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UNCERTAINTIES IN QUANTITATIVE ANALYSIS 
 
 
1. Introduction 
 
The purpose of quantitative chemistry analysis is the quantitative characterization of 
matter.  The very nature of quantitative experimental observation is such that it always 
involves some uncertainty, hence strictly speaking, no measurement made is ever exact.  
 
Uncertainties are sometimes linked to errors, although the two terms refer to two 
completely different properties. Errors can be subdivided in three categories: 

o systematic errors 
o random errors 
o spurious errors or blunders 

 
A systematic error is the result of a mis-calibrated device, or a measuring technique 
which always makes the measured value larger (or smaller) than the "true" value. For 
example, all volumetric glassware is usually calibrated at 20oC. Thus, when this 
equipment is sued at any other temperature, a systematic error is introduced. Careful 
design of an experiment will allow us to eliminate or to correct for systematic errors. For 
example, in our example, we may choose to run the experiments in an ‘air-conditioned’ 
laboratory maintained at a constant temperature of 20oC.  
 
Even when systematic errors are eliminated there will remain a second type of variation 
in measured values of a single quantity. These remaining deviations are known as 
random errors, and can be dealt with in a statistical manner. In view of this, it is 
standard procedure to report any experimentally measured quantity, X with it associated 
standard uncertainties, or sometimes as a range X±∆X in which we have a 95% level of 
confidence.  
 
A further type of error is a spurious error or blunder. Errors of this type invalidate a 
measurement and typically arise through human failure or instrument malfunction. 
Transposing digits in a number while recording data, an air bubble lodged in a 
spectrophotometer flow-through cell, or accidental cross-contamination of test items are 
common examples of this type of error. Uncertainties estimated using this guide are not 
intended to allow for the possibility of spurious errors/blunders. 
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2. Procedure for calculating uncertainties 
 
The process of measurement uncertainty estimation involves the following steps: 

1 - Specify measurand 
Write down a clear statement of what is being measured, including the relationship 
between the measurand and the parameters (e.g. measured quantities, constants, 
calibration standards etc.) upon which it depends. Where possible, include 
corrections for known systematic effects. The specification information should be 
given in the method description. 

2 - Identify uncertainty sources 
List the possible sources of uncertainty. This will include sources that contribute to 
the uncertainty on the parameters in the relationship specified in step 1, but may 
include other sources and must include sources arising from chemical assumptions. 
                                                                 >  For more details click here. 

3 - Quantify uncertainty components 
Measure or estimate the size of the uncertainty component associated with each 
potential source of uncertainty identified.  

4 - Calculate combined uncertainty 
The information obtained in step 3 will consist of a number of quantified 
contributions to overall uncertainty, whether associated with individual sources or 
with the combined effects of several sources. The contributions have to be 
expressed as standard deviations, and combined according to the appropriate rules, 
to give a combined standard uncertainty. At the end, the standard uncertainty may 
be transformed to a range of values acceptable at 95% confidence level using the 
appropriate coverage factor. 

 
 

 
3. Quantifying uncertainties in single measurements   
 
Very good measuring tools are calibrated against standards maintained by the National 
Institute of Standards and Technology (NIST), the British Standards (BS) or more 
commonly, the American Society For Testing and Materials (ASTM). At this level, we 
shall discuss the uncertainties in: 

1. measurements of volume  
2. measurements of mass 
3. chemical purity. 

 
3.1 Measurement of volume 
 
The three main pieces of analytical equipment that are used in measuring volumes are 
volumetric flasks, burettes and pipettes. Such equipment is calibrated at 200C and hence, 
its use at temperatures different than 200C will result in a systematic error.  

http://www.measurementuncertainty.org/mu/guide/contentapp.html
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However, even at 200C, it is not possible to have the volume measured exactly and there 
is always some uncertainty associated with the measured volume. In fact, volumetric 
glassware is permanently marked to state the uncertainties in the volume measured. For 
example, volumetric glassware that is permanently marked to Class "A" is guaranteed to 
comply with volumetric tolerances prescribed in ASTM E694, and latest revisions. It is 
also supplied with a serialized certificate of precision. Volumetric glassware that is 
permanently marked Class "B" has a tolerance that is twice as large as Class "A". (Note 
that Grade B equipment is sometimes referred to as ‘economical’ or ‘general use’. 
 
