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ERRORS IN QUANTITATIVE ANALYSIS 
 
 
1. Introduction 
 
The purpose of a quantitative chemical analysis is the quantitative characterization of 
matter.  The very nature of quantitative experimental observation is such that it always 
involves some uncertainty, hence strictly speaking, no measurement made is ever exact. 
In the discussion of errors, one must distinguish between two main types of errors: 
systematic and random errors.  
 
A systematic error is the result of a mis-calibrated device, or a measuring technique 
which always makes the measured value larger (or smaller) than the "true" value. For 
example, all volumetric glassware is usually calibrated at 20oC. Thus, when this 
equipment is used at any other temperature, a systematic error is introduced. Careful 
design of an experiment will allow us to eliminate or to correct for systematic errors. For 
example, in our example, we may choose to run the experiments in an ‘air-conditioned’ 
laboratory maintained at a constant temperature of 20oC. 
 
Even when systematic errors are eliminated there will remain a second type of variation 
in measured values of a single quantity. These remaining deviations are known as 
random errors, and can be dealt with in a statistical manner. In view of this, it is 
standard procedure to report any experimentally measured quantity, X as a range of 
values X±∆X in which we have a 95% level of confidence. The quantity ∆X may be 
referred to as the tolerance in the value of X. (Note that in some cases, it may be 
necessary to quote results at a higher/lower confidence level.) 
 
 
2. Quantifying errors 
 
There are several approaches that can be used to determine associated ‘random error’ 
with an experimentally measured quantity. We shall consider two scenarios: 
 

(1) When the main source of error may be traced back to errors arising from 
equipment (including chemicals) limitations – e.g. the ‘Instrument Limit of 
Error (ILE)’, errors in the initial concentration of solutions, etc.. We shall 
henceforth refer to these errors as ILEs. 
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(2) Errors from other sources which when repeated readings are taken, then the 
result in the observed value follow a normal or Gaussian distribution. We 
shall henceforth refer to these errors as REs (random errors). These errors 
may be: 

• Accidental: due to changes in environmental conditions, e.g. draughts, 
temperature changes  

• Personal: e.g. parallax error when reading a scale 
• Variations in quantities to be measured: e.g. diameter of a pendulum 

bob. 
Both of these types of errors will need to be included in the calculation.  
 
 
 
2.1 Errors from equipment limitations (ILE) 
 
2.1.1 Introduction 
 
The least count is the smallest division that is marked on the equipment. Thus for 
example, a 50mL burette will have a least count of 0.1mL, and an electronic chemical 
balance giving up to three decimal places of a gram (e.g. 1g reads weights as 1.000 g) 
will have a least count of 0.001 g, i.e. 1mg. 
 
2.1.2 The instrument limit of error (ILE) 
 
The instrument limit of error (ILE), is the precision to which a measuring device can be 
read, and is always equal to or smaller than (i.e. a fraction of) the least count (unless the 
manufacturers specify some other value). The use of a fraction of the least count as the 
ILE rather that the least count itself is justified when the space between the scale 
divisions is large, in which case we may for example use ½ of the least count at the ILE 
instead of the least count itself. However, in  some cases, we are recommended by the 
manufacture to use an ILE (usually referred to as tolerance) which is higher than the 
value suggested from a ‘least count’ point of view. In such cases, the value for the ILE 
specified by the manufacturer should be used in the calculation.  
 
We may illustrate these statements by considering the ILE in a burette reading. Although 
the least count in a 50mL burette is 0.1mL, one may usually distinguish up to 0.05mL, 
and hence the ILE for such a burette should be taken as ±0.05mL. This value for the ILE 
is usually true for Grade A burettes. However, the suppliers of more economical burettes 
sometimes specify an ILE which is higher than ±0.05mL. For example, the 50mL 
economy-grade burettes sold by Aldrich have a tolerance of ±0.06mL, i.e. 0.01mL higher 
than expected from a ‘least count’ point of view. 
 
Very good measuring tools are calibrated against standards maintained by the National 
Institute of Standards and Technology (NIST), the British Standards (BS) or more 
commonly, the American Society For Testing and Materials (ASTM). For example 
volumetric glassware that is permanently marked Class "A" is guaranteed to comply with 



© Dr. Joseph N. Grima / University of Malta  Page 3 of 13 

volumetric tolerances prescribed in ASTM E694, and latest revisions. It is also supplied 
with a serialized certificate of precision. Volumetric glassware that is permanently 
marked Class "B" has a tolerance that is twice as large as Class "A". (Note that Grade B 
equipment is sometimes referred to as ‘economical’ or ‘general use’.  
 
