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1 Objects and Morphisms

A category is a class of objects A with morphisms f : A → B (a way of
comparing/substituting/mapping/processing A to B) such that,

(i) given morphisms f : A→ B, g : B → C, gf : A→ C is also a morphism,

(ii) for compatible morphisms, h(gf) = (hg)f , and

(iii) each object A has a morphism a : A→ A satisfying af = f , ga = g.

(Note: in a sense, an object A is the morphism a; so we can even do away with
objects.)

Sets can be considered as 0-categories (only objects or elements), or as dis-
crete categories with each object A having one morphism a.

The class of morphisms from A to B is denoted Hom(A,B); thus Hom(A,A)
is a monoid.

Even at this abstract level there are at least three important categories:

1. logic (with statements as objects and ⇒ as morphisms),

2. sets (with functions as morphisms),

3. computing (with data types and algorithms).

1.1 Morphisms

A monomorphism f : A→ B satisfies

∀C, ∀x, y ∈ Hom(C,A), fx = fy ⇒ x = y.

C A B
x //
y
//

f //

An epimorphism f : A→ B satisfies

∀C, ∀x, y ∈ Hom(B,C), xf = yf ⇒ x = y.

A B C
f // x //

y
//

1. In particular, for a monomorphism f , fg = f ⇒ g = ιA; for an epimor-
phism gf = f ⇒ g = ιB .
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2. The composition of monomorphisms is a monomorphism, and of epimor-
phisms an epimorphism.

3. Conversely, if fg is a monomorphism then so is g, and if it is an epimor-
phism then so is f .

A monomorphism f : A → B is also called a sub-object of B. Monomor-
phisms with the same codomain have a pre-order: let f 6 g for f : A → C,
g : B → C when f = gh for some (mono)morphism h : A→ B;

A

C

B

f
''

h ��
g

77

It can be made into a poset by using the equivalence relation f ∼= g when
f 6 g 6 f .

An isomorphism is an invertible morphism, i.e., f has an inverse g such that
fg = ιB , gf = ιA. In this case, A and B are called isomorphic (an equivalence
relation); iff f 6 g 6 f . An isomorphism f : A→ A is called an automorphism;
for example, any ιA; the automorphisms of A form a group.

If gf = ι then f is called a split monomorphism or section (has a left-inverse),
and g a split epimorphism or retraction (has a right-inverse). A morphism with
left and right inverses is an isomorphism (since then, g1 = g1fg2 = g2).

An extremal monomorphism is a monomorphism f such that the only way
f = ge with e an epimorphism is that e is an isomorphism (and g a monomor-
phism). An extremal epimorphism is an epimorphism f such that f = eg with
e a monomorphism ⇒ e is an isomorphism (and g an epimorphism). Thus a
monomorphism which is an extremal epimorphism, or an epimorphism which is
an extremal monomorphism, is an isomorphism.

Let f ⊥ g mean gx = yf ⇒ ∃u x = uf, y = gu. A strong monomorphism
is one such that Epi ⊥ f .

Isomorphisms ⊆ SplitMono ⊆ StrongMono ⊆ ExtremalMono ⊆ Monomorphisms

Isomorphisms ⊆ SplitEpi ⊆ StrongEpi ⊆ ExtremalEpi ⊆ Epimorphisms

Proof. If f is a split monomorphism with gf = ι, then f is a monomorphism
and g an epimorphism. If f = hk with k an epimorphism, then ghk = ι and
kghk = k, so kgh = ι; thus k has the inverse gh.

If f = ge is a strong monomorphism and e epi, then e ⊥ f , so fι = ge ⇒
∃u ι = ue, g = fu. So e is split and an epi, hence an isomorphism.

A morphism f : A→ A is called idempotent when f2 = f ; for example, the
split idempotents f = gh where hg = ι.

An object is called finite, when every monomorphism f : A → A is an
automorphism. In particular, if B ⊆ A ∼= B then A = B.

