Differential Equations

1. First order differential equations - variables separable

A first order differential equation with variables separable is one of the form:

$$
\frac{d y}{d x}=f(x) \cdot g(y)
$$

i.e.: (1) It only involves first order derivatives, i.e. only $\frac{d y}{d x}$, not $\frac{d^{2} y}{d x^{2}}, \frac{d^{3} y}{d x^{3}}$, etc.
(2) The variables \boldsymbol{x} and \boldsymbol{y} may be easily separated to obtain an equation which may be integrated:

$$
\frac{1}{g(y)} d y=f(x) d x
$$

Q1.1 Find the general solution of the differential equation:

$$
\frac{d y}{d x}=x y
$$

A1.1 By separating the variables we obtain:

$$
\frac{1}{y} d y=x d x
$$

which upon integration of both sides we obtain:

$$
\begin{gathered}
\int \frac{1}{y} d y=\int x d x \\
\ln |y|+c_{1}=\frac{x^{2}}{2}+c_{2} \\
\text { or }: \ln |y|=\frac{x^{2}}{2}+K
\end{gathered}
$$

NOTE: \quad Since the final solution contains the undermined constant of integration, this solution is referred to as the 'general solution'.

Q1.2 Given that $y(0)=3$, find the particular solution of the differential equation:

$$
\frac{d y}{d x}=\frac{1}{y} \sin (x)
$$

A1.2 By separating the variables we obtain:

$$
y d y=\sin (x) d x
$$

which upon integration of both sides we obtain the general solution:

$$
\begin{aligned}
& \int y d y=\int \sin (x) d x \\
& \frac{y^{2}}{2}=-\cos (x)+K
\end{aligned}
$$

We may now obtain the particular solution by using the fact that $y(0)=3$, i.e. that at $x=0, y=3$, i.e.:

$$
\begin{aligned}
& \frac{y^{2}}{2}=-\cos (x)+K, \quad y(0)=3 \\
& \Rightarrow \frac{3^{2}}{2}=-\cos (0)+K \\
& \Rightarrow \frac{9}{2}=-1+K \\
& \Rightarrow K=1+\frac{9}{2}=\frac{11}{2}
\end{aligned}
$$

i.e. the particular solution is given by:

$$
\frac{y^{2}}{2}=-\cos (x)+\frac{11}{2} \quad \text { or }: \quad y^{2}+2 \cos (x)+11=0
$$

Q1.3 For a first order chemical reaction, the rate law is given by:

$$
\frac{d[\mathrm{~A}]}{d t}=-k[\mathrm{~A}]
$$

Given that at time $t=0$, the initial concentration of A is given by $[\mathrm{A}]_{0}$, obtain an expression for, $[\mathrm{A}]_{t}$, the concentration of A at any time t after the commencement of the reaction.

A1.3 By separating the variables we obtain:

$$
\frac{1}{[\mathrm{~A}]} d[\mathrm{~A}]=-k d t
$$

This may be solved in one of two ways (with method B being the recommended method).

Method A: By integration of both sides we obtain the general solution:

$$
\begin{aligned}
& \int \frac{1}{[\mathrm{~A}]} d[\mathrm{~A}]=\int-k d t \\
& \int \frac{1}{[\mathrm{~A}]} d[\mathrm{~A}]=-k \int d t \\
& \ln [\mathrm{~A}]=-k t+\text { const }
\end{aligned}
$$

where [A] represents the concentration of A at any time t. Given that at time $t=0$, the initial concentration of A is given by $[\mathrm{A}]_{0}$, we may now obtain the particular solution:

$$
\begin{aligned}
& \ln [\mathrm{A}]=-k t+\text { const, at } t=0,[\mathrm{~A}]=[\mathrm{A}]_{0} \\
& \Rightarrow \ln [\mathrm{~A}]_{0}=-k 0+\text { const } \\
& \Rightarrow \text { const }=\ln [\mathrm{A}]_{0}
\end{aligned}
$$

i.e. the particular solution is given by:

$$
\ln [\mathrm{A}]=-k t+\ln [\mathrm{A}]_{0}
$$

or: $\ln [\mathrm{A}]_{t}=-k t+\ln [\mathrm{A}]_{0}$
i.e.: $\ln [\mathrm{A}]-\ln [\mathrm{A}]_{0}=-k t$ or: $\ln \left(\frac{[\mathrm{A}]}{[\mathrm{A}]_{0}}\right)=-k t$

