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(A revised and expanded version of these notes are now published by
Springer.)

1 Banach Spaces

Definition A normed vector space X is a vector space over R or C with
a function called the norm ‖.‖ : X → R such that,

‖x+ y‖ 6 ‖x‖ + ‖y‖,

‖λx‖ = |λ|‖x‖,
‖x‖ > 0, ‖x‖ = 0 ⇔ x = 0.

1.0.1 Easy Consequences

‖x− y‖ > ‖x‖ − ‖y‖, ‖ − x‖ = ‖x‖,
‖x1 + . . .+ xn‖ 6 ‖x1‖+ . . .+ ‖xn‖.

1.0.2 Examples

1. The set of real numbers with the norm taken to be the absolute value.

2. RN or CN with the norm defined by ‖x‖2 = (
∑

i |xi|2)
1/2

. There are
other possibilities however, ‖x‖1 =

∑

i |xi| or ‖x‖∞ = maxi |xi|. Thus

‖
(

3
−4

)

‖
1

= 3 + 4 = 7, ‖
(

3
−4

)

‖
2

=
√
9 + 16 = 5, ‖

(

3
−4

)

‖
∞

=

max(3, 4) = 4.

3. Sequences: sequences can be added and multiplied by scalars, and form
a vector space. But there are different ways of taking the length of a
sequence:

The space ℓ1 = { (an) :
∑

n |an| 6 ∞} with norm defined by ‖(an)‖ℓ1 =
∑

n |an|.
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ℓ2 = { (an) :
∑

n |an|2 6 ∞} with norm defined by ‖(an)‖ℓ2 =
√
∑

n |an|2.
ℓ∞ = { (an) : |an| 6 C } with norm defined by ‖(an)‖ℓ∞ = supn |an|.

4. Functions: functions also form a vector space, and different norms can
be defined for them as with sequences

The space L1 = { f : A → R :
∫

A
|f(x)| dx < ∞}, with norm defined

by ‖f‖L1 =
∫

A
|f(x)|.

The space L2 = { f : A → R :
∫

A
|f(x)|2 dx < ∞}, with norm defined

by ‖f‖L2 =
√

∫

A
|f(x)|2 dx.

The space L∞ = { f : A → R : f is measurable, and |f(x)| 6 C a.e. },
with norm defined by ‖f‖L∞ = supx a.e. |f(x)| (i.e. the smallest c such
that |f(x)| 6 c a.e.

The space C = { f : [a, b] → R : f is continuous } with ‖f‖C =
‖f‖L∞ = maxx∈[a,b] |f(x)|.

Proposition 1.1 A vector space is normed if and only if it has a
translation invariant and scalar-homogeneous distance,

d(x, y) = ‖x− y‖.

Proof: Given a norm, the function d(x, y) = ‖x− y‖ is translation in-
variant in the sense that d(x+ a, y + a) = ‖x+ a− y − a‖ = d(x, y), scalar
homogeneous in the sense that d(λx, λy) = |λ|d(x, y). Conversely if d(x, y)
is translation invariant, then d(x, y) = d(x − y, y − y) = d(x − y, 0) and we
can define ‖x‖ = d(x, 0) so that d(x, y) = ‖x− y‖. We will now show that
the axioms for the norm correspond precisely to the axioms for a distance.

d satisfies the triangle inequality ⇔ the norm ‖.‖ does.

d(x, y) 6 d(x, z) + d(z, y)

corresponds to ‖x− y‖ 6 ‖x− z‖ + ‖z − y‖. Similarly d(x, y) = d(y, x)
corresponds to ‖x− y‖ = ‖y − x‖; d(x, y) > 0 is ‖x− y‖ > 0, while d(x, y) =
0 ⇔ x = y becomes ‖x− y‖ = 0 ⇔ x− y = 0.

The scale-homogeneity of the metric supplies the final axiom for the norm.
�

This invariance under translations and scaling has the following easy con-
sequences
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Proposition 1.2

Br(x) = rB1(x/r) = x+Br(0) = x+ rB1(0)

Br(x) = { y : d(x, y) 6 r }

Proof: The first statement is the set equivalent of

d(x, y) < r ⇔ d(x/r, y/r) < 1 ⇔ d(0, y − x) < r ⇔ d(0, (y − x)/r) < 1

Let a be a limit point of Br(x), so that we can find y ∈ Br(x) such that
‖y − a‖ < ǫ, which implies that ‖a− x‖ 6 ‖a− y‖+ ‖y − x‖ < ǫ+ r. Hence
a ∈ { y : d(x, y) 6 r } as required.

Conversely, suppose d(x, y) 6 r; let a = x + λ(y − x) with 1 − ǫ/r <
|lambda| < 1. Then ‖a− x‖ = |λ|‖y − x‖ < r, and ‖a− y‖ = |1 −
λ|‖x− y‖ < ǫ.

�

1.0.3 Note

Normed vector spaces are therefore metric spaces, as well as vector spaces.
So we can apply ideas related to both, in particular open/closed sets, limit
points, convergence of sequences, completeness, continuity, compactness, as
well as linear subspaces, linear independence and spanning sets, linear trans-
formations, kernels etc.

Since, at the end of the day, we are interested in issues like convergence
and so on, we say that two norms are equivalent when they induce the same
open sets.

For example, the norms ‖.‖1, ‖.‖2 and ‖.‖∞ are all equivalent on RN . (But
note that they are not equivalent for sequences or functions! In particular, a
sequence of functions may converge in L1 but not in L∞ or vice-versa.)

1.0.4 Banach Spaces

When the induced metric is complete, the normed vector space is called a
Banach space.

So, a closed linear subspace of a Banach space is itself a Banach space.
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1.0.5 Example

Not every norm is complete of course. For example, suppose we take the
vector space of continuous functions f : [0, 1] → R with the norm ‖f‖ =
∫ 1

0
|f(x)|. This is indeed a norm but it is not complete, for consider the

sequence of continuous functions fn(x) = n(x− 1
2
)χ[ 1

2
, 1
2
+1/n] +χ( 1

2
+1/n,1]; it is

Cauchy since ‖fn − fm‖ =
∫ 1

0
|fn − fm| = 1

2
|1/n− 1/m| → 0 as n,m → ∞,

but it does not converge in C[0, 1], because suppose it does i.e. ‖fn − f‖ → 0

as n → ∞. This means that
∫ 1

0
|fn(x) − f(x)| dx → 0, which implies that

∫ 1

0
|f(x)| dx → 0, and

∫ 1
1

2
+1/n

|1 − f(x)| dx → 0, so that f(x) = 0 on [0, 1
2
)

and f(x) = 1 on (1
2
, 1], implying it is discontinuous.

1.1 Metric and Vector Properties

Proposition 1.3 The maps x 7→ x + y, x 7→ λx and x 7→ ‖x‖ are con-
tinuous.

Proof: Addition by a vector is continuous,

‖x1 − x2‖ < ǫ ⇒ ‖(x1 + y)− (x2 + y)‖ = ‖x1 − x2‖ < ǫ.

Scalar multiplication is continuous,

‖x1 − x2‖ < ǫ ⇒ ‖λx1 − λx2‖ = |λ|‖x1 − x2‖ < |λ|ǫ.
The norm is continuous,

‖x1 − x2‖ < ǫ ⇒ |‖x1‖ − ‖x2‖| 6 ‖x1 − x2‖ < ǫ.

Corollary
lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn,

lim
n→∞

λxn = λ lim
n→∞

xn.

Proposition 1.4 If M is a linear subspace of X, then so is M̄ .

Proof: Let x, y be limit points ofM . Then we can find a sequence xn → x
and yn → y; but xn + yn ∈ M , so x + y = limn→∞(xn + yn) ∈ M̄ . Similarly
λx = limn→∞(λxn) ∈ M̄ .

�

For example, the set of polynomials forms a linear subspace of C[0, 1]; its
closure in this space is a closed linear subspace (and hence complete).
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1.1.1 Series

A series is a sequence of vectors obtained by adding, i.e.
∑N

n=0 xn. A series

therefore converges when ‖
∑N

n=0 xn − x‖ → 0 as N → ∞. It is said to
converge absolutely when

∑

n ‖xn‖ converges in R.

We can show that a series is absolutely convergent by using the usual
tests for real series, for example, the comparison, ratio or root tests.

Proposition 1.5 For a Banach space, absolutely convergent series
converge.

Proof: Suppose that
∑

n ‖xn‖ converges. Let yN =
∑N

n=0 xn, so that

‖yM − yN‖ = ‖
∑M

n=N+1 xn‖ 6
∑M

n=N+1 ‖xn‖ → 0. Hence yN is a Cauchy
sequence in X , and so converges to y, say. This means that

∑

n xn = y.

It is also true (see the exercises) that if a normed vector space is such that
all its absolutely convergent series converge, then the space is also complete,
i.e. a Banach space.

1.1.2 Quotient Spaces

IfM is a closed linear subspace, then we can factor it out and form the space
X/M with addition, scalar multiplication and norm defined by

(x+M) + (y +M) = (x+ y) +M,
λ(x+M) = λx+M,

‖x+M‖ = d(x,M) = infv∈M ‖x− v‖.

That the addition and scalar multiplication satisfy the axioms of a vector
space is a triviality; let us show that we do indeed get a norm:

‖(x+M) + (y +M)‖ = ‖x+ y +M‖ = infv∈M ‖x+ y − v‖
= infv1,v2∈M ‖x+ y − v1 − v2‖
6 infv1∈M ‖x− v1‖+ infv2∈M ‖y − v2‖
= ‖x+M‖ + ‖y +M‖

‖λ(x+M)‖ = ‖λx+M‖
= infv∈M ‖λx− v‖
= infu∈M ‖λx− λu‖
= infu∈M |λ|‖x− u‖
= |λ|‖x+M‖
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‖x+M‖ = inf
v∈M

‖x− v‖ > 0.

‖x+M‖ = 0 ⇔ inf
v∈M

‖x− v‖ = 0 ⇔ x ∈ M̄ =M ⇔ x+M = 0 +M.

Proposition 1.6 If X is complete, and M is a closed linear subspace,
then X/M is also complete.

