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1 Time

The time t measured by an inertial observer in the solar system’s reference is
called Universal Time (or GMT1) (assuming no relativistic effects).

The Local Time at a specific place on Earth is related to universal time by

Local Time = t+ “time zone” + “daylight saving”

Each time zone is ideally a range of longitudes 15◦(n± 1
2 ) but in practice they

follow political borders. For the main regions and cities of the world:
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1Strictly speaking, physical time as measured by atomic clocks is called International
Atomic Time. Universal Time counts the same seconds, but inserts a leap second every
few years to keep in pace with the slowing day; so the difference between Atomic Time and
Universal Time is of a few seconds over decades.
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1.1 Day, Month, Year

Three unrelated time intervals are astronomically and historically important:

1. The average time it takes for the Earth to rotate on its axis so that the
Sun appears in the same place in the sky is the

day = 24 hours = 24× 60 minutes = 24× 60× 60 seconds.

It is a bit longer than the time it takes the Earth to rotate 360◦, because
it has to make up for the fact that the Earth has gone round the Sun an
extra angle.

2. The average time it takes for the Earth to orbit once around the Sun (or
as seen from Earth, for the Sun to go round the ecliptic) is called a year,

1 sidereal year = 365.25636 days

This is more properly called the sidereal year because the angular speed
is measured against the backdrop of ‘fixed’ stars. So the average angular
speed of the Earth around the Sun is

ω� =
360◦

year

3. The average time it takes the Moon to orbit the Earth relative to the Sun
(“synodic”), is called the month.

1 month = 29.530588 days

In general, the resultant of two angular speeds is ωres = ω1 + ω2, or equiva-
lently by dividing with 360◦,

1

Tres
=

1

T1
+

1

T2

The average angular speed of the Earth’s rotation is

ωE =
360◦

day
+

360◦

year

Sun

Earth 0◦

(since ωE × day = 360◦(1 + day
year ))

So, adding

360◦/day = 15◦/hour = 15′/min = 15′′/sec,

ω� = 360◦/year = 0.986◦/day = 2.464′/hour = 2.464′′/min,

ωE = 15◦2′28′′/hour = 15.041′′/sec.
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Three complications arise because the Earth’s axis precesses (rotates) once every
25771 years, the orbital perihelion rotates every 113,000 years, and its daily
rotational period is slowly and irregularly increasing due to tidal friction (2.7×
10−8). From an Earth perspective, the time it takes from one midsummer to
the next, called the tropical year, is slightly less than a sidereal year as

1

Ttrop.year
=

1

Tsid.year
+

1

Tprec.
=

1

365.24219 days

For the Moon, the orbital period relative to the stars is given by

1

T
=

1

month
+

1

year
=

1

27.321662 days

∴ ωm = 0.549◦/hour = 0.549′/min

1.2 Calendar

The Gregorian calendar is set up to approximate the tropical year as closely as
possible over millennia: 365.24219 ≈ 365 + 1

4 −
1

100 + 1
400

A leap day is added to every year divisible by 4;
unless the leap year is the start of a century;

unless that century is divisible by 4.

This gives a civil year of 365.25 days in the short term, and 365.2425 days in
the long term.

This calendar was introduced on 15 Oct 1582 in Catholic countries (and after
1700 in the rest of Protestant Europe). Before it, there was the Julian calendar
which had a simpler structure with a leap day every four years: 365 + 1

4 .

1.2.1 Changing from Date to Time

The number of days from start 1 January until the start of date D/M/Y is

days = (D − 1) +


0 if January

31 if February

b30.6(M + 1)c − 63 + χleap if >March

where χleap is 1 if the year is a leap year, and 0 otherwise

χleap = 1− dY/4e+ bY/4c+ dY/100e − bY/100c − dY/400e+ bY/400c

The number of days from 2000.0 until the start of year 2000 + Y is, taking
y = Y − 1,

year-days = 366 + 365y + by/4c − by/100c+ by/400c
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In general, the days from 2000.0 to a specific date number to

year-days + days + time

For example, the total time in days from 2000.0 to 2024 Sep 5 1022:43
(GMT) is given by: number of days 2000–2023 is 8766, Jan–Aug is 244, plus 4
and (10 + (22 + 43/60)/60)/24, in total 9009.43244 days.

To calculate the time between two dates, the Julian Day counts the number
of whole days since 1 Jan 4713 BC (actually from noon, but more conveniently
from midnight). To find the Julian day,

– From a Gregorian calendar date (post 15 Oct 1582):

JD = b365.25(Y − 1 + 4712)c+ 368−
⌊
Y

100

⌋
+

⌊
Y

400

⌋
+ days + time

– From a Julian calendar date (pre 4 Oct 1582):

JD = b365.25(Y − 1 + 4712)c+ 366 + days + time

(Note that there is no 0BC or 0AD, so Y BC = −(Y − 1) AD, so to speak.)

To convert a Julian day to a date:

– To a Julian date:

Y =

⌊
JD

365.25

⌋
− 4712

χjleap = 1−
⌈
Y

4

⌉
+

⌊
Y

4

⌋
days = JD − 1 + χjleap − b365.25(Y + 4712)c

– To a Gregorian date:

a=JD − 1721425; a-=
⌊ a

146097

⌋
; a+=

⌊ a

36524

⌋
; a-=

⌊ a

1461

⌋
Y =

⌈
a− 1

2

365

⌉
days = JD − 1721426− 365(Y − 1)−

⌊
Y − 1

4

⌋
+

⌊
Y − 1

100

⌋
−
⌊
Y − 1

400

⌋
To convert days to D/M:

days < 59 + χleap ⇒
{
M = bdays/31c+ 1
D = days− 31(M − 1) + 1

days > 59 + χleap ⇒

 d := days + 64− χleap
M = bd/30.61c − 1
D = d− b30.6(M + 1)c
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1.2.2 Day of the Week

The day of the week is easily calculated from the Julian day by JD (mod 7)
where Mon = 0, . . . , Sun = 6.

Traditionally, the Littera Dominicalis was used: If the letters A . . .G are
assigned to all dates of the year, starting 1 January, the Dominical letter is
that letter which corresponds to the Sundays. (On leap years, there are two
Dominical letters, the first for Jan, Feb, and the second for Mar onwards).
Moreover, the weekday of 1 January is also given by the Dominical letter, if it
is interpreted as A = Sun, B = Sat, C = Fri, etc. For example, 2020 has two
Dominical letters E and D, so the first Sunday is 5th January and 1 Jan 2020
is a Wednesday.

