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This project takes you to the time of Johannes Kepler just before the dis-
covery of the telescope and the scientific revolution. How did he discover his
three laws that proved so crucial to later developments? It is very hard to truly
relive his experience, used as we are to calculators, Earth images from space,
light pollution, and . . . impatience. But here goes:

To accept Copernicus’ heliocentric system required a leap of faith at the
beginning of the 17th century. If Earth is rotating a whole circumference (≈
40000km) in 24 hours, then the ground under our feet is moving at 460m/s;
that’s four playing fields every single second (less with increasing latitude).
Unlike his predecessor, Tycho Brahe, Kepler took this leap. Then it becomes
natural that part of a planet’s motion is due to Earth’s orbital motion, which
needs to be subtracted to obtain the planet’s true orbital speed.

1. The first task is to find Earth’s orbit. Choose a nearby planet and find
its synodic period: for an outer planet, this is the average time interval
between oppositions, when the planet is brightest; for an inner planet, it is
the average time between greatest elongations (on the same side). Convert
to its sidereal period by

1

Tsid
=

1

365.25
± 1

Tsyn

+ for inner planets, − for outer planets.
(Alternatively, find these periods directly from Wikipedia).

Example: Mars – synodic period 780 days, so sidereal period is 687 days,
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2. Prepare a list of dates: start with an opposition of the planet (conjunction
for an inner planet), then a sequence of dates separated by the sidereal
period. Thus the planet will be fixed in one place of its orbit. Because of
the round-up errors and approximations we’ll be making, there needs to
be at least twenty dates for the average orbit to appear properly. (So an
accurate value for the sidereal period should be used.)

[It can be tricky to calculate these dates on a computer. One can convert
the date to a Julian number, add the periods, then convert each back to
a date. See astrometrics.]

Example: Mars – 3 Mar 2012 21:00 (opp.), 19 Jan 2014 17:00, 7 Dec 2015
14:00, 24 Oct 2017 14:00, . . .
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3. Take readings of the Sun and the planet on these dates, either with a
telescope/phone app (but it would take years) or from NASA, or some
other website.

Example:

Date 3/3/12 19/1/14 7/12/15 24/10/17 . . .

Mars RA 11 : 05 : 33 13 : 13 : 47 12 : 55 : 21 12 : 05 : 09
Decl. 10◦21′14′′ −5◦13′49′′ −4◦19′26′′ 0◦41′44′′

4. If the readings are in altazimuth or right-ascension/declination, then con-
vert to an ecliptic longitude. (The websites above give direct readings).

To convert from RA/Decl. to ecliptic longitude, use the following formula
with ε = 23.4367◦:

Ec.long. = atan2(sin(RA) cos ε+ tan(Decl) sin ε, cos(RA))

[atan2(y, x) = arctan(y/x), taking into account the correct quadrant.]

Example: Ecliptic longitudes

Sun 343.691◦ 299.540◦ 255.132◦ 211.351◦

Mars 163.492◦ 199.021◦ 194.422◦ 180.913◦

[Strictly speaking, the planet’s orbital plane is not the same as Earth’s
(ecliptic), but the angular height above it, i.e., the ecliptic latitude, is at
most about 1◦, and will be ignored here. The readings are not accurate
to 6 significant figures, but it is better not to round up any values.]

5. Make two lists of angles: (i) A, the relative angle of the Sun relative to
the first angle; (ii) B = Mars− Sun. Confirm that B for the first date is
180◦ for an outer planet, and 0◦ for an inner planet.

Example:

A = Sun− 343.691◦ 0◦ 315.849◦ 271.441◦ 227.660◦

B = Mars− Sun 179.801◦ 259.481◦ 299.29◦ 329.562◦

6. Mark a point O for the Sun. (This will be the origin.) Draw a horizontal
line from it, representing 0◦. On this line mark a second point P , repre-
senting the planet on the chosen dates. Then we want a point E such that
A = ∠POE, B = ∠OEP .

If P = (1, 0), then the coordinates of E are

r =
sin(A+B)

sinB
,

(
x
y

)
= r

(
cosA
sinA

)
Because of the errors involved, one has to ignore points for which A or B
are close to 0◦ ± 20◦ or 180◦ ± 20◦.

Example: (x, y) = (0.422,−0.410), (0.015,−0.586), (−0.394,−0.432)
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7. Fit an ellipse on these points. Verify that the Sun is at one focus. It’s
best to have enough points to fill the orbit twice and to ignore outliers.
Note the relative distance OP : OE.