Volumetric equipment that is usually provided calibrated to a single mark (e.g. 
volumetric flasks), are always permanently marked as Grade A or Grade B, or should 
have a stated tolerance limit. The tolerance values as regulated by the ASTM for 
volumetric flasks of various sizes are given in Table 1. 
 
Size of Flask (mL) Tolerance (mL) Size of Flask (mL) Tolerance (mL) 
 Grade A Grade B  Grade A Grade B 

10 0.02 0.04 250 0.12 0.24 
25 0.03 0.06 500 0.2 0.4 
50 0.05 0.1 1000 0.3 0.6 

100 0.08 0.16 2000 0.5 1 
200 0.1 0.2 5000 1.1 2.2 

Table 1: Accepted tolerances for volumetric flasks according to the ASTM standards. 
 
This means that a 100mL Grade A flask will have a tolerance of 0.08mL. This means that 
at 200C (the temperature at which volumetric flasks are calibrated), the flask may contain 
anything between 99.92mL to 100.08mL. This is a description of a rectangular 
distribution function with a semi-range of α = 0.08mL, and it can be shown that for a 
rectangular distribution, an estimate of the standard uncertainty (or standard deviation) 
can be calculated using1: 

 ( )
3

u V α=  

i.e. in this case, we may say that the volume contained in a 100mL Grade A flask at 20oC 
is 100.00mL with a standard uncertainty of (0.08 / 31/2) mL.  
 
If a certificate of specification (or marks on the actual equipment cannot be found), one 
may assume that the tolerance of the equipment is given by the least count (or a fraction 
of the least count) of the equipment. The least count is the smallest division that is 
                                                 
1 This method for calculating the standard uncertainly from the tolerance of the 
equipment (i.e. by dividing with 3 ) should also be used when the equipment certificate 
or other specification gives limits without specifying a level of confidence, or when an 
estimate is made in the form of a maximum range (±α) with no knowledge of the shape 
of the distribution. The only exception is when although the tolerance are given without a 
confidence level, there is reason to expect that extreme values are unlikely. In such cases, 
it is normally appropriate to assume a triangular distribution, with a standard deviation of 

3α . 
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marked on the equipment. Thus for example, a 50mL burette will have a least count of 
1.0mL, The use of a fraction of the least count as the tolerance rather that the least count 
itself is justified when the space between the scale divisions is large, in which case we 
may use for example use ½ of the least count instead of the least count itself. For 
example, the least count for a 50mL burette is usually 0.1mL, but as it possible to 
distinguish between a 0.10mL and a 0.15mL, then the ½ of the least count (i.e. 0.05mL) 
should be used as the tolerance of the burette.  
 
Note that if a certificate of specification is found, you will find that the tolerance quoted 
is higher than the least count or the fraction of the least count. In other words, the least 
count / fraction of the least count should be the lower bound of the possible uncertainty in 
the measurement).  
 
In addition to the uncertainty discussed above, other factors should be considered, such at 
uncertainties that arise from variations in temperature, etc. However, at this level, this 
will not be considered.   
 
3.2 Measurement of mass 
 
Mass is normally measured using digital analytical balances that can measure mass up to 
four decimal places of a gram (e.g. 1g reads weights as 1.0000 g). Analytical balances 
should also be calibrated and a certificate of specification should be available which 
should give the uncertainty associated with the measurement. If this certificate is 
unavailable, then the least count should be used, recalling that the standard uncertainty 
from a least count of α is given by: 

( )
3

u m α=  

Once again, in addition to the uncertainty discussed above, other factors should be 
considered, such at uncertainties that arise from lack of repeatability, etc. However, at 
this level, this will not be considered.   
 