For a Gregorian date, the Dominical letter can be calculated by first dividing
the year as y = 100a+ b, then finding the number of leap years b = 4c+ d and
the number of leap centuries a = 4e + f . As 365 = 1 mod 7, each normal
year decreases the letter by one, four years by −5 = 2 mod 7, a hundred years
by 25 × 2 + 1 = 2 mod 7, and four hundred years by 4 × 2 − 1 = 0 mod 7.
Combined in one formula, the (second) Dominical letter is then

` := −d+ 2c+ 2f (mod 7) = 4y + a+ 2d− e (mod 7),

where A = 0, B = 1,. . . , G = 6. If the year is a leap year, the first Dominical
letter is `+ 1 (mod 7). (For a Julian date, ` = 2− d+ 2c+ a (mod 7).)

The weekday of 1 January is 7 − `, where 0 = Sun, . . . , 6 = Sat. (For leap
years, use the first Dominical letter.) To calculate the day of the week of any
given date, note that the first of a month is

March, November 3− ` April, July 6− `
May, January 1− ` June, February 4− `

August 2− ` September, December 5− `
October 7− `

(January and February refer to the following year, because a leap day may
be added at the end of February.)

1.2.3 Full Moons

A simple way to calculate the age of the Moon (at midnight) is from the Julian
day

age = JD − 2451550.6935 (mod 29.530588)

where age = 0 for a new moon, and age = 14.77 for a full moon. If the dates
of the New Moon, Full Moon, and Quarters are required, find the age u at the
beginning of the month, then the dates are on 7.38 − u, 14.77 − u, 22.15 − u,
29.53 − u days after. (Add 29.53 if negative.) The accuracy is of a few hours
since each cycle differs slightly from the average lunar period of 29.53 days.
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Traditionally, the age of the Moon was calculated using two numbers, the
Numerus Aureus and the Epactae. The month and year are mutually irrational,
but their ratio can be approximated by

29.530588

365.25
≈

1

12 +
1

2 +
1

1 +
1

2 + 1
2

=
19

235
,

i.e., 19 civil years are almost exactly 235 months (+1.5 hours). So there are
only 19 different full-moon calendars (neglecting a possible leap day), one for
each golden number n = 1 + (Y mod 19).

The age of the Moon on New Year’s Day is called the epact. With each year
a full moon occurs 13 × 29.53 − 365 = 18.898 days later, or equivalently 10.63
days earlier (11.63 when a leap year); on average, it is 10.88 days/year. The
epact increases by 11 days, modulo 30, but one must take into effect the leap
centuries; it would equal 11n− 3 + e− a (mod 30). This agrees with increases
of 10.88 modulo 29.53, but after 19 years there remains an error of 0.061839
days, i.e., 0.00325 days/year, or approximately 8 days every 25 centuries, so a
correction of 8a/25, rounded to the nearest integer, is applied

epact ε = 8 + 11n− a+ e+ round(8a/25) (mod 30)

From the epact one can then calculate the age on any specific date by adding
the number of days to ε and subtracting 30 and 29 alternately.

1.2.4 Easter Date

Easter occurs on the first Sunday after the first full moon when spring starts (for
computational purposes taken to be 21st March). There is an official algorithm
to calculate it, the ‘computus’. As decimal representations were not yet invented
when it was devised, its workings may appear as numerical wizardry based on
three numbers, the Littera Dominicalis, Numerus Aureus, and Epactae. Since
Easter occurs after any leap day, only the second Dominical letter matters in
the case of a leap year. There are only 19 different Easter full-moon dates, one
for each golden number.

Consider 21 March:

day of the week = 31 + 28 + 21− ` (mod 7)

= 3− ` (mod 7),

age of Moon = ε+ 31 + 28 + 21− 30− 29 (mod 30)

= ε+ 21 (mod 30)
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The number of days left after 21 March until the Easter Full Moon is then

h := 14− (ε+ 21) (mod 30)

= 23− ε (mod 30)

The day of the week of Easter Full Moon is then h + 3 − ` (mod 7), and the
number of days left until the following Sunday is

λ := 7− (h+ 3− `) (mod 7)

= `− h+ 4 (mod 7)

Easter should then be h + λ days after 22 March. However, the way the tra-
ditional computus works, the period of the moon is increased alternately by 30
and 29 days, with the ‘missing’ day in the ‘short’ months taken as the 6th day;
after 11 years, it can happen, when the epact is 24 or 25 (so the New Moon is
on lunar day 5/6), that two years have the same full moon date; so when ε = 25
or 26 and n > 11, there is a correction of −1; equivalently

µ :=

{
1 11h+ n > 320

0 o/w

This will only have an effect on the Easter date if λ = 6, in which case we need
to take the previous Sunday, i.e.,

days from 22 March to Easter, e := h+ (λ+ µ mod 7)− µ

The last step is to convert this to a date

month =

{
3 e 6 9

4 e > 9
day =

{
22 + e e 6 9

e− 9 e > 9

or equivalently, e+ 114 = 31 month + (day − 1).
There is a short algorithm, originally by Gauss and amended anonymously,

that inputs the year Y and outputs the Easter date:

Quotient Remainder
Y ÷ 19 – m Golden number−1
Y ÷ 100 a b

b ÷ 4 c d

a ÷ 4 e f

8a+13 ÷ 25 g –
19m+a-e-g+15 ÷ 30 – h (19 = −11 mod 30)

11h+m ÷ 319 µ –
2c+2f-d ÷ 7 – ` Dominical letter
`-h+µ+32 ÷ 7 – λ
h+λ-µ+90 ÷ 25 j –

h+λ-µ+j+19 ÷ 32 – i

The Easter date is then i/j/Y. For the Easter full moon take λ = −1.
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1.3 Sidereal ‘Time’

Sidereal Time is the angle that Earth’s 0◦ longitude (Greenwich) is pointing
at on the celestial equator. It is not really a time, but it is traditional to measure
celestial angles using hours, minutes, and seconds; a great circle on the celestial
sphere is divided into 24 angular ‘hours’, so one angular hour equals 15◦.

