Diophantus of Alexandria Arithmetica

joseph.muscat@um.edu.mt 21 January 2023

Notation

Diophantus's $Arithmetica^1$ is a list of over 200 algebraic problems with solutions, dating from about ~250AD. In it he introduced algebraic manipulations on equations including a symbol for one unknown (probably following other authors in Alexandria). Although most of his methods were known to his Babylonian and Egyptian predecessors (including Heron of Alexandria), his symbols allowed for clearer solutions and to consider more complicated problems. His notation was as follows:

	Diophantus	Modern
unknown	ς	x
square	Δ	x^2
cube	K	x^3
etc.	$\Delta\Delta$	x^4
	ΔK	x^5
reciprocal	$\dot{\varsigma}^{ imes}$	1/x
fraction	$\beta^{\times}\gamma \text{ or } \gamma^{\beta}$	$\frac{\gamma}{\beta}$
units	M	,
equals	ι^{σ}	=
subtract	\cap	_

Like all Greeks at the time, Diophantus used the (extended) Greek alphabet to denote numbers, namely, $\dot{\alpha} \ 1$, $\dot{\beta} \ 2$,..., $\dot{\theta} \ 9$, $\dot{\iota} \ 10$, $\dot{\kappa} \ 20$, ..., up to $\dot{\gamma}' \ 900$. So, with his notation, a quadratic equation like $2x^2 - 3x - 1 = 4$ would be written as

$$\Delta \hat{\beta} \cap \hat{\zeta} \gamma M \hat{\alpha} \iota^{\sigma} M \hat{\delta}$$

Note that juxtaposed terms like $\dot{\zeta}\dot{\gamma}\,M\dot{\alpha}$ are assumed to be added. For ease of reading, the modern equivalent symbols are used here, except for squares and cubes, so the above equation is written as

$$2\Delta - 3x - 1 = 4.$$

Only positive numbers "made sense" to the Greeks (because they denoted 'physical' quantities like length and area), so equations had to be 'balanced'; $x^2 + 3x = x$ was not a 'realistic' equation.

¹There are multiple versions of the *Arithmetica* with unmatching problem numbers.

1 Book I

Problem 1 To split a given number (100) in two parts having a given difference (40).

Problem 2 To split a given number (60) in two parts having a given ratio (3:1).

Problem 3 To split a given number (80) in two parts, the larger of which exceeds a given ratio (3:1) of the smaller by a given number (4).

Problem 4 To find two numbers in a given ratio (5:1) and having a given difference (20).

Problem 5 To split a given number (100) in two parts such that given fractions of them (1/3, 1/5) have a given sum (30).

Problem 6 To split a given number (100) in two parts such that given fractions of them (1/4, 1/6) have a given difference (20).

Problem 7 To find a number such that when two given numbers (100,20) are subtracted from it, the remaining parts have a given ratio (1:3).

Problem 8 To find a number such that when two given numbers (100,20) are added to it, the sums have a given ratio (3:1).

Problem 9 To find a number which when subtracted from two given numbers (100,20), the remaining parts have a given ratio (6:1).

Problem 10 To find a number such that when added to a given number (20) and subtracted from another (100), the results have a given ratio (1:4).

Problem 11 To find a number such that when a given number (20) is added to it, and another (100) subtracted from it, the results have a given ratio (3:1).

Problem 12 To split a given number (100) twice into two pairs such that the first of each pair have a given ratio (2:1) as do the seconds (3:1).

Problem 13 To split a given number (100) as three pairs such that the second number of each pair and the first of the next pair (in cyclic order) have given ratios (3:1, 2:1, 4:1).

Problem 14 To find two numbers whose product and sum have a given ratio (3:1).

Problem 15 To find two numbers such that when a given number (30) is transferred from the second to the first, and when another number (50) is transferred from the first to the second, the resulting pairs have given ratios (2:1, 3:1).

Problem 16 To find three numbers such that the sum of any two are given (20,30,40).

Problem 17 To find four numbers such that the sums of any three of them are given (20,22,24,27).

Problem 18 To find three numbers such that the sum of any two is greater than the third by given amounts (20,30,40).

Problem 19 is the same as 18, solved with a different method.

Problem 20 To find four numbers such that the sum of any three is greater than the fourth by given amounts (20,30,40,50).

Problem 21 is the same as 20, solved with a different method.

Problem 22 To split a given number (100) in three parts such the first two together have a given ratio to the third (3:1) and the last two together have a given ratio to the first (4:1).

Problem 23 To find three numbers such that the third exceeds the second by a given fraction (1/3) of the first; the second exceeds the first by a fraction (1/3) of the third; and the first exceeds a fraction (1/3) of the second by a given amount (10).

Problem 24 is the same as 23, solved with a different method.

Problem 25 To find three numbers such that if each transfers a given fraction of itself (1/3, 1/4, 1/5) to the next (cyclically), the results are all equal.

Problem 26 To find four numbers such that if each transfers a given fraction of itself (1/3, 1/4, 1/5, 1/6) to the next (cyclically), the results are all equal.

Problem 27 To find three numbers such that if each receives a given fraction of the sum of the remaining numbers (1/3, 1/4, 1/5), the results are all equal.

Problem 28 To find four numbers such that if each receives a given fraction of the sum of the remaining numbers (1/3, 1/4, 1/5, 1/6), the results are all equal.

Problem 29 To find a number which when multiplied by two given numbers (200,5) makes one a square and the other its side.

Problem 30 To find two numbers whose sum and product are given (20,96).

Problem 31 To find two numbers whose sum and sum of squares are given (20,208).

Problem 32 To find two numbers whose sum and difference of squares are given (20,80).

Problem 33 To find two numbers whose difference and product are given (4,96).

Problem 34 To find two numbers in a given ratio (3:1) such that their sum and the sum of their squares have a given ratio (1:5).

Problem 35 To find two numbers in a given ratio (3:1) such that their difference and the sum of their squares have a given ratio (1:10).

Problem 36 To find two numbers in a given ratio (3:1) such that their sum and the difference of their squares have a given ratio (1:6).

Problem 37 To find two numbers in a given ratio (3:1) such that their difference and the difference of their squares have a given ratio (1:12).

Problem 38 To find two numbers in a given ratio (3:1) such that the smaller square and the larger number have a given ratio (6:1).

Problem 39 To find two numbers in a given ratio (3:1) such that the smaller square and its side have a given ratio (6:1).

Problem 40 To find two numbers in a given ratio (3:1) such that the smaller square and their sum have a given ratio (2:1).

Problem 41 To find two numbers in a given ratio (3:1) such that the smaller square and their difference have a given ratio (6:1).

Problem 42 restates problems 38 to 41 for the larger square.

Problem 43 To find a number, together with two given numbers (3,5), such that when any two are added together then multiplied with the third, the result is three numbers which have equal differences.

1.1 Solutions

Note: Solutions are not exact copies of the original ones; some were written much later, during the Byzantine and Islamic periods.

Problem 1 x + y = 100, y - x = 40Solution:

Numbers	x x + 40
sum	2x + 40 = 100
subtract	2x = 60
divide	x = 30
solution	30 70

Problem 2 x + y = 60, y = 3xSolution:

Numbers	x	3x
sum	4x =	= 60
divide	x =	= 15
solution	15	45

Problem 3 x + y = 80, y = 3x + 4Solution:

Numbers	x	3x + 4
sum	4x +	4 = 80
subtract	4x	= 76
divide	x	= 19
solution	19	61

Problem 4 y = 5x, y - x = 20Solution:

x 5x
4x = 20
x = 5
5 25

Problem 5 $x + y = 100, \frac{x}{5} + \frac{y}{3} = 30$ Solution:

Numbers	5x 90 - 3x
sum	2x + 90 = 100
subtract	2x = 10
divide	x = 5
solution	25 75

Problem 6 $x + y = 100, \frac{y}{4} - \frac{x}{6} = 20$ Solution:Numbers 4x + 806x10x + 80 = 100 sum 10x = 20subtract divide x = 2solution 1288 Problem 7 3(x - 100) = x - 20Solution: Number x $x - 100 \quad x - 20$ remainders x - 20 = 3x - 300condition add/subtract 2x = 280divide x = 140Problem 8 x + 100 = 3(x + 20)Solution: Number xsums $x + 100 \quad x + 20$ x + 100 = 3x + 60 $\operatorname{condition}$ add 2x = 40x = 20divide *Problem* 9 100 - x = 6(20 - x)Solution: Number xremainders 100 - x20 - xcondition 100 - x = 120 - 6x5x = 20add divide x = 4Problem 10 4(20+x) = 100-xSolution: Number xx + 20new numbers 100 - xcondition 100 - x = 4x + 80add 5x = 20divide x = 4Problem 11 x + 20 = 3(x - 100)Solution: Number xx + 20new numbers x - 100 $\operatorname{condition}$ x + 20 = 3x - 3002x = 320add divide x = 160

Problem 12 x + y = 100 = a + b, a = 2x, b = 3ySolution:

First pair	x	100 - x
Second pair	2x	100 - 2x
condition	100 - x = 300 - 6x	
add	5x = 200	
divide	x = 40	
solution	40,60	$20,\!80$

Problem 13 x + y = 100 = a + b = u + v, y = 3a, b = 2u, v = 4xSolution:

First pair	x	24x - 300
Second pair	4x - 100	200 - 8x
Third pair	100 - 4x	4x
sum	25x - 300 = 100	
add	25x = 400	
divide	x = 16	
solution	(16, 84), (28, 72), (36, 64)	

Problem 14 xy = 3(x+y)Solution:

Try numbers	x	2
condition	2x = 3x + 6	no solution
Modify	x	4
condition	4x = 3x + 12	
add	x = 12	
solution	12	4

Problem 15 y + 30 = 2(x - 30), 3(y - 50) = x + 50Solution:

2nd number	x	
after first transfer		
2nd number	x - 30	
1st number	2x - 60	
original 1st number	2x - 90	
after second transfer		
1st number	2x - 140	
2nd number	x + 50	
condition	x + 50 = 6x - 420	
add	5x = 470	
divide	x = 94	
solution	94	98

Problem 16 x + y = 20, x + z = 30, y + z = 40Solution:

Sum of numbers	x		
numbers	x - 40	x - 30	x - 20
condition	2x - 70 = 20		
add	2x = 90		
divide	x = 45		
solution	5	15	25

Problem 17 a+b+c = 20, a+b+d = 22, a+c+d = 24, b+c+d = 27Solution:

Sum of numbers	x				
numbers	x - 27	x - 24	x - 22	x - 20	
sum of first three	3x - 73 = 20				
add	3x = 93				
divide	x = 31				
solution	4	7	9	11	

Problem 18 x + y = z + 20, x + z = y + 30, y + z = 40 + xSolution:

Sum of numbers	x		
2nd and 3rd together	x - 1st		
condition	$x-1\mathrm{st} = 1\mathrm{st} + 40$		
add	Twice $1st = x - 40$		
numbers (similarly)	$2^{\times}x - 20$	$2^{\times}x - 15$	$2^{\times}x - 10$
sum	$x = 2^{\times}3x - 45$		
multiply	2x = 3x - 90		
add	x = 90		
solution	25	30	35

Another solution:

3rd number	x		
1st and 2nd	3rd + 20		
3rd and 2nd	1st + 30		
so, 1st and 3rd and twice 2nd	1st + 3rd + 50		
twice 2nd	50		
2nd	25		
1st	x-5		
condition	2x - 5 = 65		
add	2x = 70		
divide	x = 35		
solution	30	25	35

Problem 20 a + b + c = 20 + d, a + b + d = 30 + c, a + c + d = 40 + b, b + c + d = 50 + aSolution:

Sum of numbers	x			
sum of 2nd, 3rd, 4th	x - 1st			
condition	x-1st = 1st + 50			
add	Twice $1st = x - 50$			
numbers (similarly)	$2^{\times}x - 25$	$2^{\times}x - 20$	$2^{\times}x - 15$	$2^{\times}x - 10$
sum	2x - 70 = x			
add	x = 70			
solution	10	15	20	25

Problem 22 x + y + z = 100, x + y = 3z, y + z = 4xSolution:

Smallest number	x		
sum of others	100 - x		
condition	100 - x = 4x		
add	5x = 100		
divide	x = 20		
solution	20	55	25

Problem 23 $z - y = \frac{x}{3}, y - x = \frac{z}{3}, x - \frac{y}{3} = 10$ Solution:

Smallest number	x + 10		
2nd number	3x		
2nd minus 1st	2x - 10		
3rd number	6x - 30		
condition	9x - 90 = x + 10		
add	8x = 100		
divide	$x = 2^{\times}25$		
solution	$22\frac{1}{2}$	$37\frac{1}{2}$	45

Problem 25 $x - \frac{x}{3} + \frac{z}{5} = y - \frac{y}{4} + \frac{x}{3} = z - \frac{z}{5} + \frac{y}{4}$ Solution:

1st number	3x
2nd number	4 units
2nd after transfer	x + 3
transfer from 3rd to 1st	x + 3 + x - 3x
3rd	15 - 5x
condition	x + 3 = 15 - 5x - (3 - x) + 1
	5x = 10
	x = 2
solution	6 4 5

Problem 26 Solution:	$a - \frac{a}{3} + \frac{d}{6} = b - \frac{b}{4} + \frac{a}{3}$	$= c - \frac{c}{5}$	$+ \frac{b}{4} = d -$	$-\frac{d}{6}+$	$-\frac{c}{5}$
	1st number 2nd number 2nd after transfer transfer 4th to 1st 4th transfer 3rd to 4th 3rd condition add divide solution	3x 4 units x + 3 3 - x 18 - 6a 6x - 12 30x - 6 24a 150	x 2 $x - 47 = x$ $23x = 50$ $x = 50/23$ $92 = 1$	2 + 3 3 20	114
Problem 27 Solution:	$x + \frac{y+z}{3} = y + \frac{x+z}{4} = x$	$z + \frac{x+y}{5}$			
	First number transfer from 2nd an total sum 1st (or 2nd) after tra- four 2nd, and rest three 2nd 2nd 3rd fifth of 1st and 2nd condition solve numbers solution	nd 3rd ansfer	$x = 1 \text{ unit} \\ x + 3 \\ x + 1 \\ 4x + 4 \\ 3x + 1 \\ x + \frac{1}{3} \\ \frac{8}{3} - x \\ \frac{2}{5}x + \frac{1}{15} \\ \frac{41}{15} - \frac{3}{5}x \\ x = \frac{13}{13}$	= x $\frac{13}{12}$ $\frac{17}{12}$ 17	$+1$ $\frac{19}{12}$ 19
Problem 28 Solution:	$a + \frac{b+c+d}{3} = b + \frac{a+c+d}{4}$	$c^{l} = c + \frac{a}{c}$	$\frac{a+b+d}{5} = d$	+ a+	$\frac{b+c}{6}$
	First number transfer from rest total sum 1st after transfer four 2nd, and rest three 2nd 2nd similarly, 3rd,4th 1st,2nd,3rd together sum solve	$\begin{vmatrix} x \\ 1 \\ x+3 \\ x+1 \\ 4x+4 \\ 3x+1 \\ x+\frac{1}{3} \\ x+\frac{1}{2} \\ 3x+\frac{5}{6} \\ 4x+\frac{4}{3} \\ x=\frac{47}{90} \end{vmatrix}$	$x + \frac{3}{5}$ $\frac{3}{0} = x + 3$		
	solution	47	77	92	101

Problem 29 200 $x = y^2$, 5x = ySolution: Number xproducts 5x200xcondition $200x = 25\Delta$ divide $\Delta = 8x$ solution 8 *Problem* 30 x + y = 20, xy = 96Solution: Numbers x + 1010 - xproduct $100 - \Delta = 96$ $\Delta = 4$ add root x = 2solution 128 Problem 31 $x + y = 20, x^2 + y^2 = 208$ Solution: Numbers 10 + x10 - xsquares $\Delta + 20x + 100$ $\Delta + 100 - 20x$ $2\Delta + 200 = 208$ sum of squares divide $\Delta = 4$ x = 2root solution 128 $x + y = 20, x^2 - y^2 = 80$ Problem 32 Solution: Numbers 10 + x10 - xdifference of squares 40x = 80x = 2divide 12solution 8 *Problem* 33 x - y = 4, xy = 96Solution: Numbers x + 2x - 2product $\Delta - 4 = 96$ $\Delta = 100$ add x = 10 root solution 128 Problem 34 $y = 3x, x^2 + y^2 = 5(x + y)$ Solution: Numbers 3xx 10Δ sums 4x $10\Delta = 20x$ ratio x = 2divide solution 2 $\mathbf{6}$

