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1 INTRODUCTION

Some classical problems in mathematics are of the following general type. If the
structure S′ is associated with each structure S, does S′ determine S uniquely? In
graph theory we ask what knowledge of the graph short of its full incidence relations is
sufficient to determine the graph completely. The structure S is a graph and S could
be its line graph, or chromatic polynomial, or spectrum, say.

The foremost problem in this area of graph theory is the Reconstruction Conjecture
which states that a graph is reconstructible from its collection of vertex-deleted sub-
graphs. In spite of several attempts to prove the conjecture only very partial results
have been obtained. Several of these results do however bring to light interesting
structural relationships between a graph and its subgraphs. For example, can all the
subgraphs of a nonplanar graph be planar? Some reconstruction results viewed in this
light will be discussed here.

In the few special cases where the Reconstruction Conjecture has been proved it gen-
erally turns out that the full collection of subgraphs contains much more information
than is required to determine the graph. This has motivated attempts to reconstruct
graphs from only a restricted subcollection of all the vertex-deleted subgraphs. The
newest idea in this direction is to determine what is called the reconstruction number
of a graph which is the smallest number of vertex-deleted subgraphs of the graph which
are sufficient to reconstruct it. This notion opens questions which might give a new
lease of life to research on the Reconstruction Problem, and we also review here the
main results obtained to date in this area.

While the Reconstruction Problem deals with the question of whether a pair of noniso-
morphic graphs can have the same collection of vertex-deleted subgraphs, a seemingly
related problem is to investigate whether two nonsimilar vertices in a graph can give
rise to an isomorphic pair of vertex-deleted subgraphs. Such vertices are said to be
pseudosimilar, and it is now part of the folklore of graph theory that this phenomenon
was discovered as a flaw in a purported proof of the Reconstruction Problem. We dis-
cuss some results obtained in this area, focusing attention on the construction of large
sets of pseudosimilar vertices and edges, and on the prospect of exploiting possible
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relationships between pseudosimilarity and the Reconstruction Problem.

We shall mostly follow the graph theoretic terminology of Harary (1969), the most
notable exception being that here we use the terms vertex and edge instead of point
and line respectively. All graphs considered are finite and simple.

2 THE RECONSTRUCTION PROBLEM

A vertex-deleted subgraph of a graph G is a subgraph G− v obtained by deleting from
G the vertex v and all the edges incident to it; similarly, an edge-deleted subgraph of G
is a subgraph G−e obtained by deleting the edge e. The deck of G, denoted by DG, is
the collection of all (unlabelled) vertex-deleted subgraphs of G; we note that DG is a
multiset, in the sense that if two or more vertices of G give rise to isomorphic vertex-
deleted subgraphs, then that particular subgraph appears in DG with multiplicity
equal to the number of vertices to which it corresponds. The edge-deck of G, denoted
by EDG, is similarly defined to be the collection of all edge-deleted subgraphs of G.
Figure 1.1 shows a graph and its deck.

Figure 2.1

A reconstruction (edge-reconstruction) of G is a graph H with DG = DH (EDG =
EDH). A graph G is reconstructible (edge-reconstructible) if every reconstruction
(edge-reconstruction) of G is isomorphic to G. In other words, G is reconstructible
(or edge-reconstructible) if it can be determined uniquely, up to isomorphism, from its
deck (or edge-deck).

The graphs K2 and 2K1 are nonisomorphic reconstructions of each other, therefore
neither of these graphs is reconstructible. Also, the two graphs 2K2 and K1 +K1,2 are
edge-reconstructions of each other, as are the two graphs K1,3 and K1 +K3. Therefore
these graphs, and any obtained from them by adding isolated vertices, are not edge-
reconstructible. The two main conjectures in graph reconstruction assert that these
are the only non-reconstructible graphs.

The Reconstruction Conjecture (Kelly, 1942; Ulam 1960). All graphs on at least
three vertices are reconstructible.

The Edge-Reconstruction Conjecture (Harary, 1964). All graphs on at least four

2



edges are edge-reconstructible.

Two important sources of information on these two conjectures are the survey articles
by Bondy and Hemminger (1977) and Nash-Williams (1978). Reviews on some of the
work done since these two surveys were published can be found in a number of more
recent expository articles (Lauri, 1987; Ellingham, 1988; Manvel, 1988; Stockmeyer,
1988; Bondy, 1991).

It is an easy exercise to see that the number of edges and the degree sequence of G
are reconstructible from DG (that is, any graph having the same deck as G has the
same number of edges and the same degree sequence as G). This then easily gives that
regular graphs are reconstructible — because from the degree sequence one obtains
that G is regular of degree r, say, and therefore the only way to reconstruct from any
given vertex-deleted subgraph in the deck is to add a new vertex and join it the r
vertices of degree r − 1.

A less trivial, but still not too difficult, task is to show that disconnected graphs are
reconstructible. Probably the shortest and simplest proof of this is given by Manvel
(1976).

In spite of much effort by a number of researchers, relatively few classes of graphs,
apart from regular and disconnected graphs, have been shown to be reconstructible.
The very first such result obtained was the reconstruction of trees (Kelly, 1957), a
result which has been extended in various directions by several people (Harary and
Palmer, 1966a; Bondy, 1969; Manvel (1970); Lauri, 1983; Krasikov, 1987; Harary and
Lauri, 1987; Myrvold, 1990). We shall be looking at some aspects of the reconstruction
of trees in Sections 4 and 8. Maximal planar graphs form one other important class
of graphs which has been shown to be reconstructible (Fiorini and Lauri, 1981; Lauri,
1981). We shall be looking at maximal planar graphs in the next section.

Intuition suggests that edge-reconstruction is easier than reconstruction — more of the
graph to be reconstructed is left in an edge-deleted subgraph than in a vertex-deleted
subgraph. This is, in fact, true. Greenwell (1971) has shown that, if G is a graph with-
out isolated vertices, then DG is reconstructible from EDG, that is, the information
given by the deck of G is all contained in the edge-deck. Therefore if G is recon-
structible then it is also edge-reconstructible. Hence, regular graphs, disconnected
graphs, trees and maximal planar graphs are all edge-reconstructible. Moreover, other
classes of graphs have been shown to be edge-reconstructible when it has not yet been
determined whether or not they are reconstructible. These include planar graphs with
minimum degree 5 (Lauri, 1979), 4-connected planar graphs (Fiorini and Lauri, 1982),
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graphs which triangulate the real projective plane and graphs with connectivity 3
which triangulate some surface (Fiorini and Lauri, 1982), bidegreed graphs (Myrvold,
Ellingham and Hoffman, 1987); claw-free graphs (Ellingham, Pyber and Yu, 1988) and
hamiltonian graphs of sufficiently large order (Pyber, 1990).