Sidereal Time GST = θ0 + ωE(t− t0)

where θ0 is the direction of Greenwich at t0; for example,

t0 θ0
1 Jan 2000.0 99.967795◦

1 Jan 2010.0 100.537624◦

1 Jan 2020.0 100.116718◦

Local Sidereal Time is the direction that a particular longitude λ on Earth
is pointing at, i.e., if you imagine a line going from North to South passing
directly overhead, LST is the angle between the celestial 0◦ and this imaginary
line,

LST = GST + longitude

An angle α on the celestial equator is at LST − α away from this imaginary
overhead line.

0◦ (celestial)

GSTLST

λ
α

To convert from LST to local time,

Local Time =
LST− long.− θ0

ωE
+ t0 + “time zone” + “daylight saving”
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2 Spherical Coordinates

The standard spherical coordinates are akin to the longitude and latitude that
are used for positions on the Earth’s surface; such coordinates are fully char-
acterized by a great circle (the ‘equator’) and a reference point on it (the 0
longitude).

r =

cos θ cosφ
cos θ sinφ

sin θ


φ

θ

There are various spherical coordinates projected to the celestial sphere:

Name Coordinate names Reference circle and point

Altazimuth (A, a) (azimuth, horizon
altitude) north

Equatorial (α, δ) (ascension, celestial equator
declination) ‘first point of Aries’

Ecliptic (λ, β) (ecliptic longitude, ecliptic
latitude) ‘first point of Aries’

Galactic (l, b) (galactic longitude, Milky Way
latitude) its center

The equatorial system is the most used. The ‘first point of Aries’ is, by
definition, the point where the equator intersects the ecliptic in the constellation
of Aries. Altazimuth coordinates of points on the celestial sphere are local and
continuously changing. The rest are relatively fixed but have slight problems:
Earth’s rotational axis and equator move slowly (precession, 25ky); the ecliptic
plane also precesses very slowly (430My) due to perturbations from the other
planets; the galactic plane is hard to define precisely.

2.0.1 Angle between two Directions

The elongation γ, or angular difference, between two coordinates (φ1, θ1) and
(φ2, θ2) is given by

cos γ =

cos θ1 cosφ1
cos θ1 sinφ1

sin θ1

·
cos θ2 cosφ2

cos θ2 sinφ2
sin θ2

 = cos(φ1−φ2) cos θ1 cos θ2+sin θ1 sin θ2
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2.1 Changing Coordinates

To change from one spherical coordinate system (φ, θ) to another (α, δ), consider
their reference great circles and let i be a vector where they intersect. Suppose
the reference points of the two systems have angles φ0 and α0 from i. Let i, j,k
be a right-handed orthonormal vector basis with j in the plane of the (φ, θ)
reference circle, and i, b, c a right-handed orthonormal basis with b in the plane
of the (α, δ) reference circle. If the two planes are at an inclination of ε to each
other, then the relation between the two bases is

b = cos ε j − sin ε k
c = sin ε j + cos ε k i b

j

α0

φ0

ε

So the relation between the coordinates of a point on the sphere, with respect
to the two bases (i, b, c), (i, j,k), iscos δ cos(α− α0)

cos δ sin(α− α0)
sin δ

 =

1 0 0
0 cos ε − sin ε
0 sin ε cos ε

cos θ cos(φ− φ0)
cos θ sin(φ− φ0)

sin θ


Dotting with the various unit vectors, one obtains the following identities:

(i) cos(α− α0) cos δ = cos(φ− φ0) cos θ
(b) sin(α− α0) cos δ = sin(φ− φ0) cos θ cos ε− sin θ sin ε
(c) sin δ = sin(φ− φ0) cos θ sin ε+ sin θ cos ε
(j) sin(φ− φ0) cos θ = sin(α− α0) cos δ cos ε+ sin δ sin ε
(k) sin θ = − sin(α− α0) cos δ sin ε+ sin δ cos ε

Dividing the first two equations, one gets

sin δ = sin(φ− φ0) cos θ sin ε+ sin θ cos ε (1)

tan(α− α0) = tan(φ− φ0) cos ε− sec(φ− φ0) tan θ sin ε (2)

Other useful identities are

sin(α− α0) =
sin δ cos ε− sin θ

cos δ sin ε

tan(α− α0) =
sin δ cos ε− sin θ

cos θ cos(φ− φ0) sin ε
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To convert from (α, δ) to (φ, θ), use the same identities with ε replaced by
−ε.

Some useful reference data:

Altazimuth → Equatorial ε = φ− 90◦ α0 = LST− 90◦ A0 = 90◦

Ecliptic → Equatorial ε = 23◦26′16′′ α0 = 0◦ λ0 = 0◦

Galactic → Equatorial ε = 62◦52′18′′ α0 = 282◦51′34′′ l0 = 32◦55′55′′

where φ is the place’s latitude.

Earth’s obliquity (angle between equator and ecliptic) changes (due to the
other planets) as

ε ≈ 23.439291◦ − 0.8325◦ sin(T/6523)− 0.00675◦ sin(T/2778)± 0.0002◦

where T is the number of years since 2000.

2.2 Changing the Origin of a Coordinate System

Another transformation is required when the origin of a coordinate system is
changed, for example, from sun-centered to earth-centered.

O O′

P

r0

r′
r

r0 = r0
(cos θ0 cosφ0

cos θ0 sinφ0

sin θ0

)
r = r

(cos θ cosφ
cos θ sinφ

sin θ

)
r′ = r′

(cos θ′ cosφ′
cos θ′ sinφ′

sin θ′

)

r′ = r − r0

r′

cos θ′ cosφ′

cos θ′ sinφ′

sin θ′

 = r

cos θ cosφ
cos θ sinφ

sin θ

− r0
cos θ0 cosφ0

cos θ0 sinφ0
sin θ0


The unknowns r′, θ′, φ′ can be found from the three equations. In particular,

distance O′P = r′ and the angle ψ := OPO′ can be obtained from:

(r′)2 = |r − r0|2 = r2 + r20 − 2r · r0

rr′ cosψ = r · r′ = r2 − r · r0
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2.2.1 Parallax

For nearby objects P such as the Moon, the observed equatorial coordinates
(α′, δ′) from a point O′ on the surface of the Earth differ from the (calculated
or published) geocentric equatorial coordinates (α, δ) relative to Earth’s center
O. If Earth’s axes are a = 6378.137km and b = 6356.752km, and the observer
has latitude φ, then the observed coordinates and distance r′ are given by

r′

cos δ′ cosα′

cos δ′ sinα′

sin δ′

 = r

cos δ cosα
cos δ sinα

sin δ

−
a cosφ cos LST
a cosφ sin LST

b sinφ


Note: For more precise work, the angle φ is not exactly the published lat-

itude φ̃, which is the angle between the zenith and the equatorial plane. Ne-
glecting the height of the point above the mean Earth, the two are related by

a sinφ√
b2 cos2 φ+a2 sin2 φ

= sin φ̃, so

tanφ =
b

a
tan φ̃

2.3 Rising and Setting Times for (α, δ)

These are the times when the point (α, δ) has an altitude of 0. Substituting into
(1) for a latitude φ,

