=x+1$ does not represent a function of x (see fig. 1c) since:

$$
\begin{array}{rll}
y^{2}=x+1 \\
\Rightarrow y= \pm \sqrt{x+1} & , & x \geq-1 \\
\Rightarrow & x \geq-1
\end{array}
$$

i.e. each value of $x>1$, gives two possible values of y.
(d) $y= \pm \sqrt{x+1}, x \geq-1$ needs to be modified to be turned into a well defined function, by choosing to ignore the negative (or the positive) parts of the solution. Thus, whilst $y= \pm \sqrt{x+1}, x \geq-1$ does not fulfil the requirements of a well defined function, both:

$$
f(x)=y=+\sqrt{x+1}, x \geq-1
$$

and

$$
f(x)=y=-\sqrt{x+1}, x \geq-1
$$

are well defined functions. (see Fig. 1d)
(a) $f(x)=x^{2}-1 \quad$ (b) $f(x)=\sin (x)$

Fig. 1

2 The domain and range of functions

2.1 The greatest possible domain

The greatest possible domain of a function $f(x)$ is set of x over which the function is well defined. In particular, for real functions, it must exclude the following:

- Division by 0
- Square roots of negative numbers
- Logarithms of zero and negative numbers
- Tangents of $n \pi+\frac{\pi}{2}, n \in \mathbb{Z}$

Thus, for example, as noneof the above are present for $f(x)=x^{2}-1$, then its greatest possible domain is \mathbb{R}.

2.2 The domain

The domain of a function $f(x)$ is set of x over which the function is defined. It is a subset of the greatest possible domain and has to be stated with the function. (Note: If not stated, it is appropriate to assume that the domain is the greatest possible domain.)

Note that the domain can either be discrete values (e.g. $x=1,2$ or 2.5) or continues, i.e. an interval. Intervals can be defined as follows:

Description	Graphical representation	Representation using 'arrows'	Representation using brackets.
Between a and b, both a and b included		$a \leq x \leq b$	$x \in[a, b]$
Between a and b, both a and b excluded		$a<x<b$	$\begin{gathered} x \in] a, b[\\ \text { or } x \in(a, b) \end{gathered}$
Between a and b, a included and b excluded		$a \leq x<b$	$\begin{aligned} x & \in[a, b[\\ \text { or } \quad x & \in[a, b) \end{aligned}$
Between a and b, a excluded and b included		$a<x \leq b$	$\begin{gathered} x \in] a, b] \\ \text { or } x \in(a, b] \end{gathered}$

Thus for example, although the greatest possible domain for $f(x)=x^{2}-1$ is \mathbb{R}, we may wish to restrict the values of x over which the function operates to x between 1 and 3 , both values inclusive. This can be written as:

$$
f(x)=x^{2}-1 \quad, \quad x \in[1,3]
$$

2.3 The range

Given the domain X for a function $f(x)$, we may define the range of $f(x)$ as the set of output values of $f(x)$ which correspond to x in the domain.

Thus, for our example where:

$$
f(x)=x^{2}-1 \quad, \quad x \in[1,3]
$$

the range is between 0 and 8 , i.e.:

$$
f(x)=x^{2}-1 \quad, \quad x \in[1,3], f(x) \in[0,8]
$$

whilst for:

$$
f(x)=\sin (x) \quad, \quad x \in \mathbb{R}, f(x) \in[-1,+1]
$$

3 Composite functions

The composite function $f \circ g(x)$, or simply $f g(x)$ is defined as:

$$
f \circ g(x)=f g(x)=f(g(x))
$$

For example:
Given: $f(x)=\sin (x), g(x)=x^{2}-1$
Then: (i) $f \circ g(x)=f(g(x))=\sin \left(x^{2}-1\right)$
(ii) $g \circ f(x)=g(f(x))=(\sin (x))^{2}-1$

Note that in general, $f \circ g(x) \neq g \circ f(x)$, as in this case where

$$
f \circ g(x)=\sin \left(x^{2}-1\right) \neq g \circ f(x)=\sin ^{2}(x)-1=\cos ^{2}(x)
$$

