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Differential Equations 
 
 
 
 
1. First order differential equations – variables separable  
 
A first order differential equation with variables separable is one of the form: 

  ( ) ( ).dy f x g y
dx

=  

i.e.:  (1) It only involves first order derivatives, i.e. only dy
dx

, not 
2

2
d y
dx

,  
3

3
d y
dx

, etc. 

(2) The variables x and y may be easily separated to obtain an equation 
which may be integrated: 

  ( ) ( )1 dy f x dx
g y

=  

 
 
Q1.1 Find the general solution of the differential equation: 

  dy xy
dx

=  

A1.1  By separating the variables we obtain: 
1 dy xdx
y

=  

 which upon integration of both sides we obtain: 

  
2

1 2

2

1
     

     ln
2

: ln
2

dy xdx
y

xy c c

xor y K

=

+ = +

= +

∫ ∫

 

 
 

NOTE:  Since the final solution contains the undermined constant of 
integration, this solution is referred to as the ‘general 
solution’. 
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Q1.2 Given that ( )0 3y = , find the particular solution of the differential equation: 

  ( )1 sindy x
dx y

=  

A1.2  By separating the variables we obtain: 
( )sinydy x dx=  

 which upon integration of both sides we obtain the general solution: 

  
( )

( )
2

sin     

     cos
2

ydy x dx

y x K

=

= − +

∫ ∫
 

We may now obtain the particular solution by using the fact that ( )0 3y = , i.e. 
that at x=0, y=3, i.e.: 

  

( ) ( )

( )

2

2

,     0 3cos
2

3 cos 0
2
9 1
2

9 11 1
2 2

y yx K

K

K

K

== − +

⇒ = − +

⇒ = − +

⇒ = + =

 

 i.e. the particular solution is given by: 

  ( ) ( )
2

211    :    2cos 11 0cos
22

y or y xx + + + == −  

 
 
 
 
 
 
Q1.3  For a first order chemical reaction, the rate law is given by: 

[ ] [ ]A
A

d
k

dt
= −  

Given that at time t=0, the initial concentration of A is given by [ ]0
A , obtain 

an expression for, [ ]A
t
, the concentration of A at any time t after the 

commencement of the reaction.  
 

A1.3  By separating the variables we obtain: 

[ ] [ ]1 A
A

d kdt= −  

This may be solved in one of two ways (with method B being the 
recommended method). 
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Method A:  By integration of both sides we obtain the general solution:   

 

[ ] [ ]

[ ] [ ]

[ ]

1 A
A

1 A
A

ln A

d kdt

d k dt

kt const

= −

= −

= − +

∫ ∫

∫ ∫  

where [ ]A  represents the concentration of A at any time t. Given that at time 

t=0, the initial concentration of A is given by [ ]0
A , we may now obtain the 

particular solution: 

  

[ ] [ ] [ ]
[ ]

[ ]

0

0

0

ln A ,    at  0,  A A

ln A 0

ln A

kt const t

k const

const

= − + = =

⇒ = − +

⇒ =

 

 i.e. the particular solution is given by: 

  

[ ] [ ]
[ ] [ ]

[ ] [ ] [ ]
[ ]

0

0

0
0

ln A ln A

or:   ln A ln A

A
i.e.:  ln A ln A   or:   ln

A

t

kt

kt

kt kt

= − +

= − +

 
− = − = −   

 

 
Method B:  By integration of both sides using the appropriate boundary 

conditions we immediately obtain the general solution:  
   

 

[ ] [ ]
[ ]

[ ]

[ ] [ ]
[ ]

[ ]

[ ] [ ]
[ ] [ ]

[ ] [ ] ( )

[ ] [ ] [ ]
[ ]

0

0

0

0

A

0A

A

0A

A

0A

0

0
0

1 A
A

1 A
A

ln A

ln ln 0A A

A
. .: ln ln    or: lnA A

A

t

t

t

t

t

t

t
t

d kdt

d k dt

k t

k t

i e kt kt

= −

= −

  = − 

− = − −

 
− = − = −   

∫ ∫

∫ ∫

 

 



 4 

 
2. Second order differential equations, homogeneous with constant 
coefficients  
 
 
 
In general a second order differential equation is of the form: 

 ( ) ( ) ( )
2

2
d y dyp x q x y r x
dx dx

+ + =  

and if ( ) 0r x = , then the solution is said to be homogeneous. In this course we shall 
only deal with homogeneous second order differential equations where 

( ) ( ) and p x q x  are constants, i.e. (in its more general form): 

 
2

2 0d y dya b cy
dx dx

+ + =  

and it may be shown that such an equation will always have a solution of the from xeλ  
where λ  is a suitable constant.  
 