However, the list of classes of reconstructible or edge-reconstructible graphs falls far
short of exhausting all possibilities. If only regarded as step-by-step efforts at obtaining
an ultimate proof of the reconstructibility of all graphs, then the outlook is bleak —
the cases solved are few and the techniques used to tackle one class of graphs do not
generalise to other classes. It seems hardly likely that by working laboriously in this
fashion at successive classes of graphs one can ultimately prove the Reconstruction
Conjectures for all graphs. So why do graph theorists persist in nibbling away at this
mighty and unyielding problem?

Although the ultimately wish of any reconstructor is to resolve the conjectures one
way or the other, even when his investigations are far short of this elusive aim they
still might unearth questions about important graph-theoretic concepts which are in-
teresting in their own right. A good illustration of some of the very attractive general
results which have been obtained is the recent survey by Bondy (1991) which focuses
its attention mainly on powerful counting techniques in the spirit pioneered by Lovász
(1972), Müller (1977) and Nash-Williams (1978). An example of the application of
such techniques will be given in Section 4. In the next section, by considering maximal
planar graphs as an example, we shall try to show how an interesting study of the in-
terplay between more specific graph-theoretic properties can arise while investigating
the Reconstruction Problem.

3 MAXIMAL PLANAR GRAPHS

An “obvious” way to reconstruct a maximal planar graph G from its deck would run as
follows. Take any subgraph G−v with deg(v) > 3 and embed it in the plane such that
all faces except one are bounded by triangles, with the exceptional face being bounded
by a cycle of length deg(v) (such an embedding will be called a deg(v)-embedding of
G− v). Then add an extra vertex and join it to all the vertices on the cycle bounding
the exceptional face.

This procedure, however, raises a number of basic questions. First of all, how can
we tell from DG that G is maximal planar? (It is sufficient to be able to determine
that G is planar since the number of edges is known.) Knowing that every vertex-
deleted subgraph of G is planar is not sufficient since a graph could easily be critically
nonplanar (that is, G is nonplanar but every G−v is planar). This question was studied
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by Fiorini (1978) and Fiorini and Manvel (1978) for graphs with minimum degree at
least 4. The case for minimum degree 3 is, in general, not completely resolved, but
by restricting themselves to maximal planar graphs, Fiorini and Lauri (1981) solved
the problem by showing, essentially, that a graph G with 3|V (G)| − 6 edges cannot, in
fact, be critically nonplanar.

Theorem 3.1 (Fiorini and Lauri, 1981). If G has minimum degree 3 and either it has
at least two vertices of degree 3, its order is at least 7, and |E(G)| = 3|V (G)| − 6, or
else it has a unique vertex of degree 3 whose neighbours induce a cycle, then G cannot
be critically nonplanar.

So now we know that the graph to be reconstructed is maximal planar. Would not a
deg(v)-embedding of some G−v with deg(v) > 3 easily complete the reconstruction as
described above? The snag now lies with the possible non-uniqueness of the embedding
— if G − v does not have a a unique plane embedding then this procedure is not
guaranteed to give us a unique reconstruction. Connectivity can provide a helping
hand here. A classical result of Whitney (1932) says that a 3-connected planar graph
has a unique embedding in the plane. Also, by a theorem of Chartrand, Kaugars and
Lick (1972), a 3-connected graph G with minimum degree at least 4 contains some
vertex v such that G − v is still 3-connected. Therefore a maximal planar (hence 3-
connected) graph G with minimum degree 4 has a vertex-deleted subgraph G−v which
is uniquely embeddable in the plane, and by the above procedure we can conclude that
such graphs are reconstructible (Fiorini, 1978).

This leaves us with minimum degree 3. Connectivity does not help here — we could
get a maximal planar graph G all of whose vertex-deleted subgraphs G − v with
deg(v) > 3 are not 3-connected and not uniquely embeddable in the plane. However,
since we know that the graph to be reconstructed is maximal planar, we need only
consider deg(v)-embeddings of G − v. Could it still be possible that no G − v with
deg(v) > 3 has a unique deg(v)-embedding? This can very well happen, and a smallest
possible example (Lauri, 1981) of a maximal planar graph which presents this problem
is shown in Figure 3.1.

Figure 3.1

Reconstruction of maximal planar graphs therefore ultimately rests with the consid-
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eration of graphs such as those in Figure 3.1. By a detailed study of the structure of
such graphs coupled with the fact that the degree sequence of G is known from DG
Lauri (1981) showed that such graphs are also reconstructible, hence completing the
reconstruction of maximal planar graphs.

Theorem 3.1 led Fiorini and Lauri to make the following conjecture regarding trian-
gulations of surfaces other than the plane (Research Problem 17, Discrete Math. bf
40 (1982), 125-126). In this conjecture, by a k-embedding, k ≥ 4, of a graph G on a
surface S (not necessarily the plane) we mean a 2-cell embedding of G on S in which
every face except one is bounded by a triangle, the exceptional face being bounded by
a cycle of length k. Theorem 3.1 effectively proves the conjecture for the plane.

Conjecture 3.1. If G is a graph such that, for every vertex v of degree greater than
3, G− v has a deg(v)-embedding on the surface S, then G triangulates S.

4 RECONSTRUCTION FROM SUBDECKS

While it is in general difficult to prove that a certain class of graphs is reconstructible,
reconstruction seems, in one sense, to be “easy” — in most of the results obtained,
only a few of the subgraphs in the deck have actually been required to determine G
uniquely. This situation is particularly exemplified by trees.

Since Kelly (1957) first showed that trees are reconstructible, various authors have
obtained this result but using only those vertex-deleted subgraphs corresponding to
specified vertices of the tree, such as, vertices of degree 1 (Harary and Palmer, 1966b),
vertices at a maximum distance from the centre (Bondy, 1969) and vertices of degree
at least 2 (Lauri, 1983). In fact, in the next section we shall see that not more than
three vertex-deleted subgraphs are required to reconstruct a tree. In that section we
shall see one way of formalising the notion of reconstructing a graph from as few
subgraphs as possible. Here we shall look at a question which is suggested by Harary
and Palmer’s result for trees, and we shall use this as an opportunity to illustrate
the powerful counting techniques introduced by Lovász, Müller and Nash-Williams to
which brief reference was made in Section 2.

