Functions

Dr. Joseph N. Grima

1	Defi	nition of a well defined function	2
2	The	domain and range of functions	4
	2.1	The greatest possible domain	4
	2.2	The domain	4
	2.3	The range	5
3	Com	posite functions	5
4	Inverse functions		6
	4.1	Definition of the inverse function	6
	4.2	Finding the inverse function	6
	4.3	One-to-one functions	7
	4.4	Plots of f(x) and their inverses.	8
5 Special functions		cial functions	9
	5.1	The linear function	9
	5.2	The quadratic function	9
	5.3	The exponential and logarithmic functions	10
	5.4	The trigonometric functions	12
		-	

1 Definition of a well defined function

An expression for y in terms of a variable x can be referred to as a 'function of x' if for each unique value of x in the set X (the **domain**, see section 2 below) there is one and only one corresponding value of y.

For example:

or

(a)
$$y = x^2 - 1$$
 can represent a function of x (see fig. 1a) over all of \mathbb{R} , and we can write:
 $f(x) = x^2 - 1$ $x \in \mathbb{R}$
(read f of x is equal to ...)
or
 $f: x \to x^2 - 1$ $x \in \mathbb{R}$
(read f maps x onto ...)

(b) y = sin(x) can represent a function of x (see fig. 1b) over all of \mathbb{R} and we can write:

$$f(x) = \sin(x) \qquad x \in \mathbb{R}$$
$$f: x \to \sin(x) \qquad x \in \mathbb{R}$$

(c) The possible values of y for a given $x \ge -1$ such that $y^2 = x + 1$ does not represent a function of x (see fig. 1c) since:

$$y^{2} = x + 1 , \qquad x \ge -1$$

$$\Rightarrow y = \pm \sqrt{x + 1} , \qquad x \ge -1$$

i.e. each value of x > 1, gives two possible values of y.

(d) $y = \pm \sqrt{x+1}$, $x \ge -1$ needs to be modified to be turned into a well defined function, by choosing to ignore the negative (or the positive) parts of the solution. Thus, whilst $y = \pm \sqrt{x+1}$, $x \ge -1$ does not fulfil the requirements of a well defined function, both: $f(x) = y = +\sqrt{x+1}$, $x \ge -1$

and

$$f(x) = y = -\sqrt{x+1} , x \ge -1$$

are well defined functions. (see Fig. 1d)

2 The domain and range of functions

2.1 The greatest possible domain

The greatest possible domain of a function f(x) is set of x over which the function is well defined. In particular, for real functions, it must exclude the following:

- Division by 0
- o Square roots of negative numbers
- o Logarithms of zero and negative numbers
- Tangents of $n\pi + \frac{\pi}{2}, n \in \mathbb{Z}$

Thus, for example, as noneof the above are present for $f(x)=x^2-1$, then its greatest possible domain is \mathbb{R} .

2.2 The domain

The **domain** of a function f(x) is set of x over which the function is defined. It is a subset of the greatest possible domain and **has to be stated with the function**. (*Note: If not stated, it is appropriate to assume that the domain is the greatest possible domain.*)

Note that the domain can either be <u>discrete</u> values (e.g. x=1, 2 or 2.5) or <u>continues</u>, i.e. an interval. Intervals can be defined as follows:

Description	Graphical representation	Representation using 'arrows'	Representation using brackets.
Between <i>a</i> and <i>b</i> , both <i>a</i> and <i>b</i> included		$a \le x \le b$	$x \in [a,b]$
Between a and b , both a and b excluded		a < x < b	$x \in]a, b[$ or $x \in (a, b)$
Between <i>a</i> and <i>b</i> , <i>a</i> included and <i>b</i> excluded	a•	$a \le x < b$	$x \in [a, b[$ or $x \in [a, b)$
Between <i>a</i> and <i>b</i> , <i>a</i> excluded and <i>b</i> included		$a < x \le b$	$x \in]a,b]$ or $x \in (a,b]$

Thus for example, although the greatest possible domain for $f(x)=x^2-1$ is \mathbb{R} , we may wish to restrict the values of *x* over which the function operates to *x* between 1 and 3, both values inclusive. This can be written as:

$$f(x) = x^2 - 1$$
 , $x \in [1,3]$

2.3 The range

Given the domain X for a function f(x), we may define the **range** of f(x) as the set of output values of f(x) which correspond to x in the domain.