0 = sin a = sin(α− LST + 90◦) cos δ sin(90◦ − φ) + sin δ cos(90◦ − φ)

= cos(α− LST) cos δ cosφ+ sin δ sinφ

∴ LST = α± cos−1(− tan δ tanφ)

The local sidereal time can then be converted to local time.
The corresponding azimuth at rising and setting is given by

sin(A− 90◦) =
sin 0 cos(90◦ − φ)− sin δ

cos 0 sin(90− φ)

⇒ cosA =
sin δ

cosφ

In practice, one needs to correct for atmospheric refraction, which increases
the altitude. Thus a point (star) rises/sets when its altitude is −0.575◦.

Sunrise/set occurs when the Sun has an altitude of about a = −0.83◦

(= −0.575◦ − 0.25◦), twilight until it is about −6◦, quite dark at −12◦, and
completely dark below −18◦. Similarly, moonrise/set occurs at an altitude of
−0.83◦. For these cases, use the more general formula that gives the time when
(α, δ) is at an altitude a:

LST = α± cos−1(sin a sec δ secφ− tan δ tanφ)
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If the point is moving (e.g. Moon) then calculate (α, δ) at two times (sepa-
rated by ∆t), and find their corresponding rising/setting times T1, T2. The cor-
rect rising/setting time is then the point of intersection t = T1 + (T2−T1)t/∆t.
If the object is near (e.g. Moon), use the observer-corrected coordinates (α, δ)
(see below, parallax).

2.3.1 Refraction

The altitude angle a is refracted to a′ by Snell’s law

sin z′ =
sin z

1.000282
⇒ ∆a = 0.016◦ cot a

where z = 90◦ − a is the zenith angle (the refractive index depends on the light
frequency). This is only accurate for z small.

For lower altitudes, an empirical fit is ∆a = 0.017◦ cot(a+ 10.3◦

a+5.11◦ ).

2.3.2 Stellar Aberration and Parallax

Suppose a star has position de relative to the Sun; the Earth has position
a
(
cos θ
sin θ

)
= aθ and velocity u = 2πa

T

(− sin θ
cos θ

)
= 2πcαθ⊥, where α = a

Tc =
0.0000158 is the Earth’s orbital radius in light years.

The star has position r = de − aθ = d(e − α
dly
θ) relative to Earth, so

light coming from the star appears to come from a direction −(−cr̂ + u) =
c(r̂ − 1

cu) = c(r̂ − 2παθ⊥).
Note that if x is much smaller than e, then the unit vector of e + x is

e+ (1−ee∗)x to first order (since |e+x|2 ≈ 1 + 2e ·x, so |e+x|−1 ≈ 1−e ·x.)
In particular, the apparent direction of the star can be found from

r̂ = e− α

dly
(1− ee∗)θ

ẽ = e− α(1− ee∗)(2πθ⊥ + d−1ly θ)

Thus the star appears to form ellipses around the central direction e. If e =(
cosβ cosλ
cosβ sinλ

sinβ

)
are the ecliptic coordinates of the star, then the tangent vectors

are

(
− sinλ
cosλ

0

)
and

(
− sinβ cosλ
− sinβ sinλ

cosβ

)
; by dotting ẽ − e with these vectors, we get

that the apparent position of the star over the course of a year is

ẽ = 2πα

(
cos(θ − λ)

sinβ sin(θ − λ)

)
+

α

dly

(
sin(θ − λ)
− cos(θ − λ))

)
The dominant effect is spherical aberration (especially at the ecliptic poles)
with radius of 2πα = 20.48′′; the second effect is parallax, visible by comparing
a group of nearby stars, of order α/dly = 3.26′′/dly; its reciprocal is the distance
in parsecs.



2.4 Precession J MUSCAT 14

2.4 Precession

Like any symmetric top with moments of inertia (A,A,C), the Earth precesses
at a rate ωpre where

3G

2

(
M�
r3�

+
Mm

r3m

)
(C −A) cos ε sin ε = torque = ωpreωEC sin ε

For the oblate Earth, A/C = 0.9967, so ωpre ≈ 0.0142◦/year = 360◦/25400 year.
In fact, the equatorial plane is rotating about the ecliptic north at a rate of
360◦/25771 years = 50.23′′/year, e.g. after more than two millennia, the first
point of Aries is now in Pisces. So the ecliptic coordinates of a star are changing
at the rate of λ̇ = 50.23′′/year, β̇ = 0. Differentiating (1) and (2) gives

δ̇ cos δ = cosβ sin ε λ̇

− sinα cos δ α̇− cosα sin δ δ̇ = − sinλ cosβ λ̇

so

δ̇ = cosα sin ε λ̇ = 19.98′′ cosα/year,

α̇ = (cos ε+ sinα tan δ sin ε)λ̇

= (46.09′′ + 19.98′′ sinα tan δ)/year

Note that there is a separate tiny precession (wobble) of a few metres every
1.18 years, due to the Earth not being exactly axially symmetric.
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3 Orbits

Consider the path of an object orbiting the Sun. Relative to the center of mass
of the system, mr +M�R� = 0, hence r −R� = (1 + m

M )r. The force acting
on the object is

mr̈ = − GM�m

|r −R�|2
r̂ = −κm r̂

|r|2

where κ = GM�(1 + m/M�)−2. By conservation of angular momentum (the
force is independent of angle), the motion is in a plane, so polar coordinates
(r, θ) suffice, and the equations reduce to r2θ̇ = h (constant) and r̈−rθ̇2 = − κ

r2 .
Combining the two and substituting u := 1/r gives u′′ + u = κ

h2 = α whose
solution

r =
α

1 + e cos(θ − θ0)
(3)

is a conic.