Example: For Sets, a monomorphism is a 1-1 function; an epimorphism is an
onto function; such functions are automatically split; an isomorphism is thus a
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bijective function; isomorphic sets are those with the same number of elements;
a set is finite in the category sense when it is finite in the set sense.

Functors (or actions) are maps between categories that preserve the mor-
phisms (and so the objects),

Ff : FA→ FB, F ιA = ιFA, F (fg) = FfFg

They preserve isomorphisms.

1.2 Constructions

Subcategory: a subset of the objects and morphisms; a full subcategory is a
subset of the objects, with all the corresponding morphisms.

Dual category: C′ has the same objects but with reversed morphisms
f> : B → A, and g>f> := (fg)>; so C′′ = C. Every concept in a theorem
has a co-concept in its dual (eg monomorphisms correspond to epimorphisms);
every theorem in a category has a dual theorem in the dual category. A functor
between dual categories is called a dual functor ; a functor from a dual category
to a category is called contra-variant, F (fg) = F (g)F (f).

A dagger category is one for which there is a functor † : C → C′, where

(fg)† = g†f†, f†† = f.

(Set cannot be made into a dagger category because there is a morphism ∅→ 1
but not vice-versa).

Product of Categories: C × D the objects are pairs (X,Y ) with X ∈ C
and Y ∈ D, and the morphisms are (f, g), where

(f1, g1)(f2, g2) := (f1f2, g1g2), ι(X,Y ) = (ιX , ιY ).

The projection functors are C ×D → C, (f, g) 7→ f , and C ×D → D, (f, g) 7→ g.

(C × D)′ ∼ C′ ×D′

(The product is the categorical product in Category)
Quotient Category: given a category and an equivalence relation on mor-

phisms (of same objects) ∼, then C/ ∼ is that category with the same objects
and with equivalence classes of morphisms. The map C → C/ ∼ defined by
F : A 7→ A, f 7→ [f ], is a functor.

Arrow Category: C→ consists of the morphisms of C (as objects), with
the morphisms f → g being pairs of morphisms (h, k), such that kf = gh,

f //

h

��
k

��
g
//

and composition (h1, k1)(h2, k2) := (h1h2, k1k2), and identities (ιA, ιB). Monomor-
phisms are those pairs (h, k) where h and k are monomorphisms. For example,
the arrow category of sets is the category of functions.
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Slice Category (or comma category): C ↓ B is the subcategory where the
morphisms have the same codomain B and k = ι; the morphisms simplify to h
where f = gh; similarly for the morphisms with the same domain. An object
A is called projective when every morphism f : A → B factors through any
epimorphism g : C → B, f = gh. Dually, A is called injective when f : B → A
factors through any monomorphism f = hg.

1.3 Functors

Functors can be thought of as higher-morphisms acting on objects and mor-
phisms; or as a model of C in D.

(Examples: the constant functor, mapping objects to a single one, and mor-
phisms to its identity; the mapping from a subcategory to the parent category;
forgetful functor (when structure is lost) and inclusion functor (when struc-
ture is added, minimally); the mapping which sends A to the set Hom(B,A)
and a morphism f to the function g 7→ f ◦ g is a functor from any category
to the category of sets; similarly for A 7→ Hom(A,B) and f 7→ (g 7→ g ◦ f)
(contra-variant).)

A functor is called faithful when it is 1-1 on morphisms (and hence objects) It
is full when it is onto all morphisms in Hom(FA,FB); it is called dense, when
it is onto all objects up to isomorphism. It is an isomorphism on categories
when it is bijective on the morphisms Hom(FA,FB). A dense isomorphism is
called an equivalence, and the two categories are said to be equivalent A ∼ B.