Problem 35 $y = 3x, x^2 + y^2 = 10(y - x)$ Solution: Numbers 3xxsum and difference 10Δ 2xratio $10\Delta = 20x$ divide x=22 $\mathbf{6}$ solution Problem 36 $y = 3x, y^2 - x^2 = 6(x + y)$ Solution: Numbers 3xxsum,diff 8Δ 4x $8\Delta = 24x$ ratio x = 3divide 3 $\operatorname{solution}$ 9 Problem 37 $y = 3x, y^2 - x^2 = 12(y - x)$ Solution: Numbers x3xdifferences 2x 8Δ ratio $8\Delta = 24x$ x = 3divide solution 3 9Problem 38 $y = 3x, x^2 = 6y$ Solution: Numbers 3xxcondition $\Delta = 18x$ divide x = 1818 solution 54*Problem* 39 $y = 3x, x^2 = 6x$ Solution: Numbers 3xxcondition $\Delta = 6x$ divide x = 66 solution 18Problem 40 $y = 3x, x^2 = 2(x+y)$ Solution:Numbers x3xcondition $\Delta = 8x$ divide x = 824solution 8

Problem 41 $y = 3x, x^2 = 6(y - x)$ Solution:

Numbers	x	3x
condition	$\Delta = 12x$	
divide	x = 12	
solution	12	36

Problem 43 5(x+3) - 3(x+5) = (5+3)x - 5(x+3), etc. Solution:

Number	x		
sum of pairs	x+5	x + 3	8
multiplied by third	3x + 15	5x + 15	8x
Possibility 1	3x + 15	5x + 15	8x
difference	2x = 3x - 15		
	x = 15		
Possibility 2	3x + 15	8x	5x + 15
·	5x - 15 = 15 - 3x		
	8x = 30		
	x = 15/4		
Possibility 3	8x	3x + 15	5x + 15
v	15 - 5x = 2x		
	x = 15/7		
solutions	60 '	90	120
	105/4	135/4	30
	150/7	180'/7	120/7
	1 /	/	/

2 Book II

Problem 1 restates problem 34 of Book 1. Problem 2 restates problem 37 of Book 1. Problem 3 restates problem 14 of Book 1.

Problem 4 restates problem 14 of Book 1. Problem 4 restates problem 31 of Book 1. Problem 5 restates problem 32 of Book 1.

Problem 6 To find two numbers with a given difference (2) which is less than than the difference of their squares by a given number (20).

Problem 7 To find two numbers with a given difference (2) whose difference of squares is greater than a given multiple (3) of their difference by a given number (10).

Problem 8 To split a given square (16) into two squares.

Problem 9 To split a given sum of squares (13 = 4 + 9) into two other squares.

Problem 10 To find two squares with a given difference (60).

Problem 11 To find a number such that when added to two given numbers (2,3) makes each a square.

Problem 12 To find a number such that when subtracted from two given numbers (9,21) makes each a square.

Problem 13 To find a number such that when two given numbers (6,7) are subtracted from it, each becomes a square.

Problem 14 To split a given number (20) into two parts and to find a square such that when added to each part makes each a square.

Problem 15 To split a given number (20) into two parts and to find a square such that the square minus each part is each a square.

Problem 16 To find two numbers with a given ratio (3:1) such that when added to a given square (9) makes each a square.

Problem 17 To find three numbers such that when each gives a given fraction of itself $(\frac{1}{5}, \frac{1}{6}, \frac{1}{7})$ and given numbers (6,7,8) to the next number (cyclically), the

results are all equal.

Problem 18 To split a given number (80) into three parts such that when each gives a given fraction of itself $(\frac{1}{5}, \frac{1}{6}, \frac{1}{7})$ and given numbers (6,7,8) to the next number (cyclically), the results are all equal.

Problem 19 To find three squares such that the difference between the largest two and between the smallest two have a given ratio (3:1).

Problem 20 To find two numbers whose squares added to the other number is each a square.

Problem 21 To find two numbers whose squares minus the other number is each a square.

Problem 22 To find two numbers whose squares added to their sum is each a square.

Problem 23 To find two numbers whose squares minus their sum is each a square.

Problem 24 To find two numbers such that each added to the square of their sum gives a square.

Problem 25 To find two numbers such that each subtracted from the square of their sum gives a square.

Problem 26 To find two numbers such that added to their product give squares, whose sides have a given sum (6).

Problem 27 To find two numbers such that subtracted from their product give squares, whose sides have a given sum (5).

Problem 28 To find two squares such that each added to their product is a square.

Problem 29 To find two squares such that when subtracted from their product each gives a square.

Problem 30 To find two numbers whose sum added or subtracted from their product each gives a square.

Problem 31 To find two numbers whose sum is a square, and when this is

added or subtracted from their product, each gives a square.

Problem 32 To find three numbers whose squares added to the following is each a square.

Problem 33 To find three numbers whose squares minus the following is each a square.

Problem 34 To find three numbers whose squares added to their sum is each a square.

Problem 35 To find three numbers whose squares minus their sum is each a square.

2.1 Solutions

Problem 6 $y - x = 2, y^2 - x^2 - 2 = 20$ Solution:

> numbers diff. of sq. $\begin{vmatrix} x & x+2 \\ 4x+4=22 \\ 4x=18 \\ x=\frac{18}{4} \\ \frac{9}{2} & \frac{13}{2} \end{vmatrix}$ solution

Problem 7 $y - x = 2, y^2 - x^2 - 3(y - x) = 10$ Solution:

numbers

$$x$$
 $x+2$

 diff. of sq.
 $4x + 4 = 3 \times 2 + 10 = 16$
 $4x = 12$
 $x = 3$

 solution
 3
 5

Problem 8 $x^2 + y^2 = 16$ Solution:

 $\begin{array}{c|c} \text{Squares} & & \Delta & 16-\Delta \\ \text{try square on } x-4 & & \Delta+16-8x=16-\Delta \\ & & 2\Delta=8x \\ & & x=4 \\ \text{try square on } 2x-4 & & 4\Delta+16-16x=16-\Delta \\ & & 5\Delta=16x \\ & & x=16/5 \\ \text{solution} & & \frac{256}{25} & \frac{144}{25} \end{array}$

It is impossible for a cube to be a sum of two cubes, a fourth power to be a sum of two fourth powers, or in general for any number that is a power greater than the second to be the sum of two like powers. I have discovered a truly remarkable proof which this margin is too small to contain. - Pierre de Fermat 1637

Problem 9 $x^2 + y^2 = 13$ Solution:

try square on $x+2$	$\Delta + 4x + 4$	
try square on $x-3$		$\Delta + 9 - 6x$
try square on $2x - 3$	4	$\Delta + 9 - 12x$
sum of squares	$5\Delta + 13 -$	8x = 13
	5x =	= 8
solution	$\frac{324}{25}$	$\frac{1}{25}$

Problem 10 $y^2 - x^2 = 60$ Solution:

numbers
diff. of sq.
$$\begin{vmatrix} x & x+3 \\ 6x+9 = 60 \\ 6x = 51 \\ x = \frac{51}{6} \\ \frac{17}{2} & \frac{23}{2} \\ \frac{289}{4} & \frac{529}{4} \end{vmatrix}$$
solution

Problem 11 $x+2 = a^2, x+3 = b^2$ Solution:

$$\begin{array}{c|c} \text{squares} \\ \text{diff. of sq.} \\ \text{try sum= 2, diff= } \frac{1}{2} \\ \text{try sum= 4, diff= } \frac{1}{4} \\ \end{array} \\ \begin{array}{c} x+2 & x+3 \\ 1 = \text{sum} \times \text{diff} \\ y & 2-y \\ y & 4-y \\ 2y-4 = \frac{1}{4} \\ y = \frac{17}{4} \\ \frac{17}{8} & \frac{15}{64} \\ 2x+5 = \frac{289}{64} + \frac{225}{64} = \frac{257}{32} \\ x = \frac{97}{64} \\ \end{array}$$

Problem 12 $9-x = a^2, 21-x = b^2$ Solution:

1st square	Δ
number	$9-\Delta$
try 2nd square on $x - 4$	$\Delta + 16 - 8x$
	$\Delta + 16 - 8x = \Delta + 12$
	8x = 4
	x = 1/2
solution	$\frac{35}{4}$

Problem 13 $x - 6 = a^2, x - 7 = b^2$ *Solution*:

squares
diff. of sq.
try sum, diff.
difference
solution

$$\begin{aligned}
x - 6 \quad x - 7 \\
1 \\
2 \quad \frac{1}{2} \\
y \quad 2 - y \\
2y - 2 = \frac{1}{2} \\
y = \frac{5}{4} \\
x - 6 = \frac{25}{16} \\
\frac{121}{16}
\end{aligned}$$

Problem 14 $x + y = 20, x + z^2 = a^2, y + z^2 = b^2$ Solution:

square on
$$x + 1$$

square on $x + 2$
parts
sum
solution
$$\Delta + 2x + 1$$
$$\Delta + 4x + 4$$
$$2x + 1 \quad 4x + 4$$
$$6x + 5 = 20$$
$$x = \frac{15}{6}$$
$$6 \quad 14 \quad \frac{25}{4}$$

Problem 15 $x + y = 20, z^2 - x = a^2, z^2 - y = b^2$ Solution:

square on $x + 1$	$\Delta + 2x + 1$
square on $x-1$	$\Delta + 1 - 2x$
parts	2x+1 $4x$
sum	6x + 1 = 20
	$x = \frac{19}{6}$
solution	$\frac{22}{3}$ $\frac{38}{3}$ $\frac{625}{36}$

Problem 16 $y = 3x, x + 9 = a^2, y + 9 = b^2$ Solution:

square on $x + 3$	$\Delta + 6x + 9$	
try square on $x-3$	$\Delta + 9 - 2x$	
square on $2x - 3$	$4\Delta + 9 - 12x$	
numbers	$\Delta + 6x$ $4\Delta - 12x$	
ratio	$3\Delta + 18x = 4\Delta - 12x$	
	$\Delta = 30x$	
	x = 30	
solution	1080 3240	

Problem 17 $x - \frac{x}{5} - 6 + \frac{z}{7} + 8 = y - \frac{y}{6} - 7 + \frac{x}{5} + 6 = z - \frac{z}{7} - 8 + \frac{y}{6} + 7$ Solution:

numbers5x6x7y2nd gives x + 7, receives x + 66x - 11st gives x + 64x - 6so 1st receives from 3rd2x + 5y2x - 33rd number14x - 213rd gives 2x + 5, receives x + 713x - 19 = 6x - 1 $x = \frac{18}{7}$ $\frac{90}{7}$ $\frac{90}{7}$ $\frac{108}{7}$

Problem 18 $x+y+z = 80, x-\frac{x}{5}-6+\frac{z}{7}+8 = y-\frac{y}{6}-7+\frac{x}{5}+6 = z-\frac{z}{7}-8+\frac{y}{6}+7$ Solution:

final parts 80/380/380/35x7znumbers 4x - 62nd gives y + 7, receives x + 61st gives x + 6 $\frac{\frac{74}{3} - 4x}{\frac{518}{3} - 28x}$ $5x + 6y + \frac{518}{3} - 28x = 80$ $y = 24x - \frac{361}{3}$ 144x - 722 802 - 149x $121x - \frac{1805}{3} = \frac{83}{3}$ $x = \frac{1888}{363}$ $\frac{9786}{363}$ $\frac{9814}{3}$ $\frac{98}{3} - 4x$ so 1st receives from 3rd z3rd number sum numbers 5x $\tfrac{9440}{363}$ solution Problem 19 $z^2 - y^2 = 3(y^2 - x^2)$ Solution:1st square on x Δ 2nd square on x + 1 $\Delta + 2x + 1$ try 3rd square on x + 2 $\Delta + 4x + 4$ 3rd square on x + 3 $\Delta + 6x + 9$ 2x + 1diff. of smallest sq. diff. of largest sq. 4x + 86x + 3 = 4x + 8ratio $x = \frac{5}{2}$ $\frac{25}{4}$ $\frac{49}{4}$ $\frac{121}{4}$ solution Problem 20 $x^2 + y = a^2, y^2 + x = b^2$ Solution: square on x + 1 $\Delta + 2x + 1$ numbers x2x + 1sum of sq. and number $4\Delta + 5x + 1$ try square on 2x - 1 $4\Delta + 1 - 4x$ $4\Delta + 4 - 8x$ square on 2x-2condition $4\Delta+5x+1=4\Delta+4-8x$ 13x = 3 $\frac{3}{13}$ $\frac{19}{13}$ solution

Problem 21 $x^2 - y = a^2, y^2 - x = b^2$ Solution:

final square
$$\Delta$$
square on $x + 1$ $\Delta + 2x + 1$ numbers $x + 1$ $2x + 1$ square on $2x + 1$ $4\Delta + 4x + 1$ try condition $4\Delta + 3x = 9\Delta$ $5\Delta = 3x$ $x = \frac{3}{5}$ solution $\frac{8}{5}$ $\frac{11}{5}$

Problem 22 $x^{2} + x + y = a^{2}, y^{2} + x + y = b^{2}$ Solution:

square on $x + 1$	$\Delta + 2x + 1$
numbers	x x + 1
sum of 2nd sq. and sum	$\Delta + 4x + 2$
try square on $x-1$	$\Delta + 1 - 2x$
try square on $x-2$	$\Delta + 4 - 4x$
condition	$\Delta + 4x + 2 = \Delta + 4 - 4x$
	8x = 2
	$x = \frac{1}{4}$
solution	$\begin{vmatrix} \frac{1}{4} \end{vmatrix} = \frac{5}{4}$

Problem 23 $x^{2} - x - y = a^{2}, y^{2} - x - y = b^{2}$ Solution:

square on $x + 1$	$\Delta + 2x + 1$
numbers	x x+1
1st square minus sum	$\Delta - 2x - 1$
try square on $x-1$	$\Delta + 1 - 2x$
try square on $x-2$	$\Delta + 4 - 4x$
condition	$\Delta - 2x - 1 = \Delta + 4 - 4x$
	2x = 5
solution	$\frac{5}{2}$ $\frac{7}{2}$

Problem 24 $x + (x + y)^2 = a^2, y + (x + y)^2 = b^2$ Solution:

square of sum	Δ	
try final squares	4Δ	9Δ
numbers	3Δ	8Δ
condition	$11\Delta = x$	
	$x = \frac{1}{11}$	
solution	$\frac{3}{121}^{11}$	$\frac{8}{121}$

Problem 25 $(x+y)^2 - x = a^2$, $(x+y)^2 - x = a^2$	$y)^2 - y = b^2$	
square of sum	16Δ	
try final squares		
try iniai squares	4Δ 3Δ 10Λ 7Λ	
numbers		
sum	$19\Delta = 4x$	
solution	$\begin{array}{c c} x = \frac{4}{19} \\ \frac{192}{361} & \frac{112}{361} \end{array}$	
Problem 26 $x + xy = a^2, y + xy = b^2$ Solution:	$a^2, a+b=6$	
1st square	4Λ	
product	$4\Delta - x$	
product	$4\Delta - x$	
numbers	x 4x = 1	L
condition	$4\Delta + 3x - 1$ is a square	9
try square on $6-2x$	$4\Delta + 36 - 24x$	
	27x = 37	
solution	$\frac{37}{27}$ $\frac{121}{27}$	
Problem 27 $xy - x = a^2, xy - y = b^2$ Solution:	$a^{2}, a + b = 5$	
1st square	4Δ	
product	$4\Delta + x$	
numbers	$x \qquad 4x+1$	l
condition	$4\Lambda - 3r - 1$ is a square	2
try square on $5-2r$	$4\Delta + 25 - 20x$	2
try square on $5-2x$	$4\Delta + 25 - 20x$ 17x - 26	
colution	17x = 20 26 121	
Solution	$\overline{17}$ $\overline{17}$	
Problem 28 $x^2 + x^2y^2 = a^2, y^2 + x^2y$ Solution:	$b^2 = b^2$	
try squares in some unit	$ \Delta$	1
product in square units	Δ	
condition	Δ sq.units $+\Delta$ units i	s a square
taking the unit as the unknown	$\Delta \Delta + \Delta$ is a square	is a square
	$\Delta + 1$ is a square	
try square on $2 - r$	$\Delta + 1$ is a square $\Delta + 4 - 4x - \Delta$	± 1
try square on 2 - x	$\begin{array}{c} \Delta + 4 & 4x - \Delta \\ 4x - 2 \end{array}$	I I
unit of goueros is 9	4x = 0	9
unit of squares is $\frac{1}{16}$	$\frac{1}{16}\Delta$	16
product	$\frac{81}{256}\Delta$	
from above	$\frac{81}{256}\Delta + \frac{9}{16}\Delta$ is a s	square
remaining condition	$\frac{81}{256}\Delta + \frac{9}{16}$ is a second	quare
	$9\Delta + 16$ is a squ	uare
try square on $5 - 3x$	$9\Delta + 16 = 9\Delta + 25$	5 - 30x
	30x = 9	0
solution	$\frac{31}{1600}$	$\frac{9}{16}$

