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Summary. Total π-electron energy E (as computed within the Hűckel molecular orbital approximation) is a quantum 
chemical characteristic of unsaturated conjugated compounds whose dependence on molecular structure can be 
deduced and analysed by means of algebraic graph theory. It is shown that E depends - in a perplexed, but 
mathematically well-defined manner - on a large number of molecular structural features. The mathematical 
representations of these structural features are the so-called Sachs graphs. Some of these Sachs graphs correspond to 
familiar chemical notions: bonds, rings, Kekulé structures. Most of them, however, represent structural features whose 
chemical significance was not anticipated by chemists. Thus we are faced with a case of structure-property relation 
that could not be deduced and rationalised without the use of modern mathematical methods. In the article are outlined 
the basic results achieved along these lines, illustrated with concrete chemical applications.  
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Introduction 

Most chemists are of the opinion that mathematics is of 
little importance and of almost no value in their science, 
including "theoretical chemistry". The undeniable fact is 
that most chemist can successfully do their work or 
conduct their research (up to winning a Nobel prize) 
without utilising any form of mathematics that goes 
beyond simplest calculus. As a consequence, being 
chemist often means being ignorant in mathematics.  
 
The aim of this article is to demonstrate that, in some 
cases at least, the lack of mathematical way of reasoning 
makes chemists blind to certain aspects of their work. We 
are aiming at one of the central objectives of chemistry: 
finding connections between molecular structure and 
molecular properties. 
 
It is one of the paradigms of chemistry that molecular 
structure determines the (physical, chemical, 
pharmacological, ...) properties of the corresponding 
substance, provided, of course, that this substance 
consists of molecules. Thus, from the known molecular 
structure, the properties of substances should be 
predictable. Although much success along these lines has 
been achieved and much knowledge accumulated, we are  
 
still very far from the complete solution of the problem. 
[In contemporary chemical literature two acronyms are 
often encountered: QSPR = Quantitative Structure 
Property Relations and QSAR = Quantitative Structure 
Activity Relations. Under "property" are meant the 
physical and chemical properties, whereas "activity" 
refers to pharmacological, biological, medicinal and 
similar properties.] 
 

 
 
 
In this article we consider a special problem in QSPR 
research, namely the finding of the (quantitative) 
connection between the structure of a polycyclic 
conjugated hydrocarbon and its total π-electron energy E. 
Although E cannot be directly measured, it is known to 
be reasonably well related to the experimentally 
accessible thermodynamic data (Gutman, 1992, Gutman 
and Polansky, 1986, Schaad and Hess, 1972, 2001). 
 
The total π-electron energy considered here is computed 
by means of the tight-binding Hűckel molecular orbital 
(HMO) approximation and, as usual, expressed in the 
units of the carbon-carbon resonance integral β. Details 
of HMO theory are found, e. g., in the books (Coulson et 
al., 1978, Yates, 1978). Within the HMO model it is 
possible to employ the mathematical apparatus of graph 
spectral theory; for applications of graph spectral theory 
in molecular orbital theory see the books (Dias, 1993, 
Graovac et al., 1977) and the articles (Dias, 1987, 1992, 
Gutman, 2003, Gutman and Trinajstić, 1973).  
 
For the present considerations the actual value of the 
parameter β is not important, except that its value is 
negative. We nevertheless mention that for 
thermochemical purposes the recommended value of β is 
-137.00 kJ/mol and that the heats of atomisation 
computed by the HMO method are accurate to 0.1%, 
implying that E is accurate up to ±0.005 β units (Schaad 
and Hess, 1972). Thus, the greater is E, the higher is the 
thermodynamic stability of the respective compound; 
structural factors increasing (resp. decreasing) the value 
of E increase (resp. decrease) the thermodynamic 
stability. 
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Graph Theoretical Preparations 

In order to be able to present the results on the structure-
dependence of E, we must specify a few basic notions of 
graph theory and graph spectral theory. More details can 
be found in the books (Graovac et al., 1977, Gutman and 
Polansky, 1986). 
 