Volumetric equipment that is usually provided calibrated to a single mark (e.g. 
volumetric flasks), are always permanently marked as Grade A or Grade B, or should 
have a stated tolerance limit. The tolerance values as regulated by the ASTM for 
volumetric flasks of various sizes are given in Table 1. 
 
 
Size of Flask (mL) Tolerance (mL) Size of Flask (mL) Tolerance (mL) 
 Grade A Grade B  Grade A Grade B 

10 0.02 0.04 250 0.12 0.24 
25 0.03 0.06 500 0.2 0.4 
50 0.05 0.1 1000 0.3 0.6 

100 0.08 0.16 2000 0.5 1 
200 0.1 0.2 5000 1.1 2.2 

Table 1: Accepted tolerances for volumetric flasks according to the ASTM standards. 

 

2.1.3 Errors due to purity  
The purity of the reagents should also be taken into consideration in quantitative analysis. 
For example, if we need to prepare 1L of 1M NaCl (RMM: 58.44), then if the NaCl is 
supplied as (99 ± 1)% pure, then we should use 59.03g of NaCl rather than 58.44g since: 

( ) 100 58.44 59.03
99

mass NaCl g×= =   

The ±1% uncertainty in the composition should be combined the ILEs from weight and 
volume measurements (see propagation of errors) in computing the acceptable range the 
NaCl concentration.  
 
Note that these types of errors can be (and should be) reduced by carrying out a 
quantitative analysis of the substance against primary standards.  
 
 
2.1.4 Estimated uncertainties 
Sometimes, experimental limitations are such that we encounter uncertainties which are 
larger than the ILE. If for example in a physics experiment, we try to balance a simple 
beam balance with masses that have an ILE of 0.01 grams, but find that we can vary the 
mass on one pan by as much as 3 grams without seeing a change in the indicator. In such 
case, quoting masses as ±0.01 grams would of course be inappropriate. Instead we have 
to use an estimated uncertainty, given by half of the 3g as the estimated uncertainty, thus 
getting uncertainty of ±1.5g. 
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2.2 Errors from other sources which may be corrected by taking repeated readings 
(RE) 
 
If one were to repeat a measurement several times, the values obtained could be averaged 
and this average or mean value could be taken as the best value of the quantity in 
question. For measurements x1, ...., xN, of the same quantity x, the mean value x may be 
given by:  

 1 2 1...

N

i
n i

x
x x xx

N N
=+ + += =
∑

 

Note that: 
 ( )lim

N
x x

→∞
=  

In practice, repeated readings cost time and money, and in general, for quantitative 
analysis, N is 3-5. When only a finite number of measurements are recorded, we should 
also state a meaningful measure of the reliability of the mean value. In most work it is 
assumed that a given group of repeated measurements is a sample from a normal or 
Gaussian distribution. This distribution represents, for a large number of measurements, 
the relation between the number of times that readings of a given magnitude x are 
obtained and the magnitude of x itself.  
A measure of the spread of observed values of x (i.e. x1, ...., xN) is the standard 
deviation, σ (valid when N > 30) where the range x σ±  covers about 68% of all 
observations when repeated many times and is given by: 

 
( ) ( ) ( ) ( )2

2 2 2
1 2 1...

N

i
N i

x xx x x x x x
N N

σ =
−− + − + + −

= =
∑

 

In practice, the number of observations is less than 30 (i.e. N ≤ 30) then we make use of s 
rather than σ where s is given by: 

( ) ( ) ( ) ( )2
2 2 2

1 2 1...
1 1

N

i
N i

x xx x x x x x
s

N N
=

−− + − + + −
= =

− −

∑
 

 
In reporting uncertainties in mean values it is becoming more and more common to 
follow the practice of reporting the 95 percent confidence limits. These confidence limits 
are determined by recognizing firstly for an infinite set of measurements, where only 
random error enters, an ideal Gaussian distribution will be observed.  
 
