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Book 1

1

The ancients defined philosophy as the love of wisdom, which means any knowl-
edge or skill, even of a craft. Pythagoras was the first to restrict the meaning
of wisdom to knowledge of truth or reality, and philosophy as the pursuit of
wisdom. He further defined a thing to be ‘real’ when it continues to exist uni-
formly without change. Of course, a material object flows and changes, but its
qualities and quantities, its size, and so on, do not.

2

Real qualities are immaterial, eternal, and unchanging. All change, such as
birth, destruction, growth, etc., by definition, is not real in this sense; they
come and pass, but never really are. Let us systematize these qualities of things.
There are two forms. Firstly, some things are unified and continuous, such as
extended objects, called “magnitudes”. Secondly are discontinuous heaps, called
“multitudes”. Both are infinite, the former can be divided indefinitely, the latter
never ceases to increase. In practice, one can only consider numbers/quantities
(finite multitude) and sizes (finite magnitude).

3

Any quality can either be absolute, of itself, such as ‘even’, ’odd’, etc., or relative
to something else, such as ‘smaller than’, ‘double of’, etc. Thus, of quantity,
there are two types: arithmetic is the study of absolute quantity, harmony is
the study of relative quantity. Similarly, the study of size splits in two: geometry

treats statics, astronomy treats that which moves.
Any attempt at philosophy must start with these mathematical subjects.

They are the bridges that take us from the senses and opinions to the mind
and understanding, from the concrete and familiar objects to immaterial and
eternal abstractions, from matter to soul.

1
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4–5

Of these four subjects, arithmetic comes first, for the others logically presuppose
it. Just as the concept ‘animal’ is prior to ‘man’ and ‘man’ prior to ‘teacher’, so
arithmetic is prior to geometry, for one cannot describe triangles, quadrilaterals,
etc. without recourse to number, but numbers exist without shapes. Similarly
harmony presupposes arithmetic, not only because the absolute precedes the
relative, but also because musical ratios, such as 3:2, use numbers1. Finally,
astronomy depends on geometry (rest precedes motion), on harmony (the music
of the stars), and on arithmetic (risings, settings, etc. are numerical).

6–7

The universe seems to have been created using numbers. It is fitting, therefore,
that numbers are harmoniously fitted together. All things are either equal or
have some relation to each other. The most fundamental division of numbers
is into odd and even, harmoniously interwoven together. They form the very
essence of quantity, different from each other, yet both the same numbers.

An even number is that which can be divided into two equal parts; an odd
number is that which cannot be so divided without leaving an extra unit. A
Pythagorean would point out that two is the smallest number of possible parts.

Moreover, an even number can be divided into two equal and two unequal
parts, except for 2, but an odd number admits only a division into unequal
parts. In fact, a division of an even number always yields two even or two odd
parts, while an odd number always gives even and odd parts. Note also that an
odd is always flanked by two evens, and vice versa.

8

Every number is the average of its two neighbors, and of their neighbors, and
so on as far as possible. Except for 1, which has only one neighbor and is half
of it.

The evens can be classified into the even-times even, the odd-times even and
the even-times odd.

The even-times even is that which itself and its parts can be divided equally
as far as possible. For example, 64 is made of two 8s, which divide each into
two 4s, these into two 2s each, and 2 into two 1s. They are pure in the sense
that the parts of an even-times even are themselves even-times even. There is a
way to generate all of them: starting from 1, double each term to get the next,
thus

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, . . .

Note that the product of two extreme terms remains the same down to the
middle terms, e.g. 128 is equal to two 64s (i.e., 2 × 64) and sixty-four 2s, four

1The numbers and notation used in the original are Greek — the Indian numerals, especially

0, and the symbols +,×, : were not yet in use.
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32s and thirty-two 4s, eight 16s and sixteen 8s. The odd term, such as 64,
however, has a middle term, in this case eight 8s.

When one adds the terms one gets one less than the next in the series. For
example, adding all the terms up to 64 gives 127.

9

The even-times odd is defined as an even number whose equal parts cannot be
further divided, i.e., are odd. In fact, the number of parts are opposite in type
to the parts themselves, odd and even. Thus 18 is 9× 2 and 3× 6. To generate
these numbers, start with the odd numbers and multiply each by two,

6, 10, 14, 18, 22, 26, 30, . . .

Thus each term is larger than the previous one by 4; the sum of two extreme
terms remains the same down to the sum of their mean terms, e.g. 6 + 22 =
10 + 18 = 14 + 14.