Thus, for our example where:

 $f(x) = x^2 - 1$, $x \in [1,3]$ the range is between 0 and 8, i.e.: $f(x) = x^2 - 1$, $x \in [1,3]$, $f(x) \in [0,8]$

whilst for:

$$f(x) = \sin(x)$$
, $x \in \mathbb{R}$, $f(x) \in [-1,+1]$

3 Composite functions

The composite function $f \circ g(x)$, or simply fg(x) is defined as:

 $f \circ g(x) = fg(x) = f\left(\frac{g(x)}{x}\right)$

For example:

Given: $f(x) = \sin(x), g(x) = x^2 - 1$ Then: (i) $f \circ g(x) = f(g(x)) = \sin(x^2 - 1)$ (ii) $g \circ f(x) = g(f(x)) = (\sin(x))^2 - 1$

Note that in general, $f \circ g(x) \neq g \circ f(x)$, as in this case where

$$f \circ g(x) = \sin(x^2 - 1) \neq g \circ f(x) = \sin^2(x) - 1 = \cos^2(x)$$

4 Inverse functions

4.1 Definition of the inverse function

Two functions f and g are said to be the **inverse** of each other if and only if:

 $f \circ g(x) = f(g(x)) = x$

$$g \circ f(x) = g(f(x)) = x$$

For example, f(x) = 2x + 3 and $g(x) = \frac{x-3}{2}$ are inverse of each other since:

$$f \circ g(x) = f(g(x)) = 2\left(\frac{x-3}{2}\right) + 3 = x$$

and:

and:

$$g \circ f(x) = g(f(x)) = \frac{(2x+3)-3}{2} = x$$

Note that the inverse of f(x) is usually denoted by $f^{-1}(x)$.

4.2 Finding the inverse function

The inverse of f(x) is usually denoted by $f^{-1}(x)$ and is derived as follows:

Method:	Example:	
Given: $f(x)$	f(x) = 2x + 3	
Let $y = f(x)$	y = 2x + 3	
Make x subject	$x = \frac{y-3}{2}$	
'Interchange <i>x</i> and <i>y</i> '	$y = \frac{x-3}{2}$	
To obtain inverse:	$f^{-1}(x) = x - 3$	
Replace <i>y</i> by $f^{-1}(x)$	$\int (x) = \frac{1}{2}$	

4.3 One-to-one functions

<u>Not every function has an inverse function</u>: A requirement for a function to have an inverse is that it must be **one-to-one (1-1)**, that is for every output value of f(x) in the range, there must be one and only one corresponding value of x in the domain.

Note that this goes further from the requirement that for any value of x in the domain of f(x), the value of f(x) must be unique.

Thus for example, although:

$$f(x) = \sin(x)$$
, $x \in \mathbb{R}$, $f(x) \in [-1,+1]$

is a well defined function, it is not one-to-one, since several values of x give the same value of f(x), *e.g.*:

$$\sin\left(\frac{\pi}{6}\right) = \sin\left(\frac{5\pi}{6}\right) = \sin\left(2\pi + \frac{\pi}{6}\right) = \sin\left(2\pi + \frac{5\pi}{6}\right) = \dots = \frac{1}{\sqrt{2}}$$

This means that $f(x) = \sin(x)$, $x \in \mathbb{R}$ does not have an inverse.

However, an inverse can be defined if we were to restrict the domain of $f(x)=\sin(x)$ to make f(x) one-to-one, for example, by restricting the domain to:

$$f(x) = \sin(x)$$
, $x \in \left[-\frac{\pi}{2}, +\frac{\pi}{2}\right]$, $f(x) \in [-1, +1]$

The inverse for this 1-1 function exits and is what we refer to as $\sin^{-1}(x)$ or $\arcsin(x)$. This is illustrated in Fig. 2.

Fig. 2: (a) The plot of $y = f(x) = \sin(x), x \in [-10, +10]$, (b) The plot of $y = f(x) = \sin(x), x \in [-10, +10]$ with $x \in [-\pi/2, +\pi/2]$ highlighted. (c) The plot of $y = f(x) = \sin(x)$, domain $= [-\pi/2, +\pi/2]$, range = [-1,1](d) The plot of $y = f^{-1}(x) = \sin^{-1}(x)$, domain = [-1,1], range $= [-\pi/2, +\pi/2]$

4.4 Plots of f(x) and their inverses.

The plots of y = f(x) and $y = f^{1}(x)$ are mirror images of each other about the line y=x. This is illustrated for a particular example in fig. 3.