Proof: let xn +M be an absolutely convergent series i.e.
∑

n ‖xn +M‖
converges. Now ∀n > 0, ∃vn ∈ M, ‖xn − vn‖ 6 ‖xn +M‖ + 1/2n, so the left
hand side converges by comparison with the right. So

∑

n(xn−vn) = x since
X is complete, and thus

‖
N
∑

n=1

(xn +M)− (x+M)‖ = ‖
N
∑

n=1

xn − x+M‖ 6 ‖
N
∑

n=1

(xn − vn)− x‖ → 0

1.1.3 Exercises

1. Show that the norms defined for RN and CN are indeed norms.

2. Show that the norms defined for ℓ1 and ℓ∞ are indeed norms.

3. Show that the norm defined for L1 is indeed a norm, except that it
may happen that

∫

A
|f(x)| dx = 0 without f = 0; however from the

theory of Lebesgue integration, in this case we get f = 0a.e., so that
the failure of this axiom is not drastic. In fact we can identify those
functions that are equal almost everywhere into equivalence classes and
work with these, but the notation would be too pedantic to be useful.

4. Suppose that ‖.‖1 and ‖.‖2 are two norms on a vector space X , such
that there are positive constants c, d,

‖x‖1 6 c‖x‖2, ‖x‖2 6 d‖x‖1.

Show that every ball of norm 1 has a smaller ball of norm 2 with the
same centre, and vice-versa. Deduce that the two norms have the same
open sets. Show that the converse is also true.

5. Show that in RN , the three norms ‖.‖1, ‖.‖2 and ‖.‖∞ defined previously
are all equivalent. What do the unit balls in each norm look like?

6. Show that if λn → λ and xn → x then λnxn → λx. In Corollary 1.4,
strictly speaking, we can only immediately deduce that limn→∞(xn +
y) = x+ y; give a proper proof of the corollary.
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7. Show that if a series
∑

n xn converges, then xn → 0. (Hint: convergent
sequences are Cauchy)

8. * LetX be a normed vector space for which every absolutely convergent
series converges. Show that X is complete as follows: let xn be a
Cauchy sequence in X , and let yn := xn+1 − xn; show that there is a
subsequence ynr

such that ‖ynr
‖ 6 1/2r and so

∑

r ‖ynr
‖ 6 1. Deduce

that
∑N

r=0 ynr
converges, and hence xn.
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2 Continuous Linear Operators

Definition An operator is a linear continuous transformation T : X → Y
between normed vector spaces,

T (x+ y) = Tx+ Ty, T (λx) = λTx.

In particular, a functional is a continuous linear map φ : X → C.
The set of operators is denoted by B(X, Y ). The set of functionals is

called the dual space.

Examples of functionals on sequences are
∑

n αnan, on functions
∫

k(x)f(x) dx.
In general linear maps are not continuous. For example, let X be the

vector space of finite real sequences with the ℓ1 norm. Consider the func-
tional φ(x) =

∑

n nan (check linearity!), and the sequence of sequences
x1 = (1, 0, . . .),x2 = (0, 1

2
, 0, . . .),x3 = (0, 0, 1/3, . . .), . . .. Then ‖xr‖ℓ1 =

∑

n |an| = 1/n→ 0 as n→ ∞, so that xn → 0, yet φ(xn) = n · 1
n
= 1 6→ 0.

Another important example is differentiation: although the map is linear
(say on the vector space of polynomials) it is not continuous eg D cos(nx) =
−n sin(nx) so ‖D cos(nx)‖C = n cannot be bounded by a multiple of ‖ cos(nx)‖C =
1.

A simple test for continuity of a linear transformation is the following
“bounded” property,

Proposition 2.1 A linear transformation is continuous if, and only
if,

∃c > 0, ∀x ∈ X, ‖Tx‖Y 6 c‖x‖X

Proof: If T is linear and continuous, then

∃δ > 0, ‖y‖ < δ ⇒ ‖Ty‖ < 1

In particular, putting y = 1
2
δx/‖x‖, we get ‖y‖ = 1

2
δ < δ, so that ‖Tx‖ =

|2‖x‖/δ|‖Ty‖ < 2
δ
‖x‖.

Conversely, suppose T is bounded, then

‖Tx− Ty‖ = ‖T (x− y)‖ 6 c‖x− y‖.

So for any ǫ > 0, let δ = ǫ/c and

‖x− y‖ < δ ⇒ ‖Tx− Ty‖ < ǫ

8



Proposition 2.2 The kernel of an operator is a closed linear subspace.

Proof: If Tx = 0 and Ty = 0 then T (x + y) = Tx + Ty = 0 and
T (λx) = λTx = 0, so that the kernel is a linear subspace. Let x be a limit
point of the kernel i.e. there is a sequence xn → x with Txn = 0. Then
Tx = T (limn→∞ xn) = limn→∞ Txn = 0, and x is in the kernel.

�

Definition An isomorphism between normed vector spaces is a map
T : X → Y such that both T and T−1 are linear and continuous (ie T is a
linear homeomorphism).

An isometry between normed vector spaces is a bijective linear map
T : X → Y such that ‖Tx‖ = ‖x‖

It follows, of course, that isometries are isomorphisms (since continuity
of T follows from the bounded property, and ‖T−1x‖ = ‖TT−1x‖ = ‖x‖ as
well).

Theorem 2.3 Every N-dimensional normed vector space is isomor-
phic to CN , and so is complete.

Proof: Let T : CN → X be the standard map T

(

x1
...xN

)

:= x1e1+. . . xNeN

where e1, . . . , eN form a basis (wolog of unit vectors) for X . That T is linear
and bijective is trivial to show.

T is continuous since

‖Tx
¯
‖X = ‖x1e1 + . . . xNeN‖

6 |x1|+ . . .+ |xN |
=
√

(
∑

i |xi|)2

=
√

∑

ij |xi||xj|

6

√

1
2

∑

ij |xi|2 + |xj|2
=

√
N
√
∑

i |xi|2
=

√
N‖x

¯
‖2

Moreover T−1 is continuous, since let f(x
¯
) := ‖Tx

¯
‖, which is a composi-

tion of two continuous functions. Now the ”sphere” S = { u
¯
: ‖u

¯
‖2 = 1 } is a

compact set (since it is closed and bounded in CN), so fS is also compact.
Suppose 0 ∈ fS; this would mean that 0 = ‖Tu

¯
‖ for some u

¯
with ‖u

¯
‖2 = 1.

But we get that Tu
¯
= 0, and T is invertible, so u

¯
= 0

¯
, a contradiction. Hence

0 6∈ fS, so 0 is in the exterior of fS (since fS is closed), so it is contained
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in a ball −c < 0 < c completely outside fS. This means that c 6 ‖Tu
¯
‖,

for any unit vector u
¯
. Hence in general, c‖x

¯
‖2 6 ‖Tx

¯
‖ for any vector x

¯
. By

exercise, we get that T−1 is also continuous.
�

Theorem 2.4 The Open Mapping Theorem
Every onto continuous linear map T : X → Y between Banach

spaces, maps open sets to open sets.

Proof: Let U be an open subset of X , and let Tx ∈ TU , so that x ∈
Bǫ(x) ⊆ U . We will show that TB1(0) contains a ball Br(0), from which
follows that

Tx ∈ Brǫ(Tx) = Tx+ ǫBr(0) ⊆ Tx+ ǫTB1(0) = TBǫ(x) ⊆ TU

proving that TU is an open set.
Let F = TB1(0), and suppose that it does not contain any open balls

(i.e. it has no interior points). It follows that λF also contains no open balls
for any λ > 0. Since F is bounded by ‖T‖ it is possible to find a ball B1 of
radius less than 1 such that B1 ∩ F = ∅. In general, suppose we have a ball
Bn of radius at most 1/n such that Bn ∩ nF = ∅. Then Bn 6⊆ (n + 1)F ,
and so Bn − (n+ 1)F is a non-empty open set, which must contain an open
ball. By reducing its radius if necessary, we get a ball Bn+1 of radius at most
1/(n + 1) and such that Bn+1 ∩ (n + 1)F = ∅. In this way, we get a nested
sequence of balls Bn+1 ⊆ Bn with diminishing radii. Their centers yn form
a Cauchy sequence since ‖yn − ym‖ 6 max(1/n, 1/m), and so converge to
some y ∈ Y . Now, for any m > n, ym ∈ Bn, so y ∈ Bn for any n.

However y = Tx for some x ∈ X since T is onto. Choose n > ‖x‖,
to get x ∈ nB1(0), and so y = Tx ∈ nTB1(0) ⊆ nF , which contradicts
y ∈ Bn ⊆ (nF )′. Thus F must contain an open ball B8r(a) = a+B8r(0); by
translating by a ∈ F , and scaling, we get Br(0) ⊆ 1

4
F = TB1/4(0).

Claim: Br(0) ⊆ TB1(0). Let y ∈ Br(0) ⊆ TB1/4(0), so that there must
be an x1 ∈ B1/4(0) such that ‖y − Tx1‖ < r/2; that is, ‖x1‖ < 1/4 and

y−Tx1 ∈ Br/2(0) ⊆ TB1/8(0). But this implies that there is an x2 ∈ B1/8(0)
such that ‖y − Tx1 − Tx2‖ < r/4. We therefore get a sequence xn such that

‖xn‖ <
1

2n+1
, ‖y − T (x1 + . . .+ xn)‖ <

r

2n

We conclude that x :=
∑

n xn converges, with ‖x‖ 6
∑∞

n=1
1

2n+1 = 1
2
, and

that y = Tx. Thus x ∈ B1(0) and y = Tx ∈ TB1(0), proving the claim.
�
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Corollary If T : X → Y is in addition also 1-1, then T−1 is
continuous and X is isomorphic to Y .

Theorem 2.5 If Y is complete, then B(X, Y ) is a Banach space,
with the norm defined by

‖T‖ = sup
x 6=0

‖Tx‖Y
‖x‖X

.

In particular X∗ is a Banach space, with norm defined by

‖φ‖ = sup
x 6=0

|φ(x)|
‖x‖ .

Proof: That B(X, Y ) is a vector space is a triviality. The norm is well-
defined in the sense that if T is an operator, then ‖Tx‖ 6 c‖x‖ and ‖T‖ 6 c.
Thus,

‖Tx‖ 6 ‖T‖‖x‖.

