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1 Objects and Morphisms

A category is a class of objects A with morphisms f : A — B (a way of
comparing/substituting/mapping/processing A to B) such that,

(i) given morphisms f: A — B, g: B — C, gf : A — C is also a morphism,
(ii) for compatible morphisms, h(gf) = (hg)f, and
(iii) each object A has a morphism a : A — A satisfying af = f, ga = g.

(Note: in a sense, an object A is the morphism a; so we can even do away with
objects.)

Sets can be considered as 0-categories (only objects or elements), or as dis-
crete categories with each object A having one morphism a.

The class of morphisms from A to B is denoted Hom(A, B); thus Hom(A, A)
is a monoid.

Even at this abstract level there are at least three important categories:

1. logic (with statements as objects and = as morphisms),
2. sets (with functions as morphisms),

3. computing (with data types and algorithms).

1.1 Morphisms

A monomorphism f: A — B satisfies
VC, Vx,y € Hom(C, A), fz=fy = x=y.
_x f
An epimorphism f: A — B satisfies
VC, Vx,y € Hom(B,C), zf=yf = xz=y.
f z
A—B ? C

1. In particular, for a monomorphism f, fg = f = ¢ = 14; for an epimor-
phism gf = f = g=1p.
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2. The composition of monomorphisms is a monomorphism, and of epimor-
phisms an epimorphism.

3. Conversely, if fg is a monomorphism then so is g, and if it is an epimor-
phism then so is f.

A monomorphism f : A — B is also called a sub-object of B. Monomor-
phisms with the same codomain have a pre-order: let f < g for f : A — C,
g: B — C when f = gh for some (mono)morphism h : A — B;

Y
"7

It can be made into a poset by using the equivalence relation f = g when
f<g< /.

An isomorphism is an invertible morphism, i.e., f has an inverse g such that
fg=1B,9f =ta. In this case, A and B are called isomorphic (an equivalence
relation); iff f < g < f. An isomorphism f: A — A is called an automorphism;
for example, any ¢ 4; the automorphisms of A form a group.

If gf = ¢ then f is called a split monomorphism or section (has a left-inverse),
and g a split epimorphism or retraction (has a right-inverse). A morphism with
left and right inverses is an isomorphism (since then, g1 = g1 fg2 = g2).

An extremal monomorphism is a monomorphism f such that the only way
f = ge with e an epimorphism is that e is an isomorphism (and g a monomor-
phism). An extremal epimorphism is an epimorphism f such that f = eg with
e a monomorphism = e is an isomorphism (and g an epimorphism). Thus a
monomorphism which is an extremal epimorphism, or an epimorphism which is
an extremal monomorphism, is an isomorphism.

Let f L g mean gz = yf = Jux =uf,y = gu. A strong monomorphism
is one such that Epi L f.

Isomorphisms C SplitMono C StrongMono C ExtremalMono C Monomorphisms
Isomorphisms C SplitEpi C StrongEpi C ExtremalEpi C Epimorphisms

Proof. If f is a split monomorphism with ¢gf = ¢, then f is a monomorphism
and g an epimorphism. If f = hk with £ an epimorphism, then ghk = ¢+ and
kghk = k, so kgh = ¢; thus k has the inverse gh.

If f = ge is a strong monomorphism and e epi, then e L f, so fv = ge =
Ju ¢t = ue,g = fu. So e is split and an epi, hence an isomorphism.

A morphism f : A — A is called idempotent when f? = f; for example, the
split idempotents f = gh where hg = ¢.

An object is called finite, when every monomorphism f : A — A is an
automorphism. In particular, if B C A = B then A = B.

Example: For Sets, a monomorphism is a 1-1 function; an epimorphism is an
onto function; such functions are automatically split; an isomorphism is thus a
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bijective function; isomorphic sets are those with the same number of elements;
a set is finite in the category sense when it is finite in the set sense.

Functors (or actions) are maps between categories that preserve the mor-
phisms (and so the objects),

Ff:FA—FB, Fua=1.pa, F(fg)=FfFg

They preserve isomorphisms.

1.2 Constructions

Subcategory: a subset of the objects and morphisms; a full subcategory is a
subset of the objects, with all the corresponding morphisms.

Dual category: C’ has the same objects but with reversed morphisms
fT:B — A and ¢"f7 := (fg)"; so C"” = C. Every concept in a theorem
has a co-concept in its dual (eg monomorphisms correspond to epimorphisms);
every theorem in a category has a dual theorem in the dual category. A functor
between dual categories is called a dual functor; a functor from a dual category
to a category is called contra-variant, F(fg) = F(g)F(f).