An endvertex is a vertex of degree 1. The collection of endvertex-deleted subgraphs
of G will be called the endvertex-deck of G and will be denoted by D1G; G will be
called endvertex-reconstructible if it is uniquely reconstructible from its endvertex-
deck, that is, if D1G = D1H implies that G and H are isomorphic. Harary and
Palmer have therefore shown that trees are endvertex-reconstructible. Motivated by
this, Bondy (1969) conjectured that all graphs with sufficiently many endvertices are
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endvertex-reconstructible. The problem was investigated by various authors (Bondy,
1969; Greenwell and Hemminger, 1969; Krishnamoorthy and Parthasarathy, 1976) but
the final coup de grâce was delivered by Bryant (1971) who showed that, for any k, there
exist nonisomorphic graphs G and H with k endvertices each and with D1G = D1H.

However, although a graph with an arbitrarily large number of endvertices need not be
endvertex-reconstructible, in some cases it happens that if the proportion of endver-
tices in the graph is sufficiently large then it would be endvertex-reconstructible. For
example, if G is a graph with minimum degree at least 2 and G′ is obtained from G by
attaching one endvertex to each vertex of G, then G′ is endvertex-reconstructible. We
now show that, in this situation, if the number of endvertices added to G is greater
than |V (G)| /2, then the resulting graph G′ is endvertex-reconstructible. The proof in-
volves the straightforward application of counting techniques which have now become
standard in reconstruction.

Let G be a graph with minimum degree at least 2 and let S ⊆ V (G). Then the graph
obtained from G by attaching one endvertex to each vertex in S is denoted by G[S]. It
is convenient to consider G[S] as the graph G with labels on its vertices: the vertices in
V (G)−S are given the label 0 while each vertex in S is given the label 1. Considered
this way, an endvertex-deleted subgraph of G[S] is a labelled graph obtained from G[S]
by changing one of its positive labels to 0. Two labelled graphs are isomorphic if there
is an automorphism of G which preserves labels.

In the sequel, S1 and S2 will always denote subsets of V (G) with |S1| = |S2|. The set
of all isomorphisms from G[S1] to G[S2] will be denoted by (G[S1] −→ G[S2]). For

X ⊆ S1, (G[S1] X−→ G[S2]) will denote the set of automorphisms α of G such that: (i)
if u ∈ S1 −X then the label of α(u) in G[S2] equals the label of u in G[S1] and (ii) if
u ∈ X then the label of α(u) in G[S2] does not equal the label of u in G[S1]. The orders

of these sets are denoted by
∣∣G[S1] −→ G[S2]

∣∣ and
∣∣G[S1] X−→ G[S2]

∣∣ respectively.

The next lemma is the analogue of the well-known result commonly referred to as
Kelly’s Lemma, and Theorem 4.1 is the analogue of the Nash-Williams Lemma in
edge-reconstruction. Theorem 4.2, a special case of a theorem given by Lauri (1992a),
is the analogue of Lovász’s and Müller’s results in edge-reconstruction.

Lemma 4.1. Let S3 ⊂ S1 ⊆ V (G) and let D1G[S1] = D1G[S2]. Then

s(G[S3], G[S1]) = s(G[S3], G[S2])

where s(G[Si], G[Sj ]) denotes the number of subgraphs of G[Sj ] isomorphic to G[Si].

Proof. Let r be the total number of graphs isomorphic to G[S3] which appear as
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subgraphs of the graphs in D1G[S1] (and hence D1G[S2]). Let p be the sum of the
labels in G[S1] of all the vertices in S1 − S3. Clearly p > 0 since |S3| < |S1| and the
labels are positive. Then

r = p · s(S(G[S3], G[S1]) = p · s(S(G[S3], G[S2])

and the result follows since p > 0.

Corollary 4.1. If D1G[S1] = D1G[S2] and S3 ⊂ S1 then∣∣G[S3] −→ G[S1]
∣∣ =

∣∣G[S3] −→ G[S2]
∣∣.

Proof. This follows easily from Lemma 4.1 since,∣∣G[S3] −→ G[S1]
∣∣ = s(G[S3], G[S1]) ·

∣∣G[S3] −→ G[S3]
∣∣

= s(G[S3], G[S2]) ·
∣∣G[S3] −→ G[S3]

∣∣
=
∣∣G[S3] −→ G[S2]

∣∣.

Lemma 4.2. Let X ⊆ S1. Then

∣∣G[S1] X−→ G[S2]
∣∣ =

∑
Y⊆X

(−1)|Y |
∣∣G[(S1 −X) ∪ Y ] −→ G[S2]

∣∣.

Proof. For u ∈ X let Au denote the set (G[(S1 −X) ∪ {u}] −→ G[S2]). Note that

∩ri=1Aui = (G[(S1 −X) ∪ri=1 {ui}] −→ G[S2]).

Since
∣∣G[S1] X−→ G[S2]

∣∣ =
∣∣G[S1 − X] −→ G[S2]

∣∣ − ∣∣∪u∈XAu∣∣, the result follows by
applying the inclusion-exclusion principle.

Theorem 4.1. Let D1G[S1] = D1G[S2], and let X ⊆ S1. Then∣∣G[S1] −→ G[S2]
∣∣ =∣∣G[S1] −→ G[S1]
∣∣+ (−1)|X|(

∣∣G[S1] X−→ G[S2]
∣∣− ∣∣G[S1] X−→ G[S1]

∣∣).
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Proof. By Lemma 4.2,

∣∣G[S1] X−→ G[S2]
∣∣ =

∑
Y⊆X

(−1)|Y |
∣∣G[(S1 −X) ∪ Y ] −→ G[S2]

∣∣
and ∣∣G[S1] X−→ G[S1]

∣∣ =
∑
Y⊆X

(−1)|Y |
∣∣G[(S1 −X) ∪ Y ] −→ G[S1]

∣∣.
Subtracting these two equations, all terms on the right hand side cancel (by Corollary
4.1) except for Y = X, giving the required result.

Corollary 4.2. Let D1G[S1] = D1G[S2] and suppose that G[S1] is not isomorphic to

G[S2]. Let X ⊆ S1. Then (i) if |X| is odd, then
∣∣G[S1] X−→ G[S2]

∣∣ > 0, and (ii) if |X|

is even, then
∣∣G[S1] X−→ G[S1]

∣∣ > 0.

Proof. Since G[S1] 6' G[S2],
∣∣G[S1] −→ G[S2]

∣∣ = 0. Therefore when |X| is odd,∣∣G[S1] X−→ G[S2]
∣∣ =

∣∣G[S1] −→ G[S1]
∣∣+ ∣∣G[S1] X−→ G[S1]

∣∣ > 0, and, when |X| is even,∣∣G[S1] X−→ G[S1]
∣∣ =

∣∣G[S1] −→ G[S1]
∣∣+
∣∣G[S1] X−→ G[S2]

∣∣ > 0.

Theorem 4.2 If either |S| > |V (G)| /2 or |S| > 1 + log2 |AutG|, then G[S] is
endvertex-reconstructible.