 
 
 
 



© Dr. Joseph N. Grima / University of Malta  Page 5 of 13 

For such a distribution: 
o 68% of all observations fall within ±σ of the mean; 
o 95% of all observations fall within ±1.96σ of the mean; 
o 96% of all observations fall within ±2σ of the mean; 
o 99.7% of all observations fall within ±3σ of the mean; 
o 99.9% of all observations fall within ±3.29σ of the mean; 

 
When applied to our situation, we can say that at a 95% confidence limit, for a given N, 
the accepted value for x will lie in within the range: 

 tsx x
N

= ±  

where t=t(α,ν) may be read from statistical tables (Student’s t-distribution, see Table 2) 
for given values of a (which relates to the confidence level, CL) and n (the number of 
degrees of freedom, which depends on N) where: 

1 100
2 100

CLα − =   
 

and: 
1Nν = −   

 
Thus, for example, for a titre value averaged from 3 repeated titrations (i.e. N=3, n=2), 
we may say that at a 95% confidence level (i.e. a = 0.025) that the accepted value of the 
titre value is given by: 

 4.303 sx x
N

= ±   
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αααα    0.10 0.05 0.025 0.01 0.005 0.001 
 ν =  1 3.078 6.314 12.706 3.1621 63.657 318.310 

2 1.886 2.920 4.303 6.965 9.925 22.327 
3 1.638 2.353 3.182 4.541 5.841 10.215 
4 1.533 2.132 2.776 3.747 4.604 7.173 
5 1.476 2.015 2.571 3.365 4.032 5.893 
6 1.440 1.943 2.447 3.143 3.707 5.208 
7 1.415 1.895 2.365 2.998 3.499 4.785 
8 1.397 1.860 2.306 2.896 3.355 4.501 
9 1.383 1.833 2.262 2821 3.250 4.297 
10 1.372 1.812 2.228 2764 3.169 4.144 
11 1.363 1.796 2.201 2.718 3.106 4.025 
12 1.356 1.782 2.179 2.681 3.055 3.930 
13 1.350 1.771 2.160 2.650 3.012 3.852 
14 1.345 1.761 2.145 2.624 2.977 3.787 
15 1.341 1.753 2.131 2.602 2.947 3.733 
16 1.337 1 .746 2120 2.583 2.921 3.686 
17 1.333 1.740 2.110 2.567 2.898 3.646 
18 1.330 1.734 2.101 2.552 2.878 3.610 
19 1.328 1.729 2.093 2.539 2.861 3.579 
20 1.325 1.725 2.086 2.528 2.845 3.552 
21 1.323 1.721 2.080 2.518 2.831 3.527 
22 1.321 1.717 2.074 2.508 2.819 3.505 
23 1.319 1.714 2.069 2.500 2.807 3.485 
24 1.318 1.711 2.064 2.492 2.797 3.467 
25 1.316 1.708 2.060 2.485 2.787 3.450 
26 1.315 1.706 2.056 2479 2.779 3.435 
27 1.314 1.703 2.052 2.473 2.771 3.421 
28 1.313 1.701 2.048 2.467 2.763 3.408 
23 1.311 1.699 2.045 2.462 2.756 3.396 
30 1.310 1.697 2.042 2.457 2.750 3.385 
40 1.303 1.684 2.021 2423 2.704 3.307 
60 1.296 1.671 2.000 2.390 2.660 3.232 
120 1.289 1.658 1.980 2.358 2.617 3.160 
∞ 1.282 1.645 1.960 2.326 2.576 3.090 

 

 
Table 1: Percentage points of the Student’s t-distribution  (Taken from The University of Malta 
booklet of Mathematical Formulae, Malta University Press, 1987) 
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3. Propagation of Errors - Exemplified through the problem of finding 
the tolerance in volumetric solutions 
 
We shall consider the case when the original substance is a liquid of (P ± ∆P)%  purity.  
 
The concentration C (in M, i.e. mol L-1) is given by: 

 
11000 10

RMM 100 1000 1000 RMM
S ST

T

V PVVPC
V

ρ ρ−
        = =              

 

(eqn 1.) 
where: 

o ρ  is the specific density (in kg L-1) of the substance, i.e. 1000ρ  is the specific 
density in g L-1 

o P is the percentage purity, i.e. P/100 represents the purity expressed as a fraction 
(maximum 1, minimum 0) 

o Vs is the volume of the substance in mL, i.e. Vs / 1000 represents the volume of 
substance in L 

o VT is the total volume of the final solution in mL, i.e. VT / 1000 represents the total 
volume in L. Note that this is the volume of the volumetric flask. 