A (left) adjoint of a functor is F ∗ : D → C with natural isomorphisms e, i
such that e : FF ∗ → 1, i : 1 → F ∗F and Hom(F ∗A,B) ∼ Hom(A,FB); hence
(FG)∗ = G∗F ∗. (For example, a forgetful functor and inclusion functor are
adjoints, with i being the embedding)

2-Categories: Categories with functors as morphisms form a Category;
the identity functor is the one which leaves objects and morphisms untouched;
(there is an initial object namely ∅, and a terminal object, { . } It has the
additional structure of a 2-functor, called a “natural transformation” (or
‘homotopy’), between functors on the same categories, τ : F → G; two such
functors map an object A ∈ C to two objects FA and GA in D, and a natural
transformation determines a morphism τA : FA → GA between the two, such
that ∀f : A → B, (Gf)τA = τB(Ff) (so Ff ∼ Gf). A natural isomorphism is
a natural transformation for which τA are isomorphisms.

With these notions, two categories are equivalent when there are functors
F and F ∗ such that F ∗F ∼ 1, FF ∗ ∼ 1 (or equivalently when F and F ∗ are
isomorphisms with F ∗F ∼ 1). The auto-equivalences of a category form a
symmetric monoidal category.

More generally, a 2-category is a set of objects A, with morphisms f : A→ B,
and 2-morphisms τ : f1 → f2 (for some f1, f2 ∈ Hom(A,B)); 2-morphisms can
be combined either “vertically” by composition τ2τ1, (and must be associative,
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with an identity), or “horizontally” σ ◦ τ : gf 7→ σ(g)τ(f), such that

f // g //

// //

// //

τ1
��

σ1

��

τ2
��

σ2

��

τ2τ1 ◦ σ2σ1 = (σ2 ◦ τ2)(σ1 ◦ τ1).

A 2-category with 1 object gives rise to a monoidal category (of the morphisms
and 2-morphisms of the object); a 2-category with 1 object and 1 morphism
gives a commutative monoid (of 2-morphisms).

The functors themselves form a category DC where morphisms are the nat-
ural transformations. C1 ∼ C; C2 is the category of arrows on C.

2 Limits

When a category maps under a functor F : C → D to another category, the
image of an object may have morphisms that were not present in C; an object
A ∈ D may sometimes determine a unique (up to isomorphism) object (called
a universal) UA in C, which makes F (UA) closest to A in the sense that there
is a unique morphism φA : F (UA)→ A, such that

∀f : F (B)→ A,∃!g : B → UA, f = φAF (g).

B

UA

F (B)

F (UA)

Ag

OO

f

77F (g)

OO φA

''

A co-universal is similarly an object UA ∈ C with a morphism φA : A →
F (UA) such that ∀f : A→ F (B),∃!g : UA → B, f = F (g)φA.

In particular, sub-categories C may have universal properties:
Terminal object 1: ∀A,∃!f : A→ 1 (for the empty sub-category). Initial

object 0: ∀A,∃!f : 0→ A.

0 A 1// //

(0, 0) is an initial object in C × D. For example, { 0 } and ∅ are the terminal
and initial objects of sets; True and False are the ones for logic.

Isomorphism The closest objects for an objectA with its identity morphism
(the category 1), are its isomorphic copies. For example, sets with the same
cardinality are isomorphic, while statements A ⇔ B are so in logic.

Products: For the subcategory 2 (with only the identity morphisms), the
closest object of A and B is A × B, with morphisms πA : A × B → A, πB :
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A × B → B such that any other morphisms pA : C → A, pB : C → B factor
out through a unique morphism g : C → A×B, pA = πAg, pB = πBg.

C A×B

B

A

g //

πA

77

πB ''

pA
00

pB ..