 
 
3.2 Purity of reagents 
 
Analytical reagents are also supplied with a certificate of analysis which will state the 
purity of the reagents and the standard uncertainty in the purity. This should be taken into 
consideration in quantitative analysis. For example, if we need to prepare 1L of 1M NaCl 
(RMM: 58.44), then if the NaCl is supplied as 99% pure, then we should use 59.03g of 
NaCl rather than 58.44g since: 

( ) 100 58.44 59.03
99

mass NaCl g×= =   

Generally, uncertainties arising from purity can be reduced by using chemicals of higher 
standards or by carrying out a quantitative analysis of the substance using primary 
standards.  
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3. The issue of repeatability 
 
Repeated measurements of the same quantity through the same method sometimes (and 
in practice, very often) result in slightly different readings. This ‘lack of repeatability’ 
may be due to: 

1. Instrument limitation errors when performing the different steps of the 
experiment; 

2. Other errors, such as inhomogeneity of the samples, etc. 
 
The values obtained from repeated readings could be averaged and this average or mean 
value could be taken as the best value of the quantity in question. For measurements x1, 
...., xN, of the same quantity x, the mean value x may be given by:  

 1 2 1...

N

i
n i

x
x x xx

N N
=+ + += =
∑

 

Note that: 
 ( )lim

N
x x

→∞
=  

In practice, repeated readings cost time and money, and in general, for quantitative 
analysis, N is 3-5. When only a finite number of measurements are recorded, we should 
also state a meaningful measure of the reliability of the mean value. In most work it is 
assumed that a given group of repeated measurements is a sample from a normal or 
Gaussian distribution. This distribution represents, for a large number of measurements, 
the relation between the number of times that readings of a given magnitude x are 
obtained and the magnitude of x itself.  
 
A measure of the spread of observed values of x (i.e. x1, ...., xN) is the standard 
deviation, σ (valid when N > 30) where the range x σ±  covers about 68% of all 
observations when repeated many times and is given by: 

 
( ) ( ) ( ) ( )2

2 2 2
1 2 1...

N

i
N i

x xx x x x x x
N N

σ =

−− + − + + −
= =

∑
 

In practice, the number of observations is less than 30 (i.e. N ≤ 30) then we make use of s 
rather than s where s is given by: 

( ) ( ) ( ) ( )2
2 2 2

1 2 1...
1 1

N

i
N i

x xx x x x x x
s

N N
=

−− + − + + −
= =

− −

∑
 

 
Note that in practice, most of the calculations that are required under to calculate the 
mean and the standard deviation can be performed through a spreadsheet package such as 
MS Excel, see fig. 1. 
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Fig. 1: The use of MS Excel to calculate means and standard deviations. 
 
 
 
 
3. Propagation of Errors - Exemplified through the problem of finding 
the tolerance in volumetric solutions 
 
We shall consider the case when the original substance is a liquid of (P ± ∆P)%  purity.  
 
The concentration C (in M, i.e. mol L-1) is given by: 

 
11000 10

RMM 100 1000 1000 RMM
S ST

T

V PVVPC
V

ρ ρ−
        = =              

 

(eqn 1.) 
where: 

o ρ  is the specific density (in kg L-1) of the substance, i.e. 1000ρ  is the specific 
density in g L-1 

o P is the percentage purity, i.e. P/100 represents the purity expressed as a fraction 
(maximum 1, minimum 0) 

o Vs is the volume of the substance in mL, i.e. Vs / 1000 represents the volume of 
substance in L 

o VT is the total volume of the final solution in mL, i.e. VT / 1000 represents the total 
volume in L. Note that this is the volume of the volumetric flask. 

 
Let us now derive an expression for the standard uncertainty in C. 
 
We must first check that the equation that we shall be using is unit consistent, as in this 
case. 
 