A dagger category is one for which there is a functor t: C — C’, where

(fo)t =o't fi=r.
(Set cannot be made into a dagger category because there is a morphism @ — 1
but not vice-versa).

Product of Categories: C x D the objects are pairs (X,Y) with X € C
and Y € D, and the morphisms are (f, g), where

(f1,91)(f2, 92) = (fif2, 9192),  vxyy = (tx,ty).
The projection functors are C x D = C, (f,g) — f,and C xD —= D, (f,9) — g.
(CxD) ~C' xD

(The product is the categorical product in Category)

Quotient Category: given a category and an equivalence relation on mor-
phisms (of same objects) ~, then C/ ~ is that category with the same objects
and with equivalence classes of morphisms. The map C — C/ ~ defined by
F:Aw— A, f—[f],is a functor.

Arrow Category: C— consists of the morphisms of C (as objects), with
the morphisms f — ¢ being pairs of morphisms (h, k), such that kf = gh,

f

g

and composition (hq, k1)(ha, k2) := (h1ha, k1ke), and identities (¢4, ¢p). Monomor-
phisms are those pairs (h, k) where h and k are monomorphisms. For example,
the arrow category of sets is the category of functions.
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Slice Category (or comma category): C | B is the subcategory where the
morphisms have the same codomain B and k& = ¢; the morphisms simplify to h
where f = gh; similarly for the morphisms with the same domain. An object
A is called projective when every morphism f : A — B factors through any
epimorphism g : C — B, f = gh. Dually, A is called injective when f: B — A
factors through any monomorphism f = hg.

1.3 Functors

Functors can be thought of as higher-morphisms acting on objects and mor-
phisms; or as a model of C in D.

(Examples: the constant functor, mapping objects to a single one, and mor-
phisms to its identity; the mapping from a subcategory to the parent category;
forgetful functor (when structure is lost) and inclusion functor (when struc-
ture is added, minimally); the mapping which sends A to the set Hom(B, A)
and a morphism f to the function g — f o g is a functor from any category
to the category of sets; similarly for A — Hom(A, B) and f — (g — go f)
(contra-variant).)

A functor is called faithful when it is 1-1 on morphisms (and hence objects) It
is full when it is onto all morphisms in Hom(F A, F'B); it is called dense, when
it is onto all objects up to isomorphism. It is an isomorphism on categories
when it is bijective on the morphisms Hom(F A, FB). A dense isomorphism is
called an equivalence, and the two categories are said to be equivalent A ~ B.

A (left) adjoint of a functor is F* : D — C with natural isomorphisms e, 4
such that e : FF* — 1,i: 1 — F*F and Hom(F*A, B) ~ Hom(A, F'B); hence
(FG)* = G*F*. (For example, a forgetful functor and inclusion functor are
adjoints, with 7 being the embedding)

2-Categories: Categories with functors as morphisms form a Category;
the identity functor is the one which leaves objects and morphisms untouched;
(there is an initial object namely @, and a terminal object, {.} It has the
additional structure of a 2-functor, called a “natural transformation” (or
‘homotopy’), between functors on the same categories, 7 : F — G; two such
functors map an object A € C to two objects FA and GA in D, and a natural
transformation determines a morphism 74 : FFA — G A between the two, such
that Vf : A — B,(Gf)ta = 78(Ff) (so Ff ~ Gf). A natural isomorphism is
a natural transformation for which 74 are isomorphisms.

With these notions, two categories are equivalent when there are functors
F and F* such that F*F ~ 1, FF* ~ 1 (or equivalently when F and F* are
isomorphisms with F*F ~ 1). The auto-equivalences of a category form a
symmetric monoidal category.

More generally, a 2-category is a set of objects A, with morphisms f : A — B,
and 2-morphisms 7 : f; — fo (for some f1, fo € Hom(A, B)); 2-morphisms can
be combined either “vertically” by composition mo71, (and must be associative,
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with an identity), or “horizontally” oo 7: gf — o(g)7(f), such that

ToT) © 0201 = (02 0 T2) (01 0 71).

A 2-category with 1 object gives rise to a monoidal category (of the morphisms
and 2-morphisms of the object); a 2-category with 1 object and 1 morphism
gives a commutative monoid (of 2-morphisms).