1×A ∼= A; A×B ∼= B ×A; (A×B)× C ∼= A× (B × C).
For example, the usual product A×B, and the statement A and B are the

products for sets and logic respectively.
More generally, starting with a discrete category, the closest object of Ai is∏

iAi, with πi :
∏
iAi → Ai i.e., if pi : X → Ai are morphisms then there is a

morphism h : X →
∏
iAi with pi = πih. A repeated product gives AC (starting

with a constant functor from a discrete category).
A relation on objects A,B is a monomorphism R : ρ→ A×B.
Sums (or Co-products):

∐
iAi is the dual of the product in the dual category

i.e., it is the closest object with morphisms πi : Ai →
∐
iAi. For example, A+B

(disjoint union) and A or B.
Equalizer: starting from the category with two objects A, B, and mor-

phisms fi : A → B, their equalizer is the closest object E with (extremal
mono-)morphism

eq : E → A, ∀i, j, fieq = fjeq.

E A B
eq //

f1 //
f2

//

For example, for Sets, {x : f1(x) = f2(x) }.
Equalizers are monomorphisms: let e = eq, if xe = ye then xef = xeg, so

∃!u, xe = ue, x = u; similarly y = u = x.
Co-equalizer: similarly an (extremal epi-)morphism

coeq : Y → E, ∀i, j, coeqfi = coeqfj .

For example, the co-equalizer of a relation on a set X is the partition on it (for
an equivalence relation, this partition is compatible with the relation).

Pullback (fibre product): starting from the category with objects Xi and
morphisms fi : Xi → Z, then the pullback is the (unique. . . ) closest object∏
Z Xi with morphisms

πi :
∏
Z

Xi → Xi, fiπi = πZ .
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A×Z B

B

A

Z

πA
??

πB ��

f

��

g

??

The equalizer is a special case when the morphisms start from the same object.
If Z is the terminal object, then

∏
Z Xi =

∏
iXi. For example, the pullback on

sets is X ×Z Y = { (x, y) : f(x) = g(y) }; in particular when g is the identity,
X ×Z Y = f−1Y .

Pullback lemma: pullbacks form squares (X ×Z Y,X,Z, Y ); if two adjacent
squares form pullbacks, then so does the outer rectangle; if the outer rectangle
and the right (or bottom) square are pullbacks, then so is the left (or upper)
square.

Pullbacks preserve monomorphisms: If fu = vg with f mono, and gx = gy,
then fux = vgx = vgy = fuy, so ux = uy and x = y by uniqueness of pullbacks.

Push-out is that closest object
∐
Z Xi with

πi : Xi →
∐
Z

Xi, πifi = πZ .

For example, for sets, the push-out X ∪Z Y is the set X ∪ Y with the elements
f(z) ∈ X and g(z) ∈ Y identified.

Inverse Limit: starting from the subcategory of a chain of objects Ai with
morphisms fj,i (such that fk,i = fk,jfj,i), the inverse limit is the closest object
lim←Ai with morphisms

πi : lim
←
Ai → Ai, πj = fj,iπi.

lim
←
Ai · · · A3 A2 A1

πi // f23 // f12 //

(More generally, can start with a topology of objects rather than a chain.) The
pullback is a special case. For example, the inverse limit of sets Xi is the set of
sequences xi ∈ Xi such that xj = fj,i(xi).

Co-limit (Direct Limit) is similar with lim→Ai and morphisms

πi : Ai → lim
→
Ai, πi = πjfj,i.

More generally, for any subcategory, or any functor, F : C → D there may
be a limit object limF in D with (unique) morphisms πA : limF → A (A ∈ C)
such that for any f : A→ B, A,B ∈ C,

fπA = πB

limF A B
πA // f //

πB

88
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and it is the closest such object in the sense that for any other C ∈ D with
fpA = pB then ∃!u : C → limF, πAu = pA. A limit, if it exists, is unique up to
isomorphism.

A co-limit is similar with fA : F (A)→ colimF such that

∀f : A→ B, fBF (f) = fA.

In general, any functor from a category with an initial object to C has a
limit; and any functor from a category with a terminal object has a co-limit.

A complete category is one in which every subcategory (or functor) has a
limit. For example, the category of sets is complete and co-complete.

So, every functor has an adjoint F ∗ : D → C mapping A 7→ UA and f 7→ g;
so that FF ∗ ∼ 1, and similarly F ∗F ∼ 1.