In particular, let xy eλ=  be a trial solution of the equation: 

 
2

2 0d y dya b cy
dx dx

+ + =  

From xy eλ=  we may obtain: 

 xdy e
dx

λλ=  and  ( )
2

2
2 2

x xd y d e e
dx dx

λ λλ λ= =  

By substitution into the differential equation we obtain: 
 2 0x x xe a e beλ λ λλ λ+ + =  
i.e.: 
 ( )2 0xe a b cλ λ λ+ + =  

which since ,  0xx eλλ∀ > , we obtain the so called characteristic equation: 
 2 0a b cλ λ+ + =  
The characteristic equation is a simple quadratic equation with roots: 

 
2 4

2
b b ac

a
λ − ± −=  

or: 
2 2

1 2
4 4   and   

2 2
b b ac b b ac

a a
λ λ− + − − − −= =  

 
The nature of these roots depend on the discriminant 2 4b ac− . If a, b and c are real 
numbers then the three possible types of roots are: 

!"If 2 4 0b ac− >  (positive), then there are two distinct real roots 
!"If 2 4 0b ac− =  then there is one double real root 
!"If 2 4 0b ac− <  (negative), then roots are pair of complex conjugates.  

 
Furthermore, 
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(1)     If 2 4 0b ac− > , i.e. 1 2  and   λ λ  are distinct real numbers, then the general 
solution of the differential equation is 1 2x xy Ae Beλ λ= +  where A and B are constants, 

2 2

1 2
4 4   and   

2 2
b b ac b b ac

a a
λ λ− + − − − −= = ; 

 
 

(2)     If 2 4 0b ac− = , i.e. 1 2 = 
2
b
a

λ λ = − , then the general solution of the differential 

equation is ( ) ( )exp
2

x by A B e A Bx x
a

λ − = + = +   
 where A and B are constants. 

 
 
(3)       If 2 4 0b ac− < , then we have: 
 

 
2 22

1
4

2 2 2 2 2 2
b b ac b b b b b bi i
a a a a a a a a

λ α β− − − −       = ± = ± − = ± − ≡ ±              
 

where 
2

b
a

α −= , 
2

2
b b
a a

β    = −      
. The general solution of the differential equation 

is hence of the form:  
( ) ( )
( ) ( ) ( ) ( )

( )

exp exp

   exp exp exp exp

   exp i x i x

y A i x B i x

A x i x B x i x

x Ae Beβ β

α β α β

α ω α ω

α −

= + + −      
= + −

 = + 

 

or in trigonometric form by recalling that ( ) ( )cos siniRe R iθ θ θ= +   : 

  

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }
( ) ( ){ }

  cos sin cos sin

  cos sin cos sin

  cos sin

  cos sin

x i x i x

x

x

x

x

y e Ae Be

e A x i x B x i x

e A x i x B x i x

e A B x i A B x

e C x D x

α β β

α

α

α

α

β β β β

β β β β

β β

β β

− = + 
= + + − + −      

= + + −      
= + + −

≡ +

 

where 
2

b
a

α −= ,  
2

2
b b
a a

β    = −      
and C and D are constants. 

 
In each case, if initial or boundary conditions are specified, the particular solution is 
then obtained at the end by determining the values of the constants A, B, C or D (as 
appropriate).   
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Summary:  
 

Second order differential equations of the form 
2

2 0d y dya b cy
dx dx

+ + =  have a 

corresponding characteristic equation of the form 2 0a b cλ λ+ + =  which: 
1. If the characteristic equation has different real roots 1 2,λ λ  then the 

general solution is of the form 1 2x xy Ae Beλ λ= +  
2. If the characteristic equation has equal real roots 1 2λ λ λ= =  then the 

general solution is of the form ( ) xy A Bx eλ= +  
3. If the characteristic equation has complex conjugate roots iλ α β= ± , 

then the general solution is of the form 
( ) ( ){ }cos sinxy e C x D xα β β= +  

In each case, given the general solution, one may obtain the particular solution 
(i.e. determine the values of the constants A, B, C or D (as appropriate)) 
provided that initial or boundary conditions are specified.    

