UNIVERSITY OF MALTA

DEPARTMENT OF CHEMISTRY

CH237-Chemical Thermodynamics and Kinetics

Tutorial Sheet 1

1. (a) A chemical reaction takes place in a container of cross-sectional area $100 \mathrm{~cm}^{2}$. As a result of the reaction, a piston is pushed out through 10 cm against an external pressure of 1.0 atm . Calculate the work done by the system.
(b) A sample of 4.50 g of methane gas occupies 12.7 L at 310 K . (i) Calculate the work done when the gas expands isothermally against a constant external pressure of 200 Torr until its volume has increased by 3.3 L. (ii) Calculate the work that would be done if the same expansion occurred reversibly.
(Note: 1 torr $=133.3 \mathrm{~Pa}$)
(c) In an isothermal reversion compression of 52.0 mmol of a perfect gas at 260 K , the volume of the gas is reduced to one-third its initial value. Calculate the work done in this process.
(d) A sample consisting of one mole of Argon is expanded isothermally at $0^{\circ} \mathrm{C}$ from 22.4 L to 44.8 L (i) reversibly, (ii) against a constant external pressure equal to the final pressure of the gas, and (iii) freely (against zero external pressure). For the three processes calculate $q, w, \Delta U$, and ΔH.
2. (a) A strip of magnesium of mass 15 g is dropped into a beaker of dilute hydrochloric acid. Calculate the work done by the system as a result of the reaction. The atmospheric pressure is 1.0 atm and the temperature $25^{\circ} \mathrm{C}$.
(b) A piece of zinc of mass 5.0 g is dropped into a beaker of dilute hydrochloric acid. Calculate the work done by the system as a result of the reaction. The atmospheric pressure is 1.1 atm and the temperature $23^{\circ} \mathrm{C}$.
3. (a) A sample consisting of one mole of monatomic perfect gas with a molar heat capacity at constant volume is $5 \mathrm{R} / 2$, initially at a pressure of 1.00 atm and a temperature of 300 K , is heated reversibly to 400 K at constant volume. Calculate the final pressure, and the change in internal energy, heat transfer, and work done in the process.
(b)When 229 J of energy is supplied as heat at constant pressure to $3.0 \mathrm{~mol} \mathrm{Ar}_{(\mathrm{g})}$, the temperature of the sample increases by 2.55 K . Calculate the molar heat capacities at constant volume and constant pressure of the gas.
(c) The value of the molar heat capacity at constant pressure, c_{p}, m, for a sample of a perfect gas was
found to vary with temperature according to the expression $c p, m /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)=20.17+0.3665 T$. Calculate $q, w, \Delta U$, and ΔH for 1.00 mol when the temperature of 1.00 mol of gas is raised from $25^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ (i) at constant pressure, (ii) at constant volume.
(d) A sample consisting of 1.0 mol of perfect gas with $c_{v, m}=20.8 \mathrm{JK}^{-1}$ is initially at 3.25 atm and 310 K . This sample then undergoes reversible adiabatic expansion until its pressure reaches 2.50 atm . Calculate the final volume and temperature and the work done.
(e) With reference to the figure below (Fig 1), and assuming perfect gas behavior, with $C v=3 R / 2$ and $\mathrm{T}=313 \mathrm{~K}$. calculate: (i) the amount of gas molecules (in moles) in this system and its volume in states B and C , (ii) the work done on the gas along the paths ACB and ADB , (iii) the work done on the gas along the isotherm AB , (iv) q and ΔU for each of the three paths.

Fig. 1

