UNIVERSITY OF MALTA

DEPARTMENT OF CHEMISTRY

CH237 - Chemical Thermodynamics and Kinetics

Tutorial Sheet 3

- (a) The temperature of a bomb calorimeter rose by 1.617 K when a current of 3.20A was passed for 27.0s from a 12.0V source. Calculate the calorimeter constant.
 - (b) When 120 mg of naphthalene, $C_{10}H_8(s)$, was burned in a bomb calorimeter the temperature rose by 3.05 K. Calculate the cilorimeter constant. By how much will the temperature rise when 100 mg of phenol, $C_6H_{10}OH_{(s)}$, is burned in the calorimeter under the same conditions?
 - (c) When 0.3212 g of glucose was burned in a bomb calorimeter of calorimeter constant 641 JK-' the temperature rose 7.793 K. Calculate (i) the standard molar enthalpy of combustion, (ii) the standard internal energy of combustion, and (ii) the standard enthalpy of formation of glucose.
 - (d) The standard enthalpy of formation of the metallocene bis-(benzene)chromium was measured in a calorimeter. It was found for the reaction $Cr(C_6H_6)_{2 (s)} \rightarrow Cr_{(s)} + 2C_6H_{6 (g)}$ that $\Delta_r U^o(583 \text{ K}) = +8.0 \text{ kJ} \text{ mol}^{-1}$. Find the corresponding reaction enthalpy and estimate the standard enthalpy of formation of the compound at 583 K. The constant-pressure molar heat capacity of benzene is 140 JK⁻¹mol⁻¹ in its liquid range and 28 JK mol⁻¹ as a gas. The boiling point of benzene is 353K.
- **2** (a) Calculate the change in entropy when 25 kJ of energy is transferred reversibly and isothermally as heat to a large block of iron at (i) 0°C,(ii) 100°C.
 - (b) Calculate the molar entropy of a constant-volume sample of neon at 500 K given that it is 146.22 J K^{-1} mol⁻¹ at 298 K.
 - (c) A sample consisting of 1.00 mol of a monatomic perfect gas with $C_{V,m}=3R/2$ is heated from 100°C to 300°C at constant pressure. Calculate ΔS (for the system).
 - (d) Calculate ΔS (for the system) when the state of 3.00 mol of a monatomic perfect gas, for which $C_{V,m} = 5R/2$, is changed from 25 °C and 1.00 atm to 125°C and 5.00 atm. How do you rationalize the sign of ΔS ?
 - (e) A sample consisting of 3.00 mol of a diatomic perfect gas at 200 K is compressed reversibly and adiabatically until its temperature reaches 250 K. Given that $C_{V,m} = 27.5 \text{ JK}^{-1} \text{ mol}^{-1}$. calculate q, w. ΔU , ΔH and ΔS .