Ω

ω
ν

It is an ellipse when the eccentricity e < 1, with α = a(1− e2), a the semi-
major axis, and θ0 the direction of the point closest to the focus, called the
perihelion. Substituting into r2θ̇ = h, a differential equation is obtained for the
“true anomaly” ν := θ − θ0 measured from the perihelion

ν̇ = β(1 + e cos ν)2 (4)

where β = κ2

h3 = 2π
T (1− e2)−3/2. The period of the orbit is

T =

∫ 2π

0

dν

ν̇
=

2π√
κ
a3/2

known as Kepler’s third law. Equation (4) is of separable type,∫
dν

(1 + e cos ν)2
= βt

To solve, it is best to change variables from ν to the “eccentric anomaly” E
defined by

tan
E

2
=

√
1− e
1 + e

tan
ν

2
(5)

(Equivalently, tan ν =
√

1− e2 sinE
cosE−e .) After some calculations, the equation

becomes
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Ė =
2π

T

1

1− e cosE

E ν

Changing coordinates again from E to the “mean anomaly” (Kepler)

M := E − e sinE (6)

gives the simplified equation Ṁ = 2π/T , i.e.,

M(t) =
2π

T
(t− t0) +M(t0) (7)

Sometimes, the reference time t0 is that of perihelion, in which case M(t0) = 0.
More often, angles are measured from a reference direction; either this is the
node where the orbital plane cuts the ecliptic, M(t0) = ε − ω, where ε is the
mean anomaly and ω is the perihelion angle; or the reference direction is the
first point of Aries and M(t0) = L− ω′ where L = ε+ Ω, ω′ = ω + Ω.

Orbital characteristics: given an object of mass m orbiting another M in an
ellipse of eccentricity e and semi-major axis a,

period T =
√

4π2

κ a3/2

angular momentum mh h2 = κa(1− e2)

total energy E = −κm2a

max/min speeds v± =
√

κ
a
1±e
1∓e

perihelion/aphelion distances a± = (1 + m
M )(1± e)a

Note that these formulæ apply only to a two-body orbit; the Sun has several
orbiting planets, so to a good approximation it can be taken to be at the origin,
and the factor (1 +m/M) can be ignored (κ = GM�).

3.0.1 Parabolic and Hyperbolic Orbits

For hyperbolic orbits e > 1 (e.g. near Earth asteroids/meteoroids), the equation
θ̇ = β(1 + e cos θ)2 can be solved by applying the change of variable,

tanh
E

2
=

√
e− 1

e+ 1
tan

θ

2

to get

Ė =
β(e2 − 1)3/2

e coshE − 1
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A second change of variables, M = e sinhE − E leads to Ṁ = β(e2 − 1)3/2, so

M(t) = β(e2 − 1)3/2t

where β2 = κ
q3(1+e)3 , since the perigee distance is q = h2/κ(1+e) and β = κ2/h3.

The deflection angle (between asymptotes) is 2 arccos(1/e).

For parabolic orbits e = 1 (e.g. some comets), the equation θ̇ = β(1+cos θ)2

can be solved directly,

βt = M =

∫
dθ

(1 + cos θ)2
=

sin θ(2 + cos θ)

3(1 + cos θ)2
= 1

6 tan3 θ
2 + 1

2 tan θ
2

hence x := tan θ/2 satisfies a cubic equation, so

tan
θ

2
= (3M +

√
9M2 + 1)1/3 − (3M +

√
9M2 + 1)−1/3

Escape velocity : In both cases, 0 6 E = 1
2mv

2− κm
r , so the escape velocity is

v >
√

2κ
r . For example, on Earth, v =

√
2GME

RE
= 11.2km/s. An object in orbit,

however, already has some kinetic energy, so it needs a boost of κm2a = 1
2mv

2, or

v =
√

κ
a to escape; e.g. , solar escape velocity from Earth is

√
GM�
1au = 29.9km/s.

Orbit transfer : To go from one orbit to another, a probe needs an orbit with
perihelion a and aphelion b, so semi-major axis of a+b2 and eccentricity e = b−a

b+a ;

it needs a boost of kinetic energy of v2 = κ( 1
a −

2
a+b ), in addition to escaping

the planet; but such an orbit would take much longer than to sling a proble via
another planet.

3.1 Calculating the position

To find the position (α, δ) of an orbiting object (planet), as seen from Earth:

1. Find the mean anomaly M(t), using (7) and t, t0, T .

2. Find the eccentric anomaly E(t), using (6) and M(t), e; since the equa-
tion has no closed-formula solution, a Newton-Raphson or other iterative
method is used.

3. Find the true anomaly ν(t), using (5) and E(t), e. The heliocentric lon-
gitude in the orbit’s plane is then l′ = ν + ω = ν + ω′ −Ω measured from
the node, and latitude = 0.

4. Find the distance r(t), using (3) and ν(t), e, a.

5. Find the heliocentric coordinates of Earth: lE = νE + ωE , βE = 0. If the
Sun’s position is sought, then go straight to step 8, using λ = lE + 180◦,
β = 0. (This is not extremely accurate, because it is the Moon-Earth
system that moves in an elliptical orbit.) Find also rE .
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6. The heliocentric coordinates with respect to the ecliptic plane can then
be found by changing coordinates from (l′, 0) to (l, τ); the angle between
the object’s orbit and the ecliptic is the inclination i of the orbit,while the
longitude reference points are l′0 = 0, l0 = Ω; so using (1) and (2), (ε = i,
φ0 = 0, α0 = Ω)

sin τ = sin l′ sin i

tan(l − Ω) = tan l′ cos i

7. The geocentric ecliptic coordinates (λ, β) are obtained from (l, τ) using
the next section.

8. The geocentric equatorial coordinates (α, θ) are found from (λ, β).

9. If necessary, find the apparent equatorial coordinates by calculating the
parallax; then the altazimuth coordinates if required.

3.1.1 Changing from Heliocentric to Geocentric Coordinates

The connection between heliocentric and geocentric ecliptic coordinates, (l, τ)
and (λ, β), is:

ρ

cosβ cosλ
cosβ sinλ

sinβ

 = r

cos τ cos l
cos τ sin l

sin τ

− rE
cos lE

sin lE
0


If x = (x, y, z) is the vector on the right, then ρ = |x| =

√
x2 + y2 + z2,

β = arctan z√
x2+y2

, λ = arctan y
x . For specific formulas,

ρ2 = r2(1 + α2 − 2α cos τ cos(l − lE))

tanβ =
sin τ√

α2 + cos2 τ − 2α cos τ cos(l − lE)

tanλ =
α sin lE − cos τ sin l

α cos lE − cos τ cos l

where α = rE/r.