Problem 29 $x^2y^2 - x^2 = a^2, x^2y^2 - y^2$ Solution:	$c^2 = b^2$	
squares in some unit	Δ	1
product in square units	Δ	
condition	Δ sq.units $-\Delta$ units is	a square
taking the unit as the unknown	$\Delta\Delta - \Delta$ is a square	
try 9/16	$\Delta - 1 = \frac{9}{16}$	
squares	$\frac{25}{16}\Delta$	$\frac{25}{16}$
remaining condition	$\frac{625}{256}\Delta - \frac{25}{16}$ is a square	10
	$25\Delta - 16$ is a square	
try square on $5x - 1$	$25\Delta + 1 - 10x = 25\Delta$	$\Delta - 16$
	10x = 17	
solution	$\frac{289}{64}$	$\frac{25}{16}$

solution $| \frac{289}{64}$ Problem 30 $xy + x + y = a^2, xy - x - y = b^2$ Solution:

square on $3+2$	9 + 4 + 12		
square on $3-2$	9 + 4 - 12		
product, sum	13Δ	12Δ	
numbers	x	13x	
sum	$12\Delta = 14x$		
	$x = \frac{7}{6}$		
solution	$\frac{7}{6}$	$\frac{91}{6}$	
$-a^2 - a^2 - b^2$	$a^2 - a^2$		

Problem 31 $x + y = a^2$, $xy + a^2 = b^2$, $xy - a^2 = c^2$ Solution:

square on $4+2$	16+4+16	
square on $4-2$	16 + 4 - 16	
product, sum	20Δ	16Δ
numbers	2x	10x
sum	$16\Delta = 12x$	
	$x = \frac{12}{16}$	
solution	$\frac{3}{2}$	$\frac{15}{2}$
		-

Problem 32 $x^2 + y = a^2, y^2 + z = b^2, z^2 + x = c^2$ Solution:

Problem 33 $x^2 - y = a^2, y^2 - z = b^2, z^2 - x = c^2$ Solution:

square on $x+1$	$\Delta + 2x + 1$		
square on $2x + 1$	$4\Delta + 4x + 1$		
numbers	x + 1	2x + 1	4x + 1
square on $4x + 1$	$16\Delta + 8x + 1$		
condition	$16\Delta + 7x$ is a	square	
try 25Δ	$16\Delta + 7x =$	25Δ	
	x = 7/9)	
solution	$\frac{16}{9}$	$\frac{23}{9}$	$\frac{37}{9}$

Problem 34 $s = x + y + z, x^2 + s = a^2, y^2 + s = b^2, z^2 + s = c^2$ Solution:

integer with three factorizations
square on
$$12 + 1$$

square on $6 + 2$
square on $4 + 3$ $12 = 1 \times 12 = 2 \times 6 = 3 \times 4$
 $169 = 145 + 24 = 121 + 48$
 $64 = 40 + 24 = 16 + 48$
 $49 = 25 + 24 = 1 + 48$
 $49 = 25 + 24 = 1 + 48$
 $\frac{121}{4} + 12 = \frac{169}{4}$
 $\frac{16}{4} + 12 = \frac{64}{4}$
 $\frac{1}{4} + 12 = \frac{49}{4}$
 $\frac{11}{2}x$ $2x$
 $8x = 12\Delta$
 $x = 8/12$ numbers
solution $\frac{11}{3}$ $\frac{4}{3}$ $\frac{1}{3}$

Problem 35 s = x + y + z, $x^2 - s = a^2$, $y^2 - s = b^2$, $z^2 - s = c^2$ Solution:

as above
$$\begin{vmatrix} \frac{169}{4} - 12 = \frac{121}{4} \\ \frac{64}{4} - 12 = \frac{16}{4} \\ \frac{49}{4} - 12 = \frac{1}{4} \\ numbers \begin{vmatrix} \frac{13}{2}x & 4x & \frac{7}{2}x \\ sum & 14x = 12\Delta \\ x = 14/12 \\ solution \begin{vmatrix} \frac{91}{12} & \frac{14}{3} & \frac{49}{12} \end{vmatrix}$$

3 Book III

Problem 1 To find three numbers such that their squares subtracted from their sum each gives a square.

Problem 2 To find three numbers such that when added to their sum squared each gives a square.

Problem 3 To find three numbers such that when subtracted from their sum squared each gives a square.

Problem 4 To find three numbers such that each minus their sum squared gives a square.

Problem 5 To find three numbers whose sum is a square and the sum of any two minus the third is a square.

Problem 6 To find three numbers whose sum is a square and the sum of any two is a square.

Problem 7 To find three numbers in progression such that the sum of any two is a square.

Problem 8 To find three numbers such that any two, as well as their sum, added to a given number (3) is a square.

Problem 9 To find three numbers such that any two, as well as their sum, minus a given number (3) is a square.

Problem 10 To find three numbers such that the product of any two added to a given number (12) is a square.

Problem 11 To find three numbers such that the pdouct of any two minus a given number (10) is a square.

Problem 12 To find three numbers such that the product of any two added to the third is a square.

Problem 13 To find three numbers such that the product of any two minus the third is a square.

Problem 14 To find three numbers such that the product of any two added

to the square on the third is a square.

Problem 15 To find three numbers such that for any two of them, their sum added to their product is a square.

Problem 16 To find three numbers such that for any two of them, their sum subtracted from their product is a square.

Problem 17 To find two numbers such that their product added to any of them, and to their sum, is each a square.

Problem 18 To find two numbers such their product minus any of them, and minus their sum, is each a square.

Problem 19 To find four numbers such that when added or subtracted from their sum squared is a square.

Problem 20 is the same as Book II Problem 15. *Problem* 21 is the same as Book II Problem 14.

3.1 Solutions

Problem 1 s = x + y + z, $s - x^2 = a^2$, $s - y^2 = b^2$, $s - z^2 = c^2$ Solution:

split 5 into squares in two ways	$5 = 1 + 4 = \frac{4}{25} + \frac{121}{25}$
numbers	$x \qquad 2x \qquad \frac{2}{5}x$
let sum	5Δ
condition 1	$5\Delta - \Delta = 4\Delta$ is a square
condition 2	$5\Delta - 4\Delta = \Delta$ is a square
condition 3	$5\Delta - \frac{4}{25}\Delta = \frac{121}{25}\Delta$ is a square
sum	$x + 2x + \frac{2}{5}x = 5\Delta$
	$\frac{17}{5}x = 5\Delta$
solution	$\frac{17}{25}$ $\frac{34}{25}$ $\frac{34}{125}$

Problem 2 s = x + y + z, $x + s^2 = a^2$, $y + s^2 = b^2$, $z + s^2 = c^2$ Solution:

square of sum	Δ		
final squares	4Δ	9Δ	16Δ
numbers	3Δ	8Δ	15Δ
sum	$3\Delta + 8\Delta$	$\Delta + 15.$	$\Delta = x$
solution	$\begin{array}{c} x = \frac{1}{26} \\ \frac{3}{676} \end{array}$	$\frac{8}{676}$	$\frac{15}{676}$

Problem 3 s = x + y + z, $s^2 - x = a^2$, $s^2 - y = b^2$, $s^2 - z = c^2$ Solution:

square of sum
$$16\Delta$$
final squares Δ 4Δ 9Δ numbers 15Δ 12Δ 7Δ sum $15\Delta + 12\Delta + 7\Delta = 4x$ $x = \frac{2}{17}$ solution $\frac{28}{289}$ $\frac{48}{289}$ $\frac{60}{289}$

Problem 4 s = x + y + z, $x - s^2 = a^2$, $y - s^2 = b^2$, $z - s^2 = c^2$ Solution:

square of sum	Δ		
final squares	Δ	4Δ	9Δ
numbers	2Δ	5Δ	10Δ
sum	$2\Delta + 54$	$\Delta + 10$	$\Delta = x$
	$x = \frac{1}{17}$		
solution	$\frac{2}{289}$	$\frac{5}{289}$	$\frac{10}{289}$

Problem 5 $x + y + z = a^2, x + y - z = b^2, y + z - x = c^2, z + x - y = d^2$ Solution:

let sum	$\Delta + 2x + 1$		
condition 1	1st +	-2nd - 3rdi	is a square, 1
condition 2	2nd -	+ 3rd $-$ 1st i	s a square, Δ
numbers	$x + \frac{1}{2}$	$\frac{1}{2}\Delta + \frac{1}{2}$	$\frac{1}{2}\Delta + x$
3rd+1st-2nd	$\frac{1}{2}\Delta + x + x$	$+\frac{1}{2}-\frac{1}{2}\Delta-$	$\frac{1}{2}$ is a square, say 9
	2x = 9		
solution	5	$\frac{85}{8}$	$\frac{117}{8}$

Problem 6 $x+y+z=a^2, x+y=b^2, y+z=c^2, z+x=d^2$ Solution:

let sum	$\Delta + 2x + 1$
condition 1	1st + 2nd is a square, Δ
condition 2	$2nd + 3rd$ is a square, $\Delta - 2x + 1$
numbers	$4x$ $\Delta - 4x$ $2x + 1$
condition 3	1st + 2nd is a square, say, 49 or 121
	6x + 1 = 121
	x = 20
solution	80 320 41

Problem 7 y = x + d, z = y + d, $x + y = a^2$, $y + z = b^2$, $z + x = c^2$ Solution:

	Pairs	are also in pro	gression
squares	Δ	$\Delta + 2x + 1$	$\Delta + 4x + 2$
try square on $x-2$	$\Delta +$	$4x + 2 = \Delta -$	4x + 4
try square on $x-8$	$\Delta + 4$	$4x + 2 = \Delta - 1$	6x + 64
	x = 31/10		
squares	$\frac{961}{100}$	$\frac{1681}{100}$	$\frac{2401}{100}$
1st + 2nd	961		
2nd+3rd	1681		
1st+3rd	2401		
sum	$\frac{5043}{2}$		
solution	$\frac{241}{2}$	$\frac{1681}{2}$	$\frac{3121}{2}$

Problem 8 $x + y + 3 = a^2, y + z + 3 = b^2, z + x + 3 = c^2, x + y + z + 3 = d^2$ Solution:

Problem 9 $x + y - 3 = a^2$, $y + z - 3 = b^2$, $z + x - 3 = c^2$, $x + y + z - 3 = d^2$ Solution:

Problem 10 $xy + 12 = a^2, yz + 12 = b^2, zx + 12 = c^2$ Solution:

try squares	25	16	$\frac{49}{4}$
products	13	4	$\frac{1}{4}$
numbers	$x^{ imes}$	4x	$\frac{1}{4}x$
condition	$\Delta + 12$ is a so	quare	-
try sq. on $x + 3$	$\Delta + 6x + 9$		
	6x + 9 = 12		
	$x = \frac{1}{2}$		
solution	2	2	$\frac{1}{8}$

Problem 11 $xy - 10 = a^2, yz - 10 = b^2, zx - 10 = c^2$ Solution:

try squares	4	$\frac{9}{4}$	$\frac{81}{4}$
products	14	$\frac{49}{4}$	$\frac{121}{4}$
numbers	$x^{ imes}$	$\frac{49}{4}x$	$\frac{121}{4}x$
condition	$\frac{5929}{16}\Delta - 10$	is a sq	luare
	$5929\Delta - 160$	0 is a s	quare
try sq. on $77x - 2$	$5929\Delta -$	308x +	- 4
	308x = 164		
	x = 41/77		
solution	$\frac{77}{41}$	$\frac{451}{28}$	$\frac{287}{44}$

 $\begin{array}{ll} Problem \ 12 \quad xy+z=a^2, \ yz+x=b^2, \ zx+y=c^2 \\ Solution: \end{array}$

square on $x+3$	$\Delta + 6x + 9$			
numbers	x	x + 6	9	
conditions	10x + 6 and	10x + 54 a	re squares	
diff. of sq.	48			
sum, diff.	12, 4			
sides	6+2, 6-2			
	10x + 6 = 16	;		
	x = 1			
solution	1	7	9	

Problem 13 $xy - z = a^2$, $yz - x = b^2$, $zx - y = c^2$ Solution:

numbers	x	x+4	4x
condition	$\Delta + 4x - 4x$	c is a square	
conditions	$4\Delta - x - 4$ and	nd $4\Delta + 15x$ ar	e squares
diff. of sq.	16x + 4		
sum, diff.	4x + 1, 4		
sides	$2x + \frac{5}{2}, 2x - \frac{5}{2}$	$\frac{3}{2}$	
	$4\Delta + 10x + \frac{2}{4}$	$\frac{5}{1} = 4\Delta + 15x$	
	$5x = \frac{25}{4}$	£	
	$x = \frac{5}{4}$		
solution	$\frac{5}{4}$	$\frac{21}{4}$	5

Problem 14 $xy + z^2 = a^2, yz + x^2 = b^2, zx + y^2 = c^2$ Solution:

square on $x+2$	$\Delta + 4x + 4$		
square on $2x + 1$	$4\Delta + 4x + 1$		
numbers	4x + 4	1	x
condition	$16\Delta + 33x + 1$	16 is a s	quare
try square on $4x - 5$	$16\Delta + 25 -$	40x	
	33x + 16 = 25	6 - 40x	
	x = 9/73		
solution	328	73	9

Problem 15 $x+y+xy = a^2$, $y+z+yz = b^2$, $z+x+zx = c^2$ Solution:

numbers	4	9	x
condition	36 + 4 + 9 = 4	49 a squa	are
conditions	5x+4, 10x+9	are squ	ares
diff. of sq.	5x + 5		
sum, diff.	x + 1, 5		
sides	$\frac{1}{2}x+3, \frac{1}{2}x-2$		
square	$\frac{1}{4}\Delta + 3x + 9 =$	10x + 9	
	x = 28		
solution	4	9	28

Problem 16 $xy - x - y = a^2$, $yz - y - z = b^2$, $zx - z - x = c^2$ Solution:

numbers	4x + 1	x + 1	
product	$4\Delta + 5x + 1$		
condition	$4\Delta - 1$ is	a square	
try square on $2x - 2$	$4\Delta + 4 - 8x$		
	8x = 5		
	x = 5/8		
numbers	$\frac{7}{2}$	$\frac{13}{8}$	x
conditions	$\frac{5}{2}x - \frac{7}{2}, \ \frac{5}{8}x -$	$-\frac{13}{8}$ are squares	
	10x - 14, 10x -	26 are squares	
diff. of sq.	12		
sum, diff.	6, 2		
sides	3+1, 3-1		
square	10x - 14 = 16		
	x = 3		
solution	$\frac{7}{2}$	$\frac{13}{8}$	3

Problem 17 $xy + x = a^2$, $xy + y = b^2$, $xy + x + y = c^2$ Solution:

numbers	x	4x - 1
prod. plus 1st	$4\Delta -$	x + x is a square
conditions	$4\Delta + 4x - 1$ an	d $4\Delta + 3x - 1$ are squares
diff. of sq.	x	
sum, diff.	$4x, \frac{1}{4}$	
sides	$2x + \frac{1}{8}, 2x - \frac{1}{8}$	
square	$4\Delta + 4x$	$-1 = 4\Delta + \frac{1}{2}x + \frac{1}{64}$
	$x = \frac{65}{224}$	
solution	$\frac{65}{224}$	$\frac{36}{224}$

Problem 18 $xy - x = a^2$, $xy - y = b^2$, $xy - x - y = c^2$ Solution:

numbers	x+1	4x
prod. $-2nd$	$4\Delta + 4x$	-4x is a square
conditions	$4\Delta + 3x - 1, 4$	$\Delta - x - 1$ are squares
diff. of sq.	4x	
sum, diff.	4x, 1	
sides	$2x + \frac{1}{2}, 2x - \frac{1}{2}$	
square	$4\overline{\Delta} + 3x -$	$1 = 4\Delta + 2x + \frac{1}{4}$
	x = 5/4	-
solution	$\frac{9}{4}$	5

Problem 19 $s = x_1 + x_2 + x_3 + x_4, s^2 + x_i = u_i^2, s^2 - x_i = v_i^2$ Solution:

	Find a square that splits into squares in four ways.			
two triangles	3	4	5	
	5	12	13	
scaled	39	52	65	
	25	60	65	
but	65 = 49 + 16 = 64 + 1			
diff. of sq. on 49 ± 16	is square on $2 \times 7 \times 4 \ (= 56)$			
diff. of sq. on 64 ± 1	is square on	$2 \times 8 \times 1$ (= 16)	
so sq. on 65	4225 = 1521 + 2	704 = 625 +	-3600 = 108	39 + 3136 = 3969 + 256
sq. on $52 - 39$	sq. on 65 minus $2 \times 52 \times 39$ (= 4056)			
sq. on $60 - 25$	sq. on 65 minus $2 \times 60 \times 25$ (= 3000)			
sq. on $56 - 33$	sq. on 65 minus $2 \times 33 \times 56 \ (= 3696)$			
sq. on $63 - 16$	sq. on 65 minus $2 \times 16 \times 63$ (= 2016)			
sum of squares	65x			
numbers	4056Δ	3000Δ	3696Δ	2016Δ
	$12768\Delta = 65x$			
	x = 65/12768			
solution	$\frac{17136600}{163021824}$	$\tfrac{12675000}{163021824}$	$\tfrac{15615600}{163021824}$	$\frac{8517600}{163021824}$

4 Book IV

Problem 1 To split a given number (370) into two cubes whose sides add up to a given number (10).