Proof. Suppose G[S] is not endvertex-reconstructible and let G[S′] be an endvertex-
reconstruction of G[S], not isomorphic to G[S]. Then taking X = S in Corollary 4.2
implies that there is a T ⊆ V (G) disjoint from S such that G[(T )] ' G[S], if |S| is
even, or G[(T )] ' G[S′], if |S| is odd. But this is impossible if |S| > |V (G)| /2.

Also, if G[S] is not endvertex-reconstructible then, by Corollary 2(ii), for every even

subset X of S,
∣∣G[S] X−→ G[S]

∣∣ ≥ 1. There are 2|S|−1 even subsets of S and, since

the sets (G[S] X−→ G[S]) are disjoint for different X, it follows that |AutG| ≥ 2|S|−1.
Therefore if |S| > 1 + log2 |AutG|, then G[S] is endvertex-reconstructible.

(Note: The second condition of Theorem 4.2 can also be obtained as a special case of
Corollary 2.4 of Alon et al., (1989).)

Bryant’s counterexamples to Bondy’s conjecture are, in fact, graphs with endvertices
no two of which have a common neighbour and none adjacent to a vertex of degree 2.
In view of this and of Theorem 4.2, the natural question to ask is: If G′ is obtained
from a graph G of minimum degree at least two by attaching one endvertex to each
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of k vertices of G, what is the largest value of |k| / |V (G)| which can give a graph G′

which is not endvertex-reconstructible?

The survey by Bondy (1991) gives a comprehensive treatment of the counting tech-
niques associated with the Nash-Williams Lemma.

5 RECONSTRUCTION NUMBERS

When research on the Reconstruction Problem seemed to be slowing down, Harary and
Plantholt (1985) came up with the idea of reconstruction numbers. Although their
concept actually makes reconstruction more difficult, it has managed to bring to light
several questions which, although still retaining sufficient complexity to make them
worthy of investigation, seem more tractable than the apparently unscalable heights
of the Reconstruction Conjectures.

The reconstruction number rn(G) of G is defined to be the minimum number of vertex-
deleted subgraphs in D(G) which can determine G uniquely, that is, rn(G) is the size of
the smallest subcollection of D(G) which is not contained in any other D(H),H 6' G.

The simplest observation one can make about reconstruction numbers is that rn(G) >
2 for any graph G. This can easily be seen as follows. Suppose G − u and G − v are
two saubgraphs from D(G). Construct H as follows: if uv ∈ G then H = G − uv
otherwise H = G+ uv. Then H 6' G but G− u,G− v ∈ D(H). Therefore G− u and
G− v cannot alone distinguish between G and H.

By means of a computer search amongst all graphs of order at most 7, Harary and
Plantholt (ibid.) found that only five of these graphs, together with their complements,
had reconstruction number greater than the minimum possible value of 3. This lead
them to make, amongst a number of other conjectures, the conjecture that almost
every graph has reconstruction number equal to 3. (We say that almost every graph
has a certain property if the proportion of graphs on n vertices which have the property
tends to 1 as n tends to ∞.)

Myrvold demonstrated a simple proof of Harary and Plantholt’s conjecture by exploit-
ing an earlier result of Müller. Bollobás also proved the conjecture in essentially the
same way but obtaining an independent (and simpler) proof of Müller’s result.

Theorem 5.1 (Myrvold, 1988; Bollobás, 1990). Almost every graph has reconstruction
number 3.

We defer presenting the ideas involved in the proof of this theorem to a later stage
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when we use essentially the same methods to obtain an analogous result for edge-
reconstruction numbers (Theorem 5.3 below).

Although the reconstruction of regular graphs is trivial and that of disconnected graphs
quite straightforward, the determination of their reconstruction numbers is not so easy.
Work on this has been done by Myrvold. We here summarise some of her results and
point to some of the immediate outstanding questions which emerge.

Myrvold (1989) showed that the reconstruction number of disconnected graphs equals
3, except in the case when the connected components are all isomorphic. In this case
she showed that rn(G) ≤ c+ 2, where c ≥ 3 is the order of a connected component of
G. This upper bound is attained when G consists of k copies of the complete graph
Kc, since any c+ 1 vertex-deleted subgraphs of G are also vertex-deleted subgraphs of
the graph which consists of k−2 copies of Kc and one copy of each of Kc−1 and Kc+1.
Some questions still remain here, mainly: (i) are these the only disconnecetd graphs
for which the reconstruction number equals c+2? (ii) can one characterise those other
disconnected graphs for which the reconstruction number is greater than 3?

Noticing that, when G consists of just two copies of Kc, rn(G) = 2 + n(G)/2, brings
to mind an early conjecture made by Harary and Plantholt.

Conjecture 5.1 (Harary and Plantholt, 1985). For any graph G,

rn(G) ≤ n(G)
2

+ 2

and equality holds iff G is a path on four vertices, or two copies of Kc or the complete
bipartite graph Kc,c.

Of course, a proof of this conjecture would be quite remarkable since it includes the
Reconstruction Conjecture as a special case.

For r-regular graphs G of order n Myrvold (1988) showed that

rn(G) ≤ min{r + 3, n− r − 2} ≤ bn/2c+ 2.

Again, the maximum is attained by Kc,c or 2Kc.

In order to make the study of reconstruction numbers more manageable the following
weakening of the problem has been considered by various authors. Let C be a class
of graphs and let G ∈ C. Then the class reconstruction number Crn(G) is defined to
be the smallest number of cards of G which can determine G given that G ∈ C. That
is, Crn(G) is the size of the smallest subcollection of D(G) which is not contained in
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any other D(H),H 6' G,H ∈ C. As a trivial example we note that if C is the class of
regular graphs then Crn(G) = 1 for any G ∈ C.

From the discussion in Section 3 it should be clear that, if C is the class of maximal
planar graphs, then Crn(G) = 1 unless G is a graph such as that shown in Figure
3.1, that is, unless G the property that no G − v with deg(v) > 3 has a unique
deg(v)-embedding. By studying the degrees of the vertex-deleted subgraphs of such
graphs, Harary and Lauri (1987) showed that their class reconstruction number is
always equal to 2, thereby determining completely the class reconstruction number of
maximal planar graphs.

Bange, Barkauskas and Host (1987) exploited properties of total graphs to show that
their class reconstruction number is equal to 1. Harary and Lauri (1988) showed that
the class reconstruction number of trees is at most 3, and this result was improved by
Myrvold (1990) who showed that the reconstruction number of trees is 3. However,
the following conjecture is still unresolved.

Conjecture 5.2 (Harary and Lauri, 1988). Let C be the class of trees and let T be a
tree. Then Crn(T ) ≤ 2.