Example: Radius is 0.59, so the inverse ratio gives Mars’ orbital radius
R = 1.7au. An ‘eccentric’ circle describes Earth’s orbit adequately,(

x
y

)
=

(
cos θ − 0.0075
sin θ − 0.0149

)
(1)

8. The second task is to find the orbits of the other planets. One can in
theory repeat the above procedure for all planets and make a list of the
relative distances, but in practice it becomes much harder due to errors.

Choose a planet, find its sidereal period and make a list of pairs of dates
separated by this period. It is not important now that you start with
an opposition or conjunction, and each pair could be separated by any
number of days (eg consecutive).

Example: Mercury. Synodic period is 115.9 days, so sidereal period is
87.97 days. List of dates: 6 Jan 2019 19:00, 4 Apr 2019 18:00; 16 Jan 2019
19:00, 14 Apr 2019 18:00; . . .

9. Take/read observations of the Sun (A) and planet (B) on these pairs of
dates, and convert to ecliptic longitude.

Example:

Date 6/1/19, 4/4/19 16/1/19, 14/4/19

Sun A 286.162◦ 14.677◦ 296.352◦ 24.503◦

Mercury B 272.464◦ 348.324◦ 287.935◦ 357.080◦

10. Calculate the position of Earth using formula (1) with θ = A+ 180◦.

Example:

Date 6/1/19, 4/4/19 16/1/19, 14/4/19

Earth x −0.286 −0.975 −0.451 −0.917
y 0.945 −0.268 0.881 −0.430

11. Draw xy axes, with the Sun at the origin. Place each pair of points of
Earth, E1 = (x1, y1), E2 = (x2, y2). We want a point P such that xE1P =
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B1 and xE2P = B2. Draw lines from each point at the observed angles of
the planet (to the x-axis), or compute the point P using trigonometry:

P =
1

sin(B1 −B2)

(
sinB1 cosB2

(
x1
y2

)
− cosB1 sinB2

(
x2
y1

)
+

(
(y2 − y1) cosB1 cosB2

(x1 − x2) sinB1 sinB2

))
Repeat for each pair of points.

Example: Take (x1, y1) = (−0.286, 0.945), (x2, y2) = (−0.975,−0.268),
θ1 = 272.464◦, θ2 = 348.324◦, to get (x, y) = (−0.227,−0.423).
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12. By labeling each point P with its date, one can try to find a law that re-
lates them. Kepler’s first guess was that the distance between successive
points (i.e., the planet’s speed) is inversely proportional to its distance
from the Sun. Then he settled on his second law: the area of the triangles
SPiPi+1 is constant.

Example Average distance R = 0.4. Areas of triangles in 10-day periods.

Date 6 Jan 16 Jan 26 Jan 5 Feb 15 Feb
Area 0.103 0.101 0.097 0.091 0.084

[The triangles, especially the nearer ones, are underestimates of the area
traced by the planet. For 1-day periods, the constancy should become
evident.]

13. Repeat for other planets to get a list of relative distances. To find the
inclination of the orbit of an inner planet, the easiest way is to mark the
angle above the ecliptic (ecliptic latitude) at several instances of greatest
elongations; the largest of these angles is the inclination. For an outer
planet, mark the ecliptic latitude at opposition; if θ is the largest among
these, then the inclination is given by

tan i =

(
1− 1

R

)
tan θ

where R is the relative distance of the planet.
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14. Make a list of sidereal periods T (in years) and relative distances R, as
well as T 2 and R3 – Kepler’s third law suggests itself.

Planet Me V E M J S

Tsid (years) 0.24 0.62 1.0 1.88 11.9 29.5
R (au) 0.39 0.72 1.0 1.52 5.2 9.6

T 2 0.058 0.38 1 3.53 142 870
R3 0.059 0.37 1 3.51 141 885

At the time, it proved difficult to verify Kepler’s workings because of the
errors involved, e.g. angles were not accurate down to seconds of arc. Kepler’s
laws were not accepted as fact and hardly quoted. With the telescope and
the discovery of Jupiter’s moons it became possible to quickly and accurately
determine their relative radii and orbital periods.

Moon Io Europa Ganymede Callisto

T (days) 1.77 3.55 7.16 16.69
T (relative) 1 2 4 9.4
R (relative) 1 1.59 2.54 4.46

T 2 1 4 16 88
R3 1 4.1 16.4 89

Once Kepler’s third law was seen to be true in the 1650s/60s, for both planets
and Jupiter’s moons, it suggested a ‘universal law of attraction’. Several people
(Hooke, Halley, Newton) realized, that when combined with Huygens’ formula
for circular acceleration, v2/r, it implied an inverse square law

a =
v2

r
=

1

r

(
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T
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= 4π2 r
2

r3r
∝ 1

r2

Newton, with his ability to solve fluxion equations, completed this project by
proving that an inverse square law implies motion in an ellipse.
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