Problem 2 To find two numbers whose difference is a given number (6) and whose cubes have a given difference (504).

Problem 3 To find a number such that when multiplied by a side and its square gives a cube and its side, respectively.

Problem 4 To find a number such that when added to a square and its side gives another square and its side, respectively.

Problem 5 To find a number such that when added to a square and its side gives a side and its square, respectively.

Problem 6 To find a square such that when added to a cube and a square gives another cube and a square.

Problem 7 To find a square such that when added to a cube and a square gives another square and cube.

Problem 8 To find a number such that when added to a cube and its side makes another cube and its side.

Problem 9 To find a number such that when added to a cube and its side makes another side and its cube.

Problem 10 To find two numbers whose sum equals the sum of their cubes.

Problem 11 To find two numbers whose difference equals the difference of their cubes.

Problem 12 To find two numbers such that when each is added to the other's cube, the result is the same.

Problem 13 To find two numbers such that when unity (1) is added to each of them, to their sum, and to their difference, all give squares.

Problem 14 To find three squares whose sum equals the sum of their differences.

Problem 15 To find three numbers such that the sum of any two multiplied by the third are given numbers (27, 32, 35).

Problem 16 To find three numbers whose sum is a square, such that each number squared added to the following number is also a square.

Problem 17 To find three numbers whose sum is a square, such that each number squared minus the following number is also a square.

Problem 18 To find two numbers such that the first cubed added to the second is a cube, and the second squared added to the first is a square.

Problem 19 To find three numbers (in general) such that the product of any two plus 1 is a square.

Problem 20 To find four numbers such that the product of any two plus 1 is a square.

Problem 21 To find three numbers in continued proportion² such that the difference of any two is a square.

Problem 22 To find three numbers such that the product of all three added to any of them is a square.

Problem 23 To find three numbers such that the product of all three minus any of them is a square.

Problem 24 To split a given number (6) in two parts such that their product is a cube minus its side.

Problem 25 To split a given number (4) in three parts such that their product is a cube whose side equals the sum of the differences of the parts.

Problem 26 To find two numbers whose product added to each of them is a cube.

Problem 27 To find two numbers whose product minus each of them is a cube.

Problem 28 To find two numbers whose sum added or subtracted from their product is each a cube.

²geometric progression

Problem 29 To find four numbers whose sum added to the sum of their squares is a given number (12).

Problem 30 To find four squares whose sum minus the sum of their sides is a given number (4).

Problem 31 To split 1 in two parts such that when they are added to two given numbers (3, 5), their product is a square.

Problem 32 To split a given number (6) in three parts such that when the third is added or subtracted from the product of the first two, the results are squares.

Problem 33 To find two numbers such that the first with a fraction of the second has a given ratio (3:1) to the remainder of the second, while the second with the same fraction of the first has a given ratio (5:1) to the remainder of the first.

Problem 34 To find three numbers such that the product of any two added to the sum of the two make given numbers (8, 15, 24).

Problem 35 To find three numbers such that product of any two minus the sum of the two make given numbers (8, 15, 24).

Problem 36 To find three numbers such that the product of any two has a given ratio (3:1, 4:1, 5:1) to their sum.

Problem 37 To find three numbers such that the product of any two has a given ratio (3:1, 4:1, 5:1) to the sum of all three.

Problem 38 To find three numbers such that when their sum is multiplied with the first gives a triangular number, with the second gives a square, and with the third gives a cube.

Problem 39 To find three numbers such that the difference between the first and second has a given ratio (3:1) to the difference between the second and third, and also the sum of any two is a square.

Problem 40 To find three numbers such that the difference between the squares of the first and second has a given ratio (3:1) to the difference between the second and third, and also the sum of any two is a square.
4.1 Solutions

Problem 1 $x^3 + y^3 = 370, x + y = 10$ Solution: 5+x5-xpart sides $125+75x+15\Delta+K \quad 125-75x+15\Delta-K$ cubes $30\Delta + 250 = 370$ sum $\Delta = 4$ x = 2solution 343 27Problem 2 $x - y = 6, x^3 - y^3 = 504$ Solution: numbers x + 3x - 3 $K+9\Delta+27x+27 \quad K-9\Delta+27x-27$ cubes $18\Delta+54=504$ diff. of cubes $\Delta=25$ x = 5solution 5128 Problem 3 $xy = z^3, x^2y = z$ Solution: cube on 28 numbers x $8x^{\times}$ 2products 8x8 condition 8x = 2x = 1/4 $\frac{1}{4}$ solution 322Problem 4 $x+y^2=z^2, x+y=z$ Solution: Δ 4Δ squares number 3Δ $3\Delta + x = 2x$ condition $3\Delta = x$ x = 1/3 $\frac{1}{3}$ $\frac{1}{9}$ solution *Problem* 5 $x^2 + y = z, x + y = z^2$ Solution: squares Δ 4Δ numbers x $4\Delta - x$ 2x $5\Delta - x = 2x$ $\operatorname{condition}$ $5\Delta = 3x$ x = 3/5 $\frac{3}{5}$ $\frac{21}{25}$ $\frac{6}{5}$ solution

Problem 6 $x^2 + y^3 = a^3, x^2 + z^2 = b^2$ Solution:

square, square, cube	16Δ	9Δ	K
condition	$16\Delta + 9\Delta$	is a square	
	$16\Delta + K$ is a	a cube, say, $8K$	
	$7K = 16\Delta$		
	x = 16/7		
solution	$\frac{4096}{49}$	$\frac{2304}{49}$	$\frac{4096}{343}$

Problem 7 $x^2 + y^3 = a^2, x^2 + z^2 = b^3$ Solution:

	let cubes be the same	
square on $x + 2x$	$\Delta + 4\Delta + 4\Delta$	
let	$\Delta + 4\Delta = K$ a cube	
SO	$K + 4\Delta$ is a square	
	$5\Delta = K$	
	x = 5	
solution	100 125 2	25

Problem 8 $x + y^3 = z^3, x + y = z$ Solution:

try numbers	x	2x
conditions	x + 8K is a cube	
	x + 2x is its side	
	27K = 8K + x	
	$19\Delta = 1$	
	need two cubes who	se difference is a square
	K	$K + 3\Delta + 3y + 1$
diff. of cubes	$3\Delta + 3y + 1$	
try square on $1 - 2y$	$4\Delta - 4y + 1$	
	$\Delta = 7y$	
	y = 7	
numbers	x	7x
conditions	x + 343K is a cube	
	x + 7x is its side	
	512K = 343K + x	
	$169\Delta = 1$	
	$x = \frac{1}{13}$	_
solution	$\frac{1}{13}$	$\frac{7}{13}$

Problem 9 $x + y^3 = z, x + y = z^3$ Solution: try sides 2x3xcubes 8K27K27K - 2xnumber 27K - 2x + 8K = 3x $\operatorname{condition}$ $35\Delta = 5$ need two cubes such that sum of cubes : sum of sides is a square 2-ytry sides yK $8 - 12y + 6\Delta - K$ cubes 2sum of sides sum of cubes $6\Delta - 12y + 8$ ratio $3\Delta - 6y + 4$ $16\Delta - 16y + 4$ try square on 2-4y $13\Delta = 10y$ y = 10/13 $\frac{\frac{10}{13}}{5x}$ $\tfrac{16}{13}\\ 8x$ sides try sides 125K512Kcubes 512K - 5xnumber $\operatorname{condition}$ 512K - 5x + 125K = 8x $637\Delta = 13$ $x = \frac{1}{7}$ $\frac{267}{343}$ $\frac{5}{7}$ solution

Problem 10 $x + y = x^3 + y^3$ Solution:

try sides	2x	3x
cubes	8K	27K
condition	35K = 5x	
	as in previo	ous problem
solution	$\frac{5}{7}$	$\frac{8}{7}$

Problen Solution	$\begin{array}{ll} 11 y - x = y^3 - x \\ n \end{array}$	₂ 3			
	try sides		2x		3x
	cubes		8K		27K
	condition		10K - r		
	condition		15H = x	o cubes	such that
			diff of eubors	diff of	such that
			unit. of cubes :	um. or	sides is a squar
	1		y	τζ.,	y+1
	cubes		K	K +	$3\Delta + 3y + 1$
	ratio		$3\Delta + 3y + 1$		
	try square on $1-2$	y	$4\Delta - 4y + 1$		
	try sides		y = 7		8 m
	try sides		11		01 F10V
	cubes		343K		512K
	condition		169K = x		
			$x = \frac{1}{13}$		0
	solution		$\frac{l}{13}$		$\frac{8}{13}$
Problen Solution	$\begin{array}{ll} x + y^3 = y + x \\ y \end{array}$	<u>ج</u> ع			
	try sid	es	2x	3x	
	cubes		8K	27K	
	conditi	on	27K + 2x =	= 8K + 3	x
			19K = x		
			as in previo	us proble	em
	sides		7x	8x	
	conditi	on	512K + 7x =	= 343K +	-8x
			$x = \frac{1}{13}$		
	solutio	n	$\frac{7}{13}$ 10	$\frac{8}{13}$	
Problem Solution	$x = 13$ $x + 1 = a^2, y = a^2$	+ 1	$=b^2, x+y+1$	$l = c^2, y$	$-x+1 = d^2$
	first square on $3x +$	1	$9\Delta + 6x$ -	+1	
			diff of 2nd an	d 3rd sq	uares is a squa
			$9\Delta + 6x$ is a	square	
	sum. diff		9x + 6	-	x
	sides		$\frac{9}{2}x + 6 +$	$\frac{1}{2}x$	$\frac{9}{2}x + 6 - \frac{1}{2}x$
	51405		$\frac{2^{2}}{4x+3}$	2~	$\frac{2^{2}}{5x+3}$
	somares		$16\Lambda \pm 24r$	± 0	$25\Lambda + 30r +$
	numbers		$0\Lambda \pm 6\sigma$	с – С С	$16\Delta \pm 24x \pm$
			$3\Delta \pm 0.1$		10 - 1° 244 +
	condition	I	'7 A I I	$8m \perp 0.4$	a contero
	condition		$7\Delta + 1$	8x + 9 18	s a square
	condition try square on $3 - 3$:	r	$7\Delta + 1$ $9\Delta - 18x$	x + 9 = 18 + 9 = 18	s a square
	condition try square on $3 - 3$:	x	$7\Delta + 1$ $9\Delta - 18x$ $2\Delta = 36$	$\frac{8x + 9}{4}$ 18 + 9 x	s a square
	condition try square on $3 - 3$:	x	$7\Delta + 1$ $9\Delta - 18x + 2\Delta = 36$ $x = 18$	$\frac{8x + 9}{4}$ 18 + 9 x	s a square

Problem 14 $x^2 + y^2 + z^2 = (x^2 - y^2) + (y^2 - z^2) + (x^2 - z^2)$ Solution:

1st, 3rd squares	$\Delta + 2x + 1$	1	
sum of diff.	= twice of 1st	– 3rd	
2nd square	$2\Delta + 4x - \Delta$ -	-2x - 2	
	$\Delta + 2x - 2$		
try square on $x-4$	$\Delta - 8x + 16$		
	x = 9/5		
squares	$\frac{196}{25}$	$\frac{121}{25}$	1
solution (scaled)	196	121	25

Solution:

Problem 15 x(y+z) = 27, y(x+z) = 32, z(x+y) = 35

try numbers	$10x^{\times}$	$25x^{\times}$	x
conditions	$35x^{\times}$ times x is 3	5	
	$10x^{\times} + x$ times 28	$5x^{\times}$ is 32	
	$25x^{\times} + x$ times 10	$0x^{\times}$ is 27	
	last two are impo	ssible	
	need to split 35 s	uch that dif	f. is 5
	$\frac{35}{2} - \frac{5}{2}$	$\frac{35}{2} + \frac{5}{2}$	
	15	20	
numbers	$15x^{\times}$	$20x^{\times}$	x
conditions	$15x^{\times} + x$ times 20	$0x^{\times}$ is 32	
	$20x^{\times} + x$ times 15	$5x^{\times}$ is 27	
	$300\Delta^{\times} + 20 = 32$		
	x = 5		
solution	3	4	5

Problem 16 $x + y + z = a^2, x^2 + y = b^2, y^2 + z = c^2, z^2 + x = d^2$ Solution:

	onch number is a d	ifforence	of squares
try $2nd - 4x$	Ar is a diff	of squar	or squares
11y 2na = 4x		. Of Squar	65
sum, diff.	2x	2	
	x+1	x-1	
1 st	x-1		
try square on $4x + 1$	$16\Delta + 8x + 1$		
3rd	8x + 1		
numbers	x-1	4x	8x + 1
condition on sum	13x is a square		
	x is 13 times a square		
new numbers	$13\Delta - 1$	52Δ	$104\Delta + 1$
condition on sum	169Δ is a square		
conditions	$169\Delta\Delta + 26\Delta + 1$ is a	a square ((on $13\Delta + 1$)
	$2704\Delta\Delta + 104\Delta + 1$ is	a square	(on $52\Delta + 1$)
	$10816\Delta\Delta + 22$	21Δ is a s	quare
	$10816\Delta + 22$	21 is a squ	iare
try square on $104x + 1$	$10816\Delta + 208x + 1$	-	
•	208x = 220		
	x = 55/52		
solution	$\frac{2817}{208}$	$\frac{12100}{208}$	$\frac{24408}{208}$
11 1	2 12 2	2 2	19

Problem 17 $x + y + z = a^2$, $x^2 - y = b^2$, $y^2 - z = c^2$, $z^2 - x = d^2$ Solution:

	each number is a di	fference o	f squares	
try $2nd = 4x$	4x is a diff. of squares			
sum, diff.	2x	2		
	x + 1	x - 1		
1st	x + 1			
try square on $4x - 1$	$16\Delta - 8x + 1$			
3rd	8x - 1			
numbers	x+1	4x	8x - 1	
condition on sum	13x is a square			
	x is 13 times a square	;		
new numbers	$13\Delta + 1$	52Δ	$104\Delta - 1$	
condition	$10816\Delta\Delta - 221$	Δ is a sq	uare	
	$10816\Delta - 221$	l is a squa	are	
try square on $104x - 1$	$10816\Delta - 208x + 1$			
	208x = 222			
	x = 111/104			
solution	$\frac{13153}{832}$	$\frac{49284}{832}$	$\frac{97736}{832}$	