10

The odd-times even is an even number whose equal parts can also be divided
equally, but not all the way to 1 as in the even-times even, e.g. 24. It is inter-
mediate between the other two types of evens. They can be split as the product
of an even times even with an even times odd.

It is more complicated to generate these numbers: start with the odd series
and the even-times even series, and multiply their numbers with each other, one
from each series.

Odd numbers 3 5 7 9 11 13 15
Even-times evens 4 8 16 32 64 128 256
3× 12 24 48 96 192 384 768
5× 20 40 80 160 320 640 1280
7× 28 56 112 224 448 896 1792

Along each column, the property of the odd-times even prevails, namely the
sum of the extremes is the sum of the means; while in each row, the property of
the even-times even prevails, namely the product of the extremes is the product
of the means.

11–13

The odd numbers are also classified into three types. The primes are those odd
numbers which have no factors except themselves, e.g. 3, 5, 7, 11, 13, 17, 19,
23, 29, 31. They are elementary in that they cannot be resolved by any number
except 1.

A secondary number is an odd number that is not elementary but composite,
i.e., it can be resolved into products, apart from 1s, e.g. 15 is 3× 5.
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The third type of odd is a composite number that has no common measure
with respect to a given number. For example, relative to 25, there are 9, 21, 27,
etc..

Eratosthenes’ sieve is a way of separating out the three types of odds. Start
with the odd numbers, and mark out the multiples of the first odd number 3
(skipping by a term each time); then take the second number, 5, and mark its
multiples; continue like this. The marks distinguish the secondaries from the
primes. A third number is that whose marks do not share with the given one,
i.e., have no common measure.

Suppose we’re given two odd numbers and we wish to determine if they
have a common measure. Subtract the smaller from the larger as many times
as possible; subtract the result from the first one, as many times as possible.
When the subtractions result in unity, they are relatively prime, but otherwise
they result in their common measure.

For example, given 23 and 45, 45−23 = 22, 23−22 = 1, so they are relatively
prime. Given 21 and 49, 49− 21− 21 = 7, 21− 7− 7 = 7, so 7 is their common
measure.

14–16

In a different direction, the even numbers split into three types. The super-

abundant numbers are those whose parts are more than the whole. This is as
excessive as an animal with ten tongues or three rows of teeth! One such is 12,
for its parts are 1, 2, 3, 4, and 6, which sum up to 16.

A deficient number has less parts than the whole, like a man with one eye.
Thus, 8 is deficient, for its parts 1, 2, and 4, sum to 7.

A perfect number is one whose parts are equal to the whole, neither more
nor less. Only a few numbers are perfect; only 6 = 3+ 2+ 1 is perfect from the
units, only 28 = 14 + 7 + 4 + 2 + 1 from the tens, only 496 is perfect from the
hundreds, and only 8128 from the thousands. They are always even and end in
6 or 8.

To generate them, start with even-times even numbers from 1, and add the
terms together; when the result is a prime, multiply by the current term to get
a perfect number. Hence, 1+2 = 3 is prime, so 3×2 = 6 is perfect; 1+2+4 = 7
is prime, so 7× 4 = 28 is perfect. But 1+ 2+4+8 = 15 is not prime. The next
one is prime 15 + 16 = 31, so 31× 16 = 496 is perfect.

The number 1 is potentially perfect, for it is the first to be generated in this
way (being prime). But it is not actually perfect, since it has no parts.

17–18

We now turn to relations between quantities. The highest division is between
equality and inequality. Equality, as in 10 to 10 and 2 to 2, is a unique and
elementary relation, for anything equal to an equal is equal, like ‘friends’.

The unequal, however, is necessarily between a lesser and a greater, as in
‘father’ and ‘son’. There are five possible such comparisons between unequals.
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(Each comparison between greater and lesser has an opposite comparison be-
tween lesser and greater.)

The multiple is when the greater contains the lesser a whole number of times.
For example every number from 2 onwards is a multiple of 1; the multiples of 2
are the even numbers; those of 3 are the triples (which are alternately odd and
even).

The super-particular relation is when the greater contains the lesser and a
part of it. In particular, the sesqui-alter contains the whole and a half of the
lesser; e.g. 3:2, 6:4, . . . The sesqui-tertian contains a whole and a third, etc.,
being 4:3, 8:6, . . .