 
 

Q 2.1: Find the particular solution of the following second order differential equation: 
  '' ' 6 0y y y+ − =  
 given that ( ) ( )0 0,  ' 0 5y y= = . 
 
A 2.1: The characteristic equation is 2 6 0λ λ+ − = . This factorises to 

( )( )2 3 0λ λ− + = , i.e. the roots of the characteristic equation  are 

1 22, 3λ λ= = − .  
 
The general solution is hence given by: 
 2 3x xy Ae Be−= +  
 
The particular solution may be obtained since we know that 

( ) ( )0 0,  ' 0 5y y= = . Thus since: 

 2 3' 2 3x xy Ae Be−= −  
i.e. at x = 0:  

 
( )

0 0

      0 0
. .
      0           (eqn. 1)

y
i e

Ae Be A B

=

+ = + =
 

and: 

 
( )

0 0

      ' 0 5
. .
      2 3 2 3 5           (eqn. 2)

y
i e

Ae Be A B

=

− = − =
 

i.e. solving eqn. 1 & 2 simultaneously we have: 

  
0

1, 1
2 3 5
A B

A B
A B
+ = 

= = −− = 
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i.e. the particular solution is given by: 
 2 3x xy e e−= −  
 
 
Note: You may verify that 2 3x xy e e−= −  is indeed the solution for the 
differential equation through differentiation since: 

2 3x xy e e−= −  
2 3' 2 3x xy e e−= +  
2 3'' 4 9x xy e e−= −  

which when substituted into: 
 '' ' 6 0y y y+ − =  
we obtain: 

 

( ) ( ) ( )2 3 2 3 2 3

2 3 2 3 2 3

4 9 2 3 6

        4 9 2 3 6 6
        0
        

x x x x x x

x x x x x x

LHS e e e e e e

e e e e e e

RHS

− − −

− − −

= − + + − −

= − + + − +
=
=

 

 
 
 
 
 
Q 2.2: Find the general solution of the following second order differential equations: 

  

( )  '' 3 ' 2 0
( )  2 '' 8 ' 4 0
( ) '' 2 ' 1 0
( )  '' 2 ' 3 0
( )  '' 2 ' 4 0

i y y y
ii y y y
iii y y y
iv y y y
v y y y

+ + =
+ + =

+ + =
+ + =

+ + =
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Q 3.1: The wave function of a particle in a one-dimensional box: Solve the 
Schrödinger equation below to obtain: 

(i) acceptable wave function(s), ( )xψ ψ= , and  
(ii) the corresponding total energy(s), E   

for a particle of mass m moving in the x-direction: 
 Ĥ Eψ ψ=  
where Ĥ  is the appropriate Hamiltonian that gives the total energy E and is given by: 

 ( )
2 2

2
ˆ

2
dH V x

m dx
= − +!  

and ( )V x  is the potential energy of the particle which is given by: 

 ( ) 0 0 x l
V x

otherwise
< <

=  ∞
 

given the boundary conditions that: 
 ( ) ( )0 0lψ ψ= =  
and that for the wave function to be normalised, the wave function must satisfy the 
condition: 

 ( )2

0

1
l

x dxψ =∫  

 
A3.1:  The SWE may be written as: 

  ( )
2 2

22
d V x E

m dx
ψ ψ

 
− + = 

 

!  

 i.e. 

  ( )
2 2

22
d V x E

m dx
ψ ψ ψ− + =!  

 which for the particle inside the box (i.e. 0 x l< < ) we have V(x) = 0, i.e.: 

  
2 2

22
d E

m dx
ψ ψ− =!  

 or:  

  [ ]
2 2

2 0
2

d E
m dx

ψ ψ
 

+ = 
 

!  

This is a homogenous second order differential equation of the form: 

 
2

2 0d y dyA B Cy
dx dx

+ + =  

with a characteristic equation: 
 2 0A B Cλ λ+ + =  
i.e. in this case: 

 
2

2 0
2

E
m

λ 
+ = 

 

!  

which re-arranges to: 
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2

2

2
E

m
λ 

= − 
 

!  

i.e.: 

 2
22

2

2

E mE

m

λ = − = −
 
 
 

!!
 

i.e.: 

  2 2
2 2mE mEi iλ α β= ± − = ± ≡ ±
! !