A functor is said to be continuous when it preserves limits (e.g. right-
adjoints) i.e., ∀G, lim(FG) = F (limG). It is co-continuous (e.g. left-adjoints)
when it preserves co-limits.

The existence of products A× B and equalizers implies the existence of all
finite limits. The Hom(A, .) functor is continuous, so it represents these limits
by sets (and Hom(., A) takes colimits to limits).

A family of zero morphisms 0 are such that

∀f, g, 0f = g0

for example, when 0 ∼= 1 (called a zero object), 0 : A → 0 → B are zero
morphisms.

g
//

0
��

f //

0
��

0
��

In this case, the kernel of a morphism is the equalizer of f and 0 i.e., the
closest (mono)morphism k : K → A such that fk = 0.

K A B
k //

f //
0
//

The co-kernel is the co-equalizer ie the closest (epi)morphism k′ : B → K ′ such
that k′f = 0.

A pre-sheaf is a contra-variant functor from a pre-order (or topology) to
a category F : O → C (the F (x) are called sections of F over x) such that
x 6 y ⇒ there is a restriction morphism F (x)→ F (y) with resx,x = ιF (x) and
x 6 y 6 z ⇒ resy,xresz,y = resz,x.

A sheaf is a continuous pre-sheaf (preserves limits). On a topological space
X, the stalk at x ∈ X is the direct limit of the open neighborhoods of x. So
there is a morphism F (U)→ Fx for x ∈ U open (if the morphism is a function
f 7→ fx, where fx is called the germ at x). The etale space E is the space of
stalks, with the continuous map E → X, Fx 7→ x. (the set of sheaves form
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a topos, with Ω = the disjoint union of all open sets) The space E is locally
homeomorphic to X (i.e., there are isomorphic open sets in E and X that cover
Fx and x).

For example, a sheaf of sets is a bundle, i.e., a collection of disjoint sets Ai
with a map π :

⋃
iAi → I, π−1(i) = Ai; the category of bundles over I is the

same as the comma category.

2.1 Monoidal Categories

Objects have an associative functor tensor product A⊗B and an object I (called
unit) such that

I ⊗A ∼= A ∼= A⊗ I

(A⊗B)⊗ C ∼= A⊗ (B ⊗ C)

(A⊗ I)⊗B ∼= A⊗B ∼= A⊗ (I ⊗B)

(the isomorphisms in the first two lines are called the two unitor and one as-
sociator natural isomorphisms; more generally, any product of n objects are
isomorphic to each other). Product of morphisms f ⊗ g : A⊗B → C ⊗D.

The tensor product is like treating two objects in parallel; so a morphism
f : A⊗. . .⊗B → C⊗. . .⊗D takes n objects and “maps” them to m objects, and
looks like a Feynman diagram. The unit object is null, so f : I → A “creates”
one object. The tensor product is different from the categorical product in that
there need not be projections.

The morphisms Hom(I, I) now have two operations: (f ⊗ g)(h ⊗ k) =
(fh) ⊗ (gk); but from universal algebras, this implies that f ⊗ g = fg and
is commutative.

Set with × is monoidal (in fact cartesian-closed); Set with disjoint union is
also monoidal.

The (right) dual of an object A is another object A∗ (unique up to isomor-
phism), such that there are “annihilation/creation” morphisms

A⊗A∗ → I, I → A∗ ⊗A,

A //

A∗ oo

called the co-unit of A and the unit of A, respectively, satisfying the zig-zag
equations, i.e., creating then annihilating A and A∗ leaves nothing I; (A∗ can
be represented as a line in the opposite direction of A; A is called the left dual
of A∗).

2.1.1 Braided Monoidal categories

A monoidal category in which there is a natural isomorphism that switches
objects around,

A⊗B ∼= B ⊗A,
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A

A
��

B

B??

such that all permutations of products become isomorphic, e.g. (A⊗B)⊗C ∼=
C ⊗ (B ⊗A), i.e.,

C

C??A

B
�#

B
A

It need not be its own inverse! Its inverse is:

B

B
��

A

A??