In the following table of multiples,

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
· · ·

10 20 30 40 50 60 70 80 90 100

notice how the second row (or column) is the double of the first row (or column),
the third row is the triple of it, the fourth row the quadruple of it, etc. The
third row is the sesqui-alter of the second row; in general, any row is a super-
particular of the row above it. Clearly and objectively, the multiples precede as
a notion the super-particulars as they involve the first row.

Moreover, going along the first row or column and then down the last column
or row, we progress from unity to ten to hundred; the product of two opposite
corners are equal. The diagonal consists of squares. On either side of it are
the heteromecic numbers 2, 6, 12, . . . ; adding two successive squares and both
heteromecic numbers between them gives another square; adding two successive
heteromecic numbers and twice the square between them also gives a square.
The interested person can find many other such pleasing rules.

20–21

A number is super-partient when it contains a lesser number and multiple parts
of it (the parts must necessarily be thirds or higher order). For example, a
super-bi-partient contains a whole number and two parts of it.

The roots of this relation can be obtained by comparing the odds, starting
with 5, with all the numbers, starting with 3,

5 : 3, 7 : 4, 9 : 5, 11 : 6, 13 : 7

Each root form gives rise to others by doubling, tripling, etc., both terms; thus
5:3 gives 10:6, 15:9, . . .

22

The multiple super-particular is when the greater contains the lesser a multiple
of times as well as a part of it. Thus there are a great variety of such relations:
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a double sesqui-tertian contains two wholes and a third of the lesser, such as
7:3, a quadruple sesqui-alter contains four and a half of the lesser, such as 9:2.

The double super-particulars can be obtained by comparing the odd numbers
from 5 with all the numbers from 2 onwards,

5 : 2, 7 : 3, 9 : 4, 11 : 5

In general one can take any row of multiples in the table above and compare
with a previous row of multiples.

23

Themultiple super-partient is a number that contains a lesser number a multiple
times as well as several parts (as before, at least thirds or higher). For example, 8
is the double super-bi-partient of 3. This concludes the ten arithmetic relations.

There is a method that demonstrates that equality is naturally prior to in-
equality, so that the beautiful and limited precedes the ugly and infinite, and
the rational soul is the agent which puts in order the irrational appetites. Given
any number, copied three times, create a new triple according to the follow-
ing rule: the first equals the first, the second equals the sum of the first and
second, the third is the first added to twice the second and to the third; the
result are doubles. Now repeat the same rule to get triples, and furthermore
all the multiples in order. Now reverse the order of one of these triples and
re-apply the rule; the result is a triple of super-particulars. Reverse this again
and apply the rule to get super-partients. If the rule is applied to a triple of
super-particulars directly, the result is multiple super-particulars, and from the
super-partients come the multiple super-partients. As this rule is not applied
by chance, it follows that the natural order of the relations is: equality, multi-
ples, super-particulars, super-partients, multiple super-particulars, and multiple
super-partients.

For example, from 1:1:1, one obtains 1:2:4, then reversing, 4:6:9, reversing
again, 9:15:25, and finally 4:14:25. Note that the first and third terms are always
squares.

Book 2

1–2

An element is the smallest thing which constitutes an object, and which is
indecomposable. For example, letters are the elements of speech, notes are the
elements of music, the so-called four elements are the elements of the universe.

The elements of numbers are 1 and 2. The elementary principle of the
relative relations is equality, as will be shown next. Let three terms be given
in any increasing ratio, whether multiple, super-particular, etc., provided it is
the same ratio of the first to the second, and the second to the third. Subtract
the first from the second; add the first term to twice the new second term,
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and subtract the answer from the third. Then the new triple will be in a more
primitive ratio. Re-applying this rule will simplify the ratio until an equality is
reached.

3–5

The multiples can generate the super-particulars. For example, the doubles
produce the sesqui-alters, e.g. from 1, 2, 4, 8, . . . , we obtain first 3 (from 2),
then 6 (from 4) and 9 (from 6), etc.

1 2 4 8 16 32
3 6 12 24 48

9 18 36 72
27 54 108

81 162
243

Note how the diagonal double ratios consists of the triple ratios. A similar
table can be drawn starting from the triples 1, 3, 9, . . . , to obtain the sesqui-
tertian ratios. (The diagonal is then the quadruple ratio series 1, 4, 16, 64,
. . . )

Every double ratio is the combination of a sesqui-alter and a sesqui-tertian;
e.g. 2:4 is 2:3 combined with 3:4. A triple ratio consists of a double and a sesqui-
alter, such as 6:12:18 or 6:9:18. In general any multiple is the combination of a
lesser multiple and a super-particular.