A conjugated hydrocarbon is represented by its molecular 
graph. The construction of such a graph should be 
evident from the example shown in Fig. 1. 
 

G  
Figure 1. The structural formula of biphenylene and the 
corresponding molecular graph G1. The graph G1 has n=12 vertices 
and 14 edges. The vertices of G1 represent the carbon atoms, 
whereas its edges represent the carbon-carbon bonds of 
biphenylene. 
 
The number of vertices of a molecular graph G is denoted 
by n. Two vertices connected by an edge are said to be 
adjacent. 
 
If the vertices of the graph G are labelled by v1, v2,..., vn, 
then the structure of G can be represented by the 
adjacency matrix A = A(G) = ||Aij||. This is a square 
matrix of order n, whose elements Aij are defined so that 
Aij=Aji=1 if the vertices vi and vj  are adjacent, and Aij=0 
otherwise. For an example see Fig. 2. 
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Figure 2. A graph G2 and its adjacency matrix A(G2). It can be 
computed (but not easily) that the characteristic polynomial of G2 is 
Φ(G2,x) = x5 - 5 x3 + 2 x . The solutions of the equation  x5 - 5 x3 + 
2 x = 0   are   x1=[(5 + √17)/2]1/2 = 2.13578,   x2=[(5 - √17)/2]1/2 = 
0.66215,   x3=0,   x4=-[(5 - √17)/2]1/2 = -0.66215   and   x5=-[(5 + 
√17)/2]1/2 = -2.13578. These five numbers are the eigenvalues of 
the graph G2 and form the spectrum of G2. 
 
The characteristic polynomial of the graph G, denoted by 
Φ(G,x) is equal to the determinant det(xI-A) where I is 
the unit matrix. It can be shown that Φ(G,x) is a 
polynomial in the variable x, of degree n. For an example 
see Fig. 2. 
 
The numbers x1, x2,...,xn, obtained by solving the equation 
Φ(G,x)=0, are the eigenvalues of the graph G. These 
eigenvalues form the spectrum of G. For an example see 
Fig. 2.  

Some Results from the Theory of Total π-Electron 

Energy 

Anticipating that the majority of the readers of this article 
will not be interested in the perplexed mathematical 
details of the theory of total π-electron energy, and will 
not be willing to spend time on apprehending them, in 

what follows we give only a few master formulae that the 
non-interested reader may skip and go straight to the next 
section. Those who are interested to learn the entire 
theory should, first of all, consult chapter 8 of the book 
(Gutman and Polansky, 1986). 
 
It can be shown (Graovac et al., 1977, Gutman and 
Trinajstić, 1973) that, in the majority of chemically 
interesting cases, the total π-electron energy is related to 
the eigenvalues of the molecular graph as 

∑= ixE 2  Eq. (1) 
where the summation goes over the positive-valued 
eigenvalues of the molecular graph. Another neat way in 
which Eq. (1) can be written is 
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 Eq. (2) 

where now the summation embraces all graph 
eigenvalues. 
 
Thanks to the symmetric form of Eq. (2), the HMO total 
π-electron energy E is particularly suitable for 
mathematics-based investigations. The first significant 
result in this area was obtained by the British 
mathematician and theoretical chemist Charles Coulson, 
good 30 years before other chemists started to use graph 
spectral theory (Coulson, 1940). Coulson found a 
connection between E and the characteristic polynomial 
of the molecular graph, an expression that may look 
frightening to chemists: 
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 Eq. (3) 

In Eq. (3), Φ' stands for the first derivative of the 
characteristic polynomial, and i for the imaginary unit, 
i=√-1. 
 
A quarter of century later, the German mathematician 
Horst Sachs discovered the way in which the 
characteristic polynomial of a graph depends on its 
structure. His result, nowadays referred to as the Sachs 
theorem (Gutman, 2003), reads as follows: 

∑ −−+=Φ
S

SnnScSpn xxxG )()()( 2)1(),(  Eq. (4) 

where the summation goes over all so-called Sachs 
graphs of the graph G. These Sachs graphs, essential for 
the present considerations, are defined as follows. 
 