Fig. 3: An illustration showing that f(x) and $f^{T}(x)$ are mirror images of each other at about the line y=x.

One should also note that the domain and range of a function become the range and domain of the inverse function respectively, i.e.:

function	domain	range
f(x)	[a,b]	[c,d]
$f^{-1}(x)$	[c,d]	[a,b]

5 Special functions

5.1 The linear function

The equation of a straight line is given by: y = mx + cwhere *m* is the gradient and *c* is the y-intercept.

Another format of this equation is as:

 $y - y_o = m(x - x_o)$

where *m* is the gradient and (x_o, y_o) is any point on the line.

Note that in this case, f(x) = y = mx + c is always as well defined and one-to-one function

5.2 The quadratic function

The quadratic function has a general form of:

$$f(x) = ax^2 + bx + c$$

and has the well familiar \cup or \cap shape depending on the sign of a (\cup if a is positive and \cap if a is negative.) The solution of the equation $f(x) = ax^2 + bx + c = 0$ are given by:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

i.e. it will only have real roots (and maybe factorisable) if $b^2 - 4ac \ge 0$. The quadratic is also symmetric about the line $x = \frac{-b}{2a}$ (see fig. 4).

5.3 The exponential and logarithmic functions

The exponential function is one were the variable appears as an exponent, e.g.: 2^x , 7^{-2x}

Exponential functions of the form a^{bx} where a > 1 and b > 0, have the following properties:

1. $f(x) > 0 \quad \forall x \in \mathbb{R}$ 2. As *x* increases, f(x) increases at a rapidly accelerating rate. 3. f(0) = 14. as $x \to -\infty$, $f(x) \to 0$, i.e. $\lim_{x \to -\infty} [f(x)] = 0$

One should at this point recall the rules of indices, i.e.: $A^{a} \times A^{b} = A^{a+b}$

$$A^{a} \times A^{b} = A^{a+b}$$

$$A^{a} \div A^{b} = A^{a-b}$$

$$A^{-a} = \frac{1}{A^{a}}$$

$$\left(A^{a}\right)^{b} = \left(A^{b}\right)^{a} = A^{ab}$$

$$A^{1/2} = \sqrt{A}$$

$$A^{1/a} = \sqrt[a]{A}$$

$$A^{0} = 1$$

The most widely used exponential function (especially in chemistry) is that of e^x where

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$

i.e.:

 $e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots \approx 2.7183$ (an irrational number)

Logarithmic functions can be treated as the inverse of exponential function. In fact, one may define the log function as follows:

 $\log_a b = c \Leftrightarrow a^c = b$

In theory, *a* (the base) can be any real number, but in practice, *a* is usually 10 (\log_{10} , or lg) or *e* (\log_e or ln, read natural log). In these special cases:

$$\lg A = \log_{10} A = B \Leftrightarrow 10^B = A$$

 $\ln A = \log_e A = B \Leftrightarrow e^B = A$

Logarithmic functions of the form $\log_a x$ have the following properties;

- 1. $f(x) = \log_a x$ does not exist for negative values of x.
- 2. For x > 1, f(x) > 0 and as $x \to \infty$, $f(x) \to \infty$
- 3. f(0) is undefined but $\lim_{x\to 0} \left[\log_a (x) \right] = -\infty$
- 4. The sketch of $y = \log_a(x)$ is the mirror image of $y = a^x$ about the line y=x (see fig. 5)

Fig. 5

Important things to remember:

$$\log_{C} A = B \Leftrightarrow C^{B} = A$$

$$\log_{C} (AB) = \log_{C} (A) + \log_{C} (B)$$

$$\log_{C} (A^{B}) = B \log_{C} (A)$$

$$\log_{C} (A^{B}) = B \log_{C} (A)$$

$$\log_{C} (C^{B}) = B \log_{C} (C) = B$$

$$\log_{C} (A) = \frac{\log_{B} (A)}{\log_{B} (C)}$$

$$pH = -\log_{10} [H^{+}]$$

5.4 The trigonometric functions