The Yang-Baxter equation states

A

A
��

B B44

C

C99

=

A

A
%%

B B
**

C

CEE

Left duals are duals.
A braided monoidal category is called symmetric when the switching iso-

morphism is its own inverse.

2.2 Closed Monoidal Categories

A monoidal category is closed when every set of morphisms Hom(A,B) has an
associated object BA, with

Hom(A⊗B,C) ∼= Hom(B,CA)

(or alternatively Hom(A ⊗ B,C) ∼= Hom(A,CB)) (via “currying” natural iso-
morphisms). That is, every morphism can be treated as an object (without
inputs). In particular f : A→ B is associated to I → BA.

For example, in sets, the powerset axiom asserts that Hom(A,B) is a set
BA; in logic the distinction is between the morphism A ` B and the object
A ⇒ B.

A monoidal category is compact (or autonomous) when every object has
a dual and a left dual. In this case it is closed, with AB := B∗ ⊗ A, i.e.,
A∗ ∼= Hom(A, I); in particular the unit I corresponds to a unit inside A∗ ⊗A.

The reverse of currying, changing an object into a morphism, is an evaluation
morphism

eval : A⊗BA → B, eval(f ⊗ ιA) = f.
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A

BA

B//

(So morphisms of two variables become morphisms of one variable.)
For example, in sets (and functional programming languages), eval(f, x) =

f(x); in logic, it is modus ponens, A and A ⇒ B gives B.

2.3 Cartesian-closed categories

Finite products exist and are closed, i.e., every functor ×A has a right-adjoint
A, called exponentiation,

Hom(A×B,C) ∼= Hom(B,CA)

This means that every morphism f :
∏
iAi → C can be represented by an

ordered set of morphisms fi : Ai → C.
It is thus symmetric braided monoidal, with ⊗ being × and the unit being

the terminal object 1; but has more properties in that it can duplicate objects
via ∆ : A → A × A; and delete objects by mapping to 1, i.e., ! : A 7→ 1; every
morphism f : 1→ A×B is of the type (1, 1) : 1→ A, 1→ B.

(e.g. the adjoint of X 7→ (X,X) is (X,Y ) 7→ X × Y .)
f × g : A×B → C ×D can be defined as that unique morphism induced by

fπA, gπB . In particular, (1a, 1b) = 1a×b. Similarly, can define the sum f + g.

2.3.1 Evaluation

eval : A×BA → B, eval(f × ιA) = f.

An element or point of A is a morphism x : 1→ A; so eval(f, x) = fx.
In particular a morphism f : A → B corresponds to an element 1 → BA

(called the name of f).
In such categories, dual concepts lose their symmetry:
There are no morphisms A→ 0 unless A ∼= 0, in particular if 0 ∼= 1, then all

objects are isomorphic; 0→ A is monic.

0×A ∼= 0, A1 ∼= A, A0 ∼= 1, 1A ∼= 1

(proofs: there is only one morphism 0→ BA, so only one morphism 0×A→ B
so 0 ∼= 0 × A, and A → 0 × A ∼= 0 → A forces them to be isomorphisms;
eval : A1 → A is an isomorphism; 1→ A0 corresponds to 0 ∼= 1× 0→ A which
is unique, so 1 → A0 and A0 → 1 are inverses; 1A → 1 must be ι and 1 → 1A

corresponds to A→ 1 also unique; any map B → 0 is a unique isomorphism so
fg = fh ⇒ g = h)

XA+B ∼= XA ×XB , (A×B)C ∼= AC ×BC ,
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(CA)B ∼= CA×B , X × (A+B) ∼= X ×A+X ×B

(Proofs: the inclusions A,B → A+B give XA+B → XA ×XB ; conversely,

XA × XB → XA+B correspond to A + B → XXA×XB

i.e., to two inclusion
maps, and hence the projections XA ×XB → XA, XB ;