The edge-reconstruction number and the class edge-reconstruction number (denoted by
ern(G) and Cern(G), respectively) of a graph G are defined in a manner analogous
to the corresponding reconstruction numbers. But while the Edge-Reconstruction
Conjecture is a weaker conjecture than the Reconstruction Conjecture, there does
not seem to be any straightforward relationship between reconstruction and edge-
reconstruction numbers. In fact, the latter often seem to be more difficult to determine.

Unlike the case for reconstruction numbers, ern(G) could be equal to 1. This is so
if and only if there is an edge e ∈ E(G) such that the complement of G − e is edge-
transitive. Also, ern(G) could equal 2, for example, when G = Kp,q. In fact, almost
every graph has edge-reconstruction number equal to 2. We shall now show this using
the same methods which have been employed to obtain Theorem 5.1. We first need a
couple of definitions and a preliminary lemma.

A graph will be said to have property Pk if G − X 6' G − Y for any two distinct
subsets X,Y of V (G) with |X| = |Y | = k. A graph will be said to have property EPk
if G−A 6' G−B for any two distinct subsets A,B of E(G) with |A| = |B| = k. The
set of neighbours of a vertex v in G is denoted by NG(v).

Lemma 5.2. If G has property P13 then it has property EP3.
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Proof. Suppose, for contradiction, that A and B are two distinct subsets of E(G)
with |A| = |B| = 3 and such that H = G − A and K = G − B are isomorphic, and
let α : H → K be an isomorphism. Let A′ and B′ be the sets of vertices incident
in G to A and B respectively. Let S′ = A′ ∪ α−1(B′) and T ′ = α(A′) ∪ B′. Then
|S′| = |T ′| ≤ 12, and H − S′ ' K − T ′. But H − S′ = G − A and K − T ′ = G − B,
therefore if S′ 6= T ′ we are done. We may therefore assume that S′ = T ′; let us call
this set R. Note that α(R) = R.

Now suppose that α does not act trivially on V (G)−R, and let α(x) = y, x 6= y, x, y ∈
V (G)−R. Then H −R− x ' K −R− y, that is, G−R− x ' G−R− y, giving us
the required contradiction.

We may therefore assume that α acts trivially on V (G)−R. Note that α cannot also
act trivially on R, since there are some pairs of vertices in R adjacent in H but not in
K. Therefore let x, y ∈ R,α(x) = y. Since α acts trivially on V (G)−R, it follows that
NH(x) ∩ (V (G)−R) = NK(y) ∩ (V (G)−R). Therefore H − (R− x) ' K − (R− y).
But H − (R− x) = G− (R− x) and K − (T ′ − y) = G− (T − y), again giving us the
required contradiction.

(Note: The number 13 in the above lemma is sufficient for our purposes but it is
certainly a very crude estimate. Also, the same proof applies for |A| = |B| = k with
property P13 replaced by P4k+1.)

The next result was first obtained by Korshunov (1971), and then independently by
Müller (1976) who used it to show that almost every graph is reconstructible. Bollobás
(1990) subsequently gave another independent proof.

Theorem 5.2 (Korshunov, 1971; Müller, 1976; Bollobás, 1990). For any fixed k,
almost every graph has property Pk.

Lemma 5.3. Let G have property EP3. Then G is reconstructible from any two
edge-deleted subgraphs from its edge-deck.

Proof. Let G − a,G − b be two edge-deleted subgraphs of G. Find an edge x of
G − a and an edge y of G − b such that (G − a) − x ' (G − b) − y. Then x = b and
y = a. Now let α : (G− a)− b → (G− b)− a be an isomorphism. This isomorphism
is unique because otherwise there would be, in G− a− b, edges e, f , e 6= f , such that
G− a− b− e ' G− a− b− f , contradicting the property EP3. We can therefore use
α to label uniquely all the vertices in (G − a) − b and (G − b) − a. We can therefore
reconstruct G uniquely by adding to G− a a new edge joining the two vertices which
are joined by a in G− b.
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Corollary 5.1. Almost every graph has edge-reconstruction number 2.

However, it could happen that ern(G) > rn(G). For example, if G consists of two
copies of the star K1,p, then ern(G) = p + 2 and rn(G) = 3. The situation is not
made any clearer by considering class edge-reconstruction numbers. Harary and Lauri
(1988), for example, have pointed out that the six trees shown in Figure 5.1 have
class edge-reconstruction numbers equal to 3, although they conjecture that the class
reconstruction number of any tree is at most 2 (and of course, the six trees shown here
have class reconstruction number equal to 2); it is not known whether these six trees
are the only ones with class edge-reconstruction number greater than 2.

Figure 5.1

It seems therefore that little is known about edge-reconstruction numbers. We would
suggest, as the most interesting problems to investigate first, the study of the edge-
reconstruction numbers of disconnected and regular graphs and of trees, and the class
edge-reconstruction numbers of trees and maximal planar graphs.

We close this section with a problem which has been posed by Myrvold (1988). The
reconstruction number can be considered as a game between players A and B. A is
shown a graph G and she has to find the smallest number of vertex-deleted subgraphs
which, when given to B will enable her to reconstruct G uniquely. This smallest num-
ber is the reconstruction number. In this game A and B are allies. We can consider
an analogous game in which A and B are adversaries, where now A is required to
find the largest number of subgraphs no proper subcollection of which will enable B
to reconstruct G uniquely. In this vein Myrvold has defined the adversary reconstruc-
tion number Arn(G) of a graph G to be one more than the maximum number of
vertex-deleted subgraphs that G has in common with any graph not isomorphic to it.
Therefore the basic question here is: What is the maximum number of vertex-deleted
subgraphs that two nonisomorphic graphs on n vertices can have?

The following family of pairs of graphs, found by Myrvold, gives the nonisomorphic
pairs which have the largest known number of common vertex-deleted subgraphs.

G = (p+ 1)Kp ∪ (p− 1)Kp+1 and H = Kp−1 ∪ (p− 1)Kp ∪ pKp+1.

The graphs G and H have (p+1)(2p−1) vertices each and p(p+1) vertex-deleted sub-
graphs in common, that is, n vertices and n/2+

√
(n+ 1.125)/8+0.375 vertex-deleted
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subgraphs in common. Myrvold therefore asks if there is a family of graph pairs on n
vertices having more than this number of vertex-deleted subgraphs in common. She
also makes the following two conjectures. As for Conjecture 5.1 above, a proof for
any of them would be quite remarkable since each implies the Reconstruction Conjec-
ture. However, for those who prefer disproving rather than proving conjectures, these
are of course more promising candidates to tackle than the original Reconstruction
Conjecture.