4 Inverse functions

4.1 Definition of the inverse function

Two functions f and g are said to be the inverse of each other if and only if:

$$
f \circ g(x)=f(g(x))=x
$$

and:

$$
g \circ f(x)=g(f(x))=x
$$

For example, $f(x)=2 x+3$ and $g(x)=\frac{x-3}{2}$ are inverse of each other since:

$$
f \circ g(x)=f(g(x))=2\left(\frac{x-3}{2}\right)+3=x
$$

and:

$$
g \circ f(x)=g(f(x))=\frac{(2 x+3)-3}{2}=x
$$

Note that the inverse of $f(x)$ is usually denoted by $f^{-1}(x)$.

4.2 Finding the inverse function

The inverse of $f(x)$ is usually denoted by $f^{-1}(x)$ and is derived as follows:

Method:

Given: $f(x)$
Let $y=f(x)$
Make x subject
'Interchange x and y '
To obtain inverse:
Replace y by $f^{-1}(x)$

Example:

$$
f(x)=2 x+3
$$

$$
y=2 x+3
$$

$$
x=\frac{y-3}{2}
$$

$$
y=\frac{x-3}{2}
$$

$$
f^{-1}(x)=\frac{x-3}{2}
$$

4.3 One-to-one functions

Not every function has an inverse function: A requirement for a function to have an inverse is that it must be one-to-one (1-1), that is for every output value of $f(x)$ in the range, there must be one and only one corresponding value of x in the domain.

Note that this goes further from the requirement that for any value of x in the domain of $f(x)$, the value of $f(x)$ must be unique.

Thus for example, although:

$$
f(x)=\sin (x) \quad, \quad x \in \mathbb{R}, f(x) \in[-1,+1]
$$

is a well defined function, it is not one-to-one, since several values of x give the same value of $f(x)$, e.g.:

$$
\sin \left(\frac{\pi}{6}\right)=\sin \left(\frac{5 \pi}{6}\right)=\sin \left(2 \pi+\frac{\pi}{6}\right)=\sin \left(2 \pi+\frac{5 \pi}{6}\right)=\ldots=\frac{1}{\sqrt{2}}
$$

This means that $f(x)=\sin (x), x \in \mathbb{R}$ does not have an inverse.
However, an inverse can be defined if we were to restrict the domain of $f(x)=\sin (x)$ to make $\mathrm{f}(x)$ one-to-one, for example, by restricting the domain to:

$$
f(x)=\sin (x) \quad, \quad x \in\left[-\frac{\pi}{2},+\frac{\pi}{2}\right], f(x) \in[-1,+1]
$$

The inverse for this 1-1 function exits and is what we refer to as $\sin ^{-1}(x)$ or $\arcsin (x)$. This is illustrated in Fig. 2.

Fig. 2: (a) The plot of $y=f(x)=\sin (x), x \in[-10,+10]$,
(b) The plot of $y=f(x)=\sin (x), x \in[-10,+10]$ with $x \in[-\pi / 2,+\pi / 2]$ highlighted.
(c) The plot of $y=f(x)=\sin (x)$, domain $=[-\pi / 2,+\pi / 2]$, range $=[-1,1]$
(d) The plot of $y=f^{-1}(x)=\sin ^{-1}(x)$, domain $=[-1,1]$, range $=[-\pi / 2,+\pi / 2]$

4.4 Plots of $f(x)$ and their inverses.

The plots of $y=f(x)$ and $y=f^{1}(x)$ are mirror images of each other about the line $y=x$. This is illustrated for a particular example in fig. 3.

Fig. 3: An illustration showing that $f(x)$ and $f^{l}(x)$ are mirror images of each other at about the line $y=x$.

One should also note that the domain and range of a function become the range and domain of the inverse function respectively, i.e.:

function	domain	range
$f(x)$	$[a, b]$	$[c, d]$
$f^{-1}(x)$	$[c, d]$	$[a, b]$

5 Special functions

5.1 The linear function

The equation of a straight line is given by:

$$
y=m x+c
$$

where m is the gradient and c is the y-intercept.
Another format of this equation is as:

$$
y-y_{o}=m\left(x-x_{o}\right)
$$

where m is the gradient and $\left(x_{o}, y_{o}\right)$ is any point on the line.