By K2 is denoted the graph consisting of two vertices, 
connected by an edge. By Cn is denoted the cycle 
possessing n vertices, n=3,4,5,..., see Fig. 3. 

 
Figure 3. Components of the Sachs graphs. Any Sachs 
graph consists of components that are K2 and/or C3 
and/or C4 and/or ...   see Fig. 4. 
 
A graph in which each component is K2 or C3 or C4 or C5 
or ... is called a Sachs graph. Some of these Sachs graphs 
are contained in the molecular graph; examples are found 
in Fig. 4. 
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Figure 4. Examples of Sachs graphs (indicated by tick lines) 
contained in the biphenylene graph G1. The biphenylene graph 
contains a total of 514 Sachs graphs. Each of these graphs can be 
understood as representing a structural feature of the respective 
molecule. 
 
In Eq. (4), p(S), c(S) and n(S) are the number of 
components, cyclic components and vertices, 
respectively, of the Sachs graph S. For instance, the 
Sachs graphs S1, S4, S7 and S9 (depicted in Fig. 4), have, 
respectively, 1, 6, 3 and 2 components, 0, 0, 1 and 2 
cyclic components, and 2, 12, 10 and 12 vertices. 
 
When Eq. (3) and Eq. (4) are combined, one arrives at an 
explicit expression, connecting the total π-electron 
energy with molecular structure (Gutman, 1977, Gutman 
and Trinajstić, 1976): 
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       Eq. (5) 

 
 
The Chemical Significance of Equation (5) 
Each Sachs graph can be understood as representing a 
particular structural detail of the underlying molecule. 
Some of these structural details are those familiar to 
every chemist. For instance, S1 and S2 in Fig. 4 pertain to 
two distinct carbon-carbon bonds of biphenylene, S6 
corresponds to one of its six-membered rings, S4 and S6 
can be viewed as representing two of its Kekulé 
structural formulae. However, most Sachs graphs have no 
usual chemical interpretation. For instance, hardly any 
non-mathematical chemist has ever thought of structural 
details such as S3 (three mutually non-touching carbon-
carbon bonds) or S7 (a six-membered ring and two non-
touching carbon-carbon bonds, not belonging to this 
ring), etc. etc. Yet, all such structural details play role in 
determining the magnitude of the total π-electron energy, 
and thus are responsible for the thermodynamic stability 
of the respective molecule. 
 
Eq. (5) is really awkward, but it represents the 
mathematically complete solution of the structure-
dependence problem of a molecular property, in this 
particular case - of the HMO total π-electron energy. 
There exist very few QSPR results of this kind. 
 
What can we learn from Eq. (5)? 
 
First: The relation between total π-electron energy and 
molecular structure is extremely complicated. [In our 

opinion, the true relation between any molecular property 
and molecular structure is extremely complicated, only 
usually we are not aware of this fact.] 
 
Second: Eq. (5) precisely identifies all structural details 
that influence the total π-electron energy. As already 
mentioned, some of these are familiar: bonds, rings, 
Kekulé structures. Most of them are exotic, never 
anticipated by "intuitively thinking" chemists. Eq. (5) 
reveals the plenitude of (relevant) information contained 
in a molecular structure, most of which chemist would 
never recognise without utilising graph spectral theory. 
 
Third: Eq. (5) shows the precise mathematical form in 
which each structural feature influences the value of E. 
Thus from it we could make quantitative inferences. The 
effect of various structural details on E is far from being 
linear (what chemist prefer because of the simplicity of 
the linear mathematical expressions).  
 
Fourth: In principle, any question concerning the 
structure-dependence of E can be answered by means of 
Eq. (5). In reality, we encounter serious mathematical 
difficulties. Therefore, research in the theory of total π-
electron energy continues until the present days (Gutman 
et al., 2004, Zhou, 2004) and will, most probably, go on 
also in the foreseen future. One particular problem that 
has been completely resolved is the effect of cycles on E 
(Gutman, 1984, Gutman and Bosanac, 1977, Gutman et 
al., 1993, Gutman and Polansky, 1981). We outline the 
details of this topic in the subsequent section. 