‖S + T‖ = supx 6=0
‖Sx+Tx‖

‖x‖

6 supx 6=0
‖Sx‖
‖x‖

+ supx 6=0
‖Tx‖
‖x‖

= ‖S‖+ ‖T‖

‖λT‖ = supx 6=0
‖λTx‖
‖x‖

= |λ|‖T‖

‖T‖ = 0 ⇔ ‖Tx‖ = 0, ∀x = 0,
⇔ T = 0

The resulting normed vector space is complete. Let Tn be a Cauchy
sequence in B(X, Y ), that is, ‖Tn − Tm‖ → 0 as n,m→ ∞. So

‖Tn(x)− Tm(x)‖ 6 ‖Tn − Tm‖‖x‖ → 0

This means that Tn(x) is a Cauchy sequence in Y , which is complete, so that
Tn(x) → T (x) as n→ ∞ for each x ∈ X . We now show that T is linear and
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continuous:
T (x+ y) = limn→∞ Tn(x+ y)

= limn→∞(Tn(x) + Tn(y))
= T (x) + T (y)

T (λx) = limn→∞ Tn(λx)
= limn→∞ λTn(x)
= λT (x)

‖T (x)‖ 6 ‖Tn(x)‖+ ‖T (x)− Tn(x)‖
6 ‖Tn‖‖x‖+ ǫ‖x‖
6 c‖x‖

since Tn is a Cauchy sequence and so is bounded.
Finally Tn → T since ‖(Tn − T )x‖ 6 ‖Tn − Tm‖‖x‖ + ‖Tmx− Tx‖ 6

ǫ‖x‖ + ǫ‖x‖, so that ‖Tn − T‖ 6 2ǫ and ‖Tn − T‖ → 0 as n→ ∞.
�

Proposition 2.6 If S and T are compatible operators, then so is ST ,
with ‖ST‖ 6 ‖S‖‖T‖.

Proof: That ST is linear is obvious, ST (x+y) = S(Tx+Ty) = STx+STy
and ST (λx) = S(λTx) = λSTx. Also,

‖STx‖ 6 ‖S‖‖Tx‖ 6 ‖S‖‖T‖‖x‖

and taking the supremum on both sides gives ‖ST‖ 6 ‖S‖‖T‖.
Corollary B(X) := B(X,X) is closed under multiplication (called

a Banach algebra).

2.0.4 Examples

The right-shift operatorR : ℓ1 → ℓ1 is defined by R(x0, x1, . . .) = (0, x0, x1, . . .).
It is obviously linear, and also bounded since

‖Rx‖ = ‖(0, x0, x1, . . .)‖ℓ1 =
∞
∑

n=0

|xn| = ‖x‖ℓ1

The multiplication operator T : ℓ1 → ℓ1 defined by T (x0, x1, . . .) =
(α0x0, α1x1, . . .), where (αn) is a bounded sequence, is also linear, and bounded
since

‖Tx‖ =
∞
∑

n=0

|αnxn| 6 M
∞
∑

n=0

|xn| =M‖x‖
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The Fourier transform on a function f ∈ L1[0, 1] is defined to be the
sequence of numbers (f̂) where

f̂(n) = Ff(n) =
∫ 1

0

e−2πinxf(x) dx

Similarly the Fourier transform on a function f ∈ L1(R) is defined to be the
function

f̂(ξ) = Ff(ξ) =
∫

R

e−2πiξxf(x) dx

It is easy to show that the Fourier transform is linear; moreover it is
continuous with F : L1[0, 1] → ℓ∞ and F : L1(R) → L∞(R), since

‖f̂‖ = sup
n

|
∫ 1

0

e−2πinxf(x) dx| 6
∫ 1

0

|f(x)| dx = ‖f‖L1[0,1]

and similarly for the second case. In fact, one can show further that F :
L1[0, 1] → c0 and F : L1(R) → C0(R).

More generally, any transformation Tf(ξ) =
∫

k(x, ξ)f(x)dxwhere k(x, ξ)
is a bounded function, is an operator.

2.1 The Dual Space

Functionals are simply row vectors when X = RN ; thus X∗ is isomorphic to
RN and is generated by a dual basis.

Examples: in ℓ1, we have already seen that
∑

n αnxn is a functional when
αn are bounded. Also,

∫

f(x)dx is a functional on L1. Another example, for
C, is given by δ0(f) = f(0), which has norm ‖δ0‖ = 1.

There is a certain duality between X and its dual space X∗ that we will
explore below. The connection between the two is the following: Definition

The annihilator of a set of vectors A is the set of functionals A◦ = {φ ∈
X∗ : φ(x) = 0, ∀x ∈ A }.

2.1.1 The Hahn-Banach Theorem

Theorem 2.7 Let Y be a subspace of a normed vector space, X.
Then every functional φ ∈ Y ∗ can be extended to φ̃ ∈ X∗, that is
φ̃(y) = φ(y), ∀y ∈ Y and ‖φ̃‖X∗ = ‖φ‖Y ∗.

Proof: Let us try to extend φ from a functional on Y to a functional on
Y + 〈v〉 for any vector v. The only possibility is to let φ̃(y+ λv) = φ(y)+ λc
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(where c would be equal to φ̃(v)). Whatever c, this gives a linear map (easy
to check). For certain values of c, this is also continuous:

|φ̃(y + λv)| = |φ(y) + λc|
= |λ||φ(y/λ) + c|

We thus want |φ(y/λ)+c| 6 ‖φ‖‖y/λ+ c‖, which is equivalent to finding
a c such that

−φ(y)− ‖φ‖‖y + v‖ 6 c 6 −φ(y) + ‖y + v‖, ∀y ∈ Y.

Is this possible? Yes because |φ(y1−y2)| 6 ‖φ‖‖y1 − y2‖ 6 ‖φ‖(‖y1 + v‖+
‖y2 + v‖), so we get (when φ is real-valued)

φ(y1)− φ(y2) 6 ‖φ‖‖y1 + v‖+ ‖φ‖‖y2 + v‖

i.e.
−φ(y2)− ‖φ‖‖y2 + v‖ 6 −φ(y1) + ‖φ‖‖y1 + v‖, ∀y1, y2

Hence there must be a constant c separating the two sides of the inequality.
Thus ‖φ̃‖ 6 ‖φ‖; in fact, equality holds because for y ∈ Y , the supremum of
|φ̃(y)|/‖y‖ = |φ(y)|/‖y‖ is ‖φ‖. A different proof (see reference book) shows
that this is also the case when φ is complex-valued.

If X can be generated by a countable number of vectors vn (X is called
separable) then we can keep on extending until φ̃ is a functional on X . But
even if X needs an uncountable number of generating vectors, then can apply
”Zorn’s lemma” to conclude that the extension goes through to X (see book).

�

Corollary
x = 0 ⇔ ∀φ ∈ X∗, φ(x) = 0

Proof: Given x 6= 0, form the one-dimensional subspace Y = [[x]] = { λx :
λ ∈ C }. Let ψ(αx) = α‖x‖, then ψ ∈ Y ∗ since

|ψ(αx)| = |α|‖x‖ = ‖αx‖

in fact ‖φ‖ = 1. So φ can be extended to a functional on all of X . Hence
there is a φ = ψ̃ ∈ X∗ such that φ(x) = ‖x‖ 6= 0.

The converse statement is trivial to prove.
�
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Corollary

‖x‖ = sup
φ 6=0

|φ(x)|
‖φ‖

Proof: Since |φ(x)| 6 ‖φ‖‖x‖ we get that |φ(x)|
‖φ‖

6 ‖x‖. We are left to show
that the left hand expression approximates the right as closely as necessary.
By the theorem, there is a φ ∈ X∗ with φ(x) = ‖x‖ and ‖φ‖ = 1, so for this
functional, |φ(x)|/‖φ‖ = ‖x‖.

�

2.1.2 X∗∗

Proposition 2.8 Every normed vector space X is embedded in its
double dual X∗∗. That is, there is a 1-1 linear isometry J : X → X∗∗.

Proof: Given x ∈ X , let x∗ : X∗ → C be the map x∗(φ) = φ(x). Then
x∗ ∈ X∗∗, ie.it is linear and bounded with ‖x∗‖ = ‖x‖. Hence we can form
the map J : X → X∗∗ by Jx = x∗.

J is linear since for any φ ∈ X∗,

(x+ y)∗(φ) = φ(x+ y) = φ(x) + φ(y) = x∗(φ) + y∗(φ).

(λx)∗(φ) = φ(λx) = λφ(x) = λx∗(φ).

J is isometric (preserves the norm) since

‖x∗∗(φ)‖ = |φ(x)| 6 ‖φ‖‖x‖,
and there is a functional ψ such that ψ(x) = ‖x‖ and ‖ψ‖ = 1, so that

‖x∗∗‖ = sup
φ 6=0

x∗∗(φ)

‖φ‖ = ‖x‖.

That J is 1-1 follows from this isometry, since x∗∗ = y∗∗ ⇔ (x − y)∗∗ =
0 ⇔ ‖(x− y)∗∗‖ = 0 ⇔ ‖x− y‖ = 0 ⇔ x = y.

�

2.1.3 Completion of X

Given any normed vector space X , the double dual X∗∗ is a Banach space.
Hence the closure ¯JX is a closed linear subspace of X∗∗, and so is itself
complete i.e. a Banach space. It is called the completion of X , usually
denoted X̂ .

15



2.1.4 Weak convergence

We already know what Tn → T means, namely, ‖Tn − T‖ → 0. This of
course implies pointwise convergence ie ∀x, Tnx → Tx since for each x,
‖Tnx− Tx‖ = ‖(Tn − T )x‖ 6 ‖Tn − T‖‖x‖ → 0; but the converse is false ie
it is possible to have pointwise convergence without Tn → T . For this reason
Tn → T is sometimes called convergence in norm.

