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1 Introduction

1.1 Object of the Work

The laws of mechanics, applicable to all phenomena of motion, have been eluci-
dated by Archimedes, Galileo, and Newton and perfected by later philosophers.
Heat is as pervasive as gravity, but is not subject to these laws. Although inge-
nious instruments for its measurement are now available, its laws have not yet
been laid out. The object of this work is to discover the laws of heat, how it
attains an equilibrium distribution from some known initial temperature.

These laws are written as mathematical equations, for there cannot be a
language more universal and more simple, more free from the errors, variations
and obscurities of the human mind. Mathematics is ideal to express the rela-
tions of nature, it brings together diverse phenomena and discovers the hidden
analogies that unite them. No region of nature is inaccessible to it, whether
separated from us by the immensity of space or by a great number of centuries,
or hidden in the Earth’s interior. It is a faculty of the mind destined to supple-
ment the shortness of life and the imperfection of the senses. Remarkably, such
diverse phenomena are all interpreted in the same language as if to attest to
the unity, the simplicity and the unchangeable order of the plan of the universe.
The resulting theory is novel and fundamentally different from dynamics and
mechanics. Although the general solution of partial differential equations is not
possible, practical solutions can be found using convergent series.

We will see that the laws depend on three numerical quantities of a substance:
its capacity to contain heat (heat capacity c), to conduct it (conductivity k),
and to transmit it across the surface (external conductivity h).

A beautiful application of the theory is the determination of the internal
temperature of the Earth. Apart from the daily and yearly variations in the
top few metres, there is an unchanging temperature distribution which can be
deduced from the laws.
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1.2 Preliminary Definitions and General Notions

The laws will be based on one basic principle of conduction supported by com-
mon observations of heat, and not on the precise nature of heat, such as whether
heat flow is a flow of a substance or of a motion.

Temperature is taken to be measured by a thermometer in perfect contact
with the body, where 0 denotes the temperature of melting ice and 1 the tem-
perature of boiling water (at atmospheric pressure). A quantity of heat C is
taken to be measured relative to the standard quantity required to heat one
kilogram of ice at 0 to water at 0. The specific heat capacity is the quantity of
heat needed to raise the temperature of a substance from 0 to 1. Heat expands
bodies: a homogeneous body which is heated equally throughout retains a uni-
form density. It is observed that if a quantity of heat zC is added to a volume
V at 0, then the new volume is V + zδ. Indeed this ratio z is what is termed
the temperature. (This is not accurately valid at or near to changes of state.)

The heat which passes from a unit surface to air is proportional to their
temperature difference and depends on the external conductivity (as well as the
velocity of the air current and its density). The conductivity is diminished if
the surface is polished and metallic, but increased if black. As the air is heated,
the layer nearest the surface becomes lighter and rises, establishing a current
that depends on the temperature. A small part of the emitted heat is refractible
‘heat’ rays similar to light, most is given out by contact (except in a vacuum).
The internal conduction of heat proceeds from molecule to molecule, except that
in liquids, the molecules can move about. Most physicists believe that heat is
transmitted between molecules solely by heat rays, but whether this is the case
is not necessary for what follows.

A small body acquires the temperature of a much larger body, whether
touching it or if placed completely inside it. Incoming heat rays are partly
reflected and partly absorbed; and some is re-emitted and some reflected back
in. The net difference goes into heating or cooling the body. Thus increasing
the reflectivity of the surface works both ways: it reflects both incoming and
outgoing rays. Heat rays cannot penetrate solids and liquids, only gases. Hence
only particles at the surface of an object emit rays; deep or oblique rays are
reabsorbed, so emitted rays are predominantly normal to the surface, in fact
proportional to the sine of the angle.

Heat is the origin of elasticity. It is the repulsive force which keeps solids
and liquids from collapsing. Only heat prevents molecules from getting any
closer; thus increasing the temperature expands a body and vice versa. There
is a stable equilibrium between molecular attraction and heat repulsion.

1.3 Principle of Heat Flow

From experiments, the heat passed from one point to another is proportional to
the difference in temperature. If two molecules have temperatures v′ and v at
a distance p, then the amount of heat transferred in a time dt is (v′ − v)φ(p)dt
where φ(p) is a function that decreases to nothing as p increases, at least for
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solids and liquids.
Similarly the heat lost from a surface area σ at a temperature v to its

surroundings at an ambient temperature a is σh(v − a)dt where h is a measure
of the external conductivity. Both laws depend on temperature differences, not
the actual temperature.

It follows that if a body loses heat to its surroundings but its temperature
remains homogeneous, then its temperature follows a logarithmic curve1. Also,
if the ambient temperature is, say, 0, and the initial temperature α is increased to
gα (g any number) then the temperatures will be v and gv respectively. All these
observations have been confirmed by experiments with accurate thermometers.

1.4 Uniform Linear Heat Flow

Consider a homogeneous solid between two parallel planes A and B, separated
by a distance e and maintained at temperatures a and b respectively, with b less
than a. We show that the final temperature is that of an arithmetic progression
v = a + b−a

e
z, where z is the distance from A. For, given a particle m on

any plane A′ parallel to A and at a distance z from it, and another particle
m′ separated by z′ vertically from m; then the heat transmitted from m to m′

depends on their temperature difference, namely b−a
e
z′, which does not depend

on z. So the heat passing across any parallel plane is the same; in particular
as much heat is lost from one face as is received from the opposite face, so its
temperature remains constant.

Indeed the heat flow across such a plane is proportional to a−b
e

. To establish
the constant of proportionality, called the specific conductivity of the substance,
one needs to take a large slab of the material of unit thickness (1 metre), keep
one side at 0, and the other at 1, and measure the heat flow K in a unit time
(1 minute) by weighing how much ice is turned to water with that heat. Then
the actual heat flow is F = K a−b

e
= −K dv

dz
.

Suppose now that plane B is in contact with air at a temperature of b. Plane
B will now heat up to an unknown temperature β. The heat lost is then h(β−b)
where h is the external conductivity of B, and this must equal the heat inflow

K a−β
e

, so that β can be determined and v = a− hz(a−b)
he+K

.

1.5 The Permanent Temperature in a Thin Long Prism

Consider a 2l× 2l square prism of infinite length with its face at x = 0 kept at
a fixed temperature and the other faces exposed to air at 0. We will assume l
to be small enough that there is no appreciable difference between the surface
and interior temperatures of a slice, so that the temperature v depends only the
distance x from the face. In the final permanent state of the system, as much
heat enters a thin cross-section, namely −4l2K dv

dx
, as escapes, that is,

−4l2K

(

dv

dx
+ d

(

dv

dx

))

+ 8hlvdx = −4l2K
dv

dx

1Meaning a + be−kt
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which gives Kl d2v
dx2 = 2hv. Note, in passing, that this equation depends on l:

the experiments that were performed to determine that heat cannot flow more
than 6 feet through iron is valid only for the thickness used.

The integral of this equation is

v = Ae−x
√

2h
kl +Bex

√
2h
kl = Ae−x

√
2h
kl

where A is an arbitrary constant and B = 0 if v remains small as x becomes
infinite. This logarithmic law has been observed by several physicists. By mea-
suring the temperature at two points, one can find the ratio h/k. Notice that
two equal bars of different materials but the same h would have the same tem-

perature at two points with
x2
1

x2
2

= k1

k2
. The flow of heat −4kl2 dv

dx
is proportional

to
√
l3.

1.6 Heating of Closed Spaces

Imagine a space of air enclosed by a thin boundary of surface area s and thickness
e, and maintained throughout at a temperature n. It is now heated by a source
at temperature α and area σ. Eventually the air reaches a temperature m and
the boundary has inner and outer temperatures a and b.

As the boundary surfaces have fixed temperatures, there is no transfer of
heat tangential to the boundary, only perpendicular to it. The flow of heat
entering the air is σ(α −m)g (where g is the conductivity of the heat source),
that leaving it at the boundary is s(m − a)h, through the boundary sa−b

e
K,

and out to the surrounding air s(b− n)H . These four expressions are all equal.
Adding the expressions for m− a, a− b and b− n gives

m− n = (α−m)P = (α− n)
P

1 + P

where P is σ
s
( g

h
+ ge

K
+ g

H
) = σ

s
p. It is directly proportional to the source tem-

perature α−n, depends on h, H and K
e

in equivalent ways, and is independent
of the form or volume of the enclosure. Bad conductors of heat increase m until
m = α when K = 0 (or H = 0 or h = 0). The value of p may be determined
experimentally by measuring m − n, α − n and σ/s. For example, flames and
animated bodies are constant sources of heat; taking these measurements in one
case of a room with people in it, one can estimate the increase in temperature
when more people are present, although in practice many of the assumptions
made above are not satisfied.

One can repeat these calculations for the case when there is a second heat
source of temperature, or to the case when one space is enclosed by a second
space and so on; we find that such enclosures greatly aid in the amount of
heating. In contrast to the heat lost hs(b − n), an enclosure would raise the
intermediate air temperature to n′ and the heat loss would be less hs(b − n′).
More precisely, the heat which enters the enclosure hs(b − n′), equals the heat
which enters the shell’s inner surface, hs(n′ − a′), equals the heat which passes
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through the shell Ksa′−b′

e
, equals the heat which passes to the air hs(b′ − n).

Adding gives b − n = (b′ − n)(3 + he
K

); the heat lost is now hs(b−n)

3+ he
K

, at least

3 times less than originally. However the effect of heat radiation has not been
included. Suppose then, that a number j of parallel laminae separate the source
at temperature b from the air at temperature n with no air in between. The
heat transmitted from one plate to the next is proportional to their temperature
difference. The heat quantities crossing each lamina is now Hs(bi−1 − ai) =
Ks
e

(ai − bi) = Hs(bi − ai+1) etc. Adding gives b0 − n = (b0 − a1)j(1 + He
K

) + 1.

Thus the heat lost now is Hs(b0 − a1) = Hs(b0−n)

j(1+ He
K

)+1
; for thin laminae this is

Hs(b0−n)
j+1 . In both cases inserting enclosures greatly assists in the retention of

heat, explaining the results of experimenters who have enclosed thermometers
by several layers of glass sheets. Similarly the temperature at high altitudes is
very much less than at the Earth’s surface.

1.7 Uniform Heat Flow in Three Dimensions

Suppose a cuboid to have internal permanent temperature v = A+ax+by+cz.
The difference in temperature between particles m and m′ at coordinates x, y, z
and x′, y′, z′ is a(x−x′)+b(y−y′)+c(z−z′). Summing up all such heat transfers,
the heat flow across any parallel planes is the same. So any small cuboid of a
solid receives as much heat across one plane as it loses in the opposite face, and
its temperature is maintained. In summary,

Theorem I. If a homogeneous solid has a temperature determined by v =
A− ax− by − cz, including the surface, then the distribution is stationary.