The projections A×B → A,B give rise to a map (A×B)C → AC ×BC ; its
inverse is AC ×BC → (A×B)C which corresponds to C ×AC ×BC → A×B
i.e., to C ×AC ×BC → A,B, i.e., the projections AC ×BC → AC , BC ;

CA×B → (CA)B corresponds to B × CA×B → CA, i.e., the evaluation map
A × B × CA×B → X, similarly (CA)B → CA×B corresponds to the double
evaluation B ×A× (CA)B → C.;

The maps A + B → (X × A + X × B)X correspond to the inclusions X ×
A,X ×B → X ×A+X ×B) There is a functor mapping morphisms f : X1 →
X2 to Ff : XY

1 → XY
2 defined by (Ff)g = fg for g : Y → X1. There is

another contra-variant functor (restriction?) mapping morphisms f : Y1 → Y2

to Ff : XY2 → XY1 , defined by (Ff)g = gf .

2.4 Topos

A category with finite limits, exponentials (i.e., cartesian-closed), and a sub-
object classifier.

A sub-object classifier is an object Ω (unique up to isomorphism) and a
morphism True : 1 → Ω such that monomorphisms f : A → B (“sub-objects”)
correspond to unique morphisms

χf : B → Ω, χff = A→ 1→ Ω

A B

Ω

1

f
//

77??

χf ��

OO

True

��

In particular True corresponds to χTrue = ιΩ, and the unique monomorphism
0→ Ω corresponds to a morphism ¬ : Ω→ Ω; hence False := ¬True : 1→ Ω.

For example, for sets Ω = 2; sub-objects B : I → X correspond to subsets
B ⊆ X; subsets are maps A → 2 and correspond to the characteristic maps
χA : 1→ 2A; a singleton is a map A→ 2A.

Other logical connectives are defined in terms of their characteristic maps:

and : Ω× Ω→ Ω (True,True) : 1→ Ω× Ω
or : Ω× Ω→ Ω (TrueΩ, ιΩ), (ιΩ,TrueΩ) : Ω + Ω→ Ω× Ω
⇒ : Ω× Ω→ Ω 2→ Ω× Ω(where 2 is the category 0 6 1)

complement of f ¬χf
intersections f ∩ g χf∩g := χf and χg

unions f ∪ g χf∪g := χf or χg.
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But there may be several truth values, i.e., Ω may have several elements 1→ Ω,
not just True and False.

Ω is injective, i.e., for any monomorphism f : A → B and any morphism
g : A→ Ω, there is a morphism ḡ : B → Ω such that g = ḡf . ΩA can be thought

of as a “dual” of A; the Fourier map ˆ : A→ ΩΩA

defined by x̂(f) = fx;
f ∼= g ⇔ χf = χg; the sub-objects of A form a bounded lattice, Sub(A) ∼=

Hom(A,Ω). A morphism is an isomorphism ⇔ it is both mono and epi (called
a bi-morphism) (since an epi monomorphism f : A → B is the equalizer of χf
and TrueιB). Every morphism factors as f = gh where h is epi and g is mono
(via the object fA obtained by the pushout of f with itself). The pull-back
of an epimorphism is also epi. Coproducts preserve pullbacks. (implies finite
co-limits also exist)

Every category can be extended to a topos. The product of topoi is a topos.
A comma category C/A of a topos is also a topos; its elements are bundles of
elements (i.e., sections) of A.

Every topos has power objects P (A) := ΩA, meaning objects P (A) and
εA and a monomorphism ∈: εA → P (A) × A such that every relation (i.e.,
monomorphism) r : R → B × A has an associated unique morphism fr : B →
P (A) such that R→ B ×A→ P (A)×A = R→ εA → P (A)×A.

R

εA

A×B

A× P (A)OO

r //

∈ //
OO

Ω ∼= P (1). Conversely every category with finite limits and power objects is a
topos.