Example: Let Tn : ℓ1 → ℓ1 be defined by Tn(xi) = (0, . . . , 0, xn, xn+1, . . .)
(well-defined, linear and continuous); we have pointwise convergence, Tnx

¯
→

0
¯
since for each x

¯
= (xi), ‖Tnx

¯
‖ℓ1 = ‖(0, . . . , 0, xn, xn+1, . . .)‖ℓ1 = |xn| +

|xn+1| + . . . → 0 since
∑n

i=1 |xi| converges. However Tn 6→ 0 since we can
always find sequences x

¯
= (0, . . . , 0, 1, 0, . . .) for which ‖Tnx

¯
‖ = 1 = ‖x

¯
‖ so

that ‖Tn‖ = 1 6→ 0.
There is yet another type of convergence, called weak convergence,

defined as follows Tn ⇀ T ⇔ ∀x ∈ X, ∀φ ∈ X∗, φTnx → 0 as n → ∞.
Pointwise convergence implies weak convergence because Tnx→ Tx and φ is
continuous. However the converse is again false (see exercise in Chapter 3).

Proposition 2.9 In finite dimensions, all these convergence types are
equivalent.

Proof: Let An ⇀ A where An, A are matrices. This means that y
¯

⊤(An −
A)x

¯
→ 0 as n → ∞. In particular if we let y

¯
= e

¯i
, x
¯
= e

¯j
be basis vectors

then An,ij = e
¯i
Ane

¯j
→ e

¯i
Ae
¯j

= Aij , so that each component of the matrices
An converges to the corresponding component in A. This then implies that

‖An − A‖ 6

√

∑

ij |An,ij −Aij |2 → 0.

�

2.2 The Adjoint T ⊤

Definition The adjoint (or transpose) of a linear transformation T : X →
Y is T⊤ : Y ∗ → X∗ defined by T⊤φ(x) = φ(Tx) for any φ ∈ Y ∗.

It is well defined because

‖T⊤φ(x)‖ = ‖φ(Tx)‖ 6 ‖φ‖‖Tx‖ 6 ‖φ‖‖T‖‖x‖

so that T⊤φ ∈ X∗. It is also linear since T⊤(φ + ψ)(x) = (φ + ψ)(Tx) =
φ(Tx) + ψ(Tx) = T⊤φ(x) + T⊤ψ(x) and T⊤(λφ)(x) = λφ(Tx) = λT⊤φ(x).

If T is continuous and linear, then so is its adjoint, since by the above
inequalities, ‖T⊤φ‖ 6 ‖T‖‖φ‖; in fact ‖T⊤‖ 6 ‖T‖.
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Proposition 2.10

(S + T )⊤ = S⊤ + T⊤, (λT )⊤ = λT⊤, ‖T⊤‖ = ‖T‖.

Proof: (S+T )⊤φ(x) = φ(Sx+Tx) = φ(Sx)+φ(Tx) = S⊤φ(x)+T⊤φ(x);
since this is true for all x and all φ, the result follows.

Similarly, (λT )⊤φ(x) = φ(λTx) = λφ(Tx) = λT⊤φ(x).

‖T‖ = sup
x 6=0

‖Tx‖
‖x‖ = sup

x 6=0
sup
φ 6=0

|φ(Tx)|
‖x‖‖φ‖

= sup
φ 6=0

sup
x 6=0

|φ(Tx)|
‖x‖‖φ‖ = sup

φ 6=0
sup
x 6=0

|T⊤φ(x)|
‖φ‖‖x‖ = sup

φ 6=0

‖T⊤φ‖
‖φ‖ = ‖T⊤‖

�

Proposition 2.11

ker T⊤ = (imT )◦, imT⊤ ⊆ (ker T )◦.

Proof: T⊤φ = 0 ⇔ ∀x, T⊤φ(x) = 0 ⇔ ∀x, φ(Tx) = 0 ⇔ φ imT = 0 ⇔
φ ∈ (imT )◦.

Let ψ ∈ imT⊤, ie ψ = T⊤φ. Then for any x ∈ ker T , we get that
ψ(x) = T⊤φ(x) = φ(Tx) = 0.

�

Proposition 2.12 T has a continuous inverse ⇔ T and T⊤ are onto.

Proof: T⊤ is onto ⇔ T is 1-1, which implies that T is invertible and
continuous by the open mapping theorem.

�

2.2.1 Exercises

1. Let L : ℓ∞ → ℓ∞ be defined by L(xn) = (xn+1). Show that L is linear
and continuous.

2. For T invertible and linear, show that T−1 is continuous ⇔ c‖x‖X 6

‖Tx‖Y , for some c > 0.
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3. Show that if T and T−1 are operators, then ‖T−1‖ > ‖T‖−1.

4. Let T : ℓ1 → ℓ1 be defined by T (xn) = (xn/n). Show that T is
linear and continuous, and that T−1 is linear but not continuous. Show
however that there are no sequences x such that Tx = 0.

5. Show that (A+B)◦ = A◦ ∩B◦, and A◦ +B◦ ⊆ (A ∩ B)◦.

6. The Hahn-Banach theorem is trivial when Y is dense in X ie Ȳ = X ,
as follows: for x = limn→∞ yn, define φ̃(x) := limn→∞ φ(yn). Show that
φ̃ is well-defined, linear and continuous with ‖φ̃‖ = ‖φ‖.

7. Show that integration, f 7→
∫

f , is a functional in L1 by showing that
it is bounded.

8. Define the functional φ on the vector space of step functions in L1, by
φ(f) =

∫

f . Use the Hahn-Banach theorem to show that this extends
to a linear and continuous functional on L1.

9. * Show that, for X and Y finite dimensional, then ‖T‖ =
√

∑

ij |Tij|2.

10. A set is called weakly bounded when ∀φ ∈ X∗, φA is bounded. Show
that a set is weakly bounded if, and only if, it is bounded. (Hint: use
the fact that if x∗∗(φ) 6 cφ, ∀φ, then ‖x∗∗‖ 6 c - called the uniform
bounded principle)

11. In the embedding of X in X∗∗, show that T⊤⊤ : X∗∗ → Y ∗∗ is an
extension of T : X → Y in the sense that T⊤⊤x∗∗ = (Tx)∗∗.

12. * The corollary to the Hahn-Banach theorem, which states that there is
a functional φ ∈ X∗ such that φ(x) 6= 0 can be strengthened as follows.
LetM be any closed linear subspace, and let x 6∈M . Let Y =M⊕ [[x]],
and define φ(y) = 0 for y ∈M and φ(αx) = αd(x,M). Show that φ is
a functional on Y , and hence that it can be extended to X , while still
having the properties that φ(x) 6= 0 and φ(y) = 0 for y ∈M .
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3 Sequence Spaces

3.1 The space ℓ1

Proposition 3.1 ℓ1 is complete

Proof: Let x1 + x2 + . . . be an absolutely summable series in ℓ1, ie
∑

n ‖xn‖ℓ1 = s. Thus |xni| 6 ‖xn‖ℓ1 , and so for each i,
∑

n |xni| converges
in R by comparison. Let yi =

∑

n xin.
y =

∑

n xn since

‖y −
∑N

n xn‖ℓ1 =
∑∞

i=1 |yi −
∑N

n xni|
=
∑∞

i=1 |
∑∞

n=N+1 xni|

But
K
∑

i=1

|
M
∑

n=N+1

xni| 6
K
∑

i=1

M
∑

n=N+1

|xni| 6
∞
∑

n=N+1

‖xn‖ℓ1 → 0

as N → ∞.
y ∈ ℓ1 since

K
∑

i=1

|
N
∑

n=1

xni| 6
K
∑

i=1

N
∑

n=1

|xni| 6
N
∑

n=1

‖xn‖ℓ1 6 s

�

Proposition 3.2 Every functional on ℓ1 is of the type (xn) 7→
∑

n ynxn
where (yn) ∈ ℓ∞,

ℓ1
∗ ≈ ℓ∞

Proof: Let y ∈ ℓ∞; then the map ŷ : ℓ1 → C defined by

ŷ(x) =
∑

n

ynxn

is well-defined since

|ŷ(x)| 6
∑

n

‖y‖|xn| 6 ‖y‖ℓ∞‖x‖ℓ1

; moreover it is a functional in ℓ1
∗
since

ŷ(a+ b) =
∑

n

yn(an + bn) =
∑

n

ynan +
∑

n

ynbn = ŷ(a) + ŷ(b),
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ŷ(λx) =
∑

n

yn(λxn) = λ
∑

n

ynxn = λŷ(x),

|ŷ(x)| 6 ‖y‖ℓ∞‖x‖ℓ1
Note it follows that ‖ŷ‖ 6 ‖y‖ℓ∞ .

Every functional is of this type: let φ ∈ ℓ1
∗
and let yn = φ(en) where

en = (δni) = (0, . . . , 0, 1, 0, . . .). Since x =
∑

n xnen, then

φ(x) = φ(
∑

n

xnen) =
∑

n

xnyn

by linearity and continuity of φ; also |yn| = |φ(en)| 6 ‖φ‖ so that y ∈ ℓ∞,
with ‖y‖ℓ∞ 6 ‖φ‖.

Now let J : ℓ∞ → ℓ1∗ be the map Jy = ŷ. The previous proofs have
shown that this map is in fact onto ℓ1∗.

J is linear, since

∀x ∈ ℓ1, J(u+v)(x) =
∑

n

(un+vn)xn =
∑

n

unxn+
∑

n

vnxn = Ju(x)+Jv(x),

so J(u+ v) = Ju+ Jv. Similarly

J(λy)(x) =
∑

n

(λyn)xn = λJy(x),

and J(λy) = λJy.
J is isometric since by the previous proofs we have ‖ŷ‖ 6 ‖y‖ 6 ‖ŷ‖. It

follows that J is 1-1 as well.

3.2 The space ℓ∞

Proposition 3.3 ℓ∞ is complete.

Proof: Let (xn) be a Cauchy sequence in ℓ∞, ie ‖xn − xm‖ℓ∞ → 0 as
n,m→ ∞.

For each i, we get that |xni − xmi| 6 ‖xn − xm‖ → 0, so (xni − xmi) is a
Cauchy sequence in C, and so converges. Let yi = limi→∞ xni.

y ∈ ℓ∞ since
|xni| 6 ‖xn‖ < C

since Cauchy sequences are always bounded.
xn → y in ℓ∞ since, by choosing m large enough depending on i,

|yi − xni| 6 |yi − xmi|+ |xmi − xni| 6
1

n
+ ‖xm − xn‖ → 0,

as n→ ∞, independently of i.
�
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Proposition 3.4 The space of convergent sequences,

c = { (xn) : lim
n→∞

xn = x, ∃x }

is a complete subspace.