Note that in this case, $f(x)=y=m x+c$ is always as well defined and one-to-one function

5.2 The quadratic function

The quadratic function has a general form of:

$$
f(x)=a x^{2}+b x+c
$$

and has the well familiar \cup or \cap shape depending on the sign of a (\cup if a is positive and \cap if a is negative.) The solution of the equation $f(x)=a x^{2}+b x+c=0$ are given by:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

i.e. it will only have real roots (and maybe factorisable) if $b^{2}-4 a c \geq 0$. The quadratic is also symmetric about the line $x=\frac{-b}{2 a}$ (see fig. 4).

Fig. 4: Properties of $f(x)=a x^{2}+b x+c$

5.3 The exponential and logarithmic functions

The exponential function is one were the variable appears as an exponent, e.g.: $2^{\mathrm{x}}, 7^{-2 \mathrm{x}}$
Exponential functions of the form $a^{b x}$ where a >1 and $b>0$, have the following properties:

1. $f(x)>0 \quad \forall x \in \mathbb{R}$
2. As x increases, $f(x)$ increases at a rapidly accelerating rate.
3. $f(0)=1$
4. as $x \rightarrow-\infty, f(x) \rightarrow 0$, i.e. $\lim _{x \rightarrow-\infty}[f(x)]=0$

One should at this point recall the rules of indices, i.e.:

$$
\begin{aligned}
& A^{a} \times A^{b}=A^{a+b} \\
& A^{a} \div A^{b}=A^{a-b} \\
& A^{-a}=\frac{1}{A^{a}} \\
& \left(A^{a}\right)^{b}=\left(A^{b}\right)^{a}=A^{a b} \\
& A^{1 / 2}=\sqrt{A} \\
& A^{1 / a}=\sqrt[a]{A} \\
& A^{0}=1
\end{aligned}
$$

The most widely used exponential function (especially in chemistry) is that of e^{x} where

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots
$$

i.e.:

$$
e=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots \approx 2.7183 \text { (an irrational number) }
$$

Logarithmic functions can be treated as the inverse of exponential function. In fact, one may define the log function as follows:

$$
\log _{a} b=c \Leftrightarrow a^{c}=b
$$

In theory, a (the base) can be any real number, but in practice, a is usually $10\left(\log _{10}\right.$, or $\left.\lg \right)$ or $e\left(\log _{e}\right.$ or \ln, read natural $\left.\log \right)$. In these special cases:

$$
\begin{aligned}
& \lg A=\log _{10} A=B \Leftrightarrow 10^{B}=A \\
& \ln A=\log _{e} A=B \Leftrightarrow e^{B}=A
\end{aligned}
$$

Logarithmic functions of the form $\log _{a} x$ have the following properties;

1. $\quad f(x)=\log _{a} x$ does not exist for negative values of x.
2. For $x>1, f(x)>0$ and as $x \rightarrow \infty, f(x) \rightarrow \infty$
3. $f(0)$ is undefined but $\lim _{x \rightarrow 0}\left[\log _{a}(x)\right]=-\infty$
4. The sketch of $y=\log _{a}(x)$ is the mirror image of $y=a^{x}$ about the line $y=x$ (see fig. 5)

Fig. 5

Important things to remember:

$$
\begin{array}{ll}
\log _{C} A=B \Leftrightarrow C^{B}=A & \log _{C} C=1 \\
\log _{C}(A B)=\log _{C}(A)+\log _{C}(B) & \log _{C}(A \div B)=\log _{C}(A)-\log _{C}(B) \\
\log _{C}\left(A^{B}\right)=B \log _{C}(A) & \log _{C}\left(C^{B}\right)=B \log _{C}(C)=B \\
\log _{C}(A)=\frac{\log _{B}(A)}{\log _{B}(C)} & \mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]
\end{array}
$$

5.4 The trigonometric functions