Method B: By integration of both sides using the appropriate boundary conditions we immediately obtain the general solution:
$\int_{[\mathrm{A}]_{0}}^{[\mathrm{A}]_{t}} \frac{1}{[\mathrm{~A}]} d[\mathrm{~A}]=\int_{0}^{t}-k d t$
$\int_{[\mathrm{A}]_{0}}^{[\mathrm{A}]_{0}} \frac{1}{[\mathrm{~A}]} d[\mathrm{~A}]=-k \int_{0}^{t} d t$
$[\ln [\mathrm{A}]]_{[\mathrm{A}]_{0}}^{[\mathrm{A}]_{t}}=-k[t]_{0}^{t}$
$\ln [\mathrm{A}]_{t}-\ln [\mathrm{A}]_{0}=-k(t-0)$
i.e. $: \ln [\mathrm{A}]_{t}-\ln [\mathrm{A}]_{0}=-k t$ or: $\ln \left(\frac{[\mathrm{A}]_{t}}{[\mathrm{~A}]_{0}}\right)=-k t$

2. Second order differential equations, homogeneous with constant coefficients

In general a second order differential equation is of the form:

$$
\frac{d^{2} y}{d x^{2}}+p(x) \frac{d y}{d x}+q(x) y=r(x)
$$

and if $r(x)=0$, then the solution is said to be homogeneous. In this course we shall only deal with homogeneous second order differential equations where $p(x)$ and $q(x)$ are constants, i.e. (in its more general form):

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

and it may be shown that such an equation will always have a solution of the from $e^{\lambda x}$ where λ is a suitable constant.

In particular, let $y=e^{\lambda x}$ be a trial solution of the equation:

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

From $y=e^{\lambda x}$ we may obtain:

$$
\frac{d y}{d x}=\lambda e^{\lambda x} \quad \text { and } \quad \frac{d^{2} y}{d x^{2}}=\frac{d}{d x^{2}}\left(\lambda e^{\lambda x}\right)=\lambda^{2} e^{\lambda x}
$$

By substitution into the differential equation we obtain:

$$
\lambda^{2} e^{\lambda x}+a \lambda e^{\lambda x}+b e^{\lambda x}=0
$$

i.e.:

$$
e^{\lambda x}\left(a \lambda^{2}+b \lambda+c\right)=0
$$

which since $\forall \lambda x, e^{\lambda x}>0$, we obtain the so called characteristic equation:

$$
a \lambda^{2}+b \lambda+c=0
$$

The characteristic equation is a simple quadratic equation with roots:

$$
\begin{aligned}
\lambda & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\text { or: } \quad \lambda_{1} & =\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } \lambda_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

The nature of these roots depend on the discriminant $b^{2}-4 a c$. If a, b and c are real numbers then the three possible types of roots are:
$>$ If $b^{2}-4 a c>0$ (positive), then there are two distinct real roots
$>$ If $b^{2}-4 a c=0$ then there is one double real root
$>$ If $b^{2}-4 a c<0$ (negative), then roots are pair of complex conjugates.
Furthermore,
(1) If $b^{2}-4 a c>0$, i.e. λ_{1} and λ_{2} are distinct real numbers, then the general solution of the differential equation is $y=A e^{\lambda_{1} x}+B e^{\lambda_{2} x}$ where A and B are constants, $\lambda_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ and $\lambda_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$;
(2) If $b^{2}-4 a c=0$, i.e. $\lambda_{1}=\lambda_{2}=-\frac{b}{2 a}$, then the general solution of the differential equation is $y=(A+B) e^{\lambda x}=(A+B x) \exp \left(\frac{-b}{2 a} x\right)$ where A and B are constants.
(3) If $b^{2}-4 a c<0$, then we have:

$$
\lambda_{1}=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}=\frac{-b}{2 a} \pm \sqrt{\left(\frac{b}{2 a}\right)^{2}-\left(\frac{b}{a}\right)}=\frac{-b}{2 a} \pm i \sqrt{\left|\left(\frac{b}{2 a}\right)^{2}-\left(\frac{b}{a}\right)\right|} \equiv \alpha \pm i \beta
$$

where $\alpha=\frac{-b}{2 a}, \beta=\sqrt{\left(\frac{b}{2 a}\right)^{2}-\left(\frac{b}{a}\right)}$. The general solution of the differential equation is hence of the form:

$$
\begin{aligned}
y & =A \exp [(\alpha+i \beta) x]+B \exp [(\alpha-i \beta) x] \\
& =A \exp (\alpha x) \exp (i \omega x)+B \exp (\alpha x) \exp (-i \omega x) \\
& =\exp (\alpha x)\left[A e^{i \beta x}+B e^{-i \beta x}\right]
\end{aligned}
$$

or in trigonometric form by recalling that $R e^{i \theta}=R[\cos (\theta)+i \sin (\theta)]$:

$$
\begin{aligned}
y & =e^{\alpha x}\left[A e^{i \beta x}+B e^{-i \beta x}\right] \\
& =e^{\alpha x}\{A[\cos (\beta x)+i \sin (\beta x)]+B[\cos (-\beta x)+i \sin (-\beta x)]\} \\
& =e^{\alpha x}\{A[\cos (\beta x)+i \sin (\beta x)]+B[\cos (\beta x)-i \sin (\beta x)]\} \\
& =e^{\alpha x}\{(A+B) \cos (\beta x)+i(A-B) \sin (\beta x)\} \\
& \equiv e^{\alpha x}\{C \cos (\beta x)+D \sin (\beta x)\}
\end{aligned}
$$

where $\alpha=\frac{-b}{2 a}, \beta=\sqrt{\|\left(\frac{b}{2 a}\right)^{2}-\left(\frac{b}{a}\right)}$ and C and D are constants.
In each case, if initial or boundary conditions are specified, the particular solution is then obtained at the end by determining the values of the constants A, B, C or D (as appropriate).

Summary:

Second order differential equations of the form $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0$ have a corresponding characteristic equation of the form $a \lambda^{2}+b \lambda+c=0$ which:

1. If the characteristic equation has different real roots λ_{1}, λ_{2} then the general solution is of the form $y=A e^{\lambda_{1} x}+B e^{\lambda_{2} x}$
2. If the characteristic equation has equal real roots $\lambda=\lambda_{1}=\lambda_{2}$ then the general solution is of the form $y=(A+B x) e^{\lambda x}$
3. If the characteristic equation has complex conjugate roots $\lambda=\alpha \pm \beta i$, then the general solution is of the form $y=e^{\alpha x}\{C \cos (\beta x)+D \sin (\beta x)\}$
In each case, given the general solution, one may obtain the particular solution (i.e. determine the values of the constants A, B, C or D (as appropriate)) provided that initial or boundary conditions are specified.

Q 2.1: Find the particular solution of the following second order differential equation:

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

given that $y(0)=0, y^{\prime}(0)=5$.
A 2.1: The characteristic equation is $\lambda^{2}+\lambda-6=0$. This factorises to $(\lambda-2)(\lambda+3)=0$, i.e. the roots of the characteristic equation are $\lambda_{1}=2, \lambda_{2}=-3$.

The general solution is hence given by:

$$
y=A e^{2 x}+B e^{-3 x}
$$

The particular solution may be obtained since we know that $y(0)=0, y^{\prime}(0)=5$. Thus since:

$$
y^{\prime}=2 A e^{2 x}-3 B e^{-3 x}
$$

i.e. at $x=0$:

$$
y(0)=0
$$

i.e.

$$
\begin{equation*}
A e^{0}+B e^{0}=A+B=0 \tag{eqn.1}
\end{equation*}
$$

and:

$$
y^{\prime}(0)=5
$$

i.e.

$$
\begin{equation*}
2 A e^{0}-3 B e^{0}=2 A-3 B=5 \tag{eqn.2}
\end{equation*}
$$

i.e. solving eqn. $1 \& 2$ simultaneously we have:

$$
\left.\begin{array}{l}
A+B=0 \\
2 A-3 B=5
\end{array}\right\} A=1, B=-1
$$

i.e. the particular solution is given by:

$$
y=e^{2 x}-e^{-3 x}
$$

Note: You may verify that $y=e^{2 x}-e^{-3 x}$ is indeed the solution for the differential equation through differentiation since:

$$
\begin{aligned}
& y=e^{2 x}-e^{-3 x} \\
& y^{\prime}=2 e^{2 x}+3 e^{-3 x} \\
& y^{\prime \prime}=4 e^{2 x}-9 e^{-3 x}
\end{aligned}
$$

which when substituted into:

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

we obtain:

$$
\begin{aligned}
\text { LHS } & =\left(4 e^{2 x}-9 e^{-3 x}\right)+\left(2 e^{2 x}+3 e^{-3 x}\right)-6\left(e^{2 x}-e^{-3 x}\right) \\
& =4 e^{2 x}-9 e^{-3 x}+2 e^{2 x}+3 e^{-3 x}-6 e^{2 x}+6 e^{-3 x} \\
& =0 \\
& =\text { RHS }
\end{aligned}
$$

Q 2.2: Find the general solution of the following second order differential equations:
(i) $y^{\prime \prime}+3 y^{\prime}+2 y=0$
(ii) $2 y^{\prime \prime}+8 y^{\prime}+4 y=0$
(iii) $y^{\prime \prime}+2 y^{\prime}+1 y=0$
(iv) $y^{\prime \prime}+2 y^{\prime}+3 y=0$
(v) $y^{\prime \prime}+2 y^{\prime}+4 y=0$

Q 3.1: The wave function of a particle in a one-dimensional box: Solve the Schrödinger equation below to obtain:
(i) acceptable wave function(s), $\psi=\psi(x)$, and
(ii) the corresponding total energy(s), E
for a particle of mass m moving in the x-direction:

$$
\hat{H} \psi=E \psi
$$

where \hat{H} is the appropriate Hamiltonian that gives the total energy E and is given by:

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)
$$

and $V(x)$ is the potential energy of the particle which is given by:

$$
V(x)=\left\{\begin{array}{cc}
0 & 0<x<l \\
\infty & \text { otherwise }
\end{array}\right.
$$

given the boundary conditions that:

$$
\psi(0)=\psi(l)=0
$$

and that for the wave function to be normalised, the wave function must satisfy the condition:

$$
\int_{0}^{l} \psi^{2}(x) d x=1
$$

A3.1: The SWE may be written as:

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)\right] \psi=E \psi
$$

i.e.

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V(x) \psi=E \psi
$$

which for the particle inside the box (i.e. $0<x<l$) we have $V(x)=0$, i.e.:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi
$$

or:

$$
\left[\frac{\hbar^{2}}{2 m}\right] \frac{d^{2} \psi}{d x^{2}}+[E] \psi=0
$$

This is a homogenous second order differential equation of the form:

$$
A \frac{d^{2} y}{d x^{2}}+B \frac{d y}{d x}+C y=0
$$

with a characteristic equation:

$$
A \lambda^{2}+B \lambda+C=0
$$

i.e. in this case:

$$
\left[\frac{\hbar^{2}}{2 m}\right] \lambda^{2}+E=0
$$

which re-arranges to:

$$
\left[\frac{\hbar^{2}}{2 m}\right] \lambda^{2}=-E
$$

i.e.:

$$
\lambda^{2}=-\frac{E}{\left[\frac{\hbar^{2}}{2 m}\right]}=-\frac{2 m E}{\hbar^{2}}
$$

i.e.:

$$
\lambda= \pm \sqrt{-\frac{2 m E}{\hbar^{2}}}= \pm i \sqrt{\frac{2 m E}{\hbar^{2}}} \equiv \alpha \pm i \beta
$$

where: $\alpha=0, \beta=\sqrt{\frac{2 m E}{\hbar^{2}}}$

Thus the general solution to this equation is given by:

$$
y=e^{\alpha x}\{C \cos (\beta x)+D \sin (\beta x)\}
$$

i.e. in this case:

$$
\psi(x)=C \cos (\beta x)+D \sin (\beta x)
$$

where $\beta=\sqrt{\frac{2 m E}{\hbar^{2}}}$
On application of the boundary condition we obtain that:

$$
\begin{aligned}
\psi(0)=0 \Rightarrow & C \cos (0)+D \sin (0)=0 \\
& C(1)+D(0)=0 \\
\text { i.e. } \quad & C=0
\end{aligned}
$$

and:

$$
\psi(l)=0 \Rightarrow D \sin (\beta l)=0
$$

which for $\sin (\beta l)=0$, we must have:

$$
\beta l=n \pi
$$

(Recall that $\sin (x)=0$ for $x=\ldots-3 \pi,-2 \pi,-\pi, 0, \pi, 2 \pi, 3 \pi \ldots$..)
i.e.:

$$
\beta=\frac{n \pi}{l}
$$

i.e.:

$$
\psi(x)=D \sin (\beta x)=D \sin \left(\frac{n \pi x}{l}\right)
$$

Also, for the for the wave function to be normalised, the wave function must satisfy the condition:

$$
\int_{0}^{1} \psi^{2}(x) d x=1
$$

i.e.:

$$
\int_{0}^{l}\left[D^{2} \sin ^{2}\left(\frac{n \pi x}{l}\right)\right] d x=1
$$

i.e.:

$$
D^{2} \int_{0}^{l} \sin ^{2}\left(\frac{n \pi x}{l}\right) d x=1
$$

where since $\cos 2 A=1-2 \sin ^{2} A$ then :

$$
\sin ^{2}\left(\frac{n \pi x}{l}\right)=\frac{1}{2}\left[1-\cos \left(\frac{2 n \pi x}{l}\right)\right]
$$

i.e. since:
$\frac{d}{d x}\left(\frac{\sin (A x)}{A}\right)=\frac{A \cos (A x)}{A}=\cos (A x) \Rightarrow \int \cos (A x) d x=\frac{\sin (A x)}{A}+$ const
then:

$$
\begin{aligned}
\int_{0}^{l} \sin ^{2}\left(\frac{n \pi x}{l}\right) d x & =\frac{1}{2} \int_{0}^{l} 1-\cos \left(\frac{2 n \pi x}{l}\right) d x=\frac{1}{2}\left[x-\frac{l}{2 n \pi} \sin \left(\frac{2 n \pi x}{l}\right)\right]_{0}^{l} \\
& =\frac{1}{2}\left[l-\frac{l}{2 n \pi} \sin \left(\frac{2 n \pi l}{l}\right)\right]-\left[0-\frac{l}{2 n \pi} \sin (0)\right] \\
& =\frac{1}{2}[l-0]-[0-0]=\frac{l}{2}
\end{aligned}
$$

which implies that:

$$
D^{2} \frac{l}{2}=1
$$

i.e.:

$$
D^{2}=\frac{2}{l}
$$

i.e.:

$$
D=\sqrt{\frac{2}{l}}
$$

Thus the wave-functions are given by:

$$
\psi_{n}(x)=\sqrt{\frac{2}{l}} \sin \left(\frac{n \pi x}{l}\right)
$$

Also, the general solution for the SWE suggests that:

$$
\beta=\sqrt{\frac{2 m E}{\hbar^{2}}}
$$

whilst the boundary conditions require that:

$$
\beta=\frac{n \pi}{l}
$$

Thus:

$$
\beta=\sqrt{\frac{2 m E}{\hbar^{2}}}=\frac{n \pi}{l}
$$

i.e.:

$$
\frac{2 m E}{\hbar^{2}}=\frac{n^{2} \pi^{2}}{l^{2}}
$$

i.e. the corresponding energies for the wave functions $\psi_{n}(x)$ are given by:

$$
E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m l^{2}}=\frac{n^{2} h^{2}}{8 m l^{2}}
$$

ASIDE: The Hamiltonian for this system:

The Hamiltonian for this system is given by:

$$
\hat{H}=T+V
$$

where V and T are the potential and kinetic energy of the particle.
The kinetic energy is given by:

$$
T=\frac{1}{2} m v_{x}^{2}=\frac{\left(m v_{x}\right)^{2}}{2 m}=\frac{p_{x}^{2}}{2 m}
$$

and where from Quantum Mechanics:

$$
p_{x}=m v_{x}=-\frac{i h}{2 \pi} \frac{d}{d x}
$$

i.e.:

$$
T=\frac{1}{2 m}\left(-\frac{i h}{2 \pi} \frac{d}{d x}\right)^{2}=-\frac{h^{2}}{8 \pi^{2} m} \frac{d^{2}}{d x^{2}} \equiv-\frac{\hbar}{2 m} \frac{d^{2}}{d x^{2}}
$$

where h is Plank's constant and $\hbar=\frac{h}{2 \pi}$.
Thus the Hamiltonian is given by:

$$
\hat{H}=T+V=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)
$$

Also, for a particle in a 1D square well (i.e. for $0<x<l$), the potential energy is given by:

$$
V(x)=\left\{\begin{array}{cc}
0 & 0<x<l \\
\infty & \text { otherwise }
\end{array}\right.
$$

Thus the Hamiltonian for the particle in the well simplifies to:

$$
\hat{H}=T+V=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+0=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}
$$

i.e. the SWE is given by:

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi
$$

