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1 Definition of a well defined function 
 
An expression for y in terms of a variable x can be referred to as a ‘function of x’ if for each 
unique value of x in the set X (the domain, see section 2 below) there is one and only one 
corresponding value of y. 
 
For example:  
 

(a) y = x2 – 1 can represent a function of x (see fig. 1a) over all of ! , and we can write: 
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(b) y = sin(x) can represent a function of x (see fig. 1b) over all of ! and we can write: 
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(c) The possible values of y for a given 1x ≥ −  such that 2 1y x= +  does not represent a 
function of x (see fig. 1c) since: 
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y x x

y x x

= + ≥ −

⇒ = ± + ≥ −
 

 i.e. each value of x > 1, gives two possible values of y. 
 

(d) 1 , 1y x x= ± + ≥ −  needs to be modified to be turned into a well defined function, 
by choosing to ignore the negative (or the positive) parts of the solution. Thus, whilst 

1 , 1y x x= ± + ≥ −  does not fulfil the requirements of a well defined function, both: 
( ) 1 , 1f x y x x= = + + ≥ −   

and   
( ) 1 , 1f x y x x= = − + ≥ −  

are well defined functions. (see Fig. 1d) 
 
 
 
 



 
 
(a) 2 ( ) 1f x x= −   

 
(b) ( ) ( ) sinf x x=  

 
 
 
 

 
 
 
 
(c) 1y x= ± +  is not a well defined 
function of x: One value of x gives more 
than one value of y, i.e. ( )y f x≠  

 
(d) ( ) 1 , 1f x y x x= = + + ≥ −   and   

( ) 1 , 1f x y x x= = − + ≥ −  are both well 
defined functions. 

Fig. 1 
 
 



 
2 The domain and range of functions 
 
 

2.1 The greatest possible domain 
 
The greatest possible domain of a function f(x) is set of x over which the function is well 
defined. In particular, for real functions, it must exclude the following: 

o Division by 0 
o Square roots of negative numbers  
o Logarithms of zero and negative numbers 

o Tangents of ,
2

n nππ + ∈ "  

Thus, for example, as noneof the above are present for f(x)=x2-1, then its greatest possible 
domain is ! . 
 

2.2 The domain 
 
The domain of a function f(x) is set of x over which the function is defined. It is a subset of 
the greatest possible domain and has to be stated with the function. (Note: If not stated, it is 
appropriate to assume that the domain is the greatest possible domain.) 
 
Note that the domain can either be discrete values (e.g. x=1, 2 or 2.5) or continues, i.e. an 
interval. Intervals can be defined as follows: 
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using ‘arrows’ 
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Thus for example, although the greatest possible domain for f(x)=x2-1 is ! , we may wish to 
restrict the values of x over which the function operates to x between 1 and 3, both values 
inclusive. This can be written as: 
 [ ]2( ) 1           ,      1,3f x x x= − ∈  
 
 
 
 
 
 

2.3 The range 
 
Given the domain X for a function f(x), we may define the range of f(x) as the set of  output 
values of f(x) which correspond to x in the domain.  
 
Thus, for our example where: 
 [ ]2( ) 1           ,      1,3f x x x= − ∈  
the range is between 0 and 8, i.e.: 
 [ ] [ ]2( ) 1           ,      1,3 ,   ( ) 0,8f x x x f x= − ∈ ∈  
 
whilst for: 
 ( ) [ ]( ) sin            ,      ,   ( ) 1, 1f x x x f x= ∈ ∈ − +!  

 
 
 
 
 
3 Composite functions 
 
The composite function ( )f g x# , or simply ( )fg x  is defined as: 

 ( ) ( ) ( )( )f g x fg f xx g= =#  
For example: 
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Note that in general, ( ) ( )f g x g f x≠# # , as in this case where  

( ) ( ) ( ) ( ) ( )2 2 2sin 1 sin 1 cosf g x x g f x x x= − = − =≠# #  
 
 



 
 
 
4 Inverse functions 
 
 
 
 
 

4.1 Definition of the inverse function  
 
 
 
Two functions f and g are said to be the inverse of each other if and only if: 

( ) ( )( )f g x f g x x= =#  
and: 
 ( ) ( )( )g f x g f x x= =#  
 

For example, ( ) 2 3f x x= +  and ( ) 3
2

xg x −=  are inverse of each other since: 

( ) ( )( ) 32 3
2

f g x g x xxf   +  
= −= =#  

and: 

( ) ( )( ) ( )2 3 3
2

g f x f x x
x

g
+ −

= = =#  

 
Note that the inverse of ( )f x  is usually denoted by ( )1f x− .  
 
 
 
 

4.2 Finding the inverse function  
 
 
 
The inverse of ( )f x  is usually denoted by ( )1f x−  and is derived as follows: 
 
 
 
 
 



 
Method: 
 

Example: 

  Given: f(x) 
 

 ( ) 2 3f x x= +  

  Let y = f(x) 
 

     2 3y x= +  

  Make x subject 
    3

2
yx −=  

  ‘Interchange x and y’  
    3

2
xy −=  

  To obtain inverse:  
     Replace y by ( )1f x−  
 

 ( )1 3
2

xf x− −=  

 
 
 

4.3 One-to-one functions 
 
Not every function has an inverse function: A requirement for a function to have an inverse is 
that it must be one-to-one (1-1), that is for every output value of f(x) in the range, there must 
be one and only one corresponding value of x in the domain.  
 