6

The digits that we use to indicate numbers, such as 5 for five, are used by
convention, not by nature. In fact, the simplest notation would be to use •

for 1, •• for 2, ••• for 3, etc. Unity is thus the beginning of an interval, as
a point is the start of a line. Just as a point added to a point gives nothing
new, and nothing added to nothing makes nothing, so unity multiplied with
unity produces unity. Unity is therefore an element of the numbers, without
dimension.

Dimensions 1, 2, or 3, are called, in geometry, a line, a surface, and a solid
for the last one has width, depth, and height. Before them, the point is non-
dimensional.

7

The point has no dimension but is the beginning of dimension, i.e., it is not a
line but the start of one. Similarly, a line is the beginning of a surface, but not
itself a surface. A surface is the start of a body, but not itself solid.

With numbers, equally, unity is the beginning of numbers, linear number is
the beginning of a planar number, which is the start of a solid number. The
linear numbers are 2, 3, 4, 5, etc.



J MUSCAT 8

The most elementary form of planar number is the triangle. Indeed, every
rectilinear figure can be decomposed into triangles, but the triangle itself cannot
be resolved any further.

8

A triangular number is one that can be laid out as an equilateral triangle of
units, e.g. 3, 6, 10, 15,. . . In this series, 1 is potentially a triangle but not ac-
tually. The sides of the triangle increase as with the numbers, so that the
difference between triangle numbers increase as the successive numbers. Con-
versely, starting with the numbers 1, 2, 3, 4, 5,. . . and adding them up gives the
triangle numbers.
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9–11

A square number is one that can be laid as a square, e.g. 1, 4, 9, 16, . . . corresponding
to squares with sides 1, 2, 3, 4, . . . respectively. They can be obtained by adding
the odd numbers, as 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 + 7, etc.
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The pentagonal numbers are those that form regular pentagons, i.e., 1, 5, 12,
22, . . . , corresponding to sides 1, 2, 3, 4, . . . The differences between successive
terms start with 4 and increase by 3 each time.
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The hexagonal, heptagonal, and succeeding numbers are those that form
hexagons, heptagons, etc. Just as the previous series are constructed by adding
the numbers, then the odds (i.e., skipping one), then the numbers skipping 2,
these higher type numbers can be produced by adding the numbers that are
formed by skipping 3, 4, etc. (These ‘skipping’ numbers are just three less than
the number of sides of the polygon.)

skip by add
Triangular 1 2 3 4 1 3 6 10
Square 1 1 3 5 7 1 4 9 16
Pentagonal 2 1 4 7 10 1 5 12 22
Hexagonal 3 1 5 9 13 1 6 15 28
Heptagonal 4 1 6 11 16 1 7 18 34

12

Just as every square can be divided into two triangles along the diagonal, so
every square number is the sum of consecutive triangular numbers, and con-
versely. Similarly, adding a triangle to a square makes it a pentagon, so adding
the row of triangular numbers above to the row of squares, but displaced by one
place, gives the row of pentagonal numbers, e.g. 1 + 4 = 5, 3 + 9 = 12.

By the same way, adding the triangle numbers to the displaced pentagonals
gives the hexagonals, and in general, converts one polygon type to a higher one.
This confirms further that the triangle numbers are the elements of the other
polygons.

13–14

A solid number is that whose units can form a solid shape. The simplest are
the pyramids which start with a polygonal base and taper to an apex. There
is one pyramidal series for each polygon type. The triangular pyramids are
built by adding each successive triangle number, 1, 4 = 1 + 3, 10 = 1 + 3 + 6,
20 = 1 + 3 + 6 + 10, . . .

The square pyramids are formed in the same way by adding squares to the
base, 1, 5 = 1 + 4, 14 = 1 + 4 + 9, 30 = 1 + 4 + 9 + 16, . . .

One can also speak of ‘truncated’ pyramids, when the apex is cut off at some
height from the base.

15–17

The cubes are, as their name implies, numbers formed by multiplying an equal
length, width and height, thus 1, 8, 27, etc. Each square is bounded by 6
squares, 12 edges, and 8 solid angles.

Opposed to the cubes are the scalene wedges, consisting of differing lengths,
widths and heights, e.g. 3× 5× 12.