 
Let us now derive an expression for the tolerance in C. 
 
We must first check that the equation that we shall be using is unit consistent, as in this 
case. 
 
We must then identify which quantities may be treated as ‘errorless constants’, leaving 
the rest as ‘variables’ each with a respective tolerance. In this case we may assume that r 
and the RMM are constants, hence leaving P, VS and VT as variables. Let us assume that 
the tolerance for the values of these three variables be ∆P, ∆VS and ∆VT respectively, i.e. 
the true value of P is likely to be within the range of P ± ∆P, etc.  
 
 
From eqn. 1 and the above we may deduce that: 

 ( )10 , ,
RMM

S
S T

T

PV
C C P V V

V
ρ = =  

 

i.e.: 

 S T
S T

C C CdC dP dV dV
P V V

   ∂ ∂ ∂ = + +    ∂ ∂ ∂    
 

from which we may write an approximate value of ∆C in terms of  ∆P, ∆VS and ∆VT : 

 S T
S T

C C CC P V V
P V V

   ∂ ∂ ∂ ∆ ≈ ∆ + ∆ + ∆    ∂ ∂ ∂    
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Squaringi this equation and recognising that the ‘∆Xi’ pairs other than (∆P)2, (∆VS)2 and 
(∆VT)2 may be assumed to be zero since P, VS and VT are independent variables, then we 
may write an expression for the most likely error in the value of C  by: 

 ( ) ( ) ( ) ( )
2 22

2 2 2 2
S T

S T

C C CC P V V
P V V

   ∂ ∂ ∂ ∆ ≈ ∆ + ∆ + ∆    ∂ ∂ ∂    
 

i.e. in this case: 

( ) ( ) ( ) ( )
22 2

2 2 2 2
2

2 22
2

10 10 10

         

s S
S T

T T T

S T

S T

V PVPC P V V
RMM V RMM V RMM V

V VPC
P V V

ρ ρ ρ         ∆ = ∆ + ∆ + − ∆                   
    ∆ ∆∆  = + +           

 

 
A table summarising the different errors for the more common types of functions used in 
volumetric analysis is given in Appendix 1. Note that there is no need to derive these 
equations in your reports. 
 
  
4. Example: Standardisation of an NaOH(aq) solution through titration 
against 1M HCl(aq) 
  
 
 
Method: 

1. 1M HCl was prepared from ACS reagent grade concentrated HCl (Sigma, ACS 
reagent grade, 36.5-38.0%) by topping 20.6±0.1 mL of concentrated acid to 250 
mL in a Grade B volumetric flask (tolerance = 0.24mL).  

2. 25mL of the NaOH(aq) solution was transferred into a clean conical flask using a 
Grade B 25mL pipette (tolerance = ±0.08mL) and titrated against the 1M HCl 
solution prepared in (1) using a Grade B burette (ILE = ±0.06mL) using 
phenolphthalein as an indicator. This step was repeated three times. 

 

                                                 
i This ‘squaring’, etc. is required to make C∆ the ‘statistically most likely value for the error in C’, i.e. 

strictly speaking we should say that ( ) ( ) ( )
2 22

2 2 2
S T

S T

C C CC P V V
P V V

   ∂ ∂ ∂ ∆ = ∆ + ∆ + ∆    ∂ ∂ ∂    
. Some authors prefer 

to make use of the ‘maximum value for the error in C’ which is given by: 

max S T
S T

C C CC P V V
P V V

∂ ∂ ∂∆ = ∆ + ∆ + ∆
∂ ∂ ∂
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Results and Calculations: 
 
1. The accurate concentration of the HCl solution: 
 

VS ± ∆VS, the volume of HCl used: 20.6±0.1 mL 
P ± ∆P, the purity of HCl used: 36.5-38.0% = 37.25  ± 0.75% 
VT ± ∆VT, the total volume of final solution: 250.00 ± 0.24mL 
RMM of HCl: 36.46       ρ, density of HCl: 1.19 kg L-1 
 

Given this information we can use the equations derived above to calculate the accurate 
concentration C±∆C of the HCl solution by: 

 10 ... 1.002M
RMM

S

T

PV
C

V
ρ = = =  

 

and: 

 

1/ 22 22

... 0.021MS T

S T

V VPC C
P V V

    ∆ ∆∆  ∆ = + + = =           
 

i.e. the concentration C±∆C of the HCl is given by (1.001 ± 0.021)M. 
  