Conjecture 5.3 (Myrvold, 1988). The number of vertex-deleted subgraphs that two
nonisomorphic graphs on n vertices can have in common is at most n/2 +O(

√
n).

Conjecture 5.4 (Myrvold, 1988). Two nonisomorphic graphs on n vertices with the
same degree sequence can have at most (n+ 1)/2 vertex-deleted subgraphs in common.

6 PSEUDOSIMILARITY

Graph theorists seem to have stumbled on the concept of pseudosimilarity quite by
accident. If two vertices u and v in a graph G are similar, that is, there is an auto-
morphism of G which maps one into the other, then it is clear that G− u and G− v
are isomorphic graphs. However the converse is not true, because G − u and G − v
can be isomorphic without u and v being similar in G. An example of this is given by
the graph in Figure 6.1. Nobody seems to have given this phenomenon any thought
until, as reported by Harary and Palmer (1966), someone apparently “proved” the
Reconstruction Conjecture using the “fact” that if G − u and G − v are isomorphic
then u and v must be similar. To Harary and Palmer goes the credit of taking what
could simply have remained a curious counter-example, and turning it into a graph
theoretic concept worthy of investigation. Their 1965 and 1966 papers proved the first
results and set the scene for further studies. In more than twenty-five years which
have passed since the Harary and Palmer papers, a number of authors have found new
results and discovered more problems.

Figure 6.1

As in Harary (1969), two vertices u and v of G are similar if there exists some auto-
morphism α of G such that α(u) = v; they are removal-similar if G− u and G− v are
isomorphic, and they are pseudosimilar if they are removal-similar but not similar.
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Although at first it might seem unexpected that pseudosimilar vertices do exist, upon
further consideration one comes to realise that, in fact, such vertices should be a
natural occurrence. The simplest way to create such vertices in a graph is possibly the
following. Let G be a graph and let u and v be a pair of similar vertices in G. If u and
v are adjacent in G, then let H = G−uv, whereas if they are not let H = G+uv. The
vertices u and v are still removal-similar in H but the addition or deletion of the edge
uv could have destroyed their similarity, making them pseudosimilar. One necessary
condition for this to happen is that there is no automorphism α of G such that α(u) = v

and α(v) = u. This sets the scene for the investigation of why pseudosimilar vertices
arise. We call two sets of vertices A and B in a graph G interchange similar if there
is an automorphism α of G such that α(A) = B and α(B) = A.

Theorem 6.1. Let u, v be pseudosimilar vertices in a graph G, and let A = N(u) ∩
V (G − u − v), B = N(v) ∩ V (G − u − v). Then either A and B are similar but not
interchange similar in G− u− v or else G− v contains a vertex pseudosimilar to u.

Proof. Let α:G − v → G − u be an isomorphism. If α(u) = v then restricting α to
V (G)− u− v gives an automorphism mapping A into B. Of course, A and B cannot
be interchange similar in G− u− v as otherwise u and v would be similar in G.

We therefore assume that α(u) 6= v. Let w = α−1(v); therefore w 6= u. It now follows
that u and w are removal similar in G − v, for (G − v) − w ' α((G − v) − w) =
(G− u)− v = (G− v)− u.

Now suppose that u and w are similar in G− v. Let β be an automorphism of G− v
with β(u) = w. Then βα is an isomorphism from G− v to G− u with βα(u) = v. We
therefore again obtain, as above, that there is an automorphism of G−u− v mapping
A into B.

The only alternative left is that u and w are not similar in G − v, giving that G − v
contains a vertex pseudosimilar to u.

This theorem easily gives, as a corollary, two results about trees, the first of which was
one of the earliest results on pseudosimilarity. We first need to recall the following
result on similar vertices in a tree. Recall also that an endvertex is a vertex of degree
1 and an end-cutvertex in a tree is a vertex having only one neighbour with degree
greater than 1.

Theorem 6.2 (Prins 1957). Any two similar vertices in a tree are interchange similar.

Corollary 6.1. (Harary and Palmer, 1966) (i) Any two removal-similar vertices in
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a tree are similar. (Kirkpatrick, Klawe and Corneil) (ii) Any two removal-similar
endvertices in a tree are similar.

Proof. We shall prove (i) by induction on the number of vertices of the tree T ; the
proof of (ii) is analogous. Suppose u, v are pseudosimilar endvertices of T . Let x, y
be the neighbours of u, v respectively. Since, by the induction hypothesis, u cannot
be pseudosimilar to any endvertex in T − v, it follows that x and y are similar but not
interchange similar in T − u − v. But this contradicts Prins’ Theorem. Therefore u
and v cannot be pseudosimilar.

So it seems that one way to try and obtain pseudosimilar vertices is to take a graph
with two sets of similar but not interchange similar sets of vertices, and join two new
vertices to them. Harary and Palmer (1966), by exploiting this idea, gave the first
systematic way of constructing pairs of pseudosimilar vertices. Take any graph H,
and let X and Y be two sets of vertices of H such that there is no automorphism
α of H with α(X) = Y (for example, choose X and Y with |X| 6= |Y |). Then take
three copies H1,H2,H3 of H and form G by adding two new vertices u and v joining
u to X in H1 and to Y in H2, and v to X in H2 and Y in H3. Then u and v are
pseudosimilar in G. The graph in Figure 6.1 could have been constructed this way,
with H = K2, X = V (H) and Y containing only one vertex. Godsil and Kocay (1982),
by formalising these ideas, obtained a construction which explains in general how pairs
of pseudosimilar vertices arise.

But the area where most of the unanswered questions about pseudosimilarity lie is
the situation where a graph has several pseudosimilar vertices. We can ask for two
ways in which this can happen. One way requires the graph to have several pairs of
pseudosimilar vertices. Alternatively one can ask for the graph to have a large set
of mutually pseudosimilar vertices (the vertices in a subset S of V (G) are said to be
mutually pseudosimilar if any two vertices of S are removal-similar but no two are
similar). These two situations are discussed in the next section.

7 LARGE SETS OF PSEUDOSIMILAR VERTICES AND
EDGES

We shall first give those definitions and results involving graphs and groups upon which
most of the material in this sections depends.

Let G be a vertex-symmetric graph (that is, all of its vertices are similar) such that
Aut(G) acts regularly on V (G) (this means that the stabiliser of any vertex of G is the
identity, or, equivalently, that |Aut(G)| = |V (G)|). Then G is called a graphical regular
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representation (GRR) of Aut(G). Therefore GRR’s are graphs which just manage
to make it as vertex-symmetric graphs. We shall be requiring GRRs for groups of
odd order, and it follows that such groups must be nonabelian (see Biggs (1974), for
example). The following result assures us of the existence of GRR’s.