Proof: c ⊂ ℓ∞ since xn → x implies that (xn) is bounded. Moreover it is
easily shown to be linear.

c is closed in ℓ∞ since let y: let y be a limit point of c ie we can find xn ∈ c
such that xn → y. Now consider the limits of each of these sequences xn =
limi→∞ xn,i. These form a Cauchy sequence since |xn − xm| = limi→∞ |xn,i −
xm,i| 6 ‖xn − xm‖ℓ∞ → 0. So xn → y for some y ∈ C.

Finally, we can show that limi→∞ yi = y since

|yi − y| 6 |yi − xn,i|+ |xn,i − xn|+ |xn − y|
6 3ǫ

for large enough n and i. Thus y ∈ c, and c is a closed set in ℓ∞.
�

Corollary The space of sequences with limit 0,

c0 = { (xn) : lim
n→∞

xn = 0 }

is a complete subspace.

Proof: It is obvious that c0 ⊂ c.
c0 is closed in c since if xn → y with xn ∈ c0, then by the above proof,

limi→∞ yi = 0.
Hence c0 is closed and so complete.

�

Note that ℓ∞∗ is a complicated space not isomorphic to ℓ1.

Proposition 3.5
c∗0 ≈ ℓ1

Proof: (i) Every functional on c0 is of the type (xn) 7→ ∑

n ynxn with
(yn) ∈ ℓ1. First, given (yn) ∈ ℓ1, this is well-defined because |sumnynxn| 6
‖x‖ℓ∞‖y‖ℓ1; secondly, this map is a functional because it is linear (as shown in
the previous proposition) and continuous (by the above inequality). Moreover
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let φ be any functional on c0, and let yn = φ(en); then φ(x) = φ(
∑

n xnen) =
∑

n ynxn by linearity and continuity of φ, and

N
∑

n=1

|yn| =
N
∑

n=1

±φ(en) = φ(

N
∑

n=1

±en) 6 ‖φ‖‖(±1)‖ℓ∞ = ‖φ‖

hence y ∈ ℓ1.
(ii)Let J : ℓ1 → c∗0 be defined by Jy(x) =

∑

n ynxn. Then J is linear
as in the previous proof, and it is isometric since ‖Jy‖ 6 ‖y‖ℓ1 has already
been shown, and |Jy(±ei)| =

∑

i |yi| (where ±yi = |yi|, so

‖Jy‖ >
∑

i

|yi| = ‖y‖

�

3.3 The space ℓ2

Proposition 3.6 (i)

|
∑

n

xnyn| 6
√

∑

n

|xn|2
√

∑

n

|yn|2

(ii) The function
√
∑

n |xn|2 is a norm, since
√

∑

n

|xn + yn|2 6
√

∑

n

|xn|2 +
√

∑

n

|yn|2

.

Proof: (i) It is easy to show that |ab| 6 (a2 + b2)/2 for any real numbers
a, b. Hence,

(
∑

n

anbn)
2 =

∑

i,j

aibiajbj 6
∑

i,j

(a2i b
2
j + a2jb

2
i )/2 =

∑

i,j

a2i b
2
j =

∑

i

a2i
∑

j

b2j

It follows, that for complex numbers xn, yn,

|
∑

n

xnyn| 6
∑

n

|xn||yn| 6
√

∑

n

|xn|2
√

∑

n

|yn|2

(ii)
∑

n

|xn+yn|2 =
∑

n

|xn|2+|yn|2+(x̄nyn+xnȳn) 6 ‖x‖2+‖y‖2+2‖x‖‖y‖ = (‖x‖+‖y‖)2

�
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Proposition 3.7 ℓ2 is complete.

Proof: Let (xn) be an absolutely summable series, ie
∑

n ‖x‖ℓ2 converges.
Fix i, then

|
∑

n

xni| 6
∑

n

|xni| 6
∑

n

‖xn‖ℓ2

so can define yi =
∑

n xni.
Now consider

∑M
i=1 |

∑N
n=A xni|2 6

∑M
i=1(
∑N

n=A |xni|)2
=
∑M

i=1

∑N
n=A

∑N
m=A |xni||xmi|

6
∑N

n=A

∑N
m=A

√

∑M
i=1 |xni|2

√

∑M
i=1 |xmi|2

= (
∑N

n=A

√

∑M
i=1 |xni|2)2

So as M,N → ∞ we get

∞
∑

i=1

|
∞
∑

n=A

xni|2 6 (

∞
∑

n=A

‖xn‖)2

Taking A = 1 shows that y ∈ ℓ2; taking A = N + 1 shows that
∑

n xn → y

in ℓ2.
�

Proposition 3.8
ℓ2

∗ ∼ ℓ2

Proof: Exercise.

3.4 Function Spaces

In a similar fashion, but using theorems from integration, it can be shown
that L1, L2 and L∞ are Banach spaces, and that L1∗ ≈ L∞ and L2∗ ≈ L2.
The proofs are very similar, and use the analogous inequalities

‖fg‖L1 6 ‖f‖L1‖g‖L∞ ,

‖fg‖L1 6 ‖f‖L2‖g‖L2 ,

called the Hölder’s inequality, as well as the Monotone Convergence Theorem.
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3.5 Exercises

1. Show that x =
∑

n xnen, where en = (δni), holds in the spaces ℓ1, ℓ2,
and ℓ∞.

2. Show that ℓ2
∗ ∼ ℓ2 by repeating the proofs for ℓ1 and c0.

3. Prove that ‖fg‖L1 6 ‖f‖L1‖g‖L∞ .

4. Show that the adjoint of the Fourier transform is a map from ℓ1 to
L∞[0, 1] such that F⊤(an) =

∑

n ane
−2πinx.

5. Let R be the right-shift operator on ℓ1. What is Rnx
¯
? Show that

Rnx
¯
6→ 0

¯
, but that Rn ⇀ 0. (Recall that φ(x

¯
) =

∑

i yixi for some
sequence (yi) ∈ ℓ∞)
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4 Banach Algebras

Definition A Banach algebra is a Banach space X , over C, with an asso-
ciative multiplication of vectors with unity such that

(S + T )U = SU + TU, S(T + U) = ST + SU,

(λS)T = λ(ST ) = S(λT ),

‖ST‖ 6 ‖S‖‖T‖, ‖1‖ = 1.

Proposition 4.1 Multiplication is continuous.

Proof: follows immediately from

TnSn − TS = (Tn − T )Sn + T (Sn − S),

so that as Tn → T and Sn → S, then TnSn → TS.
�

4.0.1 Examples

CN with pointwise multiplication.
C(K) the space of continuous functions on a compact set; this contains

the closed sub-algebra of holomorphic functions when K ⊆ C.
B(X) for any Banach space X .

Definition The morphisms of Banach algebras are those continuous
maps which preserve the vector structure (linear) and the multiplication,

Φ(ST ) = Φ(S)Φ(T )

In particular, the complex morphisms φ : X → C.

Theorem 4.2 Every Banach algebra can be embedded as a closed
subalgebra of B(X).

Proof: Let La(x) = ax be left-multiplication by a. Then La ∈ B(X) since
multiplication is distributive and continuous.

La(x+ y) = a(x+ y) = ax+ ay = La(x) + La(y),
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La(λx) = a(λx) = λLa(x),

‖La(x)‖ = ‖ax‖ 6 ‖a‖‖x‖,
so that ‖La‖ 6 ‖a‖. Now La+b = La + Lb, and Lab = LaLb, Lλa = λLa,
L1 = I are obvious.

La+b(x) = (a+ b)x = ax+ bx = La(x) + Lb(x),

Lλa(x) = (λa)x = λLa(x),

Lab(x) = (ab)x = a(bx) = LaLb(x),

L1(x) = 1x = I(x),

‖La‖ = ‖a‖
since a = a1 = La1, so ‖a‖ = ‖La1‖ 6 ‖La‖. So, the space of such operators
is a sub-algebra of B(X), and the mapping L : X → B(X) defined by
L : a 7→ La is an isometric morphism of Banach algebras.

Moreover it is closed, since let Lan → T in B(X); then Lanx = anx =
(Lan1)x and so as n → ∞, Tx = T1x by continuity, i.e. T = LT1. Thus the
sub-algebra is complete.

�

4.1 Differentiation and Integration

Definition A function f between Banach algebras is said to be differen-
tiable at T when there is a continuous linear map f ′(T ) such that for H in
a neighborhood of T ,

f(T +H) = f(T ) + f ′(T )(H) + o(H)

i.e. ‖o(H)‖/‖H‖ → 0 as H → 0.
A function is holomorphic when it is differentiable in the sense above

with H = z ∈ C, i.e.

f(T + z) = f(T ) + f ′(T )z + o(z)

Note - if f(T ) is not defined, but f(T +H) = A+B(H)+ o(H), then can
redefine f at T to make it differentiable (T is called a ‘removable’ singularity).

Example: any polynomial is differentiable;
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Integration is also well-defined on paths in a Banach algebra via
∫

γ

F (z)dz :=

∫

γ

F (z(t))żds.

We shall assume the following facts about integration 1. it is linear, with
∫

TF (z)dz = T
∫

F (z)dz, 2. ‖
∫

F (z)dz‖ 6
∫

‖F (z)‖ds.

Theorem 4.3 Cauchy’s Theorem
Let F be a function from C into a Banach algebra, which is

holomorphic in a bounded region U having a finite number of dif-
ferentiable curves as boundary. Then,

∮

F (z)dz = 0

Proof: At any holomorphic point, F (z + h) = F (z) + F ′(z)h+ o(h), and
for z + h in a sufficiently small disk Bδ(z), we have ‖o(h)‖ < ǫδ. Thus, for
any triangle inside this disk we get

∮

△
F (w)dw =

∮

(△−z)
F (z + h)dh

=
∮

F (z) + F ′(z)h + o(h)dh

so that ‖
∮

△
F (w)dw‖ 6 ǫδPerimeter(△) 6 6ǫδ2.