The functors themselves form a category D¢ where morphisms are the nat-
ural transformations. C! ~ C; C? is the category of arrows on C.

2 Limits

When a category maps under a functor F' : C — D to another category, the
image of an object may have morphisms that were not present in C; an object
A € D may sometimes determine a unique (up to isomorphism) object (called
a universal) Uy in C, which makes F'(U4) closest to A in the sense that there
is a unique morphism ¢4 : F(Us) — A, such that

Vf:F(B)— A 3lg: B—Ua, f=0¢aF(g).

Ua F(Uya) .
A A A
| | \
g F(g) | LA
| | —
| | —~ /f
B F(B)

A co-universal is similarly an object U4 € C with a morphism ¢4 : A —
F(Uy) such that Vf : A — F(B),3lg:Us — B, f = F(g)pa.

In particular, sub-categories C may have universal properties:

Terminal object 1: VA,3!f : A — 1 (for the empty sub-category). Initial
object 0: VA, 3!f : 0 — A.

0—A—1

(0,0) is an initial object in C x D. For example, {0} and @& are the terminal
and initial objects of sets; TRUE and FALSE are the ones for logic.
Isomorphism The closest objects for an object A with its identity morphism
(the category 1), are its isomorphic copies. For example, sets with the same
cardinality are isomorphic, while statements A < B are so in logic.
Products: For the subcategory 2 (with only the identity morphisms), the
closest object of A and B is A x B, with morphisms 74 : Ax B — A, 7 :
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A x B — B such that any other morphisms py : C — A, pp : C — B factor
out through a unique morphism ¢g: C' — A X B, ps = mag, pp = TBY.

pa __——zA

IXxAZ A AxBYEBXxA; (AxB)x(C=Ax (BxC().

For example, the usual product A x B, and the statement A AND B are the
products for sets and logic respectively.

More generally, starting with a discrete category, the closest object of A; is
[L; Ai, with 7; : [, A; — A; ie., if p; : X — A; are morphisms then there is a
morphism h : X — [], A; with p; = m;h. A repeated product gives AC (starting
with a constant functor from a discrete category).

A relation on objects A, B is a monomorphism R: p — A x B.

Sums (or Co-products): [[; A; is the dual of the product in the dual category
i.e., it is the closest object with morphisms 7; : A; — [[; A;. For example, A+ B
(disjoint union) and A OR B.

Equalizer: starting from the category with two objects A, B, and mor-
phisms f; : A — B, their equalizer is the closest object F with (extremal
mono-)morphism

eq: E — A, Vi, j, fieq = fjeq.

eq fl
EF—A—<XB
f2
For example, for Sets, {z : f1(z) = fa(z) }.
Equalizers are monomorphisms: let e = eq, if xe = ye then zxef = zeg, so
Flu, xe = ue, r = u; similarly y = u = x.
Co-equalizer: similarly an (extremal epi-)morphism

coeq:Y — E, Vi, j, coeqf; = coeqf;.

For example, the co-equalizer of a relation on a set X is the partition on it (for
an equivalence relation, this partition is compatible with the relation).

Pullback (fibre product): starting from the category with objects X; and
morphisms f; : X; — Z, then the pullback is the (unique...) closest object
[1, X; with morphisms

ﬂ—i:HXi_>Xi7 fi’ﬂ'izﬂ'z.
Z
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N
AXZB A

DN

The equalizer is a special case when the morphisms start from the same object.
If Z is the terminal object, then [[, X; =[], X;. For example, the pullback on
sets is X xz Y = {(z,y) : f(x) = g(y) }; in particular when g is the identity,
X xzY =f71Y.

Pullback lemma: pullbacks form squares (X xz Y, X, Z)Y); if two adjacent
squares form pullbacks, then so does the outer rectangle; if the outer rectangle
and the right (or bottom) square are pullbacks, then so is the left (or upper)
square.

Pullbacks preserve monomorphisms: If fu = vg with f mono, and gz = gy,
then fux = vgxr = vgy = fuy, so ur = uy and x = y by uniqueness of pullbacks.

Push-out is that closest object [ [, X; with

T X — HXZ', Tifi =Tz.
z

For example, for sets, the push-out X Uz Y is the set X UY with the elements
f(z) € X and ¢g(z) € Y identified.