Note that this goes further from the requirement that for any value of x in the domain of f(x), 
the value of f(x) must be unique.  
 
Thus for example, although: 

( ) [ ]( ) sin            ,      ,   ( ) 1, 1f x x x f x= ∈ ∈ − +!  
is a well defined function, it is not one-to-one, since several values of x give the same value 
of f(x), e.g.: 

5 5 1sin sin sin 2 sin 2 ...
6 6 6 6 2
π π π ππ π       = = + = + = =              

 

This means that ( )( ) sin  ,  f x x x= ∈ !  does not have an inverse.  
 
However, an inverse can be defined if we were to restrict the domain of f(x)=sin(x) to make 
f(x) one-to-one, for example, by restricting the domain to: 

( ) [ ]( ) sin            ,      , ,   ( ) 1, 1
2 2

f x x x f xπ π = ∈ − + ∈ − +  
 

The inverse for this 1-1 function exits and is what we refer to as sin-1(x) or arcsin(x).  This is 
illustrated in Fig. 2. 
 
 
 



 
Fig. 2:  (a) The plot of ( ) [ ]( ) sin , 10, 10y f x x x= = ∈ − + ,  

(b) The plot of ( ) [ ]( ) sin , 10, 10y f x x x= = ∈ − + with [ ] / 2, / 2x π π∈ − +  highlighted. 

(c) The plot of ( ) [ ] [ ]( ) sin , domain = / 2, / 2 ,  range = -1,1  y f x x π π= = − +   

(d) The plot of ( ) [ ] [ ]1 1( ) sin , domain = -1,1 , range = / 2, / 2y f x x π π− −= = − +   
 
 
 
 

4.4 Plots of f(x) and their inverses. 
 

The plots of y = f(x) and y = f-1(x) are mirror images of each other about the line y=x. This is 
illustrated for a particular example in fig. 3.   

 
Fig. 3: An illustration showing that f(x) and f-1(x) are mirror images of each other at about the 
line y=x. 
 
 
 



 
One should also note that the domain and range of a function become the range and domain 
of the inverse function respectively, i.e.: 

 [ ] [ ]
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( ) , ,
( ) , ,

f x a b c d
f x c d a b−

function domain range
 

 
 
 
 
5 Special functions 
 
 

5.1 The linear function 
 
 
The equation of a straight line is given by: 

y mx c= +  
where m is the gradient and c is the y-intercept. 
 
Another format of this equation is as: 
 ( )o oy y m x x− = −  

where m is the gradient and ( ),o ox y  is any point on the line.  
 
Note that in this case, ( )f x y mx c= = +  is always as well defined and one-to-one function 
 
 

5.2 The quadratic function 
 
The quadratic function has a general form of: 
 ( ) 2f x ax bx c= + +  
and has the well familiar  or ∪ ∩  shape depending on the sign of a (  ∪ if a is positive and 
∩  if a is negative.) The solution of the equation ( ) 2 0f x ax bx c= + + =  are given by: 

 
2 4

2
b b acx

a
− ± −=  

i.e. it will only have real roots (and maybe factorisable) if 2 4 0b ac− ≥ . The quadratic is also 

symmetric about the line 
2

bx
a

−=  (see fig. 4).  

 



 
Fig. 4: Properties of ( ) 2f x ax bx c= + +  
 
 

5.3 The exponential  and logarithmic functions 
 
 
The exponential function is one were the variable appears as an exponent, e.g.: 2x

, 7-2x
 

 
Exponential functions of the form abx where a > 1 and b > 0, have the following properties: 

1. ( ) 0     f x x> ∀ ∈ !  
2. As x increases, f(x) increases at a rapidly accelerating rate. 
3. ( )0 1f =  

4. as , ( ) 0x f x→ −∞ → , i.e. ( )lim 0
x

f x
→−∞

=    

 
 
One should at this point recall the rules of indices, i.e.: 
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The most widely used exponential function (especially in chemistry) is that of ex where 

2 3 4

1 ...
2! 3! 4!

x x x xe x= + + + + +  

i.e.: 



 1 1 11 1 ... 2.7183 (an irrational number)
2! 3! 4!

e = + + + + + ≈  

Logarithmic functions can be treated as the inverse of exponential function. In fact, one may 
define the log function as follows: 
 log c

a b c a b= ⇔ =  
In theory, a (the base) can be any real number, but in practice, a is usually 10 (log10, or lg) or 
e (loge or ln, read natural log). In these special cases: 
 10lg log 10BA A B A= = ⇔ =  
 ln log B

eA A B e A= = ⇔ =  
Logarithmic functions of the form logax have the following properties; 

1. ( ) logaf x x=  does not exist for negative values of x. 
2. For x > 1, f(x) > 0 and as ( ),x f x→ ∞ → ∞  

3. f(0) is undefined but ( )
0

lim logax
x

→
= −∞    

4. The sketch of y = loga(x) is the mirror image of y = ax about the line y=x (see fig. 
5) 

 
 

 
Fig. 5 

 
 
 
 
 
 



 
Important things to remember: 
 

( ) ( ) ( )
( ) ( )

( ) ( )
( )

( ) ( ) ( )
( ) ( )

+
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log log log log
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C C C

B
BC C

C C

B
C

B

A B C A C
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5.4 The trigonometric functions 
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