Now any triangle can be partitioned into a number of triangles each
smaller than δ. Since the triangle is totally bounded, a single δ can be found
that suffices for the whole triangle (using a Lebesgue net). Thus

∮

F (w)dw
over the whole triangle is the sum of integrals over the δ-triangles. The
number of these does not exceed (L/2δ)2 where L is the largest side of the
triangle, so that

‖
∮

△

F (w)dw‖ 6 6ǫδ2(L/2δ)2 = cǫ,

proving that the integral vanishes over triangles.
More generally, the curves can be approximated by many-sided polygons,

and the interior can be triangulated, proving the theorem.
�

Corollary Cauchy Residue Theorem
The integral over a closed path depends only on those areas

inside, where f is not holomorphic,
∮

F (z)dz =
∑

i

Residuei(F )
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Proof: enclose the non-holomorphic areas by curves, to form one holo-
morphic region.

Corollary If F is holomorphic in a path-connected region, then
the integral

∫ z

a
F (w)dw is well-defined, and is holomorphic.

4.2 Power Series

Any power series
∑∞

n=0 anz
n has a radius of convergence given by R =

lim infn |an|−1/n.

Lemma For any T , the sequence ‖T n‖1/n converges to a number denoted
by r(T ).

Proof: It is clear that 0 6 ‖T n‖1/n 6 ‖T‖. Let r(T ) be the infimum

value of ‖T n‖1/n. We can find an N such that r(T ) 6 ‖TN‖1/N < r(T ) + ǫ.
Although it is not true that the sequence of numbers is decreasing, notice

that ‖T qN‖1/qN 6 ‖TN‖1/N . More generally, for any n, let n = qN + r with
0 6 r < N (by the remainder theorem), then we get 0 6 r/n < N/n → 0 as
n→ ∞ so that

r(T ) 6 ‖T n‖1/n 6 ‖TN‖q/n‖T‖r/n

6 ‖TN‖
1

N
(1− r

n
)‖T‖r/n

6 (‖TN‖
1

N + ǫ)(1 + ǫ)
6 r(T ) + (‖T‖+ 3)ǫ

for n large enough.
�

Theorem 4.4 Let f(z) =
∑∞

n=0 anz
n be a power series with radius

of convergence R. Then if r(T ) < R, the series f(T ) :=
∑∞

n=0 anT
n

converges absolutely, and diverges for r(T ) > R.

Proof: We are given that r(T ) < R, so for n > N large enough,

‖anT n‖ =

(

‖T n‖1/n
|an|−1/n

)n

6

(

r(T ) + ǫ

R− ǫ

)n

= αn

where α < 1. Note that when R = ∞, replace the denominator with any
positive real number. The series

∑

n ‖anT n‖ converges by comparison with
geometric series on the right.
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Similarly, when r(T ) > R the series diverges since

‖anT n‖ =

(

‖T n‖1/n
|an|−1/n

)n

>

(

r(T )− ǫ

R + ǫ

)n

> 1

for an infinite number of n.
�

Note that power series are continuous in T .

Proposition 4.5 A power series is holomorphic within its radius of
convergence.

Proof:
∑

n an(T + z)n =
∑

n anT
n +

∑

n nanT
n−1z + o(z), and the radius

of convergence of the coefficients nan is lim infn |nan|−1/n = R since n1/n → 1
as n→ ∞.

�

Proposition 4.6 (i)
∑

n anT
n = 0 within a positive radius of conver-

gence ⇔ an = 0, ∀n.
(ii) There is only one power series such that f(Tn) = An with

Tn → 0.

Proof: Let
∑

n anT
n = 0 for T = Tn → 0 not divisors of zero and not

nilpotents; then a0 = 0 follows from Tn → 0; suppose a0, . . . , am−1 = 0, then
0 =

∑

n anT
n
n = Tm

n (am + am+1Tn + . . .), so that am = 0 by letting Tn → 0.
Suppose f(Tn) = An = g(Tn) for two power series f, g. Let h = f − g, so

that h(T ) =
∑

n anT
n and 0 = h(Tn), implying that h = 0.

�

For example, eT = 1 + T + T 2/2! + . . . converges for any operator T ,
and satisfies ‖eT‖ 6 e‖T‖. It can be shown (exercise) that when (and only
when) S and T commute, we get eS+T = eSeT , from which follows that eT is
invertible with inverse e−T .

Similarly, for ‖T‖ < 1, we can define log(1+T ) = T −T 2/2+T 3/3+ . . ..

Proposition 4.7 If ‖T‖ < 1 then

(1− T )−1 = 1 + T + T 2 + . . .

is continuous, with ‖(1− T )−1‖ 6 (1− ‖T‖)−1.

Proof: ‖T n‖ 6 ‖T‖n and the right-hand terms are summable when ‖T‖ <
1, so

∑

n ‖T n‖ 6 1/(1−‖T‖). This implies that
∑

n T
n also converges (since
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the Banach algebra is complete) to, say, S. Now (1 − T )S = limn→∞(1 −
T )(1 + T + . . . + T n) = limn→∞(1 − T n+1) = 1 since ‖T n‖ → 0 as n → ∞.
Similarly S(1− T ) = 1, proving that S is the inverse of (1− T ).

�

Corollary An affine map f(x) = a+Tx with ‖T‖ < 1 has a unique
fixed point z = f(z).

Proof: x is a fixed point ⇔ x = f(x) = a+ Tx ⇔ a = (1− T )x ⇔ x =
(1− T )−1a.

�

Of course, the result also follows from the Banach contraction mapping
theorem, since d(f(x), f(y)) = ‖a+ Tx− a− Ty‖ 6 ‖T‖d(x, y).

4.3 Group of Invertible Elements

The invertible elements form a group, which contains 1 and the surrounding
unit ball of elements, extended to the interior of the “double cone” { λT :
λ 6= 0, ‖T − 1‖ < 1 }, as well as all the operators eT .

Proposition 4.8 The group of invertible elements is an open set, and
the map T 7→ T−1 is continuous.

Proof: Let T be an invertible element, and let δ < ‖T−1‖−1
. Then for

‖H‖ < δ, we get (T +H)−1 = (1+T−1H)−1T−1, which exists by the previous
theorem since ‖ − T−1H‖ 6 1. This shows that the group is an open set.

Moreover we have

(T +H)−1 = T−1 − T−1HT−1 + T−1HT−1HT−1 + . . .

This shows that ‖(T +H)−1 − T−1‖ 6 ‖H‖‖T−1‖2 + ‖H‖2‖T−1‖3 + . . . 6
‖H‖‖T−1‖

2

1−‖T−1‖‖H‖
which converges to 0 as H → 0.

�

The proof in fact shows that the map T 7→ T−1 is differentiable; indeed
this shows that the group of invertibles is essentially what is called a ‘Lie
group’, a topic that has a vast literature devoted to it.

In particular note that for H = h1, we have (T +h)−1 = T−1−hT−2+ . . .,
from which follows that the map z 7→ (T − z)−1 is holomorphic whenever
z 6∈ σ(T ). Indeed, for z 6∈ σ(T ) we have

(T − z + h)−1 = (T − z)−1 − h(T − z)−2 +O(|h|2)
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so that

lim
h→0

(T − z + h)−1 − (T − z)−1

h
= −(T − z)−2

Proposition 4.9 Let Rn be invertible elements that converge to an
element T on the boundary of the group of invertible elements.
Then

(i) ‖R−1
n ‖ > 1/‖Rn − T‖;

(ii) T is a generalized divisor of zero T , i.e. there are unit
elements Sn such that

TSn → 0, or SnT → 0, as n→ ∞

Proof: Let Rn → T be invertible elements converging to a boundary ele-
ment T . Since the group of invertible elements is open, T cannot be invert-
ible, whereas Rn and its surrounding ball of radius ‖R−1

n ‖−1
are invertible.

Thus ‖Rn − T‖ > ‖R−1
n ‖−1

.
Let Sn = R−1

n /‖R−1
n ‖; then

‖TSn‖ = ‖TR−1
n ‖/‖R−1

n ‖
= ‖(T − Rn)R

−1
n + 1‖/‖R−1

n ‖
6 2‖T −Rn‖ → 0 as n→ ∞.

�

The generalized divisors of zero are also called topological divisors of zero,
and are not invertible (exercise).

The set of non-invertible elements is connected (through the origin), and
may disconnect the group of invertible elements.

Proposition 4.10 The maximally connected subset of invertible ele-
ments containing 1, is an open normal subgroup generated by eT

for all T .

Proof: Let T be in the maximally connected subset containing 1, denoted
by G1. Then the connected ball Bǫ(T ) around T is also in G1 (because
maximally connected), so that G1 is open. Moreover for any T , TG1 is also
connected because multiplication is continuous, so when T ∈ G1 we must get
TG1 ⊆ G1; hence for any S, T ∈ G1, we have TS ∈ G1. Similarly, taking
the inverse is a continuous mapping which fixes 1 and maps the connected
set G1 to a connected set containing 1; thus T−1 ∈ G1. Also, by the same
reasoning T−1G1T ⊆ G1, which makes G1 a normal subgroup.
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The inverse of eT is e−T from their definition as power series. Hence the
group generated by exponentials eT , . . . , eS consists of finite products of the
type e±T . . . e±S. Moreover the elements of the type eT form a connected
set since the Banach algebra is connected and the exponential is continuous.
Multiplication is also continuous so that the group generated by exponentials
is connected. As e0 = 1, it must be a subgroup of G1.

Claim: This group is open and closed, and so must equal G1. The el-
ements near to 1 = e0 are all exponentials i.e. they all have a logarithm
(check! theorem 10.30 of Rudin?), and so any element T generated by the
exponentials also has a neighborhood inside this group. Its complement must
also be open, because it consists of open cosets of the group.

�

4.3.1 Exercises

1. Show that if ST = 1 = TR then S = R = T−1.

2. Find Banach algebras of dimensions 1, 2, 3 (over C)

3. Show that for any morphism Φ between Banach algebras, Φ(1) = 1
and Φ(T−1) = Φ(T )−1. Deduce that for ‖T‖ = 1 and |λ| < 1 then
‖Φ(λT )‖ < 1 and hence that Φ must be continuous.