Orbital data of planets at 2000.0 (with change every 10 years)
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a (AU) e i (◦) L (◦) ωp (◦) t0 Ω (◦)
Mercury 0.38709927 0.20563593 7.00497902 252.25032350 77.45779628 2000.1280 48.33076593

0.00000004 0.00000191 -0.00059475 1494.72674112/yr 0.01604769 -0.01253408

Venus 0.72333566 0.00677672 3.39467605 181.97909950 131.60246718 2000.5332 76.67984255
0.00000039 -0.00000411 -0.00007889 585.17815387/yr 0.000268329 -0.027769418

Earth-Moon 1.00000261 0.01671123 -0.00001531 100.46457166 102.93768193 2000.0110 0.0
0.00000056 -0.00000439 -0.00129467 359.99372450/yr 0.03232736 0.0

Mars 1.52371034 0.09339410 1.84969142 -4.55343205 -23.94362959 2001.7836 49.55953891
0.00000185 0.00000788 -0.00081313 191.40302685/yr 0.04444109 -0.02925734

Jupiter 5.20288700 0.04838624 1.30439695 34.39644051 14.72847983 2011.2108 100.47390909
-0.00001161 -0.00001325 -0.00018371 30.34746128/yr 0.02125267 0.02046911

Saturn 9.53667594 0.05386179 2.48599187 49.95424423 92.59887831 2003.5304 113.66242448
-0.00012506 -0.00005099 0.00019361 12.22493622/yr -0.04189722 -0.02886779

Uranus 19.18916464 0.04725744 0.77263783 313.23810451 170.95427630 2050.7349 74.01692503
-0.00019618 -0.00000440 -0.00024294 4.28482028/yr 0.04080528 0.00424059

Neptune 30.06992276 0.00859048 1.77004347 -55.12002969 44.96476227 2045.6635 131.78422574
0.00002629 0.00000510 0.00003537 2.18459453/yr -0.03224146 -0.00050866

1 AU=149,597,871km; the period of a planet is equal to a3/2 if a is measured
in AU; t0 is the perihelion time. Earth’s perihelion rotates 360◦ in 112000years.
Sun’s diameter is 1.392× 106km.

Data from ssd.jpl.nasa.gov. For asteroids etc., see www.minorplanetcenter.

org/iau/MPCORB.html, ssd.jpl.nasa.gov/sbdb.cgi, or asteroid.lowell.edu. It is

hard to track satellites’ orbits because they are easily perturbed, but see www.amsat.

org/amsat-new/tools. Check calculations with www.jb.man.ac.uk/almanac

3.1.2 Angular Size and Phase

The angular size of the object is

angular size (in radians) =
diameter of object

ρ

The phase of the object is the fraction of the lit up area of the object to the
whole apparent area.

α α

cosα

For a unit spherical object with incident light at an angle α, the terminator
is a great circle which appears as an ellipse with semi-minor axis of cosα. The
apparent lit up area is π

2 + (cosα)π2 , so the phase is

F =
1 + cosα

2

ssd.jpl.nasa.gov
www.minorplanetcenter.org/iau/MPCORB.html
www.minorplanetcenter.org/iau/MPCORB.html
ssd.jpl.nasa.gov/sbdb.cgi
asteroid.lowell.edu
www.amsat.org/amsat-new/tools
www.amsat.org/amsat-new/tools
www.jb.man.ac.uk/almanac
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For an astronomical object, α is the angle Sun-Object-Earth, i.e., between the
spherical coordinates (l, τ) and (λ, β):

cosα = cos τ cosβ cos(l − λ) + sin τ sinβ

The inclination of the planets is fixed (up to precession). The direction vec-
tor of their ’north pole’ is, in equatorial coordinates (α, δ): Mercury (281.01◦,
61.45◦), Venus (272.76◦, 67.16◦), Earth (0◦, 90◦), Mars (317.68◦, 52.89◦), Jupiter
(268.06◦, 64.50◦), Saturn (40.59◦, 83.54◦) (including rings), Uranus (257.31◦,
−15.18◦), Neptune (299.36± 0.7◦, 43.46± 0.51◦) (precesses every 6.9y).

3.2 Analemma

The analemma is that curve that describes the Sun’s position on the celestial
sphere at 24 hour intervals, starting from the winter solstice. The (negative of)
right ascension for each day, converted to time, is called the equation of time.

The analemma can be calculated by finding the geocentric position λ̃ of
the Sun on the ecliptic, relative to the winter solstice, converted to equatorial
coordinates, then retraced to the winter solstice by rotating Earth back for an
equal time period.

Let t be the day of the year, expressed as an angle from the winter solstice,
t = M+π+ω+ π

2 ≈M+12.93◦. It is related to λ by (5), (6), and λ = ν+ω+π,

λ̃ = λ+ π
2 . Then the analemma position expressed in equatorial coordinates is

(α(t), δ(t)) (where α = 0 refers to the winter solstice)cos t − sin t 0
sin t cos t 0

0 0 1

 cos ε 0 sin ε
0 1 0

− sin ε 0 cos ε

 cos λ̃ sin λ̃ 0

− sin λ̃ cos λ̃ 0
0 0 1

1
0
0

 =

cos δ cosα
cos δ sinα

sin δ


The equation of time is (t,−t̃), where t̃ = α/ωE = α× day

360◦ (1+ day
year )

−1 (negative

since it is meant as a correction for sundial time).
At sunrise and sunset, the analemma needs to be rotated by the latitude to

show its orientation relative to the horizon. The Sun’s varying position explains
why sunrise is latest after the winter solstice and earliest before the summer
solstice (in the northern hemisphere), while sunsets are opposite.

3.3 Finding an Orbit from Observations

An orbit requires 6 parameters to be determined in space: a, e, i, ω,Ω,M(t0),
so three observations (α(ti), δ(ti)) should in principle be enough.

There are errors in the calculation: light takes time to arrive to Earth, and
the observations are from a point on the surface of the Earth, not its center.
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Figure 1: Analemma, at surise and sunset, Equation of Time

3.4 Lunar Orbit

The Moon’s motion is much more complicated because of the gravitational effect
of the Earth and the Sun:

r̈E = −GM�rE
|rE |3

+
GMmr

|r|3

r̈m = −GM�rm
|rm|3

− GMEr

|r|3

where r = rm − rE . The Earth’s motion is dominated by the Sun’s attraction
(99.4%), so can be taken to be an elliptic orbit, even a circular orbit to a good
enough approximation rE = a(cos θE , sin θE , 0); but the Moon’s is dominated
by both the Sun (69%) and Earth (31%).