Inverse Limit: starting from the subcategory of a chain of objects A; with
morphisms f;; (such that fy; = fx ;fj:), the inverse limit is the closest object
lim_ A; with morphisms

v hmA, —)Ai, T :fj,iﬂ-ﬁ
—

fi2

i oo f
hinAz c A — 25 A, Ay

(More generally, can start with a topology of objects rather than a chain.) The
pullback is a special case. For example, the inverse limit of sets X; is the set of
sequences x; € X; such that x; = f”(xz)

Co-limit (Direct Limit) is similar with lim_, A; and morphisms

T, AlﬁhmAl, Wi:ﬂjfj,i-
—
More generally, for any subcategory, or any functor, F' : C — D there may
be a limit object lim F' in D with (unique) morphisms 74 : lim F — A (A € C)
such that for any f: A— B, A,B€C,
Jma=mp
. TA f
limF—A—B

7B
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and it is the closest such object in the sense that for any other C' € D with
fpa=pp then Fu: C — lim F,mqu = py. A limit, if it exists, is unique up to
isomorphism.

A co-limit is similar with f4 : F/(A) — colimF such that

Vf:A— B, fsF(f)=fa.

In general, any functor from a category with an initial object to C has a
limit; and any functor from a category with a terminal object has a co-limit.

A complete category is one in which every subcategory (or functor) has a
limit. For example, the category of sets is complete and co-complete.

So, every functor has an adjoint F™* : D — C mapping A — Uy and f +— g;
so that F'F* ~ 1, and similarly F*F ~ 1.

A functor is said to be continuous when it preserves limits (e.g. right-
adjoints) i.e., VG, lim(FG) = F(lim G). Tt is co-continuous (e.g. left-adjoints)
when it preserves co-limits.

The existence of products A x B and equalizers implies the existence of all
finite limits. The Hom(A,.) functor is continuous, so it represents these limits
by sets (and Hom(., A) takes colimits to limits).

A family of zero morphisms 0 are such that

vf,g, 0f=g0

for example, when 0 = 1 (called a zero object), 0 : A — 0 — B are zero
morphisms.

In this case, the kernel of a morphism is the equalizer of f and 0 i.e., the
closest (mono)morphism &k : K — A such that fk = 0.

& !
K%A?B

The co-kernel is the co-equalizer ie the closest (epi)morphism k' : B — K’ such
that k'f = 0.

A pre-sheaf is a contra-variant functor from a pre-order (or topology) to
a category F' : O — C (the F(x) are called sections of F over x) such that
r <y = there is a restriction morphism F'(x) — F(y) with res, , = tp(,) and
TEYKZ = TeSy res, , = res, ;.

A sheaf is a continuous pre-sheaf (preserves limits). On a topological space
X, the stalk at x € X is the direct limit of the open neighborhoods of x. So
there is a morphism F(U) — F, for « € U open (if the morphism is a function
f — fz, where f, is called the germ at x). The etale space E is the space of
stalks, with the continuous map F — X, F, — x. (the set of sheaves form
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a topos, with Q = the disjoint union of all open sets) The space F is locally
homeomorphic to X (i.e., there are isomorphic open sets in E and X that cover
F, and x).

For example, a sheaf of sets is a bundle, i.e., a collection of disjoint sets A;
with a map 7 : |J; A; — I, 71 (i) = A;; the category of bundles over [ is the
same as the comma category.

2.1 Monoidal Categories

Objects have an associative functor tensor product AQ B and an object I (called
unit) such that
TQRAZAZARI

(A9B)®C = A® (B®C)
(A)® B2 A® B2 A® (I ® B)

(the isomorphisms in the first two lines are called the two unitor and one as-
sociator natural isomorphisms; more generally, any product of n objects are
isomorphic to each other). Product of morphisms f® g: A® B— C ® D.

The tensor product is like treating two objects in parallel; so a morphism
fiA®...9B = C®...®D takes n objects and “maps” them to m objects, and
looks like a Feynman diagram. The unit object is null, so f : I — A “creates”
one object. The tensor product is different from the categorical product in that
there need not be projections.

The morphisms Hom(I,I) now have two operations: (f ® g)(h ® k) =
(fh) ® (gk); but from universal algebras, this implies that f ® g = fg and
is commutative.

Set with x is monoidal (in fact cartesian-closed); Set with disjoint union is
also monoidal.

The (right) dual of an object A is another object A* (unique up to isomor-
phism), such that there are “annihilation/creation” morphisms

AR A* = 1, I—-A"® A,
A*:>
A
called the co-unit of A and the unit of A, respectively, satisfying the zig-zag
equations, i.e., creating then annihilating A and A* leaves nothing I; (A* can

be represented as a line in the opposite direction of A; A is called the left dual
of A*).