Corollary I. In a solid enclosed by infinite parallel planes, the temperature
v = 1 − z is stationary.

Corollary II. In the same solid, the heat flow across parallel planes is the
same (otherwise the temperature changes).

Lemma. If the temperature is now v = g − gz, then the heat flow is also
multiplied by g (because the temperature differences, and hence the heat flow,
are also scaled by g).

Theorem II. If a bounded prism has temperature v = A− ax− by− cz then
the heat flow across a plane is the same as in Corollary II.

Corollary. The flow of heat in the z-direction per unit area and unit time is
cK or −K dv

dz
, and similarly for the other directions.

1.8 Measure of Heat Flow at a Point

Consider a solid with temperature v = f(x, y, z, t) at a point m. Imagine a
plane parallel to the xy-plane through the point and an infinitely small circle
ω on it, centered at m. In an infinitely small instant dt, the points below the
circle will send an amount of heat equal to −K dv

dz
ωdt to the points on the

other side. For a plane in a general direction, the temperature distribution in
the vicinity of m with coordinates x + ξ, y + η, z + ζ will be indistinguishable
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from v = A+ aξ + bη + cζ, so the heat flow would be −K dv
dz

, −K dv
dy

or −K dv
dx

depending on the direction of the plane.
Theorem III. If v = f(x, y, z, t) then near to any point, the temperature is

v + ξ dv
dx

+ η dv
dy

+ ζ dv
dz

so the heat flow in the z-direction is −K dv
dz

per unit area
and time.

As an example, if the temperature of a cube centered at the origin is v =
e−gt cosx cos y cos z, the heat flow across a face would be

−K
∫∫

dv

dz
ω dt = Ke−gtdt

∫ + 1
2π

− 1
2π

∫ + 1
2π

− 1
2π

cosx cos y dxdy = 4Ke−gt sin z dt

where we denote an integral from x = a to x = b by
∫ b

a
. The total heat loss

across all six faces after infinite time is 4K
g

.

2 The Equations of Heat Flow

2.1 Ring

We now turn to the more general problem of finding the variable state of tem-
perature v in a solid body as a function of x and t. We start with a solid ring of
radius R, cross-section area S and perimeter l exposed to air at 0; assume the
temperature is constant across a cross-section but otherwise given arbitrarily
initially.

A thin slice will gain heat, KS d2v
dx2dxdt as in the introduction, and loses

hlv dx dt to the air. This amount of heat divided by CDSdx, where C is the
specific heat capacity and D the density, gives the increase in temperature dv,

dv

dt
=

K

CD

d2v

dx2
− hl

CDS
v

If there are sources and the temperature has become stationary, then the equa-

tion is d2v
dx2 = hl

KS
v, whose solution in between any pair of sources is v =

Mα−x +Nα+x, where α = e−
√

hl
KS ; the constants are determined by the tem-

perature of the sources. If x1, x2, x3 are equally spaced points (with common
distance λ) then their temperature satisfies v1+v3

v2
= αλ + α−λ = q, indepen-

dent of the position or sources. This has been confirmed by experiment. If one
measures q, then αλ and the conductivities ratio h

K
= S

l
(logα)2 can be found.

2.2 Solid Sphere

We study here the variation of temperature of a solid homogeneous sphere ini-
tially at temperature 1 and then exposed to air at 0. The amount of heat enter-
ing a spherical shell of radius x is −4Kπx2 dv

dx
dt, that leaving is −4Kπx2 dv

dx
dt−

4Kπd(x2 dv
dx

)dt, and the net heat gain goes into raising the temperature by
CD4πx2dx, so

dv

dt
=

K

CD

(

d2v

dx2
+

2

x

dv

dx

)

.
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The other conditions on the temperature v = φ(x, t) is that the surface x = X is
kept at 0 for all t, so φ(X, t) = 0, while initially φ(x, 0) = F (x). Alternatively, if
the surrounding medium is air, the radiated heat is 4hπX2V dt, where V is the
surface temperature, so −4KπX2 dV

dx
dt = 4hπX2V dt, i.e., dV

dx
= − h

K
V . These

equations will be solved in a later chapter.

2.3 Solid Cylinder

We repeat the analysis for an infinite cylinder. The net heat gained is now
2Kπ dt d(x dv

dx
) which raises the temperature by 2CDπxdx, so

dv

dt
=

K

CD

(

d2v

dx2
+

1

x

dv

dx

)

The equation at the surface becomes −2KπX dv
dx
dt = 2πXhvdt, i.e., dv

dx
= − h

K
v

at x = X , and v = F (x) at t = 0.

2.4 General Equation of Heat Flow

Consider now the general problem with a variable temperature v = φ(x, y, z, t).
In a prismatic molecule bounded by points x, y, z and x+ dx, y+ dy, z+ dz, the

net heat gained across opposite planes is −Kdydzd( dv
dx

), that is −Kdxdydz d2v
dx2 .

Adding the contributions due to the other faces, the net increase in heat is

−Kdxdydz( d2v
dx2 + d2v

dy2 + d2v
dz2 )dt which goes into raising the temperature by

CDdxdydz, so
Theorem IV. The most general equation of heat propagation applicable to

all solids is
dv

dt
=

K

CD

(

d2v

dx2
+
d2v

dy2
+
d2v

dz2

)

(1)

If the temperature is stationary, it must be the case that d2v
dx2 + d2v

dy2 + d2v
dz2 = 0.

The heat flow can be interpreted as the sum of three flows in perpendicular
directions. Initially, φ(x, y, z, 0) = F (x, y, z) for some known function.

(The specific heat c has been shown by Prof. Dulong and Petit to increase
slowly with temperature. The other coefficients h and k also depend on the tem-
perature in principle but we have assumed them constant because the variation
is small; correction terms must be added for more precision. We also neglect
the small thermal expansion of solids.)

This equation is the same as that given for the sphere and cylinder. For
suppose the temperature v in a cylinder depends only on r and t, independent

of x. Now dv
dy

= dv
dr

dr
dy

and d2v
dy2 = d2v

dr2 ( dr
dy

)2 + dv
dr

( d2r
dy2 ), and similarly for z, so

d2v

dx2
+
d2v

dy2
+
d2v

dz2
=
d2v

dr2

(

(

dr

dy

)2

+

(

dr

dz

)2

+
dv

dr

(

d2r

dy2
+
d2r

dz2

)

)
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Since r2 = z2 + y2, it follows that ( dr
dy

)2 + ( dr
dz

)2 = 1 since y = r dr
dy

, 1 =

( dr
dy

)2 + r d2r
dy2 , and r2 = y2 + z2 = r2

(

( dr
dy

)2 + ( dr
dz

)2
)

. Also d2r
dy2 + d2r

dz2 = 1
r

since

2 = 1 + r( d2r
dy2 + d2r

dz2 ). Substituting gives

d2v

dx2
+
d2v

dy2
+
d2v

dz2
=
d2v

dr2
+

1

r

dv

dr

which was derived separately above.
For a sphere, x2 + y2 + z2 = r2, so r2 = r2(( dr

dx
)2 + ( dr

dy
)2 + ( dr

dz
)2), and

d2r
dx2 + d2r

dy2 + d2r
dz2 = 1

r
. Again we get the previously derived

d2v

dx2
+
d2v

dy2
+
d2v

dz2
=
d2v

dr2
+

2

r

dv

dr
.

Elsewhere I have also derived the heat equation for a fluid

C
dθ

dt
= K

(

d2θ

dx2
+
d2θ

dy2
+
d2θ

dz2

)

− C

(

d

dx
(uθ) +

d

dy
(vθ) +

d

dz
(wθ)

)

2.5 General Equation of Outflow at the Surface

The equations at the surface depend on the conditions there; for example, if
it is maintained at a constant temperature of 0, then φ(x, y, z, t) = 0 for all
x, y, z on the surface; if heat is lost to air then −Kdxdy dv

dz
= h dxdy v, that is

hv+K dv
dy

= 0. In other cases, as in the problem of terrestrial temperatures, the
surface temperature varies in a known manner with time.

In general, if the solid surface f(x, y, z) = 0 loses heat to the air maintained
at a constant temperature, say 0, a third condition must be added to (1) and the
initial condition. Let µ be a point on the surface, at x, y, z, having temperature
v = φ(x, y, z, t) and let ν be a point at x + dx, y + dy, z + dz, normal to the
surface and having temperature w. By theorem III, the heat flow across an
infinitesimal surface area ω is −K w−v

α
ωdt where α =

√

δx2 + δy2 + δz2 is the
distance between µ and ν. Differentiating f(x, y, z) = 0 givesmdx+ndy+pdz =

0, so pδx = mδz, pδy = nδz, and α = q
p
δz, where q = (m2 + n2 + p2)

1
2 , so

w = v + δv = v +
dv

dx
δx+

dv

dy
δy +

dv

dz
δz

= v +
α

q

(

m
dv

dx
+ n

dv

dy
+ p

dv

dz

)

.

This heat flow −K w−v
α
ωdt is lost to the air, and equals hvωdt. The surface

condition therefore becomes

−K

(

m
dv

dx
+ n

dv

dy
+ p

dv

dz

)

= hvq. (2)



2.6 General Remarks J Muscat 9

2.6 General Remarks

Five quantity units have been used: length, time, temperature, weight, and heat.
The heat capacity C is always accompanied in the equations by the density D,
so we can define c = CD, which is the heat capacity of a material of unit volume.
If this is done, then the unit of weight is unnecessary.

In the equation of heat, if the length quantity x is redefined as mx, then
h,K, c become h

m2 ,
K
m
, c

m3 respectively. These represent the dimensions of length
in the respective quantities. The dimensions of h,K, c are

length time temperature
K −1 −1 −1
h −2 −1 −1
c −3 0 1

The equations are homogeneous for each dimension, i.e., they are dimension-

ally correct; e.g. each term of dv
dt

= K
CD

d2v
dx2 − hl

CDS
v has dimensions 0, −1, 1 for

length, time, and temperature.

3 Heat Flow in an Infinite Rectangular Solid

3.1 Statement of the Problem

As an illustration of the method to be used for solving the preceding differential
equations, consider a homogeneous infinite solid bounded by three planes A, B,
C, with B and C parallel to each other and perpendicular to A. The face A is
kept at a constant temperature of 1, while B and C have a constant temperature
of 0. Heat will flow across face A out through B and C, raising the temperature
of the solid until it approaches a steady state. Take the width of A to be π, and
the x-axis to be parallel to B from the midpoint of A. It is required to find the
steady temperature v as a surface v = φ(x, y) over the x-y plane.