2.4.1 Well-pointed topos

A topos that satisfies the extensionality axiom, elements are epi:

∀x : 1→ A, fx = gx ⇒ f = g.

A morphism is mono ⇔ it is 1-1, i.e., fx = fy ⇒ x = y for all x, y : 1→ A.
A morphism is epi ⇔ it is onto, i.e., ∀y : 1→ B, ∃x : 1→ A, fx = y.
The only non-empty object (i.e., without any elements 1→ A) is the initial

object (since χ1A
6= χ0A

). The only elements of Ω are True and False (bivalent),
and Ω ∼= 1+1 (Boolean). In fact a topos is well-pointed ⇔ the only non-empty
object is the initial one, and Ω ∼= 1 + 1.

The arrow category Set→ is neither Boolean nor bivalent; Set2 is Boolean
but not bivalent; the category of actions of a monoid (that is not a group) is
bivalent but not Boolean.

2.4.2 With Axiom of Choice

A category is called balanced when f is an isomorphism ⇔ it is a monomor-
phism and an epimorphism.
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A category satisfies an Axiom of Choice when every epimorphism is right-
invertible (splits). So balanced.

For example, in sets, every monomorphism has a left-inverse, except for
0→ A; the axiom of choice says that every epimorphism has a right-inverse.

Strong Axiom of Choice: ∀f, ∃g, f = fgf .
A topos with the axiom of choice has the localic property: ∃i : C → 1

monomorphism and g1 6= g2 ⇒ ∃f : C → A, g1f 6= g2f .
Also every object has a complement X = A+A′.

2.5 Pre-additive Categories

When Hom(A,B) is an abelian group, distributive over composition of mor-
phisms ie f(g + h) = fg + fh, (f + g)h = fh + gh. (then Hom(A,A) is a
ring)

Can be extended to an Abelian category.

2.5.1 Additive Categories

A pre-additive category with finite products and sums;

2.5.2 Abelian Categories

an additive category in which every morphism has a kernel and a co-kernel
(so there is a zero object), and every monomorphism is a kernel and every
epimorphism is a co-kernel.

2.6 Concrete category

one in which the objects are sets and the morphisms are functions; ie a category
which has a faithful functor C → Sets (called the forgetful functor).

2.6.1 Category of Sets

One can even consider set theory from the categorical point of view with the
following axioms:

1. Sets and functions form a category;

2. Sets have finite limits and co-limits;

3. Sets allow exponentiation;

4. Sets have a sub-object classifier (so form a topos); this is a form of com-
prehension axiom;

5. With a morphism T : 1→ 2;

6. Sets are Boolean in the sense that the truth-value object 2 is given by
1 + 1;
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7. 2 has two elements (up to isomorphism);

8. Axiom of Choice (every epimorphism has a right-inverse);

9. There is an infinite (inductive) set.

It then follows that for every A 6= 0,∃A → 1 epimorphism and ∃x : 1 → A
morphisms (since A → 1 is unique, which gives A → B → 1 where A → B is
an epimorphism; but A 6= 0 ⇒ B 6= 0, so B = 1; the axiom of choice gives a
morphism x : 1 → A); every monomorphism A → B induces a “complement”
monomorphism A′ → B (the pullback of B → Ω along F : 1→ Ω).

3 Research Questions

Most grand questions in pure mathematics are of the following type:
1. Syntax: given a set of mathematical structures/examples, to find a mini-

mal set of axioms common to all.
2. Semantics: given a set of axioms, to discover all mathematical examples

satisfying them; classify all possible spaces X in a category i.e., give a concrete
description of the spaces, up to isomorphism.

This problem may be too hard or even impossible to answer, so the first
attempt is to restrict X to the smaller ones, or else ask an easier question

2a. Find a way of distinguishing spaces: given any two spaces X, Y is there
a way of showing whether they are isomorphic or not?

2b. Can one show whether X is isomorphic to a known space?
2c. In particular is X isomorphic to the trivial space?