Theorem 7.1 (Hetzel, 1976; Godsil, 1980) Except for a finite number of known groups,
all finite, nonabelian groups which are not generalised dicyclic groups have GRR’s.

Although given any group Γ there is a graph whose automorphism group is abstractly
isomorphic to Γ, it is not true that every permutation group is equivalent to the group
of a graph. However it is possible to obtain a graph with an automorphism group whose
action on a subset of the vertices of the graph is equivalent to a given permutation
group. This is what the next theorem says, a short proof of which can be found in
Problem 12.21 of the book by Lovász (1979).

Theorem 7.2 (Bouwer, 1969). Let Γ be a permutation group acting on a set X. Then
there exists a graph G such that X ⊆ V (G), X is invariant under the action of AutG
and the restriction of AutG to X gives a permutation group equivalent to Γ.

Kimble, Schwenk and Stockmeyer (1981) were the first to consider the problem of
graphs with several pseudosimilar vertices. In their paper they gave a number of
concrete examples of the following result.

Theorem 7.3 (Kimble, Schwenk and Stockmeyer, 1981). There exist graphs in which
every vertex has a pseudosimilar mate.

Proof. Let Γ be a group of odd order and let H be a GRR of Γ (as we have noted
above, Γ must be nonabelian and, by Theorem 7.1, such Γ and H do exist). We note
that H is a regular graph and that the stabiliser of any vertex is just the identity
element of Γ. Therefore, if r is any vertex of H, then G = H − r has the identity
automorphism group.

Now, let v be any vertex in G. There is an automorphism α of H mapping r to v. The
vertices α−1(r) and v = α(r) are distinct, because otherwise α would contain a cycle
of length 2, which is impossible since Γ has odd order. Since α−1 maps {v, r} onto
{r, α−1(r)}, it follows that G− v = H − r− v ' H −α−1(r)− r = G−α−1(r), that is,
v = α(r) and α−1(r) are removal-similar in G. But G has the identity automorphism
group, therefore v and α−1(r) are pseudosimilar.

Pseudosimilar edges can be defined in an analogous way to pseudosimilar vertices.
Kimble (1981) tried to obtain a result like Theorem 7.3 for pseudosimilar edges, and he
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managed to construct a sequence of graphs in which the proportion of edges which have
a pseudosimilar mate tends to 1. The following is a much simpler construction. Let
C1 and C2 be two directed cycles, each on n vertices, n odd. Let Gn be a constructed
as follows: Join every vertex of C1 to every vertex of C2 and replace each arc of C1 by
Gadget 1 and each arc of C2 by Gadget 2, as shown in Figure 7.1; delete one of the
edges joining a vertex of C1 to a vertex of C2.

Figure 7.1

The resulting graph Gn has the identity automorphism group, and each edge joining
a pair of vertices from C1 and C2 has a corresponding edge to which it is removal-
similar. Therefore G has n2 − 1 edges which have pseudosimilar mates, and a total of
n2 + 9n− 1 edges. Therefore the proportion of edges which have a pseudosimilar mate
tends to 1 as n tends to ∞.

But it is perhaps when investigating graphs with large sets of mutually pseudosim-
ilar vertices that the most interesting open questions arise. This problem has been
investigated by a number of authors (Krishnamoorthy and Parthasarthy, 1976; Kim-
ble, Schwenk and Stockmeyer, 1981; Kimble, 1981; Kocay, 1982 and 1984; Godsil and
Kocay, 1983; Lauri and Marino, 1991; Lauri, 1992a). It is clear that a graph G can-
not have all its vertices mutually pseudosimilar. Otherwise G would be regular and a
regular graph cannot have pseudosimilar vertices because if α is an isomorphism from
G − u to G − v, then α must map the neighbours of u into the neighbours of v, and
therefore it can be extended to an automorphism of G mapping u into v. Therefore
the main question which arises is to determine the largest size which a set of mutually
pseudosimilar vertices in a graph of order n can have. This seems to be very difficult
to settle, and below we shall consider a more restricted version of the question.

The first to construct graphs with large sets of mutually pseudosimilar vertices were,
independently, Krishnamoorthy and Parthasarathy (1976) and Kimble, Schwenk and
Stockmeyer (1981). The latter gave a method which constructs a sequence of graphsGk
having k mutually pseudosimilar vertices and a total of O(k2) vertices. Krishnamoor-
thy and Parthasarathy constructed a sequence Gk having 2k mutually psuedosimilar
endvertices and a total of O(3k) vertices. We shall now give a slightly more general
construction as described by Lauri and Marino (1991) and Lauri (1991), which can be
used to give a better “packing” of mutually pseudosimilar vertices in graph.
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Let G′ be a graph containing r endvertices, all of which are mutually pseudosimilar.
Let G be the graph obtained from G′ by removing all of its endvertices, and let R be
the set of neighbours of the endvertices of G′ (note that since no two endvertices are
similar, no two can share a common neighbour, therefore |R| = r). Let X be the set
of all those vertices of G which are similar to some vertex in R under the action of
AutG. We now construct a sequence of graphs Gt, t = 1, 2, . . ., containing rt mutually
pseudosimilar endvertices. Let G1 = G′ and let H1 be G1 less one of its endvertices.
Having constructed Gt, let Ht be Gt less one of its pseudosimilar endvertices. Then,
Gt+1 is obtained by attaching a copy of Gt to each vertex in R and a copy of Ht to
each of the other vertices in X −R. (By attaching a copy of Gt (or Ht) to a vertex v
of G we mean joining v to every vertex of Gt (or Ht) which is not an endvertex.)

Each graph Gt so obtained has rt mutually pseudosimilar endvertices and O(|X|t)
vertices. Therefore if k = rt is the number of pseudosimilar endvertices, then the total

number of vertices in Gt is O(k
log |X|
log |R| ).

The crucial step in this construction is to find the starting graph G′, that is, one
with endvertices all of which are mutually pseudosimilar. Suppose Γ is a group of
permutations acting on some set X such that, for some R ⊆ X, the following two
conditions hold: (i) the setwise stabiliser Γ{R} of R is the identity and, (ii) for any
two (|R| − 1)-subsets A,B of R, there is a permutation α in Γ such that α(A) = B.
Then, by employing Theorem 7.2, one can construct a graph G with minimum degree
at least 2 and X ⊆ V (G) and whose automorphism group has the same action as Γ
on X. Therefore if we attach one endvertex to each vertex of R ⊂ V (G) we obtain
the starting graph G′ all of whose endvertices are mutually pseudosimilar. Hence such
starting graphs can be constructed if permutation groups satisfying conditions (i) and
(ii) are found.