2.1.1 Braided Monoidal categories

A monoidal category in which there is a natural isomorphism that switches

objects around,
A® B~ B® A,



JOSEPH MUSCAT 2015 10

A B
X
%
B A
such that all permutations of products become isomorphic, e.g. (A® B) ® C =

C® (B A), ie,
é C
A
XA
C B

It need not be its own inverse! Its inverse is:

Left duals are duals.
A braided monoidal category is called symmetric when the switching iso-
morphism is its own inverse.

2.2 Closed Monoidal Categories

A monoidal category is closed when every set of morphisms Hom(A, B) has an
associated object B4, with

Hom(A ® B,C) = Hom(B, C*)

(or alternatively Hom(A ® B, C) = Hom(A,CP)) (via “currying” natural iso-
morphisms). That is, every morphism can be treated as an object (without
inputs). In particular f : A — B is associated to I — B4.

For example, in sets, the powerset axiom asserts that Hom(A, B) is a set
B4; in logic the distinction is between the morphism A + B and the object
A = B.

A monoidal category is compact (or autonomous) when every object has
a dual and a left dual. In this case it is closed, with AP := B* ® A, i.e.,
A* 2 Hom(A, I); in particular the unit I corresponds to a unit inside A* ® A.

The reverse of currying, changing an object into a morphism, is an evaluation
morphism

eval : A® BA — B, eval(f ®ta) = f.
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BA
(So morphisms of two variables become morphisms of one variable.)

For example, in sets (and functional programming languages), eval(f, x) =
f(x); in logic, it is modus ponens, A and A = B gives B.

2.3 Cartesian-closed categories

Finite products exist and are closed, i.e., every functor x A has a right-adjoint
A called exponentiation,

Hom(A x B,C) = Hom(B, C*)

This means that every morphism f : [[; A; — C can be represented by an
ordered set of morphisms f; : A; — C.

It is thus symmetric braided monoidal, with ® being x and the unit being
the terminal object 1; but has more properties in that it can duplicate objects
via A: A — A x A; and delete objects by mapping to 1, i.e., ! : A — 1; every
morphism f:1— A x B is of the type (1,1): 1 = A,1 — B.

(e.g. the adjoint of X — (X, X) is (X,Y)—» X xY.)

fxg:Ax B — C x D can be defined as that unique morphism induced by
fma,gnp. In particular, (14,1p) = lgxp. Similarly, can define the sum f + g.

2.3.1 Evaluation
eval : A x BA — B, eval(f x ta) = f.

An element or point of A is a morphism z : 1 — A; so eval(f,z) = fx.

In particular a morphism f : A — B corresponds to an element 1 — B4
(called the name of f).

In such categories, dual concepts lose their symmetry:

There are no morphisms A — 0 unless A = 0, in particular if 0 = 1, then all
objects are isomorphic; 0 — A is monic.

O0x A0, A=A A~1 14>1

(proofs: there is only one morphism 0 — B4, so only one morphism 0 x A — B
so 0 20xA and A - 0x A= 0 — A forces them to be isomorphisms;
eval : A1 = A is an isomorphism; 1 — A° corresponds to 0 22 1 x 0 — A which
is unique, so 1 — A% and A° — 1 are inverses; 14 — 1 must be ¢ and 1 — 14
corresponds to A — 1 also unique; any map B — 0 is a unique isomorphism so

fg=fh = g=nh)

XATE o x4 XB, (A x B)® = A° x B®,
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(CHB =B X x(A+B)2XxA+XxB

(Proofs: the inclusions A, B — A + B give XAT8 — X4 x XB; conversely,
XA x XB — XA*tB correspond to A+ B — XXX i.e., to two inclusion
maps, and hence the projections X4 x X2 — X4, X5,

The projections A x B — A, B give rise to a map (A x B)¢ — A% x B its
inverse is A x BY — (A x B)® which corresponds to C x A x B¢ - A x B
ie., to C x A x B¢ — A, B, i.e., the projections A® x B¢ — A¢ B¢,

CAXB — (C4)B corresponds to B x CA*XB — C4 i.e., the evaluation map
Ax B x CA*B — X similarly (C4)2 — C4*8 corresponds to the double
evaluation B x A x (C*)8 — C.;

The maps A+ B — (X x A+ X x B)X correspond to the inclusions X x
A, X X B— X x A+ X x B) There is a functor mapping morphisms f : X; —
Xy to Ff : X — XJ defined by (Ff)g = fg for g : Y — X;. There is
another contra-variant functor (restriction?) mapping morphisms f : Y7 — Y3
to Ff : XYz — X1 defined by (Ff)g = gf.