- (f) Calculate the increase in entropy when 1.00 mol of a monatomic perfect gas with $C_{p,m} = 5R/2$ is heated from 300 K to 600 K and simultaneously expanded from 30.0 L to 50.0 L.
- (g) A system undergoes a process in which the entropy change is $+2.41 \text{ JK}^{-1}$. During the process, 1.00 kJ of heat is added to the system at 500 K. Is the process thermodynamically reversible? Explain your reasoning.
- (h) A sample of aluminium of mass 1.75 kg is cooled at constant pressure from 300 K to 265 K. Calculate (i) the energy that must be removed as heat and (ii) the change in entropy of the sample.
- (i) A sample of perfect gas that initially occupies 15.0 L at 250 K and 1.00 atm is compressed isothermally. To what volume must the gas be compressed to reduce its entropy by 5.0 JK⁻¹?
- (j) Calculate the change in entropy when 50g of water at 80°C is poured into 100g of water at 10°C in an isolated container assuming that $C_{p,m} = 75.5 \text{ J K}^{-1} \text{ mol}^{-1}$.
- (k) Calculate ΔS when 200g of (i) water at 0°C and (ii) ice at 0°C is added to 200g of water at 90°C in an isolated container.
- (1) Calculate ΔH and ΔS_{TOT} , when two copper blocks, each of mass 10.0 kg, one at 100°C and the other at 0°C, are placed in contact in an isolated container. The specific heat capacity of copper is 0.385 JK⁻¹g⁻¹ and may be assumed constant over the temperature range involved.
- (m) Consider a system consisting of 2.0 mol CO₂ (g), initially at 25°C and 10 atm and confined to a cylinder of cross-section 10.0 cm². It is allowed to expand adiabatically against an external pressure of 1.0 atm until the piston has moved outwards through 20 cm. Assume that carbon dioxide may be considered as a perfect gas with $C_{V,m} = 28.8 \text{ JK}^{-1} \text{ mol}^{-1}$ and calculate *q*, *w*, ΔU , ΔT and ΔS .
- (n) The standard molar entropy of NH₃(g) is 192.45 JK⁻¹ mol⁻¹ at 298 K, and its heat capacity is given by $C_{p,m} = a + bT + cT^2$ where a = 29.75 JK⁻¹ mol⁻¹, $b = 25.1 \times 10^{-3}$ JK⁻² mol⁻¹ and $c = -1.55 \times 10^5$ JK⁻³mol⁻¹. Calculate the standard molar entropy at (i) 100°C and (b) 500°C.
- (o) Find an expression for the change in entropy when two blocks of the same substance and of equal mass, one at the temperature T_h and the other at T_c , are brought into thermal contact and allowed to reach equilibrium. Evaluate this change in entropy for two blocks of copper, each of mass 500 g, with $C_{p,m} = 24.4 \text{ JK}^{-1} \text{mol}^{-1}$ taking $T_h = 500 \text{ K}$ and $T_c = 250 \text{ K}$. [Hint: the final temperature, $T_f = \frac{1}{2}(T_h + T_c)$]
- **3** (a) The enthalpy of vaporization of chloroform (CHCl₃) is 29.4 kJ mol⁻¹ at its normal boiling point of 34.88 K. Calculate (i) the entropy of vaporization of chloroform at this temperature and (ii) the entropy change of the surroundings.
 - (b) The enthalpy of vaporization of methanol is 35.27 kJmol⁻¹ at its normal boiling point of 64.1°C. Calculate (i) the entropy of vaporization of methanol at this temperature and (ii) the entropy change of the surroundings.
 - (c) Calculate the change in the entropies of the system and the surroundings, and the total change in entropy, when a sample of nitrogen gas of mass 14 g at 298 K and 1.00 bar doubles its volume in (i) an isothermal reversible expansion, (ii) an isothermal irreversible expansion against $p_{ex} = 0$, and (iii) an adiabatic reversible expansion.

- (d) Calculate the difference in molar entropy (i) between liquid water and ice at -5°C. (ii) between liquid water and its vapour at 95°Cand 1.00 atm. The differences in heat capacities on melting and on vaporization are 37.3 JK⁻¹ mol⁻¹ and -41.9 JK⁻¹ mol⁻¹, respectively. Distinguish between the entropy changes of the sample, the surroundings, and the total system, and discuss the spontaneity of the transitions at the two temperatures.
- (e) 1.00 mol of a perfect gas at 27 °C is expanded isothermally from an initial pressure of 3.00 atm to a final pressure of 1.00 atm in two ways: (i) reversibly, and (ii) against a constant external pressure of 1.00 atm. Determine the values of q, w, ΔU , ΔH , ΔS , ΔS_{surr} and ΔS_{tot} for each path.
- (f) A sample of 1.00 mol of a monatomic perfect gas at 27°C and 1.00 arm is expanded adiabatically in two ways: (i) reversibly to 0.50 atm, and (ii) against a constant external pressure of 0.50 atm. Determine the values of q, w, ΔU , ΔH , ΔS , ΔS_{surr} and ΔS_{tot} for each path where the data permit. (Take $C_{V,m} = 3R/2$.)