In general, the three-body problem has no simple solution. If only the leading
terms in r/|rE | are kept, assuming |rE | = a, rescaling R := r/am, T := ωmt,
and letting G(ME +Mm) = ω2

ma
3
m, GM� = ω2

Ea
3, β := ωE/ωm, simplifies the

second equation to (using a Taylor series rm

|rm|3 ≈
rE

|rE |3 + r
|rE |3 − 3 (r·rE)rE

|rE |5 )

R̈ = − R

|R|3
+ β2(3(R · r̂E)r̂E −R)

As β2 ≈ 0.006, the dominant part is R̈ = −R/|R|3, i.e., an elliptical orbit
around the Earth in a plane inclined at an angle i to the ecliptic, eccentricity e,
and with mean angular speed ωm = 360◦/27.321662 days (=27.321582 days with
respect to the precessing ecliptic coordinates). But this behavior is modified by
the remaining term; the real orbit is not planar: both the ellipse and the plane
are slowly precessing or rotating with mean periods of TP = 5.99685 years and
TN = 18.5996 years respectively. The (ascending) node is the direction where
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this plane intersects the ecliptic, and it moves as

N(t) = N0 −
360◦

TN
(t− t0)−An(t)

where N0 = N(t0) is the node longitude at the reference date and An =
0.16◦ sinM�(t) (M�(t) is the solar longitude). Note that the Moon crosses
the Sun with a period ts, the nodes with a period tn, and the perigee with
period tp, where

“synodic” month 1
ts

= 1
27.321662days −

1
365.25636days

= 1
27.321582days −

1
365.24219days = 1

29.53059days

“draconic” month 1
tn

= 1
27.321662days + 1

TN
= 1

27.21222days

“anomalistic” month 1
tp

= 1
27.321662days −

1
TP

+ 1
TN

= 1
27.55455days

Reference data for Moon 2000.0 (from ssd.jpl.nasa.gov/?sat_elem):

a e ωp t0 i N0 diameter
384399km 0.0549006 83.1862◦ 2000.05177 5.1454◦ 125.1240◦ 3474km

+40.6901◦/year −19.341◦/year

(It’s best to look up t0 in a table of lunar perigees, e.g. www.fourmilab.ch/
earthview/pacalc.html.)

One can only find the main periodic terms of this motion. A fair approxi-
mation is elliptical motion with various corrections:

Mean anomaly M(t) = 360◦(t− t0)/27.321582days
‘True’ anomaly θ = ν (elliptic angle)

+1.2739◦ sin(2D −M) “evection”
+0.658◦ sin 2D “variation”
−0.1858◦ sinM� “annual equation”

where D = M + ωp − λ�.
Then the geocentric ecliptic longitude and latitude are given by

λ = θ + ω′,

β = i sin(λ−N) + 0.173◦ sin(2D − λ+N),

The angle Earth-Moon-Sun is then θ = 180◦ − λ� + λ, so its phase is F =
1
2 (1 + cos θ). The distance from the Earth is approximately

ρ

a
=

1− e2

1 + e cos θ
.

If one wants to track the Moon’s motion over short periods of time, one can
calculate the rates of change of λm and βm, by differentiating:

λ̇m ≈ ν̇ = β(1 + e cos ν)2 ≈ 2π
T (1− e2)−3/2(1 + 2e cos ν) ≈ (0.55◦ + 0.06◦ cosM)/hour

β̇m ≈ i cos(λ−N)(λ̇− Ṅ) ≈ 0.05◦ cos(λ−N)/hour.

See www.solexorb.it for an example of a direct numerical orbit calculator.

ssd.jpl.nasa.gov/?sat_elem
www.fourmilab.ch/earthview/pacalc.html
www.fourmilab.ch/earthview/pacalc.html
www.solexorb.it
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3.4.1 Eclipses

Eclipses occur when the Moon and Sun are in exactly the same or opposite direc-
tions; since the lunar orbital plane is different from the ecliptic, these directions
must be the nodes.

A solar eclipse occurs when both the Sun and the Moon are at the same
node, λm = λ� and |λ−N | < 18◦31′ or |λ−N − 180◦| < 18◦31′. The longest
duration of a total eclipse is 7m31s, that of an annular eclipse is 12m24s.

A lunar eclipse occurs when the Sun is at one node, and the Moon at the
other node; the angular size of the umbra and penumbra are, on average, 1.37◦

and 2.44◦; more precisely, when the Earth is at distances a, d from the Sun and
Moon, they are (in radians):

R�

a d

umbraRE

penumbra

umbra =
2RE
d

(
1− (α− 1)

d

a

)
, penumbra =

2RE
d

(
1 + (α+ 1)

d

a

)
,

where α = R�/RE = 695842/6371 = 109.22. The longest duration of a lunar
eclipse is 1h47m (3h45m from tip to tip).

Both the Sun and the Moon move along approximately uniformly during the
eclipse,

λ�(t) = λ�(t0) + λ̇�(t− t0), β�(t) = 0

λm(t) = λm(t0) + λ̇m(t− t0), βm(t) = βm(t0) + β̇m(t− t0)

where λ̇� ≈ 360◦/year= 0.04◦/hour. The Moon’s position relative to the Sun
is (λm − λ�, βm), a straight line with a slope of β̇m/(λ̇m − λ̇�) coming in from
right to left. It can be calculated at two times to determine the straight line.
The Sun’s angular diameter can be calculated from its true diameter divided by
the distance Earth-Sun; similarly the Moon’s. In either case, the time of eclipse
maximum is given at the point when this relative line is closest to the origin,

βm

β̇m
+
λm − λ�
λ̇m − λ̇�

= 0 ⇒ t = t0 −
1

2

(
βm(t0)

β̇m
+
λm(t0)− λ�(t0)

λ̇m − λ̇�

)

Saros Cycle: The lunar eclipses are fairly predictable (unlike total solar
eclipses) because of the large size of the Earth’s shadow relative to the Moon.
Two numbers are important: the month relative to the sun (29.53059 days) and
the time taken for the Moon to cross the orbital nodes (27.21222 days). Using
continued fractions, their ratio can be approximated by
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m/n 27.2n− 29.5m 29.5m/27.5 29.5m/365.25 (yr)
12/13 −0.608 12.86 1 year −11 days
35/38 0.494 37.51 3 years −62 days
47/51 −0.115 50.37 4 years −73 days