We must then identify which quantities may be treated as ‘errorless constants’, leaving 
the rest as ‘variables’ each with a respective standard uncertainty. In this case we may 
assume that ρ and the RMM are constants, hence leaving P, VS and VT as variables. Let us 
assume that the uncertainties in the values of these three variables be u(P), u(VS) and  
u(VT) respectively.   
 
From eqn. 1 and the above we may deduce that: 
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 ( )10 , ,
RMM

S
S T

T

PV
C C P V V

V
ρ = =  

 

i.e.: 

 S T
S T

C C CdC dP dV dV
P V V

   ∂ ∂ ∂ = + +    ∂ ∂ ∂    
 

from which we may write an approximate value of ∆C in terms of  ∆P, ∆VS and ∆VT : 

 S T
S T

C C CC P V V
P V V

   ∂ ∂ ∂ ∆ = ∆ + ∆ + ∆    ∂ ∂ ∂    
 

Squaring this equation and recognising that the ‘∆Xi’ pairs other than (∆P)2, (∆VS)2 and 
(∆VT)2 may be assumed to be zero since P, VS and VT are independent variables, then we 
may write: 

 ( ) ( ) ( ) ( )
2 22

2 2 2 2
S T

S T

C C CC P V V
P V V

   ∂ ∂ ∂ ∆ = ∆ + ∆ + ∆    ∂ ∂ ∂    
 

or in terms of standard uncertainties:  

 ( ) ( ) ( ) ( )
2 22

2 2 2 2
s T

S T

C C Cu C u P u V u V
P V V

   ∂ ∂ ∂ = + +                  ∂ ∂ ∂    
 

 
i.e. in this case: 

( ) ( ) ( ) ( )

( ) ( ) ( )

22 2
2 2 2 2

2

2 2 2

2
2 2 2

10 10 10

             

s S
s T

T T T

s T

s T

V PVPu C u P u V u V
RMM V RMM V RMM V

u P u V u V
C

P V V

ρ ρ ρ         = + − + −                                 
            = + + 
  

 
 
 
  
4. Example: Titration of an NaOH(aq) solution through titration against 
1M HCl(aq) 
  
Method: 

1. 1M HCl was prepared from ACS reagent grade concentrated HCl (Sigma, ACS 
reagent grade, 36.5-38.0%) by topping 20.6±0.1 mL of concentrated acid to 250 
mL in a Grade B volumetric flask (tolerance = 0.24mL).  

2. 25mL of the NaOH(aq) solution was transferred into a clean conical flask using a 
Grade B 25mL pipette (tolerance = ±0.08mL) and titrated against the 1M HCl 
solution prepared in (1) using a Grade B burette (ILE = 
±0.06mL) using phenolphthalein as an indicator. This 
step was repeated three times. 

 
 
Results and Calculations: 
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1. The concentration of the HCl solution: 
 

VS ± ∆VS, the volume of HCl used: (20.6±0.1) mL 
P ± ∆P, the purity of HCl used: 36.5-38.0% = (37.25±0.75)% 
VT ± ∆VT, the total volume of final solution: (250.00±0.24) mL 
RMM of HCl: 36.46 
ρ, density of HCl: 1.19 kg L-1 
 

Given this information we can use the equations derived above to calculate the 
concentration C±∆C of the HCl solution by: 

 10 ... 1.002M
RMM

S

T

PV
C

V
ρ = = =  

 

 
The standard uncertainty is given by: 

 ( ) ( ) ( ) ( )
1/ 22 2 2

2 2 2
s T

s T

u P u V u V
u C C

P V V

            = + + 
  

  

where: 
 
Quantity, X Quoted uncertainty 

(rectangular distribution) 
Standard uncertainty, u(X) 
(rectangular distribution) 

P 0.75 % 
( ) 0.75  %

3
u P  =   

 

Vs 0.1 mL  
( ) 0.1  mL

3su V  =   
 

VT 0.24 mL 
( ) 0.24  mL

3Tu V  =   
 

 
which give a standard uncertainty of: 

 ( ) ( ) ( ) ( )
1/ 22 2 2

2 2 2 ... 0.012 Ms T

s T

u P u V u V
u C C

P V V

            = + + = = 
  

 

Given this information, it is possible to plot the relative standard uncertainties (i.e. 
( )u X
X

) of P, Vs, VT and C as in Fig. 1. This plot shows that main source on uncertainty is 

the purity of the HCl.  
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Fig. 1: A plot of the relative standard uncertainties for P, Vs, VT and C. 
 