 $\begin{array}{ll} Problem \ 18 \quad x^3+y=a^3, \ y^2+x=b^2 \\ Solution: \end{array}$

numbers	x	8-K
condition	KK - 16K + 64 + x is a square	
try square on $K+8$	KK + 16K + 64	
	32K = x	
	need to replace 8 by a cube such t	that four times cube is a square
	cube needs to be a square	
	64 is both a cube and a square	
numbers	x	64-K
condition	KK - 128K + 4096 + x is a square	re
sq. on $K + 64$	KK + 128K + 4096	
	$256\Delta = 1$	
	x = 1/16	
solution	$\frac{1}{16}$	$\frac{262143}{4096}$
D 11 10 + 1	-2 $+1$ $+2$ $+1$ -2	

Problem 19 $xy + 1 = a^2, yz + 1 = b^2, zx + 1 = c^2$ Solution:

first square on x + 1second square on 2x + 1 any product is one less than a square $\Delta + 2x + 1$

second square on $2x + 1$	$4\Delta + 4x + 1$		
numbers	x+2	x	4x + 4
condition	$4\Delta + 12x + 9$	is a	square (on $2x + 3$)
solution	x+2	x	4x + 4

Problem 20 $x_i x_j + 1 = u_{ij}^2 \ (i \neq j)$ Solution:

square on $x+1$	$\Delta + 2x + 1$			
square on $2x + 1$	$4\Delta + 4x + 1$			
square on $3x + 1$	$9\Delta + 6x + 1$			
numbers	x	x+2	4x + 4	9x + 6
2nd times $3rd + 1$	$4\Delta + 12x + 9$	is a square	e on $2x+3$	
3rd time 4 th $+ 1$	$36\Delta + 60x + 2$	5 is a squar	the on $6x + 5$	
2nd times 4th + 1	$9\Delta + 24x$	c + 13 is a s	square	
try square on $3x - 4$	$9\Delta - 24x + 16$			
	48x = 3			
	x = 1/16			
solution	$\frac{1}{16}$	$\frac{33}{16}$	$\frac{68}{16}$	$\frac{105}{16}$
	10	10	10	10

Problem 21 y = rx, z = ry, $y - x = a^2$, $z - y = b^2$, $z - x = c^2$ Solution:

numbers
condition
$$\begin{array}{c|c}
x & x+9 & x+25 \\
\Delta+25x = \Delta+18x+81 \\
7x = 81 \\
x = 81/7 \\
\text{solution}
\end{array}$$

Problem 22 $xyz + x = a^2$, $xyz + y = b^2$, $xyz + z = c^2$ Solution:

Problem 23 $xyz - x = a^2$, $xyz - y = b^2$, $xyz - z = c^2$ Solution:

product, 1st	$\Delta + x$	x	
product of 2nd and 3rd	x+1		
numbers	x	1	x + 1
conditions	$\Delta + x - 1, \Delta$	-1 are squ	lares
diff. of squares	x		
sum, diff.	2x	$\frac{1}{2}$	
sides	$x + \frac{1}{4}$	$x - \frac{1}{4}$	
squares	$\Delta + \frac{1}{2}x + \frac{1}{16} \Delta$	$1 - \frac{1}{2}x + \frac{1}{16}$	
	$\Delta - 1 = \lambda$	$\Delta - \frac{1}{2}x + \frac{1}{10}$	6
	$\frac{1}{2}x = \frac{17}{16}$		
solution	$\frac{17}{8}$	1	$\frac{25}{8}$

Problem 24 $x + y = 6, xy = z^3 - z$ Solution:

numbers	x	6-x
product	$6x - \Delta$	
try cube on $2x - 1$	$8K - 12\Delta + 6x - 1$	
cube - side	$8K - 12\Delta + 4x = 6x - \Delta$	
	$8K = 2x + 11\Delta$	
	need to replace $2x - 1$ so t	there are no x terms
cube on $3x - 1$	$27K - 27\Delta + 9x - 1$	
condition	$27K - 27\Delta + 6x = 6x - \Delta$	7
	$27K = 26\Delta$	
	x = 26/27	
solution	$\frac{26}{27}$	$\frac{136}{27}$

Problem 25 x + y + z = 4, $xyz = a^3$, a = (y - x) + (z - y) + (z - x)Solution:

cube	8K		
1st - 3rd	x		
try 1st, 3rd	2x	3x	
2nd	$8K$ divided by 6Δ ,	that is, $\frac{4}{3}x$ but $\frac{4}{3}$ is smaller than 2;	
	need to replace 2, 3	by two consecutive numbers	
	such that 8 divided	by their product lies between them.	
	y	y + 1	
product	$\Delta + y$		
	8 needs to lie betwe	en $K + \Delta$ and $K + 2\Delta + y$	
	take 8 to be cube or	$1 y + \frac{1}{3}$	
	$y + \frac{1}{3} = 2$		
	y = 5/3	0	0
numbers	$\frac{3}{3}x$	$\frac{9}{5}x$	$\frac{8}{3}x$
scaling	25x	27x	40x
sum	92x = 4		
	x = 1/23		
solution	$\frac{25}{23}$	$\frac{27}{23}$	$\frac{40}{23}$
Problem 26 : Solution:	$xy + x = a^3, xy + y =$	b^3	
	numbers	$8x \qquad \Delta - 1$	
	product	8K - 8x	
	condition	$8K - 8x + \Delta - 1$ is a cube	
	try cube on $2x - 1$	$8K - 12\Delta + 6x - 1$	
		$13\Delta = 14x$	
		x = 14/13	
	solution	$\frac{112}{13}$ $\frac{27}{169}$	
Problem 27	$xy - x = a^3, xy - y =$	$= b^3$	
Solution:			
	numbers	$8x \qquad \Delta + 1$	
	product	8K+8x	
	condition	$8K + 8x - \Delta - 1$ is a cube	
	try cube on $2x - 1$	$8K - 12\Delta + 6x - 1$, stuck	
	numbers	$8x+1$ Δ	
	product	$8K + \Delta$	
	condition	$8K + \Delta - 8x - 1$ is a cube	
		$13\Delta = 14x$	
		$x = \frac{14}{13}$	
	solution	$\frac{125}{13}$ $\frac{196}{169}$	

Problem 28 $xy + x + y = a^3, xy - x - y = b^3$ Solution:

try cubes on 4, 2	64	8
diff. of cubes	56	
sum, product	28	36
numbers	14 + x	14-x
	$196 - \Delta = 36$	
	$\Delta = 160$	
	need to replace 64 and	8 by two cubes such that
	the square on half their	sum minus the product is a square
try cubes on $y + 1, y - 1$	$K + 3\Delta + 3x + 1$	$K - 3\Delta + 3x - 1$
diff. of cubes	$6\Delta + 2$	
sum, product	$3\Delta + 1$	K + 3x
	$\frac{9}{4}\Delta\Delta + \frac{3}{2}\Delta + \frac{1}{4} - K -$	3y is a square
	$9\Delta\Delta + 6\Delta - 4K - 12y$	+1 is a square
try square on $3\Delta + 1 - 6y$	$9\Delta\Delta + 42\Delta - 36K - 1$	2y + 1
	$36\Delta = 32K$	
	y = 9/8	
cubes	$\frac{4913}{510}$	$\frac{1}{510}$
sum product	$\frac{512}{2456}$	$\frac{512}{2457}$
sum, product	512	512
numbers	$\frac{1223}{512} + x$	$\frac{1220}{512} - x$
	$\frac{94249}{16384} - \Delta = \frac{2457}{512}$	
	$\Delta = \frac{15625}{16384}$	
	$x = \frac{125}{128}$	
solution	$\frac{27}{8}$	$\frac{91}{64}$

Problem 29 $a+b+c+d+a^2+b^2+c^2+d^2=12$ Solution:

Problem 30 $a^2 + b^2 + c^2 + d^2 - a - b - c - d = 4$ Solution:

square on $x - \frac{1}{2}$	$\Delta - x + \frac{1}{4}$		
	square minus si	de plus fourth	is a square
	so 5 is a sum of	four squares	
	$5 = 4 + 1 = \frac{64}{25}$	$+\frac{36}{25}+\frac{9}{25}+\frac{16}{25}$	
squares on $x - \frac{1}{2}$	$\frac{64}{25}$ $\frac{36}{25}$	$\frac{9}{25}$	$\frac{16}{25}$
solution	$\frac{21}{10}$ $\frac{17}{10}$	$\frac{11}{10}$	$\frac{13}{10}$

Problem 31 x + y = 1, $(x + 3)(y + 5) = a^2$ Solution:

numbers	1	1-x
condition	x + 3 times $6 - x$ is a square	
	$18 + 3x - \Delta$ is a square	
try 4Δ	$5\Delta = 3x + 18$	
	need to replace 4 by a square who	se 'determinant' is a square
	$\Delta + 1$ times 18 plus $\frac{9}{4}$ is a square	
	$18\Delta + \frac{81}{4}$ is a square	
	$72\Delta + 81$ is a square	
try square on $8y + 9$	$64\Delta + 144y + 81$	
	$8\Delta = 144y$	
	y = 18	
	$18 + 3x - \Delta = 324\Delta$	
	$325\Delta = 18 + 3x$	
times 325 times 4	$422500\Delta = 23400 + 3900x$	
square on $650x - 3$	$422500\Delta - 3900x + 9 = 23409$	
	650x - 3 = 153	
	$x = \frac{6}{25}$	
solution	$\frac{6}{25}$	$\frac{19}{25}$

Problem 32 x+y+z=6, $xy+z=a^2$, $xy-z=b^2$ Solution:

```
\mathbf{2}
 numbers
                                            4 - x
                                                                             x
 conditions
                      8-x, 8-3x are squares
                      8-x, 8-3x are squares
                      need to replace 2 by y such that ratio of y + 1 to y - 1 is a square
                      y + 1 = 4y - 4
                          y = 5/3
                              \frac{5}{3}
                                       \frac{13}{3} - x
 numbers
                                                                             x
                      \frac{65}{9} - \frac{8}{3}x, \frac{65}{9} - \frac{2}{3}x are squares
                      65-24x, 65-6x are squares
                      65 - 24x, 260 - 24x are squares
 diff. of squares
                             195
 sum, diff.
                           15, 13
                            14, 1
                       65 - 24x = 1
                          x = 8/3
                                              \frac{5}{3}
                              \frac{5}{3}
                                                                              \frac{8}{3}
 solution
Problem 33 x + ry = 3(y - ry), y + rx = 5(x - rx)
Solution:
                                let 2nd give 1 to 1st
                   parts
                                 3x - 1
                                            x+1
                                let 1st give y to 2nd
                                1st + y is 5 times 1st - y
                                1st + 2nd is 6 times 1st - y
                                4x/6 is 1st-y
                                y \text{ is } \frac{7}{3}x - 1
                                \frac{7}{3}x - 1 : 3x - 1 is same as 1 : x + 1
7\Delta + 4x - 3 = 9x - 3
                   ratios
                                7\Delta = 5x
                                x = 5/7
                   solution
                                    8
                                               12
                                                                7
               xy + x + y = 8, yz + y + z = 15, zx + z + x = 24
Problem 34
Solution:
                      let 2nd
                                                           x - 1
                      1st
                                    8 - x + 1 divided by x
                                        9x^{\times} - 1
                                     15 - x + 1 divided by x
                      3rd
                                         16x^{\times} - 1
                                    144\Delta^{\times} - 1 = 24
                      condition
                                       \Delta = 144/25
```

 $\substack{x=12/5\\\frac{11}{4}}$

 $\operatorname{solution}$

 $\frac{7}{5}$

 $\frac{17}{3}$

Problem 35 xy - x - y = 8, yz - y - z = 15, zx - z - x = 24Solution:

Problem 36 xy = 3(x + y), yz = 4(y + z), zx = 5(z + x)Solution:

$numbers^3$	y	x	z
sum : product	x + y : xy is 3 : 1		
	xy = 3x + 3y		
	y is the ratio $3x: x$	r-3	
similarly	z is the ratio $4x: z$	r-4	
product of 1st and 3rd	$12\Delta:\Delta-7x+12$		
sum of $1st$ and $3rd$	$7\Delta - 24x : \Delta - 7x$	+ 12	
condition	$12\Delta = 35\Delta - 120x$;	
	$23\Delta = 120x$		
	x = 120/23		
solution	$\frac{360}{51}$	$\frac{120}{23}$	$\frac{480}{28}$

Problem 37 xy = 3(x + y + z), yz = 4(x + y + z), zx = 5(x + y + z)Solution:

let sum	y		
numbers	$3yx^{\times}$	x	$4yx^{\times}$
$\operatorname{condition}$	$12\Delta^{\times}y = 5$		
	need $60y$ to be	e a squ	uare
	$60y = 900\Delta$		
	y = 15		
	$2700\Delta^{\times} = 75$		
	x = 6		
numbers	$\frac{15}{2}$	6	10
rescale	$\frac{15}{2}x$	6x	10x
sum	$\frac{47}{2}x = 15\Delta$		
	$x = \frac{47}{30}$		
solution	$\frac{47}{4}$	$\frac{47}{5}$	$\frac{47}{3}$

 $^3 \rm Diophantus$ does not use two unknowns; but by considering a specific number in a generic way, in effect he does so, especially since letters signified numbers in Greece.

Problem 38 s = x + y + z, $sx = \frac{n(n+1)}{2}$, $sy = a^2$, $sz = b^3$ Solution: sum Δ $6\Delta^{\times}$ $4\Delta^{\times}$ $8\Delta^{\times}$ try numbers $18\Delta^{\times} = \Delta$ sum $18 = \Delta \Delta$ need to replace the 6, 4, 8, so that their sum is a fourth power $\Delta\Delta-2\Delta+1$ 8 let square, cube triangular $2\Delta - 9$ 8 triangular + 1 is always a square $16\Delta - 71$ is a square try square on 4x - 1 $16\Delta - 8x + 1$ 8x = 72 $\substack{x=9\\\frac{17}{9}}$ $\tfrac{6400}{81}$ $\frac{8}{81}$ solution Problem 39 $x-y=3(y-z), x+y=a^2, y+z=b^2, z+x=c^2$ Solution: $7x + 2 \qquad 2 + x \qquad 2 - x$ 8x + 4, 6x + 4, 4 are squares $2x \qquad \frac{1}{2}x, 2$ $\frac{1}{4}x + 2, \frac{1}{4}x - 2$ $\frac{1}{16}\Delta + x + 4 = 8x + 4$ $\frac{1}{16}\Delta = 7x$ $x = 112 \quad \text{arbit birth of } x$ numbers $\operatorname{condition}$ diff. of sq. sum, diff. sides square x = 112, which is too large try 2nd, 3rd squares $\Delta + 4y + 4, 4$ condition $\Delta + 4y$ is three times 1st - 2nd $\frac{4}{3}\Delta + \frac{16}{3}y + 4$ 1st square condition $3\Delta + 12y + 9$ is a square try sq. on 2y - 3 $4\Delta - 12y + 9$ $\Delta = 24y$ y = 24, too large $25\Delta - 30y + 9$ try sq. on 5y - 3

 $\begin{array}{l} 22\Delta=42y\\ y=\frac{21}{11}\\ \frac{2304}{121} \end{array}$

 $6x + 4 = \frac{1849}{121}$

 $x = \frac{455}{242} \\ \frac{3669}{242}$

1849

121

 $\frac{939}{242}$

4

 $\frac{29}{242}$

squares

solution

Problem 40 $x^2 - y^2 = 3(y^2 - z^2), x + y = a^2, y + z = b^2, z + x = c^2$ Solution:

try numbers	$8\Delta + 2$	$8\Delta - 2$	$\Delta - 2$
conditions	$16\Delta, 9\Delta, 9\Delta - 4$ are s	quares	
	but $64\Delta: 7\Delta$ is not 3	: 1	
	need to replace 2 by a	number suc	that
	when multiplied by 32	gives 21	
numbers	$8\Delta + \frac{21}{32}$	$8\Delta - \frac{21}{32}$	$\Delta - \frac{21}{32}$
condition	$9\Delta - \frac{21}{16}$ is a square		
	$144\Delta - 21$ is a square		
try sq. on $12x - 1$	$144\Delta - 24x + 1$		
	24x = 22		
	x = 11/12		
solution	$\frac{2125}{288}$	$\frac{1747}{288}$	$\frac{53}{288}$

5 Book V

Problem 1 To find three numbers in continued proportion such that each minus a given number (12) gives a square.