223/242 0.0357 239.0 18 years +11 days

Since the Moon moves at a rate of 360◦/29.53059days = 1.37◦/0.11days,
the required accuracy is almost achieved by the ratio 47/51 and better by
223/242. The former is a period of 3.8 years of recurring eclipses, typically
the 0,6,12,18,24,30,36,41,42,(47) ‘moons’; but this pattern changes slightly for
the subsequent 3.8 years. The second fraction leads to the Saros cycle of 18.03
years = 18 years 11 days, in which recurrent eclipses are much more similar
to each other. Coincidentally, the Moon’s cycle of distances from the Earth
is of 27.55455 days (third column), which almost exactly divides 223 synodic
months, so corresponding eclipses in consequent Saros cycles are very similar to
each other. The current Saros cycle has the following eclipses:

Year Lunar Eclipses Solar Eclipses
2006 14 Mar 7 Sep 29 Mar 22 Sep
2007 3 Mar 28 Aug (19 Mar) (11 Sep)
2008 21 Feb 16 Aug (7 Feb) (1 Aug)
2009 9 Feb 7 Jul 6 Aug 31 Dec 26 Jan 22 Jul
2010 26 Jun 21 Dec 15 Jan 11 Jul
2011 15 Jun 10 Dec (4 Jan) (25 Nov)
2012 4 Jun 28 Nov 20 May 13 Nov
2013 25 Apr 25 May 18 Oct 10 May 3 Nov
2014 15 Apr 8 Oct (29 Apr) (23 Oct)
2015 4 Apr 28 Sep (20 Mar) (13 Sep)
2016 23 Mar 18 Aug 16 Sep 9 Mar 1 Sep
2017 11 Feb 7 Aug 26 Feb 21 Aug
2018 31 Jan 27 Jul (15 Feb) (11 Aug)
2019 21 Jan 16 Jul 2 Jul 26 Dec
2020 10 Jan 5 Jun 5 Jul 30 Nov 21 Jun 14 Dec
2021 26 May 19 Nov (10 Jun) (4 Dec)
2022 16 May 8 Nov (30 Apr) (25 Oct)
2023 5 May 28 Oct 20 Apr 14 Oct
2024 25 Mar 18 Sep 8 Apr 2 Oct

3.4.2 Lagrangian points

Consider an object MJ orbiting another of larger mass M� in a circle about
their common center of mass,

xJ =
M�a

M� +MJ

(
cosωt
sinωt

)
, x� = − MJa

M� +MJ

(
cosωt
sinωt

)
where ω2a3 = G(M� +MJ).
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Now consider a third, much smaller, mass m moving around the pair, x(t).

Using a rotating frame of reference aX := R−ωtx, Rθ =
(

cos θ − sin θ
sin θ cos θ

)
, and

noting Ṙ = ωPR, with P 2 = −I, PR = RP , α := MJ

M�+MJ
, then

XJ = (1− α)i,

X� = −αi,
ẋ = aRωt(Ẋ + ωPX)

ẍ = aRωt(Ẍ + 2ωPẊ − ω2X)

Then the equation of motion of m

ẍ = −GM�(x− x�)

|x− x�|3
− GMJ(x− xJ)

|x− xJ |3

becomes

Ẍ + 2ωPẊ − ω2X = − (1− α)ω2(X −X�)

|X −X�|3
− αω2(X −XJ)

|X −XJ |3

At equilibrium, Ẋ = Ẍ = 0,

(
X
Y

)
= X =

(1− α)(X −X�)

d3�
+
α(X −XJ)

d3J
=

 (1−α)(X+α)
d3�

+ α(X−1+α)
d3J

(1−α)Y
d3�

+ αY
d3J


There are thus five equilibrium points, L1–L5; for Y = 0, write X = ±1 + ξ
and, keeping only lowest order terms,

L1 ≈ a
(

1− (α/3)1/3

0

)
, L2 ≈ a

(
1 + (α/3)1/3

0

)
, L3 ≈ −a

(
1 + 5α

12
0

)
These are not stable. For Y 6= 0, it follows that d� = dJ , so M�, MJ , m form
an equilateral triangle,

L4, L5 = a

( 1
2 − α
±
√
3
2

)
They are stable when (1− 2α)2 > 23

27 , i.e., α small enough.
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4 Luminosity

The luminosity L is the emitted (visual) power output of an object. The
absolute magnitude is a logarithmic scale of the luminosity, with respect to
a reference luminosity L0 := 3.31 1028W (approx., the output of the star Vega),

Mv := −5

2
log10

L

L0

The Sun has a luminosity of L� = 3.8 1026W , so its absolute magnitude is 4.85,
and relative to it,

Mv = 4.85− 5

2
log10

L

L�
.

Note that a small hot star may give out as much light as a large ‘cool’ star.
The apparent luminosity L′ is the received light intensity after it has traveled

a distance r, i.e.,

L′ =
L

4πr2

Since relative comparisons are much easier to do, it was originally estimated as
a ratio L′/L′V ega with respect to the star Vega’s apparent luminosity, L′V ega =

2.75 10−8W/m2. The apparent magnitude is a logarithmic scale of the in-
tensity

mv := − 5
2 log10

L′

L′V ega

= −18.9− 5
2 log10

L
4πr2 S.I. units

= −26.74− 5
2 log10

L/L�
r2 r measured in a.u.

= −7.57 +Mv + 5 log10 r r measured in light-years

= Mv + 5 log10(r/10) r measured in parsecs

For example,

Light intensity(W/m2) apparent magnitude

Sun 1380 −26.74
Full Moon 0.00331 −12.7
Venus 0.00000023 −4.8
Sirius 0.0000001 −1.46
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For light reflected from the Sun by an object at a distance r from the Sun
and ρ from Earth, the brightness is approximately

L�
4πr2

× πD2

4
× F ×A× 1

4πρ2
,

where D is the diameter of the object, F its phase, and A its ‘albedo’ (the
fraction of light reflected); so the apparent magnitude is

mv = −26.74 +
5

2
log10

16r2ρ2

D2FA
r, ρ,D in a.u.

= −23.7 + 5 log10

rρ

D
√
FA

= 17.2 + 5 log10

rρ

D
√
FA

r, ρ in a.u., D in km

For a comet, the size of the coma depends on the distance from the Sun, i.e.,

D is proportional to r−1 (or r−2), so mv = 17.2 + c+ 5 log10
r2ρ√
FA

.
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