 

 where: 2
20, mEα β= =
!

 

 
 Thus the general solution to this equation is given by: 
  ( ) ( ){ }cos sinxy e C x D xα β β= +  
 i.e. in this case: 
  ( ) ( ) ( )cos sinx C x D xψ β β= +  

 where 2
2mEβ =
!

 

 
 On application of the boundary condition we obtain that: 

  
( ) ( ) ( )

( ) ( )
0 0 cos 0 sin 0 0

                    1 0 0
           i.e.         0

C D

C D
C

ψ = ⇒ + =

+ =
=

 

and: 
 ( ) ( )0 sin 0l D lψ β= ⇒ =  

which for ( )sin 0lβ = , we must have: 
 l nβ π=  
(Recall that ( )sin 0  for  ... 3 , 2 , ,0, , 2 ,3 ...x x π π π π π π= = − − −  .) 
i.e.: 

 n
l
πβ =  

i.e.: 

 ( ) ( )sin sin n xx D x D
l
πψ β  = =   

 

Also, for the for the wave function to be normalised, the wave function must 
satisfy the condition: 

 ( )2

0

1
l

x dxψ =∫  

i.e.: 

 2 2

0

sin 1
l n xD dx

l
π   =    ∫  
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i.e.: 

 2 2

0

sin 1
l n xD dx

l
π  =  ∫  

where since 2cos 2 1 2sinA A= −  then : 
2 1 2sin 1 cos

2
n x n x

l l
π π    = −        

 

i.e. since: 
 
( ) ( ) ( ) ( ) ( )sin cos sin

cos cos
Ax A Ax Axd Ax Ax dx const

dx A A A
 

= = ⇒ = + 
 

∫  

then: 

 ( )

[ ] [ ]

2

0 0 0

1 2 1 2sin 1 cos sin
2 2 2

1 2                        sin 0 sin 0
2 2 2
1                        0 0 0
2 2

ll ln x n x l n xdx dx x
l l n l

l n l ll
n l n

ll

π π π
π

π
π π

      = − = −            
    = − − −        

= − − − =

∫ ∫

 

which implies that: 

 2 1
2
lD =  

i.e.: 

 2 2D
l

=  

i.e.:  

 2D
l

=  

Thus the wave-functions are given by: 

 ( ) 2 sinn
n xx

l l
πψ  =   

 

 
 
Also, the general solution for the SWE suggests that: 

2
2mEβ =
!

 

whilst the boundary conditions require that: 

 n
l
πβ =  

Thus: 

 2
2mE n

l
πβ = =

!
 

i.e.: 

 
2 2

2 2
2mE n

l
π=

!
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i.e. the corresponding energies for the wave functions ( )n xψ  are given by: 

 
2 2 2 2 2

2 22 8n
n n hE

ml ml
π= =!  

 
 

 
ASIDE:  The Hamiltonian for this system: 
 

The Hamiltonian for this system is given by: 
Ĥ T V= +  

where V  and T are the potential and kinetic energy of the particle.  
 
The kinetic energy is given by: 

 
( )2

2
21

2 2 2
x x

x

mv pT mv
m m

= = =  

and where from Quantum Mechanics: 

 
2x x
ih dp mv

dxπ
= = −  

i.e.: 
2 2 2 2

2 2 2
1

2 2 8 2
ih d h d dT

m dx m dx m dxπ π
 = − = − ≡ −  

!  

 where h is Plank’s constant and 
2
h
π

=! . 

  
 Thus the Hamiltonian is given by: 

   ( )
2 2

2
ˆ

2
dH T V V x

m dx
= + = − +!  

 
Also, for a particle in a 1D square well (i.e. for 0 x l< < ), the potential 
energy is given by: 

   

( ) 0 0 x l
V x

otherwise
< <

=  ∞
 

  Thus the Hamiltonian for the particle in the well simplifies to: 

   
2 2 2 2

2 2
ˆ 0

2 2
d dH T V

m dx m dx
= + = − + = −! !  

  i.e. the SWE is given by: 

   
2 2

22
d E

m dx
ψ ψ− =!  

 
  