Applications: Effects of Cyclic Conjugation 

Long time ago chemists have recognised that cyclic π-
electron systems exhibit very large stabilisation or 
destabilisation relative to their acyclic analogs. The pairs 
benzene vs.  
hexatriene (stabilisation) and cyclobutadiene vs. 
butadiene (destabilisation) are textbook examples. 
Already in the 1930s Hűckel formulated his 4m+2 rule, 
claiming that monocyclic conjugated systems are stable if 
they possess 4m+2 (i. e., 2, 6, 10, 14, ...) π-electrons, and 
are unstable if the number of π-electrons is 4m (i. e., 4, 8, 
12, ...). That this is an energy-based effect was 
demonstrated in the 1960s (Breslow and Mohácsi, 1963). 
 
Extending the Hűckel rule to polycyclic conjugated 
molecules became possible only after graph theory was 
applied in molecular orbital theory, more precisely: after 
Eq. (5) was discovered.  
 
Using the fortunate fact that the total π-electron energy 
depends on Sachs-graph-type structural features, and that 
(some) Sachs graphs consist of cycles, it was possible to 
express the effect of a particular cycle C, contained in the 
molecular graph G, on the respective E-value (Gutman, 
1984, Gutman and Bosanac, 1977, Gutman et al., 1993, 
Gutman and Polansky, 1981): 
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In Eq. (6) G-C denotes the subgraph obtained by deleting 
the cycle C from the graph G. Whenever ef(G,C) is 
positive, the cycle C stabilises the molecule; negative ef-
values imply destabilisation.  
 
In Fig. 5 are given the energy-effects of two typical 
polycyclic conjugated systems.  
 

+0.1586 +0.1586+0.0534

+0.0275 +0.0275

+0.4596 +0.4596-0.1597

-0.0678 -0.0678 -0.0480

+0.0198

 
Figure 5. The energy-effects of the cycles of phenanthrene and 
biphenylene, expressed in the units of the HMO resonance integral 
β.  
 
The examples shown in Fig. 5 illustrate some basic 
properties of cyclic conjugation, which - again - would 
not be recognised without use of mathematics. 
(a) Not only rings, but also larger cycles (often ignored 
by chemists) have their energy contributions.  
(b) The energy-effect usually decreases with increasing 
size of the cycle, but has a non-negligible value also for 
cycles of larger size. 
(c) Cycles of the same size may have significantly 
different energy-effects. 
(d) In the examples shown in Fig. 5, the 6-, 10- and 14-
membered cycles have a stabilising effect, and the 4-, 8- 
and 12-membered cycles a destabilising effect. This is in 
full agreement with the Hűckel 4m+2 rule. 
(e) However, contrary to what chemists may expect based 
on their "intuition", the Hűckel 4m+2 is not generally 
obeyed. Surprisingly, only the following result could be 
rigorously proven (Gutman, 1979): 
(f) In all alternant polycyclic conjugated hydrocarbons, 
cycles of size 4, 8, 12, 16, ... always have a negative ef-
value and thus always destabilise the respective 
molecule. (This is just one half of the Hűckel 4m+2 rule.) 
(g) In the majority of cases, cycles of size 6, 10, 14, 18, 
... have a stabilising effect. However, there exist 
exceptions, namely alternant polycyclic conjugated 
hydrocarbons in which some of the (4m+2)-membered 
cycles have a destabilising energy-effect and thus violate 
the Hűckel 4m+2 rule (Gutman and Stanković, 1994).  

*   *   * 
Although the results (f) and (g) can be stated and made 
understandable without any mathematical formalism, 
they hardly could have been deduced without use of 
mathematical reasoning. These results could be viewed as 
examples of what chemistry may gain from mathematics:  
 

Over half a century, chemists believed that a certain 
regularity holds and is generally valid. Only a couple of 
years after a couple of mathematical chemists started to 
apply graph theory, it could be shown that one half of the 
regularity is generally valid (and is thus a law on Nature), 
whereas the other half is not. 
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