2.4 Topos

A category with finite limits, exponentials (i.e., cartesian-closed), and a sub-
object classifier.

A sub-object classifier is an object € (unique up to isomorphism) and a
morphism True : 1 — Q such that monomorphisms f : A — B (“sub-objects”)
correspond to unique morphisms

Xf:B—=Q, Xff=A—=-1=0Q

In particular True corresponds to XTrue = to, and the unique monomorphism
0 — Q corresponds to a morphism —:  — ; hence False := -True: 1 — Q.
For example, for sets () = 2; sub-objects B : I — X correspond to subsets
B C X; subsets are maps A — 2 and correspond to the characteristic maps
xa:1— 24 a singleton is a map A — 24,
Other logical connectives are defined in terms of their characteristic maps:

AND :Qx Q —Q (True, True) : 1 — Q x Q
OR : Q2 x Q — Q| (Trueq,tq), (ta, Trueq) : Q@+ Q — Q x Q
=:0x0—>Q |2 QxQ(where 2 is the category 0 < 1)
complement of f -Xf
intersections fNyg Xfng := Xf AND Xg4
untons fUg Xfug = Xf OR Xg4-
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But there may be several truth values, i.e., {2 may have several elements 1 — (,
not just True and False.

Q is injective, i.e., for any monomorphism f : A — B and any morphism
g: A — Q, there is a morphism g : B — Q such that g = gf. Q4 can be thought
of as a “dual” of A; the Fourier map " : A — Q%" defined by &(f) = fx;

f =g & x5 = Xg; the sub-objects of A form a bounded lattice, Sub(A) =
Hom(A, ). A morphism is an isomorphism < it is both mono and epi (called
a bi-morphism) (since an epi monomorphism f : A — B is the equalizer of x
and Truetp). Every morphism factors as f = gh where h is epi and ¢ is mono
(via the object fA obtained by the pushout of f with itself). The pull-back
of an epimorphism is also epi. Coproducts preserve pullbacks. (implies finite
co-limits also exist)

Every category can be extended to a topos. The product of topoi is a topos.
A comma category C/A of a topos is also a topos; its elements are bundles of
elements (i.e., sections) of A.

Every topos has power objects P(A) := Q4, meaning objects P(A) and
€4 and a monomorphism €: €4 — P(A) x A such that every relation (i.e.,
monomorphism) r : R — B x A has an associated unique morphism f,. : B —
P(A) such that R—+ B x A— P(A)x A=R — ¢4 — P(A) x A.

€4 —S= A x P(A)

T f

R u Ax B

Q = P(1). Conversely every category with finite limits and power objects is a
topos.

2.4.1 'Well-pointed topos

A topos that satisfies the extensionality axiom, elements are epi:
Ve:1— A fr=9gx = f=g.

A morphism is mono < itis1-1,i.e., fr = fy = z=yforallz,y:1— A.

A morphism is epi < it is onto, i.e., Vy:1 — B, dx:1 = A, fxr =y.

The only non-empty object (i.e., without any elements 1 — A) is the initial
object (since x1, # Xo,)- The only elements of Q are True and False (bivalent),
and Q = 1+1 (Boolean). In fact a topos is well-pointed < the only non-empty
object is the initial one, and Q2 = 1 + 1.

The arrow category Set™ is neither Boolean nor bivalent; Set? is Boolean
but not bivalent; the category of actions of a monoid (that is not a group) is
bivalent but not Boolean.

2.4.2 With Axiom of Choice

A category is called balanced when f is an isomorphism < it is a monomor-
phism and an epimorphism.
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A category satisfies an Axiom of Choice when every epimorphism is right-
invertible (splits). So balanced.

For example, in sets, every monomorphism has a left-inverse, except for
0 — A; the axiom of choice says that every epimorphism has a right-inverse.

Strong Axiom of Choice: Vf,3g, f = fgf.

A topos with the axiom of choice has the localic property: Ji : C — 1
monomorphism and g1 #go = 3f:C = A, q1f # gof.

Also every object has a complement X = A + A'.

2.5 Pre-additive Categories

When Hom(A, B) is an abelian