 
 
2. The results of the titration: 
 
 
The results from the titration were as follows: 
 
 1st reading 2nd reading 3rd reading 
Final reading, Vf , (mL, ±0.06mL) 27.20 29.30 28.70 
Initial reading, Vi (mL, ±0.06mL) 2.10 4.30 3.70 
Titre value, Vu, (mL, ± ∆ Vu mL) 25.10 25.00 25.00 
 
 
The mean titre value may be computed by through: 

 ,1 ,2 ,3

3
u u u

u

V V V
V

+ +
=  

where ,1 ,2 ,3,   and u u uV V V  are the titre values from the 1st, 2nd and 3rd reading respectively, 
i.e.: 

 25.10 25.00 25.00 25.033mL
3uV + += =  

The error in this value is due to ILEs and REs, i.e.: 
 u u uV V V∆ = ∆ + ∆

ILE RE
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To calculate the errors due to ILEs in we shall first calculate the error in each reading of 
the titre values.  
 
Since the titre value Vu is given by: 
 u f iV V V= −  
then applying the rule of the combinations of errors, we have: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2
22 2

22 2 2

2 2

            1 1

            

u u
u f i

f i

f i

f i

V V
V V V

V V

V V

V V

   ∂ ∂
∆ = ∆ + ∆    ∂ ∂  

= ∆ + − ∆

= ∆ + ∆

 

i.e.: 

 
( ) ( ) ( ) ( )2 2 2 20.1mL 0.1mL 2 0.1mL

2 0.06mL
u

u

V

V

∆ = + =

⇒ ∆ =
 

 
Similarly, the errors due to ILEs in the mean titre values may be computed by recalling 
that: 

 
1 2 3

3
u u u

u
V V V

V + +
=  

and applying the rule of the combinations of errors, we have: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2 2
2 2 2 2

,1 ,2 ,3
,1 ,2 ,3

2 2 2
2 2 2

2
2 2

1 1 1            
3 3 3

1 1            3
3 3

u u u
u u u u

u u u

u u u

u u

V V V
V V V V

V V V

V V V

V V

     ∂ ∂ ∂
∆ = ∆ + ∆ + ∆          ∂ ∂ ∂     

     = ∆ + ∆ + ∆          

 = ∆ = ∆  

ILE

 

  
i.e.: 

 1 2  0.06 mL 0.049mL
33u uV V∆ = ∆ = ≈

ILE
 

  
  
However, over and above this error due to ILE’s of the burette, there are also the other 
random errors which may be corrected statistically. Because we have three readings of 
the titre value, then at a 95% confidence limit we may say that:  

4.303u u u
sV V V
N

± ∆ = ±
RE

 

where s is the standard deviation given by: 
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( ) ( ) ( ) ( )
2

2 2 2
1 25.033 25.1 25.033 25.0 25.033 25.0

0.058mL
1 3 1

N

i
i

x x
s

N
=

− − + − + −
= = =

− −

∑
 

 
i.e. the error due RE is given by: 

 0.0584.303 4.303 0.143mL
3u

sV
N

∆ = = =
RE

 

Thus, the titre value with its associated errors is given by: 

 

( )
( )              25.033 0.049 0.143

(25.033 0.192) mL              

u u u u uV V V V V± ∆ = ± ∆ + ∆

= ± +
±=

ILE RE

 

 
 
 
3. The number of moles of HCl used in the reaction and the molarity of the NaOH 

solution. 
 