The heat equation in this case is d2v
dx2 + d2v

dy2 = 0, with φ(x,± 1
2π) = 0, φ(0, y) =

1, and φ ought to be small for large x. We could solve for v, variable in time,
and then take t infinite, but the adopted procedure is more direct.

We first seek a simple function that satisfies the equation, and then generalize
it so it satisfies the conditions. Functions of two variables often reduce to simpler
expressions, such as F (x)f(y) when one or both values are infinite. Substituting
such a function in the heat equation we find

F ′′(x)

F (x)
+
f ′′(y)

f(y)
= 0

so that F ′′(x)
F (x) = m, f ′′(y)

f(y) = −m, constant, hence F (x) = e−mx, f(y) = cosmy.

The constant m cannot be negative else F (x), and thus v, would become infinite
when x is infinite; in order for v to be 0 at y = ± 1

2π, m must be taken to be
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one of 1, 3, 5, 7,&c. A more general solution is easily obtained by adding such
simple functions,

v = ae−x cos y + be−3x cos 3y + ce−5x cos 5y + &c.

Notice that the solution represented by the first term, ae−x cos y, has positive
d2v
dx2 and negative d2v

dy2 ; the heat flow is thus in the positive x-direction and either
of the y-directions.

The third condition, φ(0, y) = 1 (− 1
2π < y < 1

2π) is then

1 = a cos y + b cos 3y + c cos 5y + &c (3)

where the coefficients a, b, c,&c, are to be determined. Any doubts as to whether
such a series can possibly give a constant 1 will be cleared presently.

3.2 Trigonometric Series

Differentiating (3) repeatedly, at y = 0, gives the infinite number of equations

1 = a+ b+ c+ &c

0 = a+ 32b+ 52c+ &c

0 = a+ 34b+ 54c+ &c

If we solve the first two equations in two unknowns, then three, &c, we get
different values for a, b, c, d, &c which converge to limiting values. The first

equation is a = 1, then two give a = 32

32−1 , b = − 1
32−1 , and so on. With each

new equation a term is added to the series and we obtain

a =
32

32 − 1
· 52

52 − 1
· 72

72 − 1
· 92

92 − 1
· 112

112 − 1
· &c

=
3 · 3
2 · 4 · 5 · 5

4 · 6 · 7 · 7
6 · 8 · 9 · 9

8 · 10
· 11 · 11

10 · 12
· &c

=
4

π
by Wallis’ theorem.

b =
12

12 − 32
· 52

52 − 32
· 72

72 − 32
· 92

92 − 32
&c

=
1 · 1
2 · 4 · 5 · 5

2 · 8 · 7 · 7
4 · 10

· &c = − 6

3 · 3
2

π
= −2 · 2

3π

c =
12

12 − 52
· 32

32 − 52
· 72

72 − 52
· 92

92 − 52
&c

=
1 · 1
4 · 6 · 3 · 3

2 · 8 · 7 · 7
2 · 12

· &c =
10

5 · 5
2

π
= 2 · 2

5π

Hence
π

4
= cos y − 1

3
cos 3y +

1

5
cos 5y − 1

7
cos 7y + &c. (4)

The series obviously converges, albeit not rapidly, for any value of y between
− 1

2π and 1
2π. In the range 1

2π < y < 3
2π, the constant value of the series is − 1

4π
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since each term of the series changes sign. At y = ± 1
2π,± 3

2π, &c, the series is 0.
The case y = 0 gives Leibnitz’ series π

4 = 1 − 1
3 + 1

5 − 1
7 + &c. Putting y = 1

2
π
2 ,

we find π

2
√

2
= 1 + 1

3 − 1
5 − 1

7 + 1
9 + &c., and similarly several other series due to

Euler can be obtained. Integrating equation (4)

π

4
y = sin y − 1

32
sin 3y +

1

52
sin 5y − &c,

and putting y = π
2 gives π2

8 = 1 + 1
32 + 1

52 + 1
72 + &c.

3.3 Remarks on these Series

Another derivation of (4) is to take the finite series

y = cosx− 1

3
cos 3x+

1

5
cos 5x+ &c− 1

2m− 1
cos(2m− 1)x (m even).

Differentiating gives − dy
dx

= sinx− sin 3x+ sin 5x− sin 7x+ &c− sin(2m− 1)x
so

−2
dy

dx
sin 2x = (cosx− cos 3x) − (cosx− cos 5x) + (cos 3x− cos 7x) + &c

−(cos(2mx− 3x) − cos(2mx+ x))

= cos(2m+ 1)x− cos(2m− 1)x

= −2 sin2mx sinx

hence y = 1
2

∫

dx sin 2mx
cos x

. Integrating by parts, we get

2y = const.− 1

2m
cos 2mx secx+

1

22m2
sin 2mx sec′ x+ &c.

from which it is evident that y takes a constant value as m increases. This
constant is found to be π

4 by taking x = 0 in the original series.
This type of analysis can lead to other series. For m even, let

y = sinx− 1

2
sin 2x+

1

3
sin 3x− 1

4
sin 4x+ &c.− 1

m
sinmx

Then 2 sinx dy
dx

= (sin 2x−0)−(sin 3x−sin x)+&c+(sin(mx)−sin(m−2)x), so

dividing by 2 sinx and integrating gives y = 1
2x−

∫

dx
cos(mx+ 1

2x)

2 cos 1
2x

which can be

integrated by parts as before, and letting m be infinite, we deduce the known
series

1

2
x = sinx− 1

2
sin 2x+

1

3
sin 3x+ &c (0 < x < π).

Let now

y =
1

2
cos 2x− 1

4
cos 4x+

1

6
cos 6x− &c − 1

2m
cos 2mx

= c− 1

2

∫

dx tanx+
1

2

∫

dx
sin(2m+ 1)x

cosx

=
1

2
log 2 +

1

2
log cosx, (since y =

1

2
− 1

4
+

1

6
− &c =

1

2
log 2 at x = 0)
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so log(2 cos 1
2x) = cosx− 1

2 cos 2x+ 1
3 cos 3x− &c as given by Euler.

Repeating for y = sinx+ 1
3 sin 3x+ 1

5 sin 5x+&c we find the unnoticed series
1
4π = sinx+ 1

3 sin 3x+ &c.
One final derivation of (4) is as follows: 1

2π = arctanu + arctan 1
u

because
angles of normal slopes add to 1

2π. Hence π
2 = u+ 1

u
+ 1

3 (u3+ 1
u3 )+ 1

5 (u5+ 1
u5 )+&c.

Putting u = ex
√
−1 gives π

4 = cosx− 1
3 cos 3x+ 1

5 cos 5x− &c.

3.4 General Solution

The complete solution of the problem is the exceedingly convergent series

πv

4
= e−x cos y − 1

3
e−3x cos 3y +

1

5
e−5x cos 5y − &c

If we take points farther away from the face A, as x becomes infinite, the
expression will become first the sum of the first few terms, and then nearly
e−x cos y, which is a trigonometric line in the y-axis and a logarithmic curve
in the x-axis. Indeed, each term of the series is a stationary solution, but
are here superposed in order to satisfy the special condition. It is clear that
the general system of temperatures is the sum of a multitude of simple systems,
characteristic of the given problem, whose coefficients depend on the conditions.

We can write the solution, using imaginary numbers as

πv

2
= e−(x−y

√
−1) − 1

3
e−3(x−y

√
−1) + &c + e−(x+y

√
−1) − 1

3
e−3(x+y

√
−1) + &c

= arctan e−(x+y
√
−1) + arctan e−(x−y

√
−1)

= arctan
2 cos y

ex − e−x

If one were to calculate the total heat flow across face A, −2K
∫ π

2

0
dv
dx
dy per

unit time, one would find an infinite answer: this is due to the fact that at
the ends of A there are points at temperatures of 0 and 1 close to each other,
creating a cataract of heat.

Remarks: If the base length is 2l instead of π and the face temperature is
A instead of 1, we must replace y with 1

2π
y
l
, x with 1

2π
x
l
, and v with v

A
. Hence

we have

v =
4A

π
(e−

πx
2l cos

πy

2l
− 1

3
e−

3πx
2l cos

3πy

2l
+ &c.)

The problem admits no other solution: For let v = φ(x, y) be the above
solution. Now suppose the temperature of A is brought to 0, then the heat of
the body will flow out until the temperature takes its final value of 0. If the
initial temperature was v = −φ(x, y) instead, then the heat will flow in and
the temperature will increase to 0. Now consider three cases: (i) v = φ(x, y, t)
initially at f(x, y) with the initial temperature of A being 1, (ii) v = Φ(x, y, t)
initially at F (x, y) with the initial temperature of A being 0, and (iii) the initial
temperature is f(x, y) + F (x, y) and that of A is 1. Then we show that the
solution of (iii) is φ(x, y, t) + Φ(x, y, t). For when a molecule of volume M
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acquires a quantity of heat ∆ in an instant dt, its temperature increases by
∆

CM
dt. For solids (i) and (ii) it would be d

CM
dt and D

CM
dt respectively, say.

The heat acquired by M in (i) is in fact d =
∑

q1(f1 − f)dt where f1 is the
initial temperature of another point, and q1 depends on the distance between
them, and the sum is taken over all points. Similarly in the second solid, D =
∑

q1(F1 − F )dt. Hence ∆ =
∑

q1{f1 + F1 − (f + F )}dt = d + D. So the
variation of temperature in (iii) is the sum of (i) and (ii) in the first instant,
but then we are in the same situation in subsequent instances. This shows
that a fundamental characteristic of the heat equation is that its flow can be
decomposed as a superposition of several others, each acting independently of
the others.

Now let v = ψ(x, y) be another conceived stationary solution. It can be
decomposed into two states, one in which the initial temperature is ψ(x, y) −
φ(x, y) with A maintained at 0, and a second in which the initial temperature
is φ(x, y) with A maintained at 1. In the latter there will be no change in
temperature for it satisfies the stationary heat equation, while in the first the
temperature becomes null, as remarked earlier. Hence the final state is the
stated solution.

3.5 Trigonometric Series of an Arbitrary Function

We now consider the problem of writing an arbitrary function as a trigonometric
series. Let φ(x) = a sinx + b sin 2x + c sin 3x + &c. We can also write φ(x) =

xφ′(0)+ x2

|2 φ
′′(0)+ x3

|3 φ
′′′(0)+ x4

|4 φ
iv(0)+&c2. Comparing the two equations we

find, φ′′(0) = 0, φiv(0) = 0, &c, as well as

A = φ′(0) = a+ 2b+ 3c+ &c

B = φ′′′(0) = a+ 23b+ 33c+ &c

C = φv(0) = a+ 25b+ 35c+ &c

Looking at a finite number of unknowns and equations, first one equation gives
a1 = A, then two a2 = (22A−B)/(22 − 1), b2 = (B −A)/(23 − 2) &c. To solve
a set of 3 equations in 3 unknowns, eliminate the last unknown to reduce the
set of equations to

A2 = 32A3 −B3 = (32 − 1)a3 + 2(32 − 22)b3

B2 = 32B3 − C3 = (32 − 1)a3 + 23(32 − 22)b3

which is precisely of the same form as for two unknowns. This gives a way of
generating the next set of m + 1 equations from m equations, namely replace
a1 by (22 − 1)a2, then a2 by a3(3

2 − 1) etc. In the limit,

a1 = (22 − 1)a2 = (22 − 1)(32 − 1)a3 = · · · = a(22 − 1)(32 − 1) . . . ,

b2 = (32 − 22)b3 = · · · = b(32 − 22)(42 − 22) . . .

2|n is n!
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Similarly,
A1 = A22

2 −B2 = A32
232 −B3(2

2 + 32) + C3 &c

The law is readily noticed, namely

a1

2232 . . .
= A−B

(

1

22
+

1

32
+ &c

)

+ C

(

1

22.32
+

1

22.42
+ &c

)

+ &c

Similarly,

2b2
1 − 22

12.32.42 . . .
= A−B

(

1

12
+

1

32
+

1

42
+ &c

)

+C

(

1

12.32
+

1

12.42
+

1

12.52
+ · · ·

)

&c

and so on. Placing the known values of a1, b2,&c, we note that the fractions on
the left simplify greatly to 1

1 · 1
2 , − 2

2 · 2
4 , &c. These sums can be found from

sinx = x− x3

|3 +
x5

|5 − &c = x

(

1 − x2

12π2

)(

1 − x2

22π2

)(

1 − x2

32π2

)

&c

After making the necessary substitutions and simplifying, one finds that

1

2
φ(x) = sinx

{

φ′(0) + φ′′′(0)

(

π2

|3 − 1

12

)

+ φv(0)

(

π4

|5 − 1

12

π2

|3 +
1

14

)

+ &c

}

−1

2
sin 2x

{

φ′(0) + φ′′′(0)

(

π2

|3 − 1

22

)

+ φv(0)

(

π4

|5 − 1

22

π2

|3 +
1

24

)

+ &c

}

+
1

3
sin 3x

{

φ′(0) + φ′′′(0)

(

π2

|3 − 1

32

)

+ φv(0)

(

π4

|5 − 1

32

π2

|3 +
1

34

)

+ &c

}

&c

For example, taking φ(x) = x3 gives

1

2
x3 =

(

π2 − |3
12

)

sinx−
(

π2 − |3
22

)

1

2
sin 2x+

(

π2 − |3
32

)

1

3
sin 3x+ &c

We can simplify by noting that φ′(0) + π2

|3 φ
′′′(0) + π4

|5 φ
v(0) + &c = 1

π
φ(π)

and similarly φ′′(0) + π2

|3 φ
v(0) + &c = 1

π
φ′′(π), &c, so that

1

2
πφ(x) = sinx

{

φ(π) − 1

12
φ′′(π) +

1

14
φiv(π) − &c

}

−1

2
sin 2x

{

φ(π) − 1

22
φ′′(π) +

1

24
φiv(π) − &c

}

+&c

Let s be the coefficients in the above expression,

s(π) = φ(π) − 1

n2
φ′′(π) +

1

n4
φiv(π) − &c.
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Differentiating with respect to π (as a variable) we find s+ 1
n2

d2s
dπ2 = φ(π), so

s = a cosnx+ b sinnx+ n sinnx

∫

cosnxφ(x)dx − n cosnx

∫

sinnxφ(x)dx

and at x = π, s = ±n
∫

φ(x) sinnxdx. Thus

1

2
πφ(x) = sinx

∫ π

0

sinxφ(x)dx + sin 2x

∫ π

0

sin 2xφ(x)dx + &c

+ sin ix

∫ π

0

sin ixφ(x)dx + &c

These results extend even to functions which are discontinuous and entirely
arbitrary. This is because the integrals represent the area of a curve, which exists
whether it is analytical or not. They are analogous to the center of gravity of a
body, which exists however irregular the body is.

This can be verified: Let φ(x) = a1 sinx + a2 sin 2x + &c + aj sin jx + &c.
Multiply by sin ix and integrate

∫ π

0

1

2
πφ(x) sin ixdx = a1

∫ π

0

sinx sin ixdx + a2

∫ π

0

sin 2x sin ixdx+ &c

+aj

∫ π

0

sin jx sin ixdx+ &c

It is easy to show that all the integrals on the right are zero,

1

i− j
sin(i− j)x− 1

i+ j
sin(i+ j)x+ c

except
∫ π

0 sin ix sin ix dx = 1
2π, so that ai = 2

π

∫ π

0 φ(x) sin ixdx. Note that this
equality is valid only for x = 0 to x = π.

The above derived series can be verified. For example, if φ(x) = 1 between
x = 0 and x = π, then ai =

∫

sin ixdx = 2
i

if i is odd, 0 if even, as deduced

previously. If φ(x) = x, we get
∫ π

0
x sin ixdx = ±π

i
. Even cosx can be so

expanded,

cosx =
2

π

{(

1

1
+

1

3

)

sin 2x+

(

1

3
+

1

5

)

sin 4x+ &c

}

It is to be remarked that although the left-hand function is even, the right-hand
series contains only odd powers.

A similar development of an arbitrary function in terms of cosines is possible

φ(x) = a0 cos 0x+ a1 cosx+ a2 cos 2x+ &c + ai cos ix+ &c

where ai = 2
π

∫ π

0 φ(x) cos ixdx and a0 = 1
π

∫ π

0 φ(x)dx.
For example, φ(x) = x gives (the third trigonometric series found for x)

x =
1

2
π − 4

cosx

π
− 4

cos 3x

32π
− 4

cos 5x

52π
− &c.
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Choosing φ(x) = sinx gives

1

4
π sinx =

1

2
− cos 2x

1 · 3 − cos 4x

3.5
− cos 6x

5.7
− &c

In particular, at x = 1
2π, 1

4π = 1
2 + 1

1.3 − 1
3.5 + 1

5.7 − &c
It has always been held that a function which is discontinuous, or is zero

outside a definite interval, cannot be developed as a series of sines or cosines
— we have shown otherwise. Take, as an example, a function which takes the
value 1

2π when x is between 0 and α and null when x is between α and π. Using
the above formulas we find

φ(x) = (1 − cosα) sin x+
1 − cos 2α

2
sin 2x+

1 − cos 3α

3
sin 3x+ &c

Similarly if φ(x) = sin πx
α

for x between 0 and α and 0 otherwise, we get

φ(x) = 2α

{

sinα sinx

π2 − α2
+

sin 2α sin 2x

π2 − 22α2
+

sin 3α sin 3x

π2 − 32α2
+ &c

}

It is remarkable that when α becomes equal to π, all the terms vanish except
the first which becomes 0

0 with a value of sinx.
In the same manner we can find a sine or cosine series for a function repre-

sented by parabolic arcs and straight lines or contours of trapezia or triangles.
One must note in the expression φ(x) = a+ b cosx+ c cos 2x+ &c that the

agreement is valid for x between 0 and π. The right-hand side is periodic and
remains the same for x negative. A sine series is also by necessity periodic and
changes sign for x negative.

Any function F (x) can be divided into a function φ(x), such that φ(x) =
φ(−x), and another ψ(x) such that ψ(x) = −ψ(−x). Indeed, φ is the line passing
equally between F (x) and its reflection F (−x), φ(x) = 1

2F (x) + 1
2F (−x), while

ψ(x) = 1
2F (x) − 1

2F (−x). The functions φ and ψ can be developed into series
of cosines and sines respectively, valid on −π to π,

πF (x) =
1

2

∫ π

−π

φ(x) dx + cosx

∫ π

−π

φ(x) cos xdx + &c

+ sinx

∫ π

−π

ψ(x) sinxdx + sin 2x

∫ π

−π

ψ(x) sin 2xdx+ &c

=
1

2

∫ π

−π

F (x)dx + cosx

∫ π

−π

F (x) cosxdx + &c

+ sinx

∫ π

−π

F (x) sinxdx + &c

since the integrals
∫ π

−π
ψ(x) cos ixdx and

∫ π

−π
φ(x) sin ixdx vanish.

By replacing x by πx
r

, X by 2r, and letting f(x) be F (πx
r

) we find

1

2
Xf(x) =

1

2

∫ X

0

f(x)dx+ &c + cos
2πix

X

∫ X

0

f(x) cos
2πix

X
dx+ &c

+ sin
2πix

X

∫ X

0

f(x) sin
2πix

X
dx+ &c (5)
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and similarly for the series solely in cosines or sines.
More generally, a function f(x) can be developed as a series of terms

f(x) = a1φ(µ1x) + a2φ2(µ2x) + &c

where
∫X

0 f(x)φ(µix) dx = ai

∫X

0 φ(µix)
2 dx as long as

∫ X

0 φ(µix)φ(µjx) dx = 0
when i and j are different.

3.6 Application to the Actual Problem

We can now solve the equation d2v
dx2 + d2v

dy2 = 0 where v(±π, y) = 0, v(x, 0) = f(x)

(the width is taken to be 2π for convenience). The values ae−my sinmx are
solutions; if m = iπ

r
, then v(±π, y) = 0 is satisfied. If f(x) = a1 sin x

r
+

a2 sin 2x
r

+ &c then

1

2
πv = a1e

−y sinx+ a2e
−2y sin 2x+ &c

The right side can be rewritten as
∫ π

0

f(α)dα
∑

e−iy sin ix sin iα =
1

2

∫ π

0

f(α)dα
∑

e−iy[cos i(x− α) − cos i(x+ α)]

=
1

2

∫ π

0

f(α)dα{F (y, x− α) − F (y, x+ α)}

where F (y, p) =
∑

e−iy cos ip = e−(y+p
√

−1)

1−e−(y+p
√

−1) + e−(y−p
√

−1)

1−e−(y−p
√

−1) = cos p−e−y

ey−2 cos p+e−y .

4 Heat Flow in a Ring

4.1 General Solution

The equation of the heated ring cooling in air, dv
dt

= k d2v
dx2 − hv, has solutions

of the type v = e−htu where du
dt

= k d2u
dx2 . This in turn has solutions aemt sinnx

and bemt cosnx where m = −kn2. The value of v must not change when x is
increased by 2πr, so 2πnr = 2πi, i.e., n = i

r
. Write the initial temperature f(x)

as

f(x) =

{

+a1 sin 1x
r

+ a2 sin 2x
r

+ &c
+b0 +b1 cos 1x

r
+ b2 cos 2x

r
+ &c

so

u = b0 +
a1 sin x

r

b1 cos x
r

∣

∣

∣

∣

e−k t

r2 +
a2 sin 2x

r

b2 cos 2x
r

∣

∣

∣

∣

e−k 22t

r2 + &c

As t increases, u and v tend towards the constant state b0 = 1
2πr

∫

f(x)dx, which
is the mean initial temperature.

Example 1: (h = 1, r = π) Suppose the initial temperature is that for a
point source of heat, namely v = be−π(e−π+x + eπ−x) (see earlier) then

v = 2e−htM

(

1

2
+

cosxekt

12 + 1
+

cos 2xe2
2kt

22 + 1
+ &c

)
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Example 2: Half the ring has initial temperature 1, the other half 0. The
solution is 1

2πv = e−ht(1
4π + sinx e−kt + 1

3 sin 3x e−32kt + &c). Note that the
mean temperature, or v when k is infinite, decreases as e−htM .

After some time, as some elementary states decrease much more rapidly than

others, the temperature is more or less v = e−ht(b0 +(a1 sin x
r
+b1 cos x

r
)e−k t

r2 ).
If we follow the temperature v1+v2 of two points on a diameter, we find v1+v2

2 =
b0e

−ht. Indeed there are precisely two points for which v1 = b0e
−ht = v2.

4.2 Heat Exchange between Separate Masses

Consider two equal cubes, one with temperature a and the other b, of infinite
conductivity. If they are brought in contact their temperature would instantly
become the mean 1

2 (a + b). Now suppose an infinitely thin layer of one face
is detached and attaches to the second cube, then returns and these cycles
repeated. At each stage, the layer of mass ω has some temperature α, and
becomes mβ+αω

m+ω
after touching; upon return the temperature becomes αm+βω

m+ω
=

α − (α − β) ω
m

, suppressing higher powers of ω. Thus dα = −(α − β) ω
m

=
−(α − β)kdt, proportional to the difference in temperature. The coefficient k
thus represents the velocity of heat flow.

If we consider n cubes, each passing heat on to the next, we find

dαi =
k

m
dt((αi+1 − αi) − (αi − αi−1)).

According to the well-known method, substitute αi = aie
ht to get aih =

k
m

((ai+1 − ai) − (ai − ai−1)). These n equations lead to an equation of de-

gree n in h; thus h could have n roots. To simplify, write q = hm
k

, so ai+1 =
ai(q + 2) − ai−1, and in general am = A sinmu+ B sin(m− 1)u; at m = 0 and
m = 1, am is known, and an+1 = an. This last gives sinnu = 0, i.e., u = iπ

n
, i

an integer, hence h+ i = −2 k
m

versin iπ
n

and3

αi = a1
sin iu− sin(i− 1)u

sinu
e−

2kt
m

versinu

where u is 0 or π
n

because the others decrease quickly to 0. We see that when

u = 0, αi = a1. Adding all the values gives a1
sin nu
sin u

e−
2kt
m

versinu which reduces
to na1 when u = 0.

If we take u to be infinitely small, then sin iu−sin(i−1)u
sin u

becomes cos iu, which
vanishes for the middle cube.

If the cubes are now taken to lie in a circle, the same analysis can be repeated,
with the same equations but different conditions, ui = i 2π

n
,

αm+1 = (A1 sinmu1 +B1 cosmu1)e
− 2kt

m
versin u1 + &c

+(An sinmun +Bn cosmun)e−
2kt
m

versinun

3versin is 1 − cos
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The constants A1,&c, An, B1,&c, Bn can be determined from the initial values
of a1,&c, an. (There are only n unknowns by symmetry.)

The equations to be solved are

ai = A1 sin(i−1)0
2π

n
+A2 sin(i−1)1

2π

n
+&c+B1 cos(i−1)0

2π

n
+B2 cos(i−1)1

2π

n
+&c

Noting that
∑

sin i 2π
n

sin j 2π
n

is nothing except when i = j (and similarly for
cosines), while

∑

sin i 2π
n

cos j 2π
n

is always nothing,

n

2
Aj =

∑

ai sin(i− 1)(j − 1)
2π

n
n

2
Bj =

∑

ai cos(i− 1)(j − 1)
2π

n

Substituting gives the solution for the temperature

aj =
1

n

∑

ai +
∑

[ 2

n
sin(j − 1)

2π

n

∑

ai sin(i− 1)p
2π

n
+

2

n
cos(j − 1)

2π

n

∑

ai cos(i− 1)p
2π

n

]

e−
2kt
m

versin p 2π
n

where ai are the initial temperatures. It is the sum of n solutions, each having
nil initial temperature except for one mass. When the time is infinite, the
temperature becomes 1

n

∑

ai, the mean temperature.
In going to a continuous body, we must replace m by dx, n by 2π

dx
, k by

πg
dx

, i by x
dx

, and ai by some function f(x). We then get the solution derived
previously,

φ(x, t) =
1

2π

∫ 2π

0

f(x)dx+
1

π

(

sinx

∫

f(x) sinxdx+ cosx

∫

f(x) cos xdx

)

e−gπt + &c

=
1

2π

∫

dαf(α)
∑+∞

−∞ cos i(α− x)e−i2kt

This shows that to solve the pde we can solve for a finite number of bodies,
and then suppose that number to be infinite. Note that the formula contains an
arbitrary function, corresponding to the initial condition. The solution must be
unique, for given the initial state v1, the next instant would give v2 = v1+k dv1

dt
dt

which is determined (dv
dt

= k d2f
dx2 ) and so on for the following instants.

5 Heat Flow in a Solid Sphere

5.1 General Solution

dv

dt
= k

(

d2v

dx2
+

2

x

dv

dx

)

,
dv

dx
+ hv = 0 at x = X,
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x is the radial variable, and v is initially F (x). Putting y = vx gives dy
dt

= k d2y
dx2

which admits solutions y = emtu, where u is a function of x satisfying mu =

k d2u
dx2 . Since v cools to 0 as t becomes infinite, m can only take negative values

m = −kn2. Hence u is a circular function and if v is to remain finite at x = 0,
it must equal

v = a
e−kn2t

x
sinnx.

The condition at the surface then becomes nX cosnX + (hX − 1) sinnX = 0,
i.e., nX

tan nX
= 1 − hX , an equation of the type ǫ

tan ǫ
= λ. There are an infinity

of solutions obtained by intersecting the line y = ǫ
λ

with the curve y = tan ǫ,
approaching nπ

2 (n odd) for n of an advanced order.

0

One can obtain these solutions by using the equa-
tions ǫ = arctanu, u = ǫ

λ
and substituting a value

for u into the first to get ǫ then in the second to get
u, and repeating. We should not reverse the oper-
ations, using u = tan ǫ, ǫ = λu, for then we depart
from the roots.

We now suppose these roots are known and call them niX . The elementary
solutions are then v = ae−kn2t sin nx

nx
. The general state is formed from an infinite

number of them vx =
∑

aie
−kn2

i t sinnix. At t = 0, F (x)x =
∑

ai sinnix. To
determine the coefficients, multiply by sinnxdx and integrate.

∫ X

0

sinmx sinnxdx =
1

m2 − n2
(−m sinnX cosmX + n sinmX cosnX)

=
cosnX cosmX

m2 − n2
(−m tannX + n tanmX) = 0

except when m = n in which case the integral works out to 1
2X − 1

4n
sin 2nX ,

i.e., ai =
2
∫

x sin nixf(x)dx

X− 1
2ni

sin 2niX
.

5.2 Remarks

If h/K (or X) is very small, the equation ǫ
tan ǫ

= 1 − h
K
X becomes ǫ2 = 3hX

K
,

omitting higher powers of ǫ, and the general solution becomes v = e−
3h

CDX
t+&c.,

which is approximately independent of x, the radius of a spherical shell. The
temperature reduces to a fraction 1

m
when t = X

3h
CD logm, which is propor-

tional to the diameter.
If the solid sphere has been cooling for a long time, then v is proportional

to
sin

ǫ1x

X
ǫ1x

X

, which is practically 1 when ǫ is small.

The result v = e−
3h

CDX
t has been known to physicists, for if the solid is

losing heat at the rate hSvdt then its temperature decreases by dv = −hSvdt
CDV

(S is the surface area and V its volume), an equation whose solution is e−
hS

CDV
t.
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The constant hS
CDV

can thus be obtained by measuring the temperature at two
different times. If h is the same, as when two liquids are in the same thin vessel,
then the ratio of their specific heats can be obtained.

If a liquid is cooling at the rate du = −Hudt, and a thermometer is used
to measure its temperature, the temperature of the thermometer changes as
dv = −h(v − u)dt. These equations can be solved easily, and the error of the
thermometer is v−u = H

h−H
u (since h is much larger than H). We tested this by

dipping a thermometer into water at 8.5◦ (octagesimal scale) — its temperature
dropped from 40◦ to 20◦ in six seconds. Thus e−h is 0.000042. Then water at
60◦ was cooled in air at 12◦ — e−H was found to be 0.98514. Thus the ratio
of h to H is more than 673, and the error in the thermometer is less than the
600th part of the temperature it is meant to measure. We remark here that our
new thermometers were calibrated, degree by degree, by putting them together
with a number of calibrated thermometers in a vessel filled with fluid as it cools
slowly.

Finally consider the case whenX is large; then ǫi are very nearly π, 2π, 3π,&c.
and the mean temperature is

z =

∫

vd(4πx3

3 )
4πX3

3

=
3

X3

∫

x2vdx =
6

π3
e−

Kπ2t

CDX2 + &c.

This time, for a sphere to cool to a fraction 1
m

, a time equal to CDX2

Kπ2 logm is
needed, proportional to X2, i.e., the cooling is very slow for large spheres.

6 Heat Flow in a Solid Cylinder

6.1 The General Solution

dv

dt
= k

(

d2v

dx2
+

1

x

dv

dx

)

, hV +
dV

dx
= 0

Giving v the simple form v = ue−mt we find d2u
dx2 + 1

x
du
dx

+ gu = 0 (g = m
k

). The
solution of this equation is

u = 1 − gx2

22
+
g2x4

22.42
− g3x6

22.42.62
+ &c.

The condition at the surface x = X becomes

hX

2
(1 − θ +

θ2

22
− &c.) = θ − 2θ2

22
+

3θ3

22.32
− &c

where θ = gX2

22 . The number g cannot be arbitrary, and we shall show that
there are an infinity of roots gi. The solution of the heat equation then consists
of a sum of terms aie

−giktui(x), where the coefficients ai are determined by the
initial temperature.
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Let y = 1 − θ + θ2

22 − θ3

22.32 + &c. = f(θ) be the value of u at x = X .

The condition on g becomes hX
2 + θ f ′(θ)

f(θ) = 0. Differentiating y twice we find

y + dy
dθ

+ θ d2y
dθ2 = 0, and in general, diy

dθi + (i+ 1)di+1y
dθi+1 + θ di+2y

dθi+2 = 0. (Of course,
these equations determine y if we know in addition that y = 1 when θ = 0.)

Now from the theory of algebraic equations, if any real root of di+1X
dxi+1 = 0,

when substituted into diX
dxi and di+2X

dxi+2 gives two values of opposite sign, then

the equation X = 0 has all roots real. This is so in our case, for if di+1y
dθi+1 = 0 it

follows from the last equation in the previous paragraph that diy
dθi and di+2y

dθi+2 are
opposite in sign (and it is clear that there cannot be negative roots from the
series expansion of y), hence all roots of y = 0 (and y′ = 0) are real. As every

root of y′ lies between consecutive roots of y = 0, then θ y′

y
alternates between

nothing and infinity. Hence the equation in g, hX
2 + θ f ′(θ)

f(θ) = 0 has all its roots

θi (and thus mi) real and positive.
Write

2 cos(α sin r) = e
αω
2 e−

αω−1

2 + e−
αω
2 e

αω−1

2

= 2

(

1 − α2

22
+

α4

22.42
− &c.

)

+

2

(

α4

2.4.6.8
− &c.

)

(ω2 + ω−2) + &c.

= 2A+B.2 cos 2r + C.2 cos 4r + &c.

where ω = er
√
−1. A is clearly u with α = x

√
g; but recall how to find A in this

series,

u = A =
1

π

∫ π

0

cos(α sin r)dr =
1

π

∫ π

0

cos(x
√
g sin r)dr (6)

This is just one particular integral of the differential equation; the other can be
found by putting uS in the equation and finding S = a+ b

∫

dx
xu2 , where a and

b are arbitrary constants. One can verify the fact (6) in another way

1

π

∫ π

0

cos(α sin r)dr =

∫ π

0

dr

(

1 − α2 sin2 r

|2 +
α4 sin4 r

|4 − &c.

)

= π − α2

|2 S2 +
α4

|4 S4 − &c.

where Sn =
∫ π

0 sinn rdr =
∫ π

0 An + Bn cos 2r + &c. = Anπ. It can be verified

that A2 = 1
22 .

2
1 , A4 = 1

24 · 3.4
1.2 , &c.; substituting these values gives the desired

formula.
One can also express y′

y
as the continued fraction −1

1−
θ

2−
θ

3−&c.
by iterating

y + y′ + θy′′ = 0, i.e., y′

y
= −1

1+θ
y′′

y′

= &c. The condition hX
2 f(θ) + θf ′(θ) = 0

then gives an infinity of values θi.
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Each elementary state is therefore

πvi = e−
22k+θi

X2

∫ π

0

cos(2
x

X

√

θi sin r)dr

and the general solution is a sum of such elementary states v = a1v1+a2v2+&c.
Initially φ(x) = V = a1u1 + a2u2 + &c. = a1ψ(x

√
g1) + a2ψ(x

√
g2) + &c.

In order to be able to find the coefficients we need to find functions σi such
that

∫ X

0 σiujdx = 0 unless i = j. Indeed, since gu+ d2u
dx2 + 1

x
du
dx

= 0, we find by
integration by parts,

0 = −g
∫ X

0

σu dx =

∫ X

0

(

σ

x

du

dx
+ σ

d2u

dx2

)

dx

= C + u
σ

x
−
∫

u d
(σ

x

)

+D +
du

dx
σ − u

dσ

dx
+

∫

u
d2σ

dx2
dx

=

∫ X

0

{

u
d2σ

dx2
− u

d(σ
x
)

dx

}

dx+

(

du

dx
σ − u

dσ

dx
+ u

σ

x

)

ω

−
(

du

dx
σ − u

dσ

dx
+ u

σ

x

)

α

where the suffix α denotes x = 0 and ω denotes x = X . This would be possible

if d2σ
dx2 − d( σ

x
)

dx
= −n

k
σ and also σ

x
and dσ

dx
were to vanish at x = 0 and x = X . But

substituting σ = xs in this equation gives n
k
s+ d2s

dx2 + 1
x

ds
dx

= 0, i.e., s = ψ(x
√

n
k
).

Thus it is enough to take σ = xψ(x
√

n
k
) for the method of finding the coefficients

to work.
It remains to work out

∫

σu dx when m = n. Letting
√

m
k

= µ,
√

n
k

= ν,
we have

∫

xψ(µx)ψ(νx) dx =
µXψ′(µX)ψ(νX) − νXψ′(νX)ψ(µX)

ν2 − µ2

=
µX2ψ′2 −Xψψ′ − µX2ψψ′′

2µ

when ν = µ. But hψ + µψ′ = 0 and (µ2 − h
x
)ψ + µ2ψ′′ = 0, hence the above

becomes equal to

1

2
X2ψ2

(

µ2 + h2

µ2

)

=
X2U2

2

(

1 +
kh2

m

)

where U is the value of u at x = X , i.e.,

∫ X

0

xuiuj dx = 0 and

∫ X

0

xu2
i dx =

{

1 +

(

hX

2
√
θi

)2
}

X2U2
i

2

7 Heat Flow in a Rectangular Prism

d2v

dx2
+
d2v

dy2
+
d2v

dz2
= 0
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with one end at a constant temperature and initially the temperature is nil.
Trying a solution of the type ae−mx cosny cos pz we find m2 − n2 − p2 = 0. To
satisfy also h

k
v+ dv

dy
= 0 at y = ±l as well as h

k
v+ dv

dz
= 0 at z = ±l we find that

we need hl
k

= nl tannl = pl tan pl, i.e., n and p are equal to ǫ
l

where ǫ solves

ǫ tan ǫ = hl
k

, of which there are an infinite number.

The elementary states are therefore e−
√

n2
i +n2

j x cosniy cosnjz where ni = ǫi

l
.

To satisfy v = 1 at x = 0 we need

1 = (a1 cosn1y + a2 cosn2y + &c)(b1 cosn1z + b2 cosn2z + &c).

It is sufficient to take each series equal to 1 separately. The coefficients ai are
found in the same manner as before even if ni are not now the odd integers.
However, unless n = ν,

∫ l

0

cosny cos νy dy =
1

2

∫ l

0

cos(n− ν)y dy +
1

2

∫ l

0

cos(n+ ν)y dy

=
1

2

(n+ ν) sin(n− ν)l + (n− ν) sin(n+ ν)l

n2 − ν2

=
n sinnl cos νl − ν cosnl sin νl

n2 − ν2

= 0

on account of n tannl = h
k

= ν tan νl. The dominant elementary state is

e−x
√

2n2
1 cosn1y cosn2z, especially if l is small, in which case ǫ1 tan ǫ1 = hl

k

becomes ǫ21 = hl
k

and n1 =
√

hl
k

. Conversely if l is large, then ǫi = mπ
2 (m odd)

and at y = 0, z = 0, writing α for e−
x
l

π
2 ,

v
(π

4

)2

= 1(α
√

12+12 − 1

3
α
√

12+32
+ &c) − 1

3
(α

√
32+12 − 1

3
α
√

32+32
+ &c) + &c

8 Heat Flow in a Solid Cube

dv

dt
= k

(

d2v

dx2
+
d2v

dy2
+
d2v

dz2

)

k =
K

CD

At the surface K dv
dx

+ hv = 0 at x = ±a and similarly K dv
dy

+ hv = 0 at

y = ±a, etc. Taking the simplest solution e−mt cosnx cos py cos qz, we find
m−k(n2+p2+q2). By the same working as the previous section, na tanna = h

K
a

and similarly for p and q. So the solutions are

e−kt(n2
1+n2

2+n2
3) cosn1x cosn2y cosn3z

the principal one being e−3kn2
1t cosn1x cosn2y cosn3z. If we suppose v = XY Z

where X depends on x and t, Y on y and t, Z on z and t, then

1

X

dX

dt
+

1

Y

dY

dt
+

1

Z

dZ

dt
= k

(

1

X

d2X

dt2
+

1

Y

d2Y

dt2
+

1

Z

d2Z

dt2

)
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which implies dX
dt

= k d2X
dx2 , dY

dt
= k d2Y

dy2 , dZ
dt

= k d2Z
dz2 as well as dX

dx
+ h

K
X = 0,

dY
dy

+ h
K
Y = 0, dZ

dz
+ h

K
Z = 0. These equations have been solved earlier.

We can compare the cooling of a cube with that of a sphere. In the sphere,
the temperature diminishes as e−kn2t where na

tan na
= 1− h

K
a, while in the cube it

diminishes as e−3 ǫ2

a2 kt where ǫ tan ǫ = h
K
a. When a is small, these ratios become

both e−
3h

CDa
t. When a is large, however, ǫ becomes π

2 , and the two ratios become

e−
3kπ2

4a2 t and e−
kπ2

a2 t. Note that the time it takes for the temperature to halve is
proportional in both cases but in the ratio 4 to 3 (cube to sphere).

9 Heat Diffusion

9.1 Heat Flow in an Infinite Line

dv

dt
= k

d2v

dx2

(

k =
K

CD

)

, φ(x, 0) = F (x).

We treat this first in one dimension to illustrate the concepts. Take F (x) to be
a symmetric function on the portion ab and 0 otherwise. Trying the solution
a cos qx e−kq2t, q and a can take arbitrary values, so we can take qi close to each
other, in which case ai becomes a function f(q) and

v =

∫ ∞

0

dq f(q) cos qx e−kq2t.

At t = 0, F (x) =

∫ ∞

0

dq f(q) cos qx. (7)

The question is whether one can find a suitable function f(q) given F (x), i.e.,
F (x) = dq f(q1) cos q1x + dq f(q2) cos q2x + &c (qi = i dq). Using the method
established before, multiply by dx cos rx and integrate from x = 0 to x = nπ
with n = 1

dq
infinite

∫ nπ

0

F (x) cos qjxdx = dq f(qj) ·
1

2
nπ

or, at n = ∞,

f(q) =
2

π

∫ ∞

0

F (x) cos qx dx, 4

The solution v is thus found. For example, taking F (x) to be 1 between x = 0
and x = 1 and 0 otherwise, we find f(q) = 2

π
sin q

q
. Note that, by (7), even

discontinuous functions can be represented by integrals. Similarly if F (x) = e−x

for x positive, then f(q) = 2
π

1
1+q2 .

4became known as Fourier’s theorem
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In an entirely analogous manner, one can write F (x) =
∫∞
0
dq f(q) sin qx

where f(q) = 2
π

∫∞
0
F (x) sin qx dx when F (x) satisfies F (−x) = −F (x). In

general, an arbitrary function φ(x) can be expressed as the sum F (x) + f(x)
where F is symmetric and f alternate. We would then obtain

F (x) =
1

π

∫ +∞

−∞
dαφ(α) cos(q − α)x

since
∫ +∞
−∞ dα f(α) cos qα = 0 and

∫ +∞
−∞ dαF (α) sin qα = 0. These are the same

results we obtained for series. The main difference between solids of definite
form and infinite ones is primarily this, that the first have series solutions and
the latter integral ones.

One can see this another way. Starting from

π

2
φ(u) = sinu

∫ π

0

du φ(u) sinu+ sin 2u

∫ π

0

du φ(u) sin 2u+ &c

and taking u = x
n
, f(x) = φ( x

n
), n = 1

dq
, q = i dq, we find a sum of

sin
ix

n

∫ nπ

0

dx

n
φ
(x

n

)

sin
ix

n
= dq sin qx

∫ ∞

0

dx f(x) sin qx

Thus
π

2
f(x) =

∫ ∞

0

dq sin qx

∫ ∞

0

dx f(x) sin qx.

Equivalently, (5) can be rewritten as

f(x) =
1

2π

∑

i

∫ b

a

dα f(α) cos
2iπ

X
(x− α)

as X is made larger, we find

f(x) =
1

2π

∫ b

a

dα f(α)

∫ +∞

−∞
dp cos p(x− α),

and
di

dxi
f(x) =

1

2π

∫

dα f(α)

∫

dp pi cos(px− pα+ i
π

2
).

Thus arbitrary functions can be differentiated, integrated or summed. In fact
this transformation gives an easy way of changing derivatives into algebraic
terms.

As an example, take f(x) = xr, then

∫ ∞

0

dx sin qx xr =
1

qr+1

∫ ∞

0

du sinu ur =
µ

qr+1

and
∫ ∞

0

dq sin qx
µ

qr+1
= xr

∫ ∞

0

du
sinu

ur+1
µ = µνxr
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so µν = π
2 . For example, when r = − 1

2 , µ = ν and we find
∫∞
0
du sin u√

u
=
√

π
2 .

Similarly,
∫∞
0 du cos u√

u
=
√

π
2 and from these two conclude5 that

∫∞
0 dq e−q2

=
1
2

√
π, a well-known result. Similarly, the integrals

∫

dq cos q2 can be obtained

by substituting x = y
(

1+
√
−1√
2

)

in
√
π =

∫ +∞
−∞ dx e−x2

.

The identity can also be used to find the form of the arbitrary function f(x)
when x is replaced by µ+ ν

√
−1,

f(µ+ ν
√
−1) =

1

2π

∫

dα f(α)

∫

dp cos(pµ− pα)(epν + e−pν)

+
√
−1

1

2π

∫

dα f(α)

∫

dp sin(pµ− pα)(epν − e−pν)

It is worthwhile to investigate the nature of these transforms

f(x) =
1

π

∫ +∞

−∞
dα f(α)

sin(pα− px)

α− x

Firstly, it is clear that
∫∞
0
dx sin px

x
=
∫∞
0
dx sin x

x
= π

2 . Secondly, as p becomes

greater, sin px
x

becomes infinitely oscillatory, so for x not small,
∫∞

ω

sin px
x

dx

becomes zero. On each oscillation, f(α) sin(pα−px)
α−x

has a zero area because f(α)
α−x

is practically constant. So the only part of the integral which contributes is that
part near to x, from x− ω to x+ ω, with ω infinitely small. Over this interval

∫ x+ω

x−ω

dα f(α)
sin p(α− x)

α− x
= f(x)

∫ x+ω

x−ω

dα
sin(pα− px)

α− x
= πf(x)

(In fact this analysis is true for many other functions apart from sin px
x

).

Let us solve du
dt

= k d2u
dx2 in a different way using the above. From

√
π =

∫ +∞
−∞ dq e−q2

we get

√
π =

∫ +∞

−∞
dq e−(q+b)2 = e−b2

∫ +∞

−∞
dq e−q2

e−2qb

so taking b2 = kt,
√
πekt =

∫ +∞

−∞
dq e−q2

e−2q
√

kt.

The elementary solutions are u = e−nxen2kt = 1√
π

∫ +∞
−∞ dq e−q2

e−n(x+2q
√

kt) and

in general

u =

∫ +∞

−∞
dq e−q2

(a1e
−n1(x+2q

√
kt) + &c) =

∫ +∞

−∞
dq e−q2

φ(x + 2q
√
kt)

since ai are arbitrary. This was first derived by M. Laplace.

5by taking e−q2
= cos iq2 + i sin iq2 and changing variable u = iq2.
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To solve dv
dt

= k d2v
dx2 − hv with constant temperature 1 at x = 0, let v =

e−x
√

h
k + e−htu then du

dt
= d2u

dx2 so u is given by the above integral. If the initial

temperature v is 0 (except at x = 0), then initially u = −e−x
√

h
k for x larger

than 0 and ex
√

h
k when x is less than 0. The integral from x + 2q

√
kt = 0 to

x+ 2q
√
kt = +∞ becomes

− 1√
π

∫ ∞

− x

2
√

kt

dq e−q2

e−(x+2q
√

kt)
√

h
k = −e

−x
√

h
k

√
π

eht

∫

dq e−(q+
√

ht)2

= −e
−x

√
h
k

√
π

eht

∫ ∞

√
ht− x

2
√

kt

dr e−r2

The second integral from x+ 2q
√
kt = −∞ to x+ 2q

√
kt = 0 has to be worked

out separately. The integrals of the type ψ(R) = 1√
π

∫∞
R
dr e−r2

are now quite

well-known and can be calculated using series. The final solution is then

v = e−x
√

h
k − e−x

√
hψ(

√
ht− x

2
√
kt

) + ex
√

hψ(
√
ht+

x

2
√
kt

)

If heat cannot escape (h = 0) the solution becomes

v = 1 −
(

ψ

(

− x

2
√
kt

)

− ψ

(

x

2
√
kt

))

= 1 − 2φ

(

x

2
√
kt

)

where φ(R) = 1√
π

∫ R

0
dr e−r2

= 1√
π
(R− 1

1
1
3R

3 + 1
|2

1
5R

5 − &c).

Note in passing that

√
π =

∫ +∞

−∞
dq e−q2

=

∫ +∞

−∞
dq e−(q+a)2 =

∫ +∞

−∞
dq e−q2

e−2aqe−a2

so
√
π(1 + a2 +

a4

|2 + &c) =

∫ +∞

−∞
dq e−q2

(1 − 2aq +
22a2q2

|2 − &c)

from which follows the known result
∫ +∞

−∞
dq e−q2

q2m =
1 · 3 · 5 · · · (2m− 1)

2 · 2 · 2 · · · 2
√
π.

9.2 Heat Flow in an Infinite Solid

It should be clear that the foregoing analysis can be repeated for 3 orthogonal

space variables to get a solution of dv
dt

= d2v
dx2 + d2v

dy2 + d2v
dz2 , with initial temperature

f(x, y, z),

u = π− 3
2

∫ +∞

−∞
dn

∫ +∞

−∞
dp

∫ +∞

−∞
dq e−(n2+p2+q2)f(x+2n

√
t, y+2p

√
t, z+2q

√
t)

(8)
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Now e−n2t cosnx is a solution of this equation, hence

∫ +∞

−∞
dn e−n2t cosnx =

1√
t

∫ +∞

−∞
dp e−p2

cos 2pu where p2 = n2t, 2pu = nx

=
1

2

1√
t
e−u2

∫

dp e−(p+u
√
−1)2 +

1

2

1√
t
e−u2

∫

dp e−(p+u
√
−1)2

=
1√
t
e−u2√

π since

∫ +∞

−∞
dq e−(q+b)2 =

√
π whatever b is

=

√
π√
t
e−

x2

4t

must also be a solution (it being a sum of solutions). Thus
∫

dα f(α) e
−

(x−α)2

4t√
t

is

also a solution. This integral is equal to
∫

dq f(x + 2q
√
t)e−q2

with the substi-

tution (x−α)

2
√

t
= q. It follows that in three dimensions we have also the solution

v =

∫ +∞

−∞
dα

∫ +∞

−∞
dβ

∫ +∞

−∞
dγ f(α, β, γ)t−

3
2 e−

(α−x)2+(β−y)2+(γ−z)2

4t

which is essentially the same as (8).
Note that as a general principle, if two functions satisfy the same differential

equation and start with the same values then they must necessarily be equal.
In particular, two integrals, such as the above, which are equal at t = 0, must
be identical.

Going back to v =
∫

dα f(α) e
− (α−x)2

4kt

2
√

πkt
, if the initial temperature is restricted

to a line segment from x = −h to x = +g and we consider the temperature after

a very long time, we get e
− x2

4kt

2
√

πkt

∫ g

−h
dα f(α) when, say, (1 − e−

α2+2αx
4kt ) < 1

100 ,

i.e., t > 100gx
2k

. Taking typical values of k, this gives t of about three days and a
half when g = 0.1 and x = 1. This approximation is independent of the initial
distribution of heat, but depends only on its total quantity. In particular if the

heat is initially concentrated in a small region ω, then v = e
− x2

4kt

2
√

πt
ωf . The same

is true in three variables except now v = e
− x2+y2+z2

4kt

23
√

π3k3t3
ω3f .

9.2.1 The Highest Temperatures in an Infinite Solid

From v = f
∫ +g

−g
dα e

− (α−x)2

4kt

2
√

πkt
we get dv

dx
= f

2
√

πkt

(

e−
(x+g)2

4kt − e−
(x−g)2

4kt

)

dv

dt
=
d2v

dx2
=

f

2
√
πkt

(

−2(x+ g)

4kt
e−

(x+g)2

4kt +
2(x− g)

4kt
e−

(x−g)2

4kt

)

So the maximum temperature occurs when dv
dt

= 0, i.e., t = gx

h log( x+g
x−g

)
. If g is

infinitely small, then we obtain t = x2

2k
.
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If one repeats this for v = bf√
π

e
− x2

4kt

2
√

kt
e−ht we would get kt = 1

1
x2 +

√

1
x4 + 4h

kx2

,

which is approximately t = 1
2

√

1
hk
x for large x. Thus the heat moves outward in

a wave-like manner increasingly with a constant speed. Similarly in an infinite

solid, we obtain in like fashion t = r2

6k
for large r.

9.3 Comparison of the Integrals

We have derived three formulas for the solution of dv
dt

= d2v
dx2 , initially with value

F (α), namely

v =
1

2π

∫ +∞

−∞
dαF (α)

∫ +∞

−∞
dq e−q2t cos(qx− qα)

v =

∫ +∞

−∞

dαF (α)

2
√
π
√
t
e
−( α−x

2
√

t
)2

v =
1√
π

∫

dβ e−β2

F (x+ 2β
√
t)

The relation between the three is that
∫ +∞
−∞ dq e−q2t cos(qx− qα) =

√
π√
t
e
−( α−x

2
√

t
)2

and β = α−x

2
√

t
.

It is easy to develop these solutions in series form (as per M. Poisson).

Denoting φ′ = dφ
dx

, φ′′ = d2φ
dx2 , &c, and φ′ = dφ

dt
, &c, we get from dv

dt
= d2v

dx2 ,

v = c+

∫

dt v′′ = c+

∫

dt(c′′ +

∫

dt viv) = c+ tc′′ +
t2

|2 c
iv + &c

where c is an arbitrary function of x; and

v = a+ bx+

∫

dx

∫

dx v′ = a+ bx+

∫

dx

∫

dx(a′ + b′x+

∫

dx

∫

dx v′′)

= a+
x2

|2 a′ +
x4

|4 a′′ + &c + xb+
x3

|3 b′ +
x5

|5 b′′ + &c

where a and b are arbitrary functions of t. The first series is nothing else but
v = etD2

c(x) and the first part of the second is v = cos(x
√
−D)a(t).

In like manner, the solutions of the following equations are

d2v

dx2
+
d2v

dy2
= 0, v = cos(yD)φ(x) + sin(yD)ψ(x),

d2v

dt2
=
d2v

dx2
+
d2v

dy2
, v = cos(t

√
−D)φ(x, y) +

∫

dt cos(t
√
−D)ψ(x, y)

where D = d2

dx2 + d2

dy2 . In fact this furnishes a general method for solving partial

differential equations. For example, to solve dv
dt

= a d2v
dx2 + b d4v

dx4 + &c, let D be
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a d2

dx2 + b d4

dx4 + &c, then v = etDφ(x) is a solution, for dv
dt

= DetDφ = Dv as
required.

The general argument used in this book can also be used for such equations.
Trying a solution of the type v = e−mt cos px we find m = ap2 + bp4 + &c. So
the infinite sum of such solutions is also a solution

v =

∫

dαφ(α)e−t(ap2+bp4+&c) cos(px− pα).

At t = 0 this gives f(x) =
∫

dαφ(α) cos(px − pα) so that obtaining φ(α)
from the initial function f(x) gives the solution v. But recall that f(x) =
1
2π

∫ +∞
−∞ dα f(α)

∫ +∞
−∞ dp cos(px− αx) so φ(α) = 1

2π
f(α).

As another example, take d2v
dt2

+ d4v
dx4 = 0 which is the equation of an elastic

string. A simple solution is cos q2t cos qx, so a more general solution is

u =

∫

dαF (α)

∫

dq cos q2t cos(qx−qα) =
1

2π

∫

dα φ(α)

√
π√
t

sin

(

π

4
+

(x− α)2

4t

)

At t = 0 we get φ(x) = 2πF (α). But there is another solution, namely

w =
1

2π

∫

dαψ(α)

∫

dq
1

q2
sin q2t cos(qx−qα) =

1

2π

∫

dαψ(α)

√
π√
t

sin(
π

4
− (x− α)2

4t
)

which gives, at t = 0, dw
dt

= ψ(α). So the complete integral of the equation is
the sum v = u+ w.

For the equation d2v
dt2

= d2v
dx2 + d2v

dy2 we first obtain the elementary solution

cosmt cospx cos qy where m2 = p2 + q2 so then

v =
1

(2π)2

∫

dα dβ φ(α, β)

∫

dp cos(px− pα)

∫

dq cos(qy − qβ) cos t
√

p2 + q2

+
1

(2π)2

∫

dα

∫

dβ ψ(α, β)

∫

dp cos(px− pα)

∫

dq
cos(qy − qβ) sin t

√

p2 + q2
√

p2 + q2

For d2v
dx2 + d2v

dy2 + d2v
dz2 = 0, start with cos px cos qy emx with m2 = p2 + q2.
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1827: MEMOIR

on the temperature of the Earth

and planetary spaces6

One of the most important modern questions is the determination of the
internal temperature of the Earth. There are three sources of heat for the
Earth:

1. The Sun, whose unequal heat radiation produces the diversity of climates;

2. The Stars in the universe;

3. The Earth’s original heat when the planets formed.

Of these, the numerous stars produce a constant temperature that is lower
than the polar regions. It is the other two that are most important for heating
the Earth, and they have different effects: the Sun heats mostly the outer
surface, while the Earth’s heat is felt mostly in the interior. Observations show
that as one proceeds to greater depths the temperature increases at 1 degree
centigrade every 32 meters; the temperature at the center must be very high,
and cannot be due to the Sun’s radiation. This rate of heat flow will diminish
with time and must have been greater in the past, but the surface temperature
will remain mostly the same because of the Sun’s heat.

Below about 30 to 60metres of the surface (or inwards in the case of moun-
tains), the temperature is practically constant, although decreasing as one moves
polewards. As one approaches the surface, we start seeing the familiar seasonal
and daily variations (from 3metres). The air and water generally tend to make
the temperature distribution more homogeneous by their movements. The Sun’s
light penetrates the upper rarified layers of the atmosphere, but is absorbed to
greater extents by the lower denser regions and the ground until it is converted
to ‘heat radiation’ when it loses its penetrating power. This explains why ‘trans-
parent’ media (such as the sea) cause warming: light manages to pass through
them but heat rays are trapped in. Also this is why it is very cold at high
elevations: as the warm air close to the land rises and expands it cools. The
trade winds are caused by differences in temperature not tidal forces, but both
affect ocean currents.

The solid earth by contrast conducts heat, which is a much slower process.
Earth’s surface is sandwiched between a hot interior and a freezing sky. The
sky’s temperature is that of the coldest places on Earth, which is the same as
the surface of the farthest planets.

We can treat the effect of each of these sources separately:

9.3.1 Solar Radiation

The Earth can be divided, for our purposes, into the surface region, going down
to about 30m, and the interior. On this region, the temperature is constant.

6from http://www.wmconnolley.org.uk/sci/fourier 1827/fourier 1827.html#text
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This invariance is due to a balance of heat inflow and outflow. In the surface
region, the incoming solar radiation of the Sun would raise Earth’s temperature
indefinitely unless an equal amount escapes. The different parts of the globe
have reached a balance, resulting in the different climates, effected by the ele-
vation, proximity to the sea, state of the surface, and the wind direction. The
average over a whole year is in fact this constant temperature. A temperature
variation at the surface will only be felt to a depth proportional to the square
root of that variational period. For half the year, heat flows inwards, but re-
verses for the rest of the year, with a time lag of about an eight of a year after
the seasons.

9.3.2 Stellar Radiation

That deep space does have a temperature can be most easily seen with this
argument: if one forgets for a moment the atmosphere, then the poles, receiving
little or no solar heat, would cool down without limit, affecting the latitudes
nearer the equator. If the Sun were the only heat source, any change in its
distance (due to the orbital eccentricity) would be detectable, and the com-
mencement of night would expose a place to extreme cold. It is the heat of deep
space that acts as a moderating factor.7 It is difficult to determine how much
the movement of the sea and air affects the global temperature, but they cannot
possibly compensate such enormous differences.

The cause of this radiation is clearly the innumerable multitude of stars and
the inter-stellar rarified atmosphere. The whole solar system is equally bathed
in a uniform sky temperature. Each planet’s surface temperature would be equal
to this with the addition of the solar radiation, depending on its distance, its
inclination of the axis of rotation, and the nature of its surface and atmosphere.
It is very probable, however, that the temperature of the planet’s poles, and of
the farthest planets such as Herschel’s[Uranus], is only slightly higher than the
sky temperature. It is therefore about -40 degrees8.

An important experiment was done by M. Saussure who enclosed a vase,
containing cork, inside a number of glass flasks, one inside another. At midday,
the vase temperature rises to more than 110 degrees, while the temperature of
the intermediate flasks is less. This is the greenhouse effect mentioned earlier.
This effect is present on Earth, and would be more pronounced if the air and
sea were motionless.

Extra: Questions arise immediately: how are the depths at which there is
no variation in temperature dependent on the period of variation? Why is this
depth so small compared to Earth’s radius? How long does it take for the
temperature to stabilize at the surface? The analysis of heat depends in general
on three phenomena — the internal conduction of heat, the properties of the
surface in losing heat, and the initial distribution of heat.

7Perhaps he is considering the atmosphere as part of the sky; it was probably not clear at

the time whether space was entirely vacuum, and by how much the weather mixed the air.
8All references to degrees are in the Reaumur scale
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9.3.3 Interior Heat Conduction

What I propose to understand is how a hot solid sphere cools when immersed
in a constant temperature bath, and why below the depth of about 30m there
is still an increase in temperature of about 1 degree every 30m or 40m. This
increase cannot of course be due to sunlight, for otherwise the temperature
would decrease with depth, not increase. There must therefore be an inner
source of heat, due to elevated temperatures at the center. This is in accordance
with the theories of the formation of the planet.

The mathematical equations that I deduced to tackle this problem indicate
that the rate of heat outflow must have been much higher in the past, but now
changes imperceptibly (it may take roughly thirty thousand years for it to reduce
by half). It will certainly not affect the climate; it is more likely that human
society may change the climate by changing the surface and air flow. They also
show that the temperature increase is less at greater depths, nevertheless the
increase, accumulating over thousands of kilometers, results in a temperature
much higher than that of incandescent materials.

Although precise values of conduction of the materials in the interior are
obviously unavailable, we can still say something in a general sense. The total
amount of heat outflow needed to reproduce the observed temperature differ-
ences is not enormous: it is proportional to the square root of the heat capacity
divided by the volume and permeability [i.e.,

√

C/V σ]; even if the conductivity
was as high as that of iron, this heat would not be higher than that needed to
melt a cylinder of ice with diameter 1m and height 3.1m. Conduction is a very
slow process: were the interior of the Earth below twenty leagues be replaced
by a material at five hundred times the boiling point of water, we at the surface
would observe a rise of one degree after two hundred thousand years!

One might expect this heat outflow to affect the surface temperature. In
actual fact, the excess in the surface temperature is related to the rate of tem-
perature decrease at the surface; using the values for iron, one would find that
the excess would be an imperceptible quarter of a degree! Using more realistic
values, one would probably find the excess to be less than a thirtieth of a degree.
Also this excess cannot have changed since the time of the Greeks by more than
1/300th of a degree.

One may surmise that the planets, including Earth, formed from hot parts
of the Sun.
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