 
It is also possible to use this information to state a value of the concentration at a 95% 
confidence level.  
 
The information can also be used to state the concentration of HCl at a 95% confidence. 
Assuming that the concentration calculated and the associated standard deviation can be 
related to a Gaussian or normal distribution, i.e. a distribution where 95% of all 
observations fall within ±1.96 σ of the mean; then at 95% confidence we may say that: 

 
( )
( )
1.002  1.96 0.012 M

           1.002 M  0.024

C C± ∆ = ± ×

= ±
 

or more appropriately: 
 ( )1.00 M  0.02C C± ∆ = ±   
 
 
 
2. The results of the titration: 
 
The results from the titration were as follows: 
 
 1st reading 2nd reading 3rd reading 
Final reading Vf , (mL, 
±0.06mL) 2.10 4.30 3.70 
Initial reading, Vi , (mL, 
±0.06mL) 27.20 29.30 28.70 
Titre value, Vu , (mL) 25.10 25.00 25.00 
 
 
The mean titre value may be computed by through: 

 ,1 ,2 ,3

3
u u u

u

V V V
V

+ +
=  
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where ,1 ,2 ,3,   and u u uV V V  are the titre values from the 1st, 2nd and 3rd reading respectively, 
i.e.: 

 25.1 25.0 25.0 25.033mL
3uV + += =  

 
The uncertainties in this case will arise from two sources (at this level): 

a. ua(Vu) : The standard uncertainty that results from the tolerance of the burette 
(recall that the burette readings are ±0.06 mL).  

b. ub(Vu) : The standard uncairtainty that results from the spread of the titre 
values. 

which can be combined to give the total standard uncertainty: 

 ( ) ( ) ( )2 2
a bu u uu V u V u V= +        

 
 
To calculate ua(Vu)  we shall first calculate the uncertainty in each reading of the titre 
values.  
 
Since the titre value Vu is given by: 
 u f iV V V= −  
then applying the rule of the combinations of errors, we have: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2
222 2

2 22 2

2 2

            1 1

            

u u
u f i

f i

f i

f i

V Vu V u V u V
V V

u V u V

u V u V

   ∂ ∂ ∆ = ∆ + ∆           ∂ ∂  

 = ∆ + − ∆   

 = ∆ + ∆   

 

i.e. assuming a rectangular distribution for the burette readings u(V)  

 
( )

( )

2 2
2 0.06mL 0.06mL

3 3
0.05 mL

u

u

u V

u V

   = +∆          
⇒ ∆ =  

 

 
Similarly, the standard uncertainty ( )a uu V∆  that results from the tolerance of the burette 
may be computed by recalling that: 

 
1 2 3

3
u u u

u
V V V

V + +
=  

and applying the rule of the combinations of errors, we have: 



© Dr. Joseph N. Grima / University of Malta  Page 11 of 14 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

2 2 2
2 2 2 2

a ,1 ,2 ,3
,1 ,2 ,3

2 2 2
2 2 2

,1 ,2 ,3

2
2

1 1 1            
3 3 3

1 1            3
3 3

u u u
u u u u

u u u

u u u

u

V V Vu V u V u V u V
V V V

u V u V u V

u V u

     ∂ ∂ ∂       = + +                 ∂ ∂ ∂     

          = + +               

   = =    
( ) 2

uV  

 

  
i.e.: 

