UNIVERSITY OF MALTA

DEPARTMENT OF CHEMISTRY

CH237 - Chemical Thermodynamics and Kinetics

Tutorial Sheet 1

- 1. (a) A chemical reaction takes place in a container of cross-sectional area 100 cm². As a result of the reaction, a piston is pushed out through 10 cm against an external pressure of 1.0 atm. Calculate the work done by the system.
 - (b) A sample of 4.50g of methane gas occupies 12.7 L at 310 K. (i) Calculate the work done when the gas expands isothermally against a constant external pressure of 200 Torr until its volume has increased by 3.3 L. (ii) Calculate the work that would be done if the same expansion occurred reversibly. (*Note:* 1 torr = 133.3 Pa)
 - (c) In an isothermal reversion compression of 52.0 mmol of a perfect gas at 260 K, the volume of the gas is reduced to one-third its initial value. Calculate the work done in this process.
 - (d) A sample consisting of one mole of Argon is expanded isothermally at 0° C from 22.4 L to 44.8 L (i) reversibly, (ii) against a constant external pressure equal to the final pressure of the gas, and (iii) freely (against zero external pressure). For the three processes calculate q, w, DU, and DH.
- 2. (a) A strip of magnesium of mass 15 g is dropped into a beaker of dilute hydrochloric acid. Calculate the work done by the system as a result of the reaction. The atmospheric pressure is 1.0 atm and the temperature 25°C.
 - (b) A piece of zinc of mass 5.0 g is dropped into a beaker of dilute hydrochloric acid. Calculate the work done by the system as a result of the reaction. The atmospheric pressure is 1.1 atm and the temperature 23°C.
- 3. (a) A sample consisting of one mole of monatomic perfect gas with a molar heat capacity at constant volume is 5R/2, initially at a pressure of 1.00 atm and a temperature of 300 K, is heated reversibly to 400 K at constant volume. Calculate the final pressure, and the change in internal energy, heat transfer, and work done in the process.
 - (b)When 229 J of energy is supplied as heat at constant pressure to 3.0mol $Ar_{\rm g}$, the temperature of the sample increases by 2.55 K. Calculate the molar heat capacities at constant volume and constant pressure of the gas.
 - (c) The value of the molar heat capacity at constant pressure, cp.m, for a sample of a perfect gas was

Version 2.0 – 2001/2002 Tutorial 1, Page 1

found to vary with temperature according to the expression $c_{P,m}/(J \text{ K}^{-1}\text{mo}\Gamma^{1}) = 20.17 + 0.3665T$. Calculate q, w, DU, and DH for 1.00 mol when the temperature of 1.00 mol of gas is raised from 25°C to 200°C (i) at constant pressure, (ii) at constant volume.

- (d) A sample consisting of 1.0 mol of perfect gas with $c_{v,m} = 20.8 \, \text{JK}^{-1}$ is initially at 3.25 atm and 310K. This sample then undergoes reversible adiabatic expansion until its pressure reaches 2.50 atm. Calculate the final volume and temperature and the work done.
- (e) With reference to the figure below (Fig 1), and assuming perfect gas behavior, with Cv = 3R/2 and T = 313 K. calculate: (i) the amount of gas molecules (in moles) in this system and its volume in states B and C, (ii) the work done on the gas along the paths ACB and ADB, (iii) the work done on the gas along the isotherm AB, (iv) q and DU for each of the three paths.

Fig. 1

Version 2.0 – 2001/2002 Tutorial 1, Page 2