Since we know that the average titre value is (25.033 ± 0.224) mL and that the 
concentration of the HCl used is (1.001 ± 0.021) M, then we may calculate the average 
number of moles of HCl required to neutralise 25.0 mL of NaOH by: 

 ( )HCl
1000

uVn C=  

Also, since the reaction between NaOH and HCl has a 1:1 stoichiometry, then we may 

conclude that in 25mL of NaOH, there are 
1000

uV C  moles of NaOH, i.e. 

the concentration of NaOH is given by: 

 NaOH

NaOH1000 1000
u u

NaOH
V V VC C C

V
   

= ÷ =   
   

 

i.e.: 

  
NaOH

25.033 mL 1.001 M 1.002 M
25.000 mL

u
NaOH

V
C C

V
= = × =  

 
 
 
The final error in this concentration is given by: 

 

1/ 22 2 2
NaOH

NaOH

u
NaOH NaOH

u

V V CC C
CV V

    ∆ ∆ ∆  ∆ = + +               
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where NaOHV∆  may be assumed to be given by: 

 ( ) ( )NaOH
1 1tolerance of a 25mL pipette 0.05 mL 0.029mL
3 3

V∆ = × = ≈  

i.e.: 

 

1/ 22 2 2
NaOH

NaOH

2 2 20.192 0.029 0.021            1.002
25.033 25.000 1.001

            0.022M

u
NaOH NaOH

u

V V CC C
CV V

    ∆ ∆ ∆  ∆ = + +               

     = + +          
=

 

 
 
i.e. the concentration of the NaOH solution is given by: (1.002 ± 0.022) M, or since the 
error in the NaOH concentration starts appears in the second decimal places, we are more 
justified in saying that the concentration of NaOH is 1.00 ± 0.02 M .  
 
 
 
 
Notes: (1) In your calculation you should work with one decimal place more than in the 
final result. (2) For your reports, there is no need to re-derive the expressions for the 
propagation of errors from first principles and instead you may start from the equations 
in Appendix 1.  
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Appendix 1: Formulae for the mean error ∆∆∆∆f  in terms of ∆∆∆∆x  , ∆∆∆∆y, and ∆∆∆∆z  for f=f(x,y,z)  
 
 
 

( ), ,f f x y z=  
f f fdf dx dy dz
x y z

 ∂ ∂ ∂   = + +    ∂ ∂ ∂    
 ( ) ( ) ( ) ( )

22
2 2 2 2f f ff x y z

x y z
 ∂ ∂ ∂   ∆ = ∆ + ∆ + ∆    ∂ ∂ ∂    

 
 
f∆  
 

Addition / subtraction 
f x y z= ± ±  

( ) ( ) ( )1 1 1df dx dy dz= ± + ± + ±  ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2 2

2 2 2

1 1 1

         

f x y z

x y z

∆ = ± ∆ + ± ∆ + ± ∆

= ∆ + ∆ + ∆
 ( ) ( ) ( )2 2 2f x y z∆ = ∆ + ∆ + ∆  

Multiplication / division 
1.xyf xy z

z
−= =  2

y x xydf dx dy dz
z z z

     = + + −          
 ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2
2 2 2 2

2

22 2
2 2 2         

y x xyf x y z
z z z

f f fx y z
x y z

     ∆ = ∆ + ∆ + − ∆          

    = ∆ + ∆ + − ∆        

 

22 21 x y zf
f x y z

 ∆ ∆ ∆   ∆ = + +        
 

Mean: 

1

where  ,    

N

i
i

i

x
f

N
i x x

==

∀ ∆ = ∆

∑

 

( ) ( ) ( )1 21 1 ... 1 Ndx dx dx
df

N
+ + +

=  ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2 2
2 2 2 2

1 2

2 2 2
2 2 2

22
2

1 1 1...

1 1 1         ...

1         

Nf x x x
N N N

x x x
N N N

x
N x

N N

     ∆ = ∆ + ∆ + + ∆          

     = ∆ + ∆ + + ∆          
∆ = ∆ =  

 

1f x
N

∆ = ∆  

 
Note: The f∆ presented here is the ‘statistically most likely value for the error in f’, i.e. strictly speaking we should use the notation f∆  rather 

than f∆ . Some authors prefer to make use of the ‘maximum value for the error in f’’ which is given by: max
f f ff x y z
x y z

∂ ∂ ∂∆ = ∆ + ∆ + ∆
∂ ∂ ∂

. 

 
 


	1. Introduction
	2. Quantifying errors
	2.1 Errors from equipment limitations (ILE)
	
	2.1.1 Introduction


	2.2 Errors from other sources which may be corrected by taking repeated readings (RE)

	3. Propagation of Errors - Exemplified through the problem of finding the tolerance in volumetric solutions
	4. Example: Standardisation of an NaOH(aq) solution through titration against 1M HCl(aq)