4. Let f(z) =
∑

n anz
n, and let |f |(z) =

∑

n |an|zn. Show that ‖f(T )‖ 6

|f |(‖T‖).

5. Show that (i) r(λT ) = |λ|r(T ), (ii) r(ST ) = r(TS), (iii) r(T n)1/n =
r(T ), (iv) if ST = TS then r(T + S) 6 r(T ) + r(S) and r(TS) 6

r(T )r(S) (hint: for the addition take T = αT0 with r(T0) = 1 and
similarly for S).

6. Show that when ST = TS, eSeT = eS+T . Deduce that the inverse of eT

is e−T . Show further that the map t 7→ etT is a group homomorphism
from R to the group of invertible elements, which is differentiable.

7. Show that ‖(1− T )− (1− T )−1‖ 6
‖T‖2

1−‖T‖
(use (1−T )−1 = 1+T + . . .).

8. Show that the iteration xn+1 = a+Txn, starting from any x0, converges
to the fixed point z = a + Tz. (Hint: prove first that ‖xn+1 − xn‖ 6

‖T‖‖xn − xn−1‖, and then that (xn) is a Cauchy sequence)
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9. Suppose that Ax = b is a matrix equation, with A being practically a
diagonal matrix, in the sense that A = D+B, withD being the diagonal
of A, and ‖B‖ < ‖D‖. Hence Dx = b−Bx and x = D−1b−D−1Bx. Let
Tx = D−1b−D−1Bx and show that ‖T‖ < 1 so that there is a unique
fixed point. Hence describe a recursive algorithm (due to Jacobi) for
finding the solution of the equation.

10. Similarly suppose that Ax = b with A being practically a lower trian-
gular matrix, in the sense that A = L+B where L is lower triangular
and ‖B‖ < ‖L‖. The inverse of a triangular matrix, such as L, is
fairly easy to compute. Describe a recursive algorithm (Gauss-Siedel)
for finding the solution x.

11. Let Tf(x) =
∫ b

a
k(x, y)f(y)dy be a mapping between function spaces.

Show that if k(x, y) is bounded (ie in L∞[a, b]2), then T is an operator
mapping L1[a, b] to itself and L∞[a, b] to itself. Show further that ‖T‖ 6

‖k‖L∞|b−a| in both cases. Deduce that if |k(x, y)| < 1/|b−a| then the
equation Tf + g = f has a unique solution

∑

n T
ng (find the kernel of

T n).

4.4 Spectrum of T

Definition The spectrum of an element T in a Banach algebra is defined
as the set

{ λ ∈ C : T − λ is not invertible }

Proposition 4.11 The spectrum of T is a non-empty compact subset
of C bounded by r(T ).

Proof: If |λ| > r(T ), then T − λ = −λ(1 − T/λ) is invertible. So any
spectral values must satisfy |λ| 6 r(T ).

Let λ 6∈ σ(T ), ie T−λ is invertible. For any z ∈ C, ‖(T − z)− (T − λ)‖ =
|z − λ|, so that for z close enough to λ, we have T − z also invertible.
This shows that λ is an exterior point of the spectrum, and hence that the
spectrum is closed.

Closed and bounded sets in C are compact.
Suppose σ(T ) = ∅, so that (T − z)−1 is holomorphic everywhere. Then

by Cauchy’s theorem, we get that the integral over any circle vanishes
∮

(T −
z)−1dz = 0. But (T − z)−1 = −1

z
− 1

z2
T + . . . for |z| > ‖T‖, so that for a
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circle of radius larger than r(T ) we get

∮

(T − z)−1dz =

∮

−1

z
− 1

z2
T + . . . dz =

∮

1

z
dz = 2πi 6= 0,

so it must be the case that the spectrum does not vanish. (Alternative
proof: if the map λ 7→ (T − λ)−1 is differentiable everywhere, then since
(T − λ)−1 → 0 as λ → ∞, by Liouville’s theorem we get (T − λ)−1 = S for
all λ, a contradiction)

�

Proposition 4.12 Spectral Radius Formula
The largest extent of the spectrum, called its spectral radius, is

r(T ) = limn→∞ ‖T n‖
1

n .

Proof: We have already shown that σ(T ) is bounded by r(T ). We need
to show that there are spectral values with magnitude r(T ).

Invert the spectrum to form the set S = { z−1 : z ∈ σ(T ) }. Thus
z 6∈ S ⇔ (T−z−1) is invertible, and so the largest radius of that disk in which
(T −z−1)−1 exists is 1/r, where r is the spectral radius of T . Inside this disk,
(T − 1/z)−1 is holomorphic, and so can be written as a power series, which
turns out to be (T − 1/z)−1 = −z

∑

n(zT )
n. But the radius of convergence

of the series
∑

n(Tz)
n is the same as that of the series

∑

n ‖T n‖zn, that

is lim infn ‖T n‖−1/n = 1/r(T ). Thus we must have 1/rσ(T ) 6 1/r(T ), ie
r(T ) 6 rσ(T ).

�

Note that if λ is a boundary point of the spectrum, then T − λ is at the
boundary of the group of invertible elements, and so is a topological divisor
of zero.

Theorem 4.13 Spectral Mapping Theorem
The spectrum of f(T ) is equal to the set { f(λ) : λ ∈ σ(T ) }; ie

σ(f(T )) = f(σ(T ))

Proof: We start by considering f(x) = p(x) a polynomial. Let p(x)−λ =
(x−a)(x−b) . . . where a, b, . . . are the roots, dependent on λ. Whether λ is a
spectral value of p(T ) or not depends on whether p(T )−λ = (T−a)(T−b) . . .
is invertible or not.
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Suppose that λ 6∈ p(σ(T )) i.e. p(z)− λ 6= 0 for any z ∈ σ(T ). Hence any
z ∈ σ(T ) is not one of the roots a, b, . . . and so the factors (T − a) are all
invertible. This shows that λ 6∈ σ(p(T )).

Conversely suppose that λ 6∈ σ(p(T )), so that p(T ) − λ has an inverse
S. Then S(T − a)(T − b) . . . = 1 = (T − a)(T − b) . . . S; thus for any root
a, there are elements R and R′ such that (T − a)R = 1 = R′(T − a). But
R′ = R′(T − a)R = R, so that any factor T − a is invertible. Thus all the
roots of p(z) − λ are not in the spectrum. But if λ = p(z) then z is a root,
and so λ = p(a) 6∈ p(σ(T )).

Now let f(T ) be a power series
∑

n anT
n. Then σ(

∑N
n=0 anT

n) =
∑N

n=0 σ(T )
n

converges separately to σ(f(T )) and f(σ(T )).
�

4.4.1 Exercises

1. Show that the resolvent C − σ(T ) is open by proving that the map
λ 7→ T−λ is continuous, and using the fact that the invertible elements
form an open set.

2. Suppose that p(T ) = 0 for some polynomial p. Show that σ(T ) consists
of roots of p.

3. Use the spectral radius formula to show that the spectral radii of TS
and ST are the same.

4. Use the spectral mapping theorem to show that if eT = 1 then T = 2πiS
where σ(S) ⊂ Z.

5. Let T be a nilpotent operator ie ∃n : T n = 0; show that its spectrum
consists of just the origin.

6. Suppose that the only non-invertible element of a Banach algebra is 0
(called a division algebra). Using the fact that the spectrum is non-
empty, show that T = λ for some λ 6= 0, and hence that the Banach
algebra is isomorphic to C.

7. Suppose that the only topological divisor of zero is 0. Show that the
spectrum of any element is a single point (consider its boundary) and
so each non-zero element is invertible. Deduce that the Banach algebra
is C.

4.5 Holomorphic Functions f(T )
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Theorem 4.14 Taylor series If f : C → C is holomorphic on a disk
Br(z0) that includes σ(T ) then f is a power series about z0 with

f(T ) =
∑

n

an(T − z0)
n =

1

2πi

∮

f(w)(w − T )−1dw.

Laurent series If f is holomorphic on a disk Br(z0) except at
its center z0 6∈ σ(T ) and the disk includes σ(T ), then the (Laurent)
series converges

∞
∑

n=−∞

an(T − z0)
n =

1

2πi

∮

f(w)(w − T )−1dw.

In both cases, an = 1
2πi

∮

f(w)(w − T )−n−1dw.

Proof: (i) (w − T )−1 = (w − z0 + z0 − T )−1 = (w − z0)
−1(1 − T−z0

w−z0
)−1 =

∑

n(w − z0)
−1−n(T − z0)

n since r(T − z0) < R = |w − z0| by the spectral
mapping theorem.

Thus, 1
2πi

∮

f(w)(w−T )−1dw =
∑

n(T − z0)
n 1
2πi

∮

f(w)(w−T )−1−ndw =
∑

n an(T − z0)
n, with an = 1

2πi

∮

f(w)(w − T )−1−ndw.
By Cauchy’s theorem, we can take any curve surrounding the spectrum

of T .
(ii) Continuing the analysis of (i), we also get that on a small circle

around z0, (w−T )−1 = (w− z0 + z0 − T )−1 = −(T − z0)
−1(1− (w− z0)(T −

z0)
−1)−1 = −

∑

n(w− z0)
n(T − z0)

−n−1. Thus taking the integral in a clock-
wise direction, we get 1

2πi

∮

f(w)(w − T )−1dw =
∑

n a−n(T − z0)
−n−1 where

a−n = 1
2πi

∮

f(w)(w − z0)
ndw.

�

Corollary If f : C → C is holomorphic in a neighborhood of
a point, then it is a power series, and thus infinitely many times
differentiable, with

|f (n)(z0)| 6
n!M

rn

Proof: |f (n)(z0)/n!| = |an| 6 1
2π
‖f‖L∞(Br(z0))

r−n−12πr =M/rn.
�

Corollary (Fundamental theorem of Algebra)
Every polynomial p(z) has n roots.
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Proof: Suppose that p(z) has no roots, so that 1/p(z) is holomorphic.
Now p(z) → ∞, in fact for |z| large enough, |p(z)| > |z|n − |an−1z

n−1 + . . .+
a0| > |z|n/c. So

1

|p(0)| 6
1

2π

∮

1

|p(w)| |w|
−1ds 6 c/Rn → 0

as R → ∞, which is a contradiction.
�

Corollary (Liouville) if F (z) is holomorphic throughout C then
it must be unbounded or constant.