Problem 2 To find three numbers in continued proportion such that when added to a given number (20) each gives a square.

Problem 3 To find three numbers such that when each, or the product of any two, is added to a given number (5), the result is a square.

Problem 4 To find three numbers such that when each, or the product of any two, minus a given number (6) gives a square.

Problem 5 To find three squares such that the product of any two added to the sum of the two, or to the other square, give squares.

Problem 6 To find three numbers such that each minus 2, or the product of any two minus their sum or minus the remaining number, all give squares.

Problem 7 To find three numbers such that their sum added to or subtracted from any of their squares is another square.

Problem 8 To find three numbers such that their sum added to or subtracted from the product of any two gives a square.

Problem 9 To split one into two parts such that each added to a given number (6) gives a square.

Problem 10 To split one into two parts such that when added to two given numbers (2, 6) give squares.

Problem 11 To split one into three parts such that each added to a given number (3) gives a square.

Problem 12 To split one into three parts such that when added to three given numbers (2, 3, 4) give squares.

Problem 13 To split a given number (10) in three parts such that any two together form a square.

Problem 14 To split a given number (10) in four parts such that any three

together form a squares.

Problem 15 To find three numbers such that each added to the cube of their sum is a cube.

Problem 16 To find three numbers such that each subtracted from the cube of their sum is a cube.

Problem 17 To find three numbers such that each minus the cube of their sum is a cube.

Problem 18 To find three numbers whose sum is a square and such that each added to the cube of their sum is a square.

Problem 19 To find three numbers whose sum is a square and such that each subtracted from the cube of their sum is a square.

According to T. Heath, there are three missing problems following Problem 19:

- 19a To find three numbers such that their sum is a square and each minus the cube of their sum is a square.
- 19b To find three numbers such that their sum is a given number and each added to the cube of their sum is a square.
- 19c To find three numbers such that their sum is a given number and each subtracted from the cube of their sum is a square.

Problem 20 To split a given fraction $(\frac{1}{4})$ into three parts such that each minus the cube of their sum is a square.

Problem 21 To find three squares such that each added to their product is a square.

Problem 22 To find three squares such that their product minus each is a square.

Problem 23 To find three squares such each minus their product is a square.

Problem 24 To find three squares such that the product of any two plus 1 is a square.

Problem 25 To find three squares such that the product of any two minus 1 is a square.

Problem 26 To find three squares such that 1 minus the product of any two is a square.

Problem 27 To find three squares such that any two added to a given number (15) is a square.

Problem 28 To find three squares such that any two minus a given number (13) is a square.

Problem 29 To find three squares such that the sum of their squares is a square.

Problem 30 A man buys two amounts of wine, one at a cost of 8 drachmas each, and the other at 5 drachmas each. The total cost is a square number, and if 60 is added to this number, the result is a square, the side of which is the total amount of wine.

5.1 Solutions

Problem 1 $x - 12 = a^2$, $rx - 12 = b^2$, $r^2x - 12 = c^2$ Solution:

Problem 2 $x + 20 = a^2$, $rx + 20 = b^2$, $r^2x + 20 = c^2$ Solution:

try numbers	16	4x	Δ	
condition	36	4x + 20	$\Delta + 20$	are squares
diff. of sq.	$\Delta - 4x$			
sum, diff.	x, x-4			
sides	x - 2, 2			
	but $4x + 20 = 4$	is impossib	le	
	need to replace 1	6 by a squa	are greater	han 80
try sq. on $9 + y$	$\Delta + 18y + 81$			
condition	$\Delta + 18y + 101$ is	a square		
try sq. on $y - 11$	$\Delta - 22y + 121$			
	40y = 20			
	y = 1/2			
numbers	$\frac{361}{4}$	$\frac{19}{2}x$	Δ	
condition	$\frac{441}{4}$	$\frac{19}{2}x + 20$	$\Delta+20$	are squares
diff. of sq.	$\Delta - \frac{19}{2}x$			
su, diff.	x	$x - \frac{19}{2}$		
sides	$x - \frac{19}{4}$	$\frac{19}{4}$		
	$\frac{19}{2}x + 20 = \frac{361}{16}$			
	$x = \frac{41}{152}$			
solution	$\frac{361}{4}$	$\frac{41}{16}$	$\frac{1681}{23104}$	

Problem 3 $x_i + 5 = a_i^2, x_i x_j + 5 = b_{ij}^2 \ (i \neq j)$ Solution:

	the squares mu	st be of consecu	tive numbers
squares	$\Delta + 6x + 9$	$\Delta + 8x + 16$	
numbers	$\Delta + 6x + 4$	$\Delta + 8x + 11$	$4\Delta + 28x + 29$
condition	$4\Delta + 28x + 34$	is a square	
try sq. on $2x - 6$	$4\Delta - 24x + 36$		
	52x = 2		
	x = 1/26		
solution	$\frac{2861}{676}$	$\frac{7645}{676}$	$\frac{5084}{169}$

Problem 4 $x_i - 6 = a_i^2, x_i x_j - 6 = b_{ij}^2 \ (i \neq j)$ Solution:

$$\begin{array}{c|c} \text{squares} & \Delta & \Delta + 2x + 1 \\ \text{numbers} & \Delta + 6 & \Delta + 2x + 7 & 4\Delta + 4x + 25 \\ \text{condition} & 4\Delta + 4x + 19 \text{ is a square} \\ \text{try sq. on } 2x - 6 & 4\Delta - 24x + 36 \\ 28x = 17 & & \\ x = 17/28 & & \\ \text{solution} & \frac{4993}{784} & \frac{6729}{784} & \frac{5665}{196} \end{array}$$

Problem 5 $x_i^2 x_j^2 + x_i^2 + x_j^2 = a_{ij}^2, x_i^2 x_j^2 + x_k^2 = b_{ijk}^2$ Solution:

$$\begin{array}{c} \text{squares} \\ \text{condition} \\ \text{try sq. on } x-3 \\ \text{solution} \\ \end{array} \begin{vmatrix} \Delta + 2x + 1 & \Delta + 4x + 4 & 4\Delta + 12x + 12 \\ 4\Delta + 12x + 12 \text{ is a square} \\ \Delta + 3x + 3 \text{ is a square} \\ \Delta + 3x + 3 \text{ is a square} \\ \Delta - 6x + 9 \\ 9x = 6 \\ x = 2/3 \\ \frac{25}{9} & \frac{64}{9} & \frac{196}{9} \\ \end{array}$$

Problem 6 $x_i - 2 = a_i^2, x_i x_j - x_i - x_j = b_{ij}^2, x_i x_j - x_k = c_{ijk}^2$ Solution:

numbers	$\Delta + 2$	$\Delta + 2x + 3$	$4\Delta + 4x + 6$
conditions	are all satis	fied, except	
	$4\Delta + 4x + 4$	4 is a square	
	$\Delta + x + 1$ is	s a square	
try sq. on $x-2$	$\Delta - 4x + 4$		
	5x = 3		
	x = 3/5		
solution	$\frac{59}{25}$	$\frac{114}{25}$	$\frac{246}{25}$

Problem 7 $x_i^2 + (x_1 + x_2 + x_3) = a_i^2, x_i^2 - (x_1 + x_2 + x_3) = b_i^2$ Solution:

	In right-angled	triangles, the so	uare on the hypotenuse	
	plus or minus four times the area is another square;			
	so need to find	three right-angl	ed trianges with the same area.	
	need two numb	ers whose produ	ict added to their	
	sum of squares	is a square		
numborg	sum of squares	15 a square		
numbers	y	1		
	$y + \Delta + 1$ is a s	square		
try sq. on $y-2$	$\Delta - 4y + 4$			
	5y = 3			
	y = 3/5			
rescaling	3, 5 are such nu	$1 \text{ mbers with } 15 \cdot$	+9+25=49	
Pythagorean triangles	from 7, 3; 7, 5;	7, 8; $(8 = 3 + 5)$)	
triangle sides	40, 42, 58;	24, 70, 74;	15, 112, 113;	
numbers	58x	74x	113x	
condition	$245x = 3360\Delta$			
	x = 7/96			
solution	$\frac{203}{48}$	$\frac{259}{48}$	$\frac{791}{96}$	
	. 10	10		

Problem 8 $x_i x_j + (x_1 + x_2 + x_3) = a_{ij}^2, x_i x_j - (x_1 + x_2 + x_3) = b_{ij}^2$ Solution:

	to find three right-ang	led triangles	s with equal areas
hypotenus	58	74	113
squares	3364	5476	12769
numbers	y	$3364y^{\times}$	$5476y^{\times}$
condition	$18421264\Delta^{\times} = 12769$		
scaled numbers sum	$y = \frac{4292}{4292} \frac{113}{113} x$ $\frac{32824806}{121249} x = 3360\Delta$	$\frac{3277}{37}x$	$\frac{4181}{29}x$
solution	$x = \frac{781543}{9699920}$ $\frac{781543}{255380}$	$\frac{781543}{109520}$	$\frac{781543}{67280}$

Problem 9 $x + y = 1, x + 6 = a^2, y + 6 = b^2$ Solution:

	twice six plus one needs to split in two squares;		
	13 = 9 + 4 but need squares larger than 6;		
	find square just larger th	$\tan 13/2$	
	$\frac{13}{2} + \frac{1}{4}\Delta^{\times}$ is a square		
	$26\Delta + 1$ is a square		
try sq. on $5y + 1$	$25\Delta + 10y + 1$		
	$\Delta = 10y$		
	y = 10		
square, side	$\frac{2601}{400}$	$\frac{51}{20}$	
differ from sides 3, 2	$\frac{9}{20}$	$\frac{11}{20}$	
sq. on $2 + 11x$	$121\Delta + 44x + 4$		
sq. on $3 - 9x$	$81\Delta - 54x + 9$		
sum	$202\Delta - 10x + 13 = 13$		
	$202\Delta = 10x$		
	$x = \frac{5}{101}$		
sides	$\frac{257}{101}$	$\frac{258}{101}$	
solution	$\frac{4843}{10201}$	$\frac{5358}{10201}$	

Problem 10 $x + y = 1, x + 2 = a^2, y + 6 = b^2$ Solution:

	2 plus 6 plus 1 needs to split into two squares				
squares	Δ	$9-\Delta$			
pick squares bet. 2 and 3 $$	$\frac{289}{144}$	$\frac{361}{144}$			
sides	$\frac{17}{12}$	$\frac{19}{12}$			
	x is between $\frac{17}{12}$ and $\frac{19}{12}$	12			
try sq. on $3 - 3x$	$9 - 18x + 9\Delta = 9 - \Delta$				
	$18x = 10\Delta$				
	x = 9/5 too large				
try sq. on $3 - \frac{7}{2}x$	$9 - 21x + \frac{49}{4}\Delta = 9 - \Delta$				
	$21x = \frac{53}{4}\Delta$				
	$x = \frac{84}{53}$				
squares	$\frac{7056}{2809}$	$\frac{18225}{2809}$			
adution	1438	1371			
Solution	2809	$\overline{2809}$			

Problem 11 $x + y + z = 1, x + 3 = a^2, y + 3 = b^2, z + 3 = c^2$ Solution:

try sq. on
$$5y + 1$$
thrice 3 plus 1 needs to split in three squares $10 + \frac{1}{9}\Delta^{\times}$ is a square $30\Delta + 1$ is a square $25\Delta + 10y + 1$ $5\Delta = 10y$ $y = 2$ $\frac{121}{36}$ $10 = 9 + \frac{16}{25} + \frac{9}{25}$ of sides $\frac{90}{30}, \frac{24}{30}, \frac{18}{30}$ differ from required side $\frac{55}{30}$ by $\frac{35}{30}, \frac{31}{30}, \frac{37}{30}$ $y - 210x + 1225\Delta$ sq. on $\frac{4}{5} + 31x$ sq. on $\frac{3}{5} + 37x$ sum $10 - 116x + 3555\Delta = 10$ sidessidessolution $\frac{1321}{711}$ $\frac{12287}{505521}$ $\frac{13221}{505521}$ $\frac{122878}{505521}$

Problem 12 $x + y + z = 1, x + 2 = a^2, y + 3 = b^2, z + 4 = c^2$ Solution:

	2 plus 3 plus 4 plus 1 needs to split in three squares first need square just bigger than $2\frac{1}{2}$ $\frac{5}{2} + \frac{1}{4}\Delta^{\times}$ is a square
try sq. on $3y + 1$	$9\Delta + 6y + 1$
	$\Delta = 6y$ $y = 6$
square	$\frac{361}{144}$ square on $\frac{19}{12}$
	second need square just bigger than $7\frac{1}{2}$
	$\frac{15}{2} + \frac{1}{4}\Delta^{\times}$ is a square
	$30\Delta + 1$ is a square
try sq. on $5y + 1$	$25\Delta + 10y + 1$
	$5\Delta = 10y$
	y = 2
square	$\frac{121}{16}$ square on $\frac{11}{4}$
	but $10 = 9 + 1$
diff. of sq. from $3, 1$	$\frac{3}{12}$ $\frac{7}{12}$
try sq. on $1+7x$	$1 + 14x + 49\Delta$
sq. on $3-3x$	$9-18x+9\Delta$
sum	$10 - 4x + 58\Delta = 10$

Problem 13 $x + y + z = 10, x + y = a^2, y + z = b^2, z + x = c^2$ Solution:

	sum of thi	ree squares i	is 20
	20 = 4 + 1	.6	
	so need to	split 16 in	two squares
	this is pro	blem 10	
squares	4	$\frac{6400}{841}$	$\frac{7056}{841}$
solution	6	$\frac{2010}{841}$	$\frac{1354}{841}$

Problem 14 $a+b+c+d = 10, a+b+c = u_1^2, a+b+d = u_2^2, a+c+d = u_3^2, b+c+d = u_4^2$ Solution:

	su	m of	f four squa	res is 30
	30 = 16 + 9 + 4 + 1			
	ne	ed to	o split 17 i	n two squares
	th	is is	problem 1	0
squares	4	9	$\frac{1032256}{121801}$	$\frac{1038361}{121801}$
solution	6	1	$\frac{185754}{121801}$	$\frac{179649}{121801}$

cube of sum	K		
numbers	7K	26K	63K
	96K = x		
	$96\Delta = 1$		
	need to replace 7,	26, 63	
sides	y + 1	2-y	2
cubes	$K + 3\Delta + 3y + 1$	$8 - 12y + 6\Delta - K$	8
repl. numbers	$K + 3\Delta + 3y$	$7 - 12y + 6\Delta - K$	7
sum	$9\Delta - 9y + 14$ is a	square	
try sq. on $3y - 4$	$9\Delta - 24y + 16$		
	15y = 2		
	y = 2/15		
repl. numbers	$\frac{1538}{3375}$	$\frac{18577}{3375}$	7
numbers	$\frac{1538}{2275}K$	$\frac{18577}{2275}K$	7K
sum	$\frac{43740}{3375}K = x$	3373	
	x = 5/18		
solution	$\frac{769}{78732}$	$\frac{18577}{157464}$	$\frac{875}{5832}$

Problem 15 s = x + y + z, $x + s^3 = a^3$, $y + s^3 = b^3$, $z + s^3 = c^3$ Solution:

Problem 16 s = x + y + z, $s^3 - x = a^3$, $s^3 - y = b^3$, $s^3 - z = c^3$ Solution:

cube of sum	K		
numbers	$\frac{7}{8}K$	$\frac{26}{27}K$	$\frac{63}{64}K$
sum	$\frac{4877}{1728}K = x$		
	need to replace numbers	to give a s	quare
	let square be $9/4$		
	sum of cubes is $3 - \frac{9}{4} = \frac{3}{4}$		
multiply by 216	sum of cubes is 162		
	162 = 125 + 64 - 27		
	$162 = 125 + \frac{6859}{343} + \frac{5832}{343}$		
	$\frac{3}{4} = \frac{125}{216} + \frac{6859}{74088} + \frac{5832}{74088}$		
cubes	$\frac{125}{216}K$	$\frac{6859}{74088}K$	$\frac{5832}{74088}K$
numbers	$\frac{91}{216}K$	$\frac{67229}{74088}K$	$\frac{316}{343}K$
sum	$\frac{9}{4}K = x$		
	x = 2/3		
solution	$\frac{91}{729}$	$\frac{67229}{250047}$	$\frac{2528}{9261}$

Problem 17 $s = x + y + z$, $x - s^3 = a^3$, $y - s^3 = b^3$, $z - s^3 = c^3$ Solution:				
cube of sum	K			
numbers	2K	9K	28K	
sum	39K = x			
	need to replace	the numbers		
sides	y	3-y	1	
cubes	K	$27 - 27y + 9\Delta - K$	1	
add one	K+1	$28 - 27y + 9\Delta - K$	2	
sum	$9\Delta - 27y + 31$	needs to be a square		
try sq. on $3y - 7$	$9\Delta - 42y + 49$			
	15y = 18			
	y = 6/5			
cubes	$\frac{216}{125}$	$\frac{729}{125}$	1	
numbers	$\frac{341}{125}K$	$\frac{854}{125}K$	2K	
sum	$\frac{289}{25}K = x$			
	x = 5/17			
solution	$\frac{341}{4913}$	$\frac{854}{4913}$	$\tfrac{250}{4913}$	
Problem 18 $x + y + z = a^2 + a^6 = b^2 + a^6 = a^2 + a^6 = d^2$				

Problem 18 $x + y + z = a^2$, $x + a^6 = b^2$, $y + a^6 = c^2$, $z + a^6 = d^2$ Solution:

sum	Δ			
numbers	3KK	8KK	15KK	
sum	$26KK = \Delta$			
	need to replace t	he numbers		
squares	$\Delta\Delta-2\Delta+1$	$\Delta + 2y + 1$	$\Delta - 2y + 1$	
numbers	$\Delta\Delta - 2\Delta$	$\Delta + 2y$	$\Delta - 2y$	
sum	$\Delta\Delta$ take 3 as y	63	15	3
numbers	63KK	15KK	3KK	
sum	$91KK = \Delta$			
	$91\Delta\Delta = 1$			
	x = 1/3			
solution	$\frac{63}{729}$	$\frac{15}{729}$	$\frac{3}{729}$	
Problem 19 $x + y$ -	$+ z = a^2, a^6 - x =$	$b^2, a^6 - y = a^6$	$c^2, a^6 - z = d^2$	2

Solution:

solution is missing

Problem 20 $x + y + z = \frac{1}{4}, x - \frac{1}{4^3} = a^2, y - \frac{1}{4^3} = b^2, z - \frac{1}{4^3} = c^2$ Solution:

 $\begin{array}{c|c} & \text{each part minus } \frac{1}{64} \text{ is a square;} \\ & \text{sum of squares is } \frac{1}{4} - \frac{3}{64}, \text{ i.e., } \frac{13}{64}; \\ & \text{problem reduces to splitting } \frac{13}{64} \text{ into three squares;} \\ & \text{squares} & \frac{9}{64} \quad \frac{1}{25} & \frac{9}{400} \\ & \text{solution} & \frac{5}{32} \quad \frac{89}{1600} & \frac{61}{1600} \end{array}$

Problem 21 $s = x^2y^2z^2, x^2 + s = a^2, y^2 + s = b^2, z^2 + s = c^2$ Solution:

product of three	Δ		
	need three squares	s, adding 1	gives a square
	use right-angled to	riangles	
try squares	$\frac{9}{16}\Delta$	$\frac{25}{144}\Delta$	$\frac{64}{225}\Delta$
product	$\frac{1}{36}\Delta\Delta\Delta = \Delta$		
	$\Delta \Delta = 36$		
	need to replace th	e numbers	
triangles	3, 4, 5;	$9,\!40,\!41;$	$8,\!15,\!17;$
squares	$\frac{9}{16}\Delta$	$\frac{81}{1600}\Delta$	$\frac{64}{225}\Delta$
product	$\frac{6561}{65536}\Delta\Delta\Delta = \Delta$		
	$6561\Delta\Delta = 65536$		
	x = 16/9		
solution	$\frac{16}{9}$	$\frac{100}{9}$	$\frac{4}{25}$

Problem 22 $s = x^2y^2z^2, s - x^2 = a^2, s - y^2 = b^2, s - z^2 = c^2$ Solution:

product	$ \Delta$		
try squares	$\frac{16}{25}\Delta$	$\frac{25}{169}\Delta$	$\frac{64}{289}\Delta$
product	$\frac{1024}{48841}\Delta\Delta\Delta = \Delta$	100	200
	need to replace the numb	ers	
triangles	3,4,5;	5, 12, 13;	3, 4, 5;
new triangles	3,4,5;	$\frac{13}{2}, \frac{60}{13}, \frac{119}{26}$	$\frac{5}{2}, \frac{12}{5}, \frac{7}{10}$
squares	$\frac{16}{25}\Delta$	$\frac{14400}{28561}\Delta$	$\frac{576}{625}\Delta$
product	$\frac{5308416}{17850625}\Delta\Delta\Delta = \Delta$		
	$5308416\Delta\Delta = 17850625$		
	x = 65/48		
solution	$\frac{169}{144}$	$\frac{625}{676}$	$\frac{169}{100}$

Problem 23 $s = x^2y^2z^2, x^2 - s = a^2, y^2 - s = b^2, z^2 - s = c^2$ Solution:

Problem 24 $x^2y^2 + 1 = a^2, y^2z^2 + 1 = b^2, z^2x^2 + 1 = c^2$ Solution:

 $\begin{array}{|c|c|c|c|c|} & product of two plus 1 is a square; \\ so, product of all three plus each is a square; \\ same problem as 21. \\ solution & \frac{16}{9} \quad \frac{100}{9} \quad \frac{4}{25} \end{array}$

Problem 25 $x^2y^2 - 1 = a^2, y^2z^2 - 1 = b^2, z^2x^2 - 1 = c^2$ Solution:

solution
$$\begin{vmatrix} same \text{ problem as } 22. \\ \frac{169}{144} & \frac{625}{676} & \frac{169}{100} \end{vmatrix}$$

Problem 26 $1 - x^2y^2 = a^2, 1 - y^2z^2 = b^2, 1 - z^2x^2 = c^2$ Solution:

solution
$$\begin{vmatrix} same \text{ problem as } 23. \\ \frac{144}{169} & \frac{676}{625} & \frac{100}{169} \end{vmatrix}$$

Problem 27 $x^2 + y^2 + 15 = a^2, y^2 + z^2 + 15 = b^2, z^2 + x^2 + 15 = c^2$ Solution:

$$\begin{array}{c|cccc} \text{let one square be 9;} \\ \text{diff. of sq.} & 24 \\ \text{sum, diff.} & 6x & 4x^{\times} \\ \text{sides} & 3x - 2x^{\times} & 3x + 2x^{\times} \\ \text{sum, diff.} & 8x & 3x^{\times} \\ \text{sides} & 4x - \frac{3}{2}x^{\times} & 4x + \frac{3}{2}x^{\times} \\ \text{squares} & 9 & 9\Delta - 12 + 4\Delta^{\times} & 16\Delta - 12 + \frac{9}{4}\Delta^{\times} \\ \text{condition} & 25\Delta - 24 + \frac{25}{4}\Delta^{\times} + 15 \text{ is a square} \\ 100\Delta + 25\Delta^{\times} - 36 \text{ is a square, say, } 100\Delta \\ 25\Delta^{\times} = 36 \\ x = 5/6 \\ \text{solution} & 9 & \frac{1}{100} & \frac{529}{225} \end{array}$$

Problem 28 $x^2 + y^2 - 13 = a^2, y^2 + z^2 - 13 = b^2, z^2 + x^2 - 13 = c^2$ Solution:

Problem 29 $x^2 + y^2 + z^2 = a^2$ Solution:

squares	4	9	Δ
condition	$\Delta\Delta + 97$ is a sq	uare	
try sq. on $\Delta - 10$	$\Delta\Delta - 20\Delta + 10$	0	
	$20\Delta = 3$		
	need to replace	4 and 9	
try squares	4	Δ	
	$16 + \Delta \Delta$		
sq. using $\Delta + 4$	$2\Delta + 8$ and $\Delta\Delta$	$+ 8\Delta + 1$	6 instead of $20, 100$
	$2\Delta + 8$ and 8Δ	instead of	20, 3
	their ratio needs	s to be a s	quare;
	$\Delta + 4$ needs to l	be a squar	re;
try sq. on $y+1$	$\Delta + 2y + 1$		
	2y = 3		
	y = 3/2		
squares (scaled)	16	9	Δ
condition	$\Delta\Delta + 337$ is a s	quare	
sq. on $\Delta - 25$	$\Delta\Delta - 50\Delta + 62$	5	
	$50\Delta = 288$		
	x = 12/5		
solution	16	9	$\frac{144}{25}$

Problem 30 $5x + 8y = a^2$, $a + 60 = (x + y)^2$ Solution:

amount of wine	x	
total cost	$\Delta - 60$	
condition	fifth of first cost plus eighth of s	econd cost is x
	$\Delta - 60$ must be between $5x$ and	8x
	$\Delta - 5x$ is larger than 60, so x is	larger than 10
	$\Delta - 8x$ is smaller than 60, so x is	is smaller than 13
try sq. on $x - 20$	$\Delta - 40x + 400$	
	40x = 460	
	$x = \frac{23}{2}$	
first cost	y	
second amount	$\frac{23}{2} - \frac{1}{5}y$	
condition	$y + 92 - \frac{8}{5}y = \frac{529}{4} - 60$	
	$\frac{3}{5}y = \frac{79}{4}$	
	$y = \frac{395}{12}$	
solution	$\frac{79}{12}$	$\frac{59}{12}$

6 Book VI

Problem 1 To find a right-angled triangle such that each side subtracted from the hypotenuse is a cube.

Problem 2 To find a right-angled triangle such that each side added to the hypotenuse is a cube.

Problem 3 To find a right-angled triangle whose area added to a given number (5) is a square.

Problem 4 To find a right-angled triangle whose area minus a given number(6) is a square.

Problem 5 To find a right-angled triangle such that its area subtracted from a given number (10) gives a square.

Problem 6 To find a right-angled triangle such that a side added to its area is a given number (7).

Problem 7 To find a right-angled triangle such that its side subtracted from its area is a given number (7).

Problem 8 To find a right-angled triangle such that the sum of the sides added to the area is a given number (6).

Problem 9 To find a right-angled triangle such that the sum of the sides subtracted from the area is a given number (6).

Problem 10 To find a right-angled triangle such that the sum of a side with the hypotenuse and the area is a given number (4).

Problem 11 To find a right-angled triangle such that the sum of a side with the hypotenuse subtracted from the area is a given number (4).

Problem 12 To find a right-angled triangle such that the area added to any side is a square.

Problem 13 To find a right-angled triangle such that the area minus any side is a square.

Problem 14 To find a right-angled triangle such that the area minus the

hypotenuse or minus a side are each squares.

Problem 15 To find a right-angled triangle such that the area added to the hypotenuse or a side are each squares.

Problem 16 To find a right-angled triangle such that the bisector of an acute angle cuts the opposite side rationally.

Problem 17 To find a right-angled triangle such that the area added to the hypotenuse is a square and the perimeter is a cube.

Problem 18 To find a right-angled triangle such that the area added to the hypotenuse is a cube and the perimeter is a square.

Problem 19 To find a right-angled triangle such that its area added to a side is a square and the perimeter is a cube.

Problem 20 To find a right-angled triangle such that its area added to a side is a cube and the perimeter is a square.

Problem 21 To find a right-angled triangle such that its area added to the perimeter is a cube and the perimeter is a square.

Problem 22 To find a right-angled triangle such that its area added to the perimeter is a square and the perimeter is a cube.

Problem 23 To find a right-angled triangle such that the square of the hypotenuse is the sum of a square and its side, while the square of the hypotenuse divided by a side is the sum of a cube and its side.

Problem 24 To find a right-angled triangle such that one side is a cube, the other side is the difference between a cube and its side, and the hypotenuse is the sum of a cube and its side.

6.1 Solutions

Problem 1 $x^2 + y^2 = z^2, z - x = a^3, z - y = b^3$ Solution:

sides from $x, 2^4$	4x	$\Delta - 4$	$\Delta + 4$
condition	$\Delta + 4 -$	-4x is a c	ube
	square	on $x-2$ i	is a cube
	so $x - 2$	2 is a cub	e, say, 8
	x = 10		
solution	40	96	104

Problem 2 $x^2 + y^2 = z^2, x + z = a^3, y + z = b^3$ Solution:

sides from $x, 2$	4x	$4 - \Delta$	$4 + \Delta$
condition	$\Delta + 4 +$	-4x is a a	cube
	x+2 is	a cube,	say $\frac{27}{8}$
	$x = \frac{11}{2}$		0
triangle	$\frac{11}{2}^{8}$	$\frac{135}{64}$	$\frac{377}{64}$
solution	352	135	377

Problem 3 $x^2 + y^2 = z^2, \ \frac{1}{2}xy + 5 = a^2$ Solution:

sides	3x	4x	5x
area	6Δ		
condition	$6\Delta + 5$ is a square.	say, 9Δ	
	need to replace 3,4	,5	
triangle from y, y^{\times}	2	$\Delta-\Delta^{\times}$	$\Delta + \Delta^{\times}$
area	$\Delta - \Delta^{\times}$		
condition	$\Delta - \Delta^{\times} + 5$ is a set	luare	
try sq. on $y + 10y^{\times}$	$\Delta + 20 + 100 \Delta^{\times}$		
	$100\Delta + 505$ is a sq	uare	
try sq. on $10y + 5$	$100\Delta + 100y + 25$		
	100y = 480		
	y = 24/5		
triangle from $\frac{24}{5}$, $\frac{5}{24}$	2x	$\frac{331151}{14400}x$	$\frac{332401}{14400}x$
condition	$\frac{331151}{14400}\Delta + 5$ is squa	are on $\frac{413}{60}x$	
	$14045\Delta = 2880$		
	x = 24/53		
solution	$\frac{48}{53}$	$\frac{331151}{31800}$	$\frac{332401}{31800}$
	. 30	01000	01000

⁴A triangle formed from m, n has sides $m^2 + n^2, m^2 - n^2, 2mn$.