A parallelipipedon is a number with heteromecic sides. Recall that a het-
eromecic number is, in geometric terms, a rectangle whose length is one more
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than the width, i.e., 2 = 1 × 2, 6 = 2 × 3, 12 = 3 × 4, 20 = 4 × 5, . . . . Now,
the Pythagoreans assign the meaning of sameness to 1, and of otherness to 2, or
more generally to odd and even. Accordingly the squares also have the nature
of sameness because they are the sum of odd numbers; while the heteromecic
numbers are the sum of the evens, hence belong to the ‘other’ class.

To build on this, note that multiplying odd numbers together gives another
odd number, just as sameness results from equality. But an even number mul-
tiplied with other numbers changes them all to even.

A brick is the case where the length and width are the same but the height
is smaller than them. A beam is similar but the height is larger. A spherical

number is a cube which, after the three multiplications, ends in the same number
where it began, e.g. 1 = 1× 1× 1, 125 = 5× 5× 5, 216 = 6× 6× 6. In fact, any
number ending in 1, 5, or 6 gives rise to spherical numbers. (One can also talk
of ‘circular’ numbers as squares ending in 1, 5, or 6.)

18–20

We wish to elaborate further on how the principles of same and other, equality
and inequality, odd and even, square and heteromecic, give rise to all the peculiar
properties of numbers. Plato adds to these the indivisible and the divisible, and
Philolaus adds the bounded and boundless. Objects are made of these opposing
principles, resulting in harmony, the reconciliation of the diverse..

Take two rows, one of the squares, the other of the heteromecic:

1 4 9 16 25 36 49 64 81 100 121 144 169 196 225
2 6 12 20 30 42 56 72 90 110 132 156 182 210 240

Their ratios, 2:1, 6:4, 12:9, . . . , are the double, the sesqui-alter, etc. Their
differences are the successive numbers 1, 2, 3, . . . . If the squares are displaced
by one place, then their ratios are again 4:2, 9:6, . . . , the same as before; but
their differences are now 2, 3, 4, . . . . Thus the same differences but different
ratios, as in 2:4 and 4:6, or equal ratios and unequal differences, as in 1:2 and
2:4; same in quantity and opposing in quality, or vice versa.

If we now compare two successive square numbers with a heteromecic as
their mean, such as 9:12:16, then the product of the extremes equals the square
of the mean; and the extremes plus twice the mean gives another square. Best
of all, adding a square number with the next heteromecic, and a heteromecic
with the next square, give all the triangle numbers.

Furthermore, adding or subtracting a side from its square makes it heterome-
cic. Thus the ‘other’ is both larger and smaller than the ‘same’. That the odd
is sameness is confirmed by starting with any series of multiples, such as triples,
1, 3, 9, 27, 81, . . . , and noting that every odd position is a square, but not the
even ones. Finally, the cubes, 1, 8, 27, . . . , are obtained by starting with the
odd numbers and adding first one, then the next two, the next three etc.
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21

A proportion is the combination of two or more ratios, or more generally, of
relations (such as differences). For example, 1:2:4 is a continued proportion of
doubling, while 1:2:3 is a continued proportion of quantity. With more terms
than three, one can compare totally different terms, and then one speaks of
‘disjunct’ proportions, as in 1:2:4:8.

22–23

The three most ancient proportions are the arithmetic, geometric, and harmonic.
There are ten proportions in all, if one includes their opposite proportions and
four others discovered by the moderns.

An arithmetic proportion is that which preserves the differences (but not
ratios) between terms. It is the simplest one in that it is the proportion of
the natural numbers 1, 2, 3, 4, . . . . If one takes equally separated terms in
this series, one still obtains an arithmetic proportion. The mean term of an
odd numbered arithmetic proportion is equal to half the sum of the extreme
terms; the two mean terms of an even numbered proportion add up to this sum.
Moreover, the ratio of corresponding terms of two arithmetic proportions is the
same as the ratio of their differences. Also, and this is original, the product
of the extremes plus the square of the common difference equals the square of
the mean. Fourthly, the ratio of consecutive terms decreases as more terms are
taken.

24

A geometric proportion is one in which the ratio (but not the difference) between
consecutive terms remains the same. For example, 1, 2, 4, 8, 16, . . . A peculiar
property is that the differences between the terms themselves form a geometric
proportion with the same ratio. For the double ratio, the differences form the
same proportion; for the triple ratio, they form twice the same proportion; for
the quadruple ratio, thrice; etc.

A geometric proportion may also be super-particular, or super-partient, or
mixed. In all these cases, the product of the extremes is the square of the mean;
while for even numbered proportions, the product equals the product of the two
means. If the square numbers are interlaced with the heteromecic, then the
ratio between terms start with the double, then sesqui-alter, the sesqui-tertian,
and so on.