Lauri (1992a) constructed such a permutation group with |X| = 2|R| = 8 as follows.
Let Γ be the group of affine transformations of the field GF (8). Although this group is
not 3-transitive, it is 3-homogeneous (Livingstone and Wagner, 1965), that is, any two
3-sets are similar under the action of Γ on the set of 3-subsets of GF (8). Therefore
all we need is a 4-set R such that Γ{R} is the identity. If we represent GF (8) as
Z2[x]/p(x), where p(x) is the primitive, irreducible (over Z2) polynomial x3 + x + 1,
and if we let R = {0, 1, x, x2}, then one can check that the only permutation in Γ which
fixes R setwise is, in fact, the identity. Therefore the required permutation group has
been obtained. The construction can then proceed as above, giving graphs Gt with
k = 4t pseudosimilar endvertices and a total of O(k3/2) vertices (Lauri, ibid.) and this
therefore gives a denser “packing” of mutually pseudosimilar vertices in a graph than

20



do the constructions of Krishnamoorthy and Parthasarthy or of Kimble, Schwenk and
Stockmeyer.

These constructions suggest two problems. The first is to construct a sequence of
graphs having k mutually pseudosimilar (end)vertices and a total of O(k1+ε) vertices,
with ε as small as possible. The second problem is to construct permutation groups
satisfying the above conditions (i) and (ii).

Lauri (1992a) presented the following construction of such permutation groups which
is a slight simplification of one given by Cameron (1991). Let X = F r−1, the vector
space of dimension r − 1 over the finite field F , and let Γ be the group of all linear
automorphisms of X. Let B = {e1, e2, . . . , er−1} be a basis of X, f =

∑
aiei an

element of X and R = B ∪ {f}. Suppose the following conditions on the ai hold:
(1) ai 6= 0, 1 ≤ i ≤ r − 1;
(2) ai 6= aj , i 6= j;
(3) aiaj 6= 1, 1 ≤ i, j ≤ r − 1;
(4) ai + ajak 6= 0, 1 ≤ i, j, k ≤ r − 1.

Then Γ and R have the required properties (i) and (ii). For, since none of the ai is
zero, any two r − 1-subsets of R are bases of X, therefore similar under the action
of Γ. Hence condition (ii) holds. Also, if, for some α ∈ Γ not equal to the identity,
α(R) = R then, since the ai are distinct, we cannot have α(B) = B and α(f) = f ;
therefore, for some j, α(ej) = f , α(f) = eπ(j) and α(ei) = eπ(i) for i 6= j, where π is a
permutation of {1, 2, . . . , r − 1}. But then, since f =

∑
aiei, we have

eπ(j) =
∑
i6=j

aieπ(i) + ajf.

This gives that ai + ajaπ(i) = 0 and ajaπ(j) = 1, contradicting (3) and (4). Therefore
the only permutation α with α(R) = R is the identity, and hence condition (i) also
holds.

As discussed above, such a permutation group can be used to construct, via Theorem
7.2, a graph G all of whose endvertices are mutually pseudosimilar. Such a graph
can be transformed, as follows, into one containing a set of mutually pseudosimilar
vertices which are not endvertices. Let ∆ be the maximum degree of G. Identify the
endvertices of G with distinct vertices of the complete graph K∆. In the resulting
graph, the vertices which were endvertices in G are still mutually pseudosimilar.

8 PSEUDOSIMILARITY AND RECONSTRUCTION

Is there any concrete relationship between pseudosimilarity and the Reconstruction
Problem? Stockmeyer’s (1977) construction of non-reconstructible digraphs depends
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on tournaments which have the property that every vertex has a pseudosimilar mate.
However, there seems to be no way of adapting this construction to undirected graphs
(Stockmeyer, 1988). On the other hand, trees are reconstructible from their endvertex-
deleted subgraphs and also from their end-cutvertex-deleted subgraphs (Krasikov 1987,
1988) and, as we have seen, endvertices and end-cutvertices cannot be pseudosimilar
in a tree. Is this a coincidence, or could one prove, as asked by Krasikov (1988), that a
graphG with a “sufficiently large” set S of non-pseudosimilar vertices is reconstructible
from its subgraph G − v, v ∈ S? A good place to start investigating this might be
trees — it could be revealing if one could prove that trees are endvertex-reconstructible
using mainly the similarity properties of endvertices in a tree. We shall briefly outline
here a programme for doing this.

First we note that the Reconstruction Conjecture can be re-worded in a way that brings
out better possible connections with pseudosimilarity. Let G be a non-reconstructible
graph, and let H be a reconstruction of G, H 6' G. Let u be a vertex of G. Then G−u
is isomorphic to a vertex-deleted subgraph of H. Therefore H ' (G − u) + v, where
the vertex v is joined to vertices of G − u which are, of course, not all neighbours
of u. Let K = G + v, that is, K is obtained from (G − u) + v by putting u back
and joining it to the neighbours it had in G. Since DG = DH, for every vertex
x ∈ V (K)− {u, v} there is a vertex x′ ∈ V (K)− {u, v} (x′ could be equal to x) such
that K − u − x ' K − v − x′. Let us call the pair of vertices u, v which have this
property in K complementary vertices. From these comments one easily sees that the
Reconstruction Conjecture is equivalent to the following conjecture.

Conjecture 8.1. If u and v are complementary vertices in a graph K, then K − u '
K − v.

We now turn our attention more specifically to trees. In his investigation of the
reconstruction of trees Krasikov (1991) found that the following theorem is very useful
in proving reconstruction results for trees. First we need a definition. Let T be a tree
a, b ∈ V (T ), and A,B two rooted trees. Then Ta,b(A,B) denotes the tree obtained by
identifying the roots of A and B with a and b respectively.

Theorem 8.1 (Krasikov, 1991). If A and B are non-isomorphic rooted trees and
Ta,b(A,B) ' Ta,b(B,A), then a and b are similar in T .

It is easily seen that this generalises Corollary 6.1 (let one of A or B be a single
vertex). It turns out that, in order to tackle more fully the reconstruction of trees one
needs the following theorem. (The definition of Ta,b,c(A,B,C) is analogous to that of
Ta,b(A,B).)
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Theorem 8.2 (Lauri, 1992b). If A, B and C are mutually non-isomorphic rooted trees
and Ta,b,c(A,B,C) ' Ta,b,c(C,A,B), then a, b, c are similar in one of T , Ta,b,c(A,A,A),
Ta,b,c(B,B,B) or Ta,b,c(C,C,C).

Combining Theorem 8.2 with the formulation of the reconstruction problem as in
Conjecture 8.1 one can obtain the endvertex-reconstruction of trees (Lauri, 1992b).
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