 ( ) ( )a
1 1  0.01 mL 0.029mL

33u uu V u V= = ≈  

 
 
The calculation of  ub(Vu), i.e. the standard deviation of the 3 titre values assuming that 
these are taken from a normal distribution, can be carried out using MS Excel (see Fig. 2) 
to get: 

( )b 0.058 mLuu V =  
 
and hence the combined stands uncertainty in the titre value is given by: 

( ) ( ) ( )2 2
a b

2 2         0.029 0.058 0.065 mL

u u uu V u V u V= +      

= + =
 

 
 

 
Fig. 2: The use of MS Excel to calculate the standard deviation of the three titre 
values 
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Once again, we can plot the relative standard uncertainties and we realise that in this 
case, the main source of uncertainty is due to the spread of titre values. 
 
 

0 0.0005 0.001 0.0015 0.002 0.0025 0.003

Total Uncertainty

Due to Burette
tolerance

Due to Spread of Titre
Values

Relative Standard Uncertainty

 
Fig. 3: A plot of the relative standard uncertainties that relate to the titre values 
 
 
 
3. The number of moles of HCl used in the reaction and the molarity of the NaOH 

solution. 
 
Since we know that the average titre value is 25.033 mL (standard uncertainty 0.065 mL) 
and that the concentration of the HCl used is 1.001 M (standard uncertainty 0.012 M), 
then we may calculate the average number of moles of HCl required to neutralise 25.0 
mL of NaOH by: 

 ( )HCl
1000

uVn C=  

Also, since the reaction between NaOH and HCl has a 1:1 stoichiometry, then we may 

conclude that in 25mL of NaOH, there are 
1000

uV C  moles of NaOH, i.e. 

the concentration of NaOH is given by: 

 NaOH

NaOH1000 1000
u u

NaOH
V V VC C C

V
   

= ÷ =   
   

 

i.e.: 

  
NaOH

25.033 mL 1.001 M 1.002 M
25.000 mL

u
NaOH

V
C C

V
= = × =  

The uncertainty in this concentration is given by: 



© Dr. Joseph N. Grima / University of Malta  Page 13 of 14 

 ( ) ( ) ( ) ( )
1/ 22 2

2
NaOH HCl

HClNaOH

u
NaOH NaOH

u

u V u V u C
u C C

CV V

          = + +            

 

where ( )NaOHu V  may be assumed to be given by: 

 ( ) ( ) ( )NaOH
1 1tolerance of a 25mL pipette 0.05 mL 0.029mL
3 3

u V = × = ≈  

i.e.: 

 

( ) ( ) ( ) ( )
1/ 22 2

2
NaOH HCl

HClNaOH

2 2 20.058 0.029 0.012              1.002
25.033 25.000 1.002

              0.012 M

u
NaOH NaOH

u

u V u V u C
u C C

CV V

          = + +            
       = + +             

=

 

 
Once again, we can plot the relative standard uncertainties (Fig. 4) and we realise that the 
main the main source of uncertainty is the concentration of HCl. Also, a comparison of 
all the three plots of the relative standard uncertainties, we will realise the main source of 
uncertainty was the uncertainty in the purity of the HCl. 
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Fig. 4: A plot of the relative standard uncertainties that relate to the final 
calculation. 
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Once again, we may state a value of the concentration of NaOH at a 95% confidence 
level. Assuming that the concentration calculated and the associated standard deviation 
can be related to a Gaussian or normal distribution, i.e. a distribution where 95% of all 
observations fall within ±1.96 σ of the mean; then at 95% confidence we may say that: 

 
( )
( )
1.002  1.96 0.012 M

           1.002 M  0.024

C C± ∆ = ± ×

= ±
 

or more appropriately: 
 ( )1.00 M  0.02C C± ∆ = ±   
 
 
 
NOTE: If the main source of uncertainty was due to repeated readings in the titre values, 
then the factor of 1.96 should be replaced by the appropriate value from the two-tailed 
student t-distribution.  
 