Problem 4 $x^2 + y^2 = z^2$, $\frac{1}{2}xy - 6 = a^2$ Solution:

sides	3x	4x	5x
condition	$6\Delta - 6$ is a square		
	need to replace 3,4,5		
triangle from y, y^{\times}	2	$\Delta-\Delta^{\times}$	$\Delta + \Delta^{\times}$
area	$\Delta - \Delta^{ imes}$		
try sq. on $y - 3y^{\times}$	$\Delta - 6 + 9\Delta^{\times}$		
	$36\Delta - 60$ is a square		
try sq. on $6y - 2$	$36\Delta - 24y + 4$		
	24y = 64		
	y = 8/3		
triangle from $\frac{8}{3}$, $\frac{3}{8}$	2x	$\frac{4015}{576}x$	$\frac{4177}{576}x$
condition	$\frac{4015}{576}\Delta - 6$ is square or	$1 \frac{37}{24}x$	
	$\frac{4015}{576}\Delta - 6 = \frac{1369}{576}\Delta$		
	x = 8/7		
solution	$\frac{16}{7}$	$\frac{4015}{504}$	$\frac{4177}{504}$

Problem 5 $x^2 + y^2 = z^2$, $10 - \frac{1}{2}xy = a^2$ Solution:

sides	3x	4x	5x
condition	$10-6\Delta$ is a squa	are	
	need to replace 3	,4,5	
triangle from y, y^{\times}	2	$\Delta-\Delta^{\times}$	$\Delta + \Delta^{\times}$
try sq. on $y^{\times} + 5y$	$\Delta^{\times} + 10 + 25\Delta$		
	$26\Delta + 10$ is a term	th of a squa	re
	$260\Delta + 100$ is a s	square	
	$65\Delta + 25$ is a squ	ıare	
try sq. on $8y + 5$	$64\Delta + 80y + 25$		
	$\Delta = 80y$		
	y = 80		
triangle from 80, $\frac{1}{80}$	2x	$\frac{40959999}{6400}x$	$\frac{40960001}{6400}x$
condition	$10 - \frac{40959999}{6400}\Delta =$	$=\frac{1024064001}{6400}\Delta$	
solution	$x = \frac{1}{\frac{1}{129}}$	$\frac{13653333}{275200}x$	$\frac{40960001}{825600}x$

Problem 6 $x^2 + y^2 = z^2, x + \frac{1}{2}xy = 7$ Solution:

sides	3x	4x	5x
condition	$6\Delta + 3x = 7$		
	need to replace	3,4,5	
try numbers	1	y	
discriminant	$\frac{1}{4} + \frac{7}{2}y$ is a squ	lare	
	14y + 1 is a squ	ıare	
	and $\Delta + 1$ is a	squar	е
diff. of sq.	$\Delta - 14y$		
sum, diff.	y, y - 14		
sides	y-7, 7		
square	49 = 14y + 1		
	y = 24/7		
sides (scaled)	24x	7x	25x
condition	$84\Delta + 7x = 7$		
	$x = \frac{1}{4}$		
solution	6	$\frac{7}{4}$	$\frac{25}{4}$
		r	-1

Problem 7 $x^{2} + y^{2} = z^{2}, \frac{1}{2}xy - x = 7$ Solution:

	need to replace	$3,\!4,\!5$	
sides	7x	24x	25x
condition	$84\Delta - 7x = 7$		
	x = 1/3		
solution	$\frac{7}{3}$	8	$\frac{25}{3}$

Problem 8 $x^2 + y^2 = z^2, x + y + \frac{1}{2}xy = 6$ Solution:

	need to replace $3,4,5$		
try triangle	1	y	
discriminant	$\frac{1}{4}\Delta + \frac{7}{2}y + \frac{1}{4}$ is a square)	
	$\dot{\Delta} + 14y + 1$ and $\Delta + 1$	are sq	uares
diff. of sq.	14y		
sum, diff.	2y	7	
sides	$y + \frac{7}{2}, y - \frac{7}{2}$		
square	$\Delta - 7y + \frac{49}{4} = \Delta + 1$		
	$7y = \frac{45}{4}$		
	$y = \frac{45}{28}$		
sides (scaled)	45x	28x	53x
condition	$630\Delta + 45x + 28x = 6$		
	x = 1/18		
solution	$\frac{5}{2}$	$\frac{14}{9}$	$\frac{53}{18}$

Problem 9 $x^2 + y^2 = z^2, \ \frac{1}{2}xy - x - y = 6$ Solution:

sides	28x	45x	53x
$\operatorname{condition}$	$630\Delta - 73x = 6$		
	x = 6/35		
solution	$\frac{24}{5}$	$\frac{54}{7}$	$\frac{318}{35}$

Problem 10 $x^2 + y^2 = z^2, y + z + \frac{1}{2}xy = 4$ Solution:

	need to repla	ace 3,4,5		
try triangle on 1, $y + 1$	2y + 2	$\Delta + 2y$	$\Delta + 2y + 2$	
discriminant	$\Delta \Delta + 8K +$	$18\Delta + 12y$ -	+1 is a squar	e
try sq. on $6y + 1 - \Delta$	$\Delta \Delta - 12K +$	$\Delta \Delta - 12K + 34\Delta + 12y + 1$		
	$20K = 16\Delta$			
	y = 4/5			
sides	90x	56x	106x	
condition	$2520\Delta + 56x$	x + 106x = 4	Ł	
	x = 2/105			
solution	$\frac{12}{7}$	$\frac{16}{15}$	$\frac{212}{105}$	
	1 <i>1</i>	10	100	

Problem 11 $x^2 + y^2 = z^2, \frac{1}{2}xy - y - z = 4$ Solution:

sides

$$90x$$
 $56x$
 $106x$

 condition
 $2520\Delta - 56x - 106x = 4$
 $x = 1/12$

 solution
 $\frac{15}{2}$
 $\frac{14}{3}$
 $\frac{53}{6}$

Problem 12 $x^2 + y^2 = z^2$, $\frac{1}{2}xy + x = a^2$, $\frac{1}{2}xy + y = b^2$ Solution:

try sides	3x $4x$ $5x$	
condition	$6\Delta + 4x$ and $6\Delta + 3x$ are squares;	
	need to find a square times Δ such that 4 divided by this	square minus 6
	gives a square for the second expression;	
	$96 + 12\Delta - 72$ is a square	
	$3\Delta + 6$ is a square, for example, 81	
	needed square is 25	$6\Delta + 4x = 25\Delta$
	$19\Delta = 4x$	
	x = 4/19	
solution	$\frac{12}{19}$ $\frac{16}{19}$ $\frac{20}{19}$	

Problem 13 $x^2 + y^2 = z^2, \frac{1}{2}xy - x = a^2, \frac{1}{2}xy - y = b^2$ Solution: try sides 3x4x5x $\operatorname{condition}$ $6\Delta - 3x$ and $6\Delta - 4x$ are squares; need a square Δ such that $96 - 72 + 12\Delta$ is a square; $6 + 3\Delta$ is a square, for example, 9 needed square is 1 sides 3 54 $6\Delta - 4x = \Delta$ $\begin{array}{c} x = 4/5 \\ \frac{12}{5} \end{array}$ $\frac{16}{5}$ solution 4 $x^{2} + y^{2} = z^{2}, \frac{1}{2}xy - z = a^{2}, \frac{1}{2}xy - x = b^{2}$ Problem 14 Solution: try sides 15x17x8xcondition $60\Delta - 17x$ and $60\Delta - 8x$ are squares diff. of sq. 9x $\begin{array}{c} 3x, \ 3\\ \frac{3}{2}x + \frac{3}{2}, \ \frac{3}{2}x - \frac{3}{2}\\ \frac{9}{4}\Delta + \frac{9}{2}x + \frac{9}{4} = 60\Delta - 8x \end{array}$ sum, diff. sides $231\Delta = 50x + 9$ $x = \frac{1}{3}$ $\frac{17}{3}$ 5sides $x^2+y^2=z^2,\ \tfrac{1}{2}xy+z=a^2,\ \tfrac{1}{2}xy+x=b^2$ Problem 15 Solution: try sides 15x17x8xcondition $60\Delta + 17x$ and $60\Delta + 8x$ are squares diff. of sq. 9x3x, 3 $\frac{3}{2}x + \frac{3}{2}, \frac{3}{2} - \frac{3}{2}$ $\frac{9}{4}\Delta - \frac{9}{2}x + \frac{9}{4} = 60\Delta + 8x$ sum, diff. sides $\begin{array}{c} \begin{array}{c} 2 \\ 231\Delta + 50x = 9 \\ x = 9/77 \\ \frac{72}{77} \end{array}$ solution $\frac{153}{77}$ Problem 16 $x^2 + y^2 = z^2, \ \frac{u}{z} = \frac{v}{r}, \ u + v = y$ Solution: sides of smaller triangle ABD3x4x5xlet bisected side BC3 AB: BD equals AC: CDhypotenuse is to 3 - 3x as 4:3hypotenuse 4 - 4x $16 - 32x + 16\Delta = 16\Delta + 9$ sum of sq. on sides 32x = 7x = 7/32 $\frac{7}{8}$ $\frac{25}{8}$ solution 3
Problem 17 $x^2 + y^2 = z^2$, $\frac{1}{2}xy + z = a^2$, $x + y + z = b^3$ Solution: sides $\mathbf{2}$ 16 - xxcondition 18 is a cube need to replace 16 by a square less than a cube by 2 square, cube $\Delta + 2y + 1$ $K - 3\Delta + 3y - 1$ $K - 4\Delta + y = 4$ y = 42sides 25 - xx $625 - 50x + \Delta = 4 + \Delta$ condition 50x = 621x = 621/50 $\frac{629}{50}$ $\frac{621}{50}$ solution 2Problem 18 $x^2 + y^2 = z^2$, $\frac{1}{2}xy + z = a^3$, $x + y + z = b^2$ Solution: sides 227 - xxneed to replace 27 by a cube less than a square by 2 $\frac{9}{4}\Delta + 3y + 1$ $K - 3\Delta + 3y - 1$ square, cube $K - 3\Delta + 3y + 1 = \frac{9}{4}\Delta + 3y + 1$ $K = \frac{21}{4}\Delta$ y = 21/4 $\frac{4913}{64} - x$ sides $\mathbf{2}$ x $4 + \Delta = \frac{\bar{24137569}}{4096} - \frac{4913}{32}x + \Delta$ condition $4 + \Delta = \frac{1}{4096} - \frac{1}{628864x} = 24121185$ 24121185 24153953 2solution 628864Problem 19 $x^2 + y^2 = z^2, \frac{1}{2}xy + x = a^2, x + y + z = b^3$ Solution: triangle⁵ from 2x + 12x + 1 $2\Delta + 2x$ $2\Delta + 2x + 1$ $\operatorname{condition}$ $4\Delta + 6x + 2$ is a cube after dividing sides by x + 1, need 4x + 2 to be a cube $2K + 3\Delta + x + 2\Delta + 3x + 1$ is a square condition 4x + 2 is a cube and 2x + 1 is a square x = 3/2 $\frac{8}{5}$ $\frac{17}{5}$ solution 3 $x^{2} + y^{2} = z^{2}, \ \frac{1}{2}xy + x = a^{3}, \ x + y + z = b^{2}$ Problem 20 Solution: 2x + 2 $2\Delta + 2x$ $2\Delta + 2x + 1$ triangle as in solution 19 4x + 2 is a square and 2x + 1 is a cube x = 7/2 $\frac{65}{9}$ $\frac{16}{9}$ solution 7

⁵The triangle on an odd number 2n + 1 has sides 2n + 1, 2n(n + 1), $2n^2 + 2n + 1$.

Problem 21 $x^2 + y^2 = z^2$, $\frac{1}{2}xy + x + y + z = a^3$, $x + y + z = b^2$ Solution:

triangle on $1, x$	2x	$\Delta - 1$	$\Delta + 1$		
condition	$2\Delta + 2x$ is a s	square and	$K + 2\Delta + x$ is a cube		
	if y is a squar	$ m re\ minus\ 2$ t	times Δ , then $x = 2y^{\times}$		
condition in y	$8K^{\times} + 8\Delta^{\times} -$	$+2y^{\times}$ is a c	cube		
	$8+8y+2\Delta$ is a cube				
	twice a square is a cube, powers of $27/8$, say $531441/32768$				
	y = 217/256				
	x = 512/217				
solution	$\frac{1024}{217}$	$\frac{215055}{47089}$	$\frac{309233}{47089}$		
	1 211	41009	47009		

Problem 22 $x^2 + y^2 = z^2$, $\frac{1}{2}xy + x + y + z = a^2$, $x + y + z = b^3$ Solution:

$\begin{array}{llllllllllllllllllllllllllllllllllll$	try area, perimeter	60	40	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	hypotenuse	x		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	sum of sides	40-x		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	squared	$\Delta + 1600 - 80x = \Delta + 240$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		x = 17		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	sides	23/2 + y	23/2 - y	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	product	$529/4 - \Delta = 120$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	solve	y = 7/2		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	triangle	15	8	17
$\begin{array}{llllllllllllllllllllllllllllllllllll$		need to change 60 and 40		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	area, perimeter	y	64	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	sum of sides	64 - x		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	squared	$4096 - 128x + \Delta = \Delta + 2y$		
$ \begin{array}{c} \mbox{fourth of square on } 4096 + 4y \mbox{ minus twice the product of } \\ 4096 \mbox{ and } 4y \mbox{ is a square } \\ 4\Delta - 24576y + 4194304 \mbox{ is a square } \\ \Delta - 6144y + 1048576 \mbox{ is a square } \\ \mbox{ and } y + 64 \mbox{ is a square } \\ \mbox{ and } y + 64 \mbox{ is a square } \\ \mbox{ and } y + 64 \mbox{ is a square } \\ \mbox{ diff. of squares } \\ \mbox{ sum, diff. } \\ \mbox{ sides } \\ \begin{array}{c} 243 \\ 22 \\ 22 \\ 32 \\ y - 1024, \frac{243}{22} y + 11264 \\ y = 39424/225 \\ \mbox{ sides } \\ \end{array} \\ \begin{array}{c} x^{\times} & \frac{78848}{225} x \\ 78848\Delta + 225 = 8432x \\ x = \frac{25}{448} \\ \frac{448}{448} & \frac{176}{176} \\ \end{array} \\ \begin{array}{c} 5968 \\ \mbox{ solution } \end{array} $		$x = 32 - \frac{1}{64}y$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		fourth of square on $4096 + 4$	y minus twi	ice the product of
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4096 and $4y$ is a square		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$4\Delta - 24576y + 4194304$ is a	square	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\Delta - 6144y + 1048576$ is a sq	uare	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		and $y + 64$ is a square		
$\begin{array}{cccc} \text{diff. of squares} & \Delta - 22528y \\ \text{sum, diff.} & 11y, \frac{1}{11}y - 2048 \\ \text{sides} & \frac{243}{22}y - 1024, \frac{243}{22}y + 11264 \\ & y = 39424/225 \\ \text{sides} & x^{\times} & \frac{78848}{225}x \\ & 78848\Delta + 225 = 8432x \\ & x = \frac{25}{448} \\ & 4488 & \frac{176}{25} & \frac{5968}{2968} \end{array}$	scale by 16384	16384y + 1048576 is a square	е	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	diff. of squares	$\Delta - 22528y$		
sides sides sides $ \begin{array}{c} \frac{243}{22}y - 1024, \frac{243}{22}y + 11264 \\ y = 39424/225 \\ x^{\times} & \frac{78848}{225}x \\ 78848\Delta + 225 = 8432x \\ x = \frac{25}{448} \\ x = \frac{25}{448} \\ \frac{448}{48} & \frac{176}{5968} \end{array} $	sum, diff.	$11y, \frac{1}{11}y - 2048$		
sides $y = 39424/225$ $x^{\times} \qquad \frac{78848}{225}x$ $78848\Delta + 225 = 8432x$ $x = \frac{25}{448}$ $x = \frac{25}{448}$ $\frac{176}{5968}$	sides	$\frac{243}{22}y - 1024, \frac{243}{22}y + 11264$		
sides $x^{\times} \qquad \frac{78848}{225}x$ $78848\Delta + 225 = 8432x$ $x = \frac{25}{448}$ solution $\frac{448}{225} \qquad \frac{176}{5968}$		y = 39424/225		
solution $78848\Delta + 225 = 8432x$ $x = \frac{25}{448}$ $\frac{176}{448} = \frac{5968}{5968}$	sides	x^{\times}	$\frac{78848}{225}x$	
solution $x = \frac{25}{448}$ $\frac{448}{448}$ $\frac{176}{5968}$		$78848\Delta + 225 = 8432x$		
solution $\frac{448}{176}$ $\frac{176}{5968}$		$x = \frac{25}{448}$		
25 9 225	solution	$\frac{448}{25}$	$\frac{176}{9}$	$\frac{5968}{225}$

Problem 23 $x^2 + y^2 = z^2, z^2 = a^2 + a, z^2/x = b^3 + b$ Solution:

sides	x	Δ	
sq. of hyp.	$\Delta + \Delta \Delta$, a s	sum of a square	e and its side
condition	x + K, a sur	n of a cube and	d its side
	need $\Delta + \Delta \Delta$	Δ is a square	
	$1 + \Delta$ is a square		
try sq. on $x-2$	$\Delta - 4x + 4$		
	4x = 3		
	x = 3/4		
solution	$\frac{3}{4}$	$\frac{9}{16}$	$\frac{15}{16}$

Problem 24 $x^2 + y^2 = z^2, x = a^3, y = b^3 - b, z = c^3 + c$ Solution:

sides	2Δ	K - x	K + x
$\operatorname{condition}$	$2\Delta = K$		
	x = 2		
solution	6	8	10

References

- 1. http://www.e-rara.ch/doi/10.3931/e-rara-9423
- 2. https://archive.org/details/diophantusofalex0000heat