Proof: Suppose f : C → C is holomorphic but bounded by M on C.
Then for any z, |f ′(z)| 6 M/R→ 0 as R → ∞, so f ′ = 0.

More generally, if F (z) is holomorphic, then so is φ ◦ F : C → C for any
functional φ. If it is bounded, then φ(F (z)) = φ(F (0)) for any φ, which
implies that F (z) = F (0) for all z.

�

Corollary Two holomorphic functions on C must agree on a
connected set if they agree on an interior disk.

Proof: let A be the set on which f = g locally i.e. z ∈ A ⇔ f = g on
Bǫ(z). Then A 6= ∅ by hypothesis, A is open by definition, and A is closed,
since suppose z is a limit point, with zn → z and zn ∈ A. Then f and g are
power series about z with f(zn) = g(zn); hence f = g throughout the radius
of convergence, and so z ∈ A. It follows that A is all of the connected set.

�

Taylor’s theorem implies that for any polynomial p(T ) = 1
2πi

∮

p(w)(w −
T )−1dw; also (T − λ)−1 = 1

2πi

∮

(w − λ)−1(w − T )−1dw for λ 6∈ σ(T ).
The integral 1

2πi

∮

f(w)(w− T )−1dw exists for any T for which f is holo-
morphic in a neighborhood of σ(T ) (since ‖(w − T )−1‖ is continuous in w and
bounded since the path is compact; hence ‖f(T )‖ 6 1

2π

∫

|f(w)|‖(w − T )−1‖ds 6
M .

Definition For any function f : C → C that is holomorphic in a
neighborhood of σ(T ),

f(T ) :=
1

2πi

∮

f(w)(w − T )−1dw
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Note that f is differentiable (and so continuous) at T (for H sufficiently
small, f(T +H) is defined since σ(T +H) ⊆ σ(T ) + Bǫ; also, f(T +H) =
f(T ) + 1

2πi

∮

f(w)(w − T )−1H(w − T )−1dw + o(H))
One can also discuss the integral about a part of σ(T ); in particular

1
2πi

∮

(w − T )−1dw is a projection map on T .

Theorem 4.15
σ(f(T )) = f(σ(T ))

Proof: Let λ 6∈ f(σ(T )), so (f(z) − λ)−1 is holomorphic on the open set
U − { z : f(z) = λ }, which contains σ(T ). Thus (f(T ) − λ)−1 exists, and
λ 6∈ σ(f(T )).

Conversely, let λ ∈ σ(T ), and let F (z) := f(z)−f(λ)
z−λ

which is holomorphic
on σ(T ) and at λ. So since (z−λ)F (z) = f(z)− f(λ) we get (T −λ)F (T ) =
f(T )− f(λ). But T − λ is not invertible, and so neither is f(T )− f(λ) i.e.
f(λ) ∈ σ(f(T )).

�

Examples: We can define log T whenever 0 6∈ σ(T ) and one can draw a
contour from 0 to outside ‖T‖ (so that one can enclose σ(T ) by a simple
closed path in which log(z) is holomorphic), but this definition is not unique.
Note that elog T = T .

Furthermore, can define T 1/n (again not unique) with (T 1/n)n = T .

4.5.1 Exercises

1. Show that (f + g)(T ) = f(T ) + g(T ), and that f ◦ g(T ) = f(g(T )). It
is also true, but more difficult to show that (fg)(T ) = f(T )g(T ).

2. Show that f(z1) = f(z)1 where z ∈ C and 1 is the identity element.
Hence f(T ) is truly an extension of the complex holomorphic function
f(z).

4.6 B(X)

T invertible means there is an operator T−1 ∈ B(X), that is the inverse is
continuous and linear. Now if an operator T ∈ B(X) is bijective, then T−1

will always be linear, but not necessarily continuous. So one must be careful
in interpreting the term “invertible” in B(X).

If λ is an eigenvalue, ie Tx = λx for some x 6= 0 (called an eigenvector)
then (T − λ)x = 0, hence T − λ is not 1-1, and so not invertible.

38



What if T−λ is 1-1? If it is also onto, then by the open mapping theorem,
a bijective operator has a continuous inverse, and λ is not a spectral value.
So for spectral values for which T − λ is 1-1, it cannot also be onto.

If T − λ is 1-1, and its image is dense in X , ie im(T − λ) = X , then λ
is said to be part of the continuous spectrum. In particular we can find xn
such that (T − λ)xn → 0, ie Txn ≈ λxn.

If T − λ is 1-1, and its image is not even dense in X , then λ is said to be
part of the residual spectrum.

Proposition 4.16 The eigenvectors of distinct eigenvalues are lin-
early independent.

Proof: Let vi be eigenvectors associated with the distinct eigenvalues λi.
Then if

∑N
i=1 αivi = 0 implies

0 =

N
∑

i=1

αi(T − λN)vi =
∑

i

αi(λi − λN)vi =

N−1
∑

i=1

αi(λi − λN)vi =

N
∑

i=1

βivi

Thus by induction we get βi = 0 ie αi = 0 for i < N . Hence αNvN = 0 which
implies αN = 0 as well.

�

4.6.1 Example

1. Let L(xn) = (xn+1) be the left-shift operator on ℓ1. The eigenvalues are
given by Tx = λx ie (xn+1) = λ(xn), ie ∀n, xn+1 = λxn. This is a recurrence
relation, which can easily be solved to give xn = λnx0. For this to be an
eigenvector in ℓ1 we need that

∑

n |xn| = |x0|
∑

n |λ|n to be finite, and this
implies that |λ| < 1. Conversely, for any such λ 6= 0, the sequence (λn) is an
eigenvector. Hence the spectrum consists of the unit closed ball, since the
norm is 1.

2. Let T : L1[0, 1] → L∞[0, 1] be defined by Tf(x) =
∫ 1

1−x
f(s)ds. Then

T is trivially linear; it is continuous since ‖Tf‖L∞ = supx |
∫ 1

1−x
f(s)ds| 6

‖f‖L1. Thus ‖T‖ 6 1.

For the eigenvalues, we get
∫ 1

1−x
f(s)ds = λf(s). Differentiating twice

gives f ′′(x) + 1
λ2 f(x) = 0 with boundary conditions f(0) = 0 = f ′(1). Thus

f(x) = B sin(x/λ) where λ = 2/kπ, k odd.

Proposition 4.17
σ(T⊤) = σ(T )
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Proof: let λ 6∈ σ(T ), then one can easily check that T⊤−λ has the inverse
(T − λ)−1⊤, showing that λ 6∈ σ(T⊤).

Conversely, let λ 6∈ σ(T⊤), then by the previous proof λ 6∈ σ(T⊤⊤). But
X is embedded in X∗∗, so that T⊤⊤ equals T when restricted to X . However,
we need to show that its inverse can also be restricted to X . We can deduce
that T − λ is 1-1, and we now show it is also onto. Suppose otherwise, so
we can find a non-zero functional in im(T − λ)◦ = ker(T⊤ − lambda); hence
T⊤ − λ is not 1-1 contrary to our assumption that λ 6∈ σ(T⊤). Thus T − λ
is 1-1 and onto, and hence its inverse equals the restriction of the inverse of
(T − λ)⊤⊤. Thus λ 6∈ σ(T ).

�

4.6.2 Exercises

1. Show that if λ is an eigenvalue of T then f(λ) is an eigenvalue of f(T ),
with the same eigenvector.

2. Let T : ℓ2 → ℓ2 be defined by T (xn) = (αnxn) where αn are dense in
a compact set K. Show that its spectrum is K and that there is no
residual spectrum.

3. Let T : C[0, 1] → C[0, 1] be defined by Tf(x) = xf(x). Show that T is
an operator, find its norm and show that its spectrum consists of only
the residual part.

4. Let T : C[0, 1] → C[0, 1] be defined by Tf(x) =
∫ x

0
f . Show that

T nf =
∫ x

0
(x−y)n−1

(n−1)!
f(y)dy, and that ‖T n‖ 6

|x|n

n!
. Deduce, using the

spectral radius formula, that its spectrum is just the origin.

5 C∗-Algebras

Definition A C∗-algebra is a Banach algebra with an involution map
∗ : X → X with the properties:

(T + S)∗ = T ∗ + S∗, (λT )∗ = λ̄T ∗, (ST )∗ = T ∗S∗, T ∗∗ = T, ‖T ∗T‖ = ‖T‖2
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Proposition 5.1 The involution map is continuous, and

‖T ∗‖ = ‖T‖

Proof: We have ‖T‖2 = ‖T ∗T‖ 6 ‖T‖‖T ∗‖, so that ‖T‖ 6 ‖T ∗‖; fur-
thermore, ‖T ∗‖ 6 ‖T ∗∗‖ = ‖T‖.

�

Proposition 5.2
σ(T ∗) = σ(T )

Proof: If T is invertible, then so is T ∗ since T ∗(T−1)∗ = (T−1T )∗ = 1∗ = 1,
and similarly (T−1)∗T ∗ = 1. Thus, if T − λ is invertible, then so is T ∗ − λ̄,
and vice-versa.

�

It is a theorem that every C∗-algebra can be embedded into B(H) for
some Hilbert space H .

5.1 Normal and Self-adjoint elements

Definition An element T is called normal when T ∗T = TT ∗, self-
adjoint when T ∗ = T , and unitary when T ∗ = T−1.

Every element can be written as T = A + iB with A and B self-adjoint.

5.1.1 Exercises

1. Show that T + T ∗, T ∗T and TT ∗ are self-adjoint for any T .

Note: For B(H), the group of invertible elements is connected, and gen-
erated by two exponentials. Proof: every T = RU where R is self-adjoint
and U unitary. Thus since logarithms exist, R = eS and U = eiH for self-
adjoint operators S,H ; in particular any element of the group of invertible
elements is of this form. Moreover the map t 7→ etSeitH gives a connected
path starting from 1 and ending at T , so that the group is path-connected,
and so connected.

�
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