Any two consecutive squares have precisely one mean that makes the three
a geometric proportion, e.g. 4:6:9; it is in fact the product of the sides of the
two squares. Any two consecutive cubes have precisely two means that together
form a geometric proportion, e.g. , 8:12:18:27; they are found by mixing the
sides of the two cubes, 2× 2× 3 and 2× 3× 3.

In general, the product of two squares is another square, but that of a square
with a heteromecic is not a square. Similarly, the product of two cubes is another
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cube. This is just as the product of two evens is even, of two odds is odd, but
of an even and an odd is again even.

25

The harmonic proportion occurs when the ratio of the largest term to the small-
est term is equal to the ratio of the difference of the largest from the mean to
the difference of the mean from the smallest. For example, 3, 4, 6 is harmonic
since 3:6 equals (4− 3) : (6− 4).

One property is that the ratio of consecutive terms increases; note how the
arithmetic, the geometric, and the harmonic form a natural series in this regards
because the ratios decrease, remain the same, or increase respectively. If the
extremes are added and multiplied by the mean, the result is twice the product
of the extremes.

26

The musical ratios 6:4:3:2 are harmonic, hence the name. The most elementary
is the diatessaron which is the sesqui-tertian ratio 4:3; then comes the diapente

which is the sesqui-alter ratio 3:2; then the diapason, which is the multiple 6:3,
and the diapason and diapente combined, i.e., 6:2; finally the di-diapason 4:1.

Philolaus, however, maintains it is called harmonic because of geometry: a
cube has the harmonic proportions 12 sides, 8 angles, and 6 faces.

27

Just as in a taut musical string, the bridge can be inserted in between to produce
the arithmetic, the geometric, or the harmonic mean; and similarly, the finger-
holes in a musical pipe; in an analogous way, between two odds or two evens,
one can insert these three means. For example, between 10 and 40 one can fit
25 for the arithmetic mean, 20 for the geometric, and 16 for the harmonic mean.
Or, given 5 and 45, one fits 25, 15, and 9 for the three means.

To find the arithmetic mean, add the extremes and divide by two; for the
geometric mean, you need to take the square root of the product of the extremes,
or observing the ratio of the extremes, find its square root. For the harmonic
mean, multiply the difference of the extremes by the lesser term and divide the
product by the sum of the extremes, then add the result to the lesser term.

28

The other means will be dealt with more briefly. The subcontrary proportion
occurs when the ratio of the largest to the smallest is the same as the ratio
of the difference between the two smaller terms and the two larger terms (but
opposite to the harmonic), e.g. 3:5:6. It has the property that the product of
the greater with the mean is twice the product of the mean with the smaller
term, thus 5× 6 = 2× 5× 3.
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The fifth proportion occurs when the ratio of the mean to the lesser is the
same as the ratio of the two differences, in reverse fashion to the geometric
mean, e.g. 2:4:5. The product of the greatest with the mean is twice that of the
extremes, e.g. 5× 4 = 2× 5× 2.

The sixth proportion occurs when the ratio of the greatest to the mean is the
same as the ratio of the two differences, again in reverse order of the geometric
mean, e.g. 1:4:6.

There are yet four other minor proportions: the seventh one occurs when the
ratio of extremes is the same as the ratio of their difference to the difference of
the lesser terms, e.g. 6:8:9. The eighth proportion occurs when this same ratio
equals that of the difference of the extremes to the difference of the greater
terms, e.g. 6:7:9. The ninth proportion occurs when the ratio of the mean to
the least is the same as that of the difference of the extremes to the difference
of the smallest terms, e.g. 4:6:7. Finally, the tenth proportion occurs when this
same ratio is the same as that of the difference of the extremes to the difference
of the greatest terms, e.g. 3:5:8.

29

There is one proportion, most perfect, which embraces all the ten proportions.
It is a three-dimensional proportion comprising four terms and two means. It
occurs when the extreme terms are products of three numbers, and the two
means are the harmonic and arithmetic means of the extremes. The geometric
mean is also to be found here, because the ratio of the greatest to the second
term is the same as the ratio of the third term to the least.

For example, given 6 = 1 × 2 × 3 and 12 = 2 × 2 × 3, their means are
8 = 1× 2× 4 and 9 = 1× 3× 3. Moreover, 8:6 and 12:9 are the diatessaron, 9:6
and 12:8 is the diapente, the ratio 12:6 is the diapason, while 9:8 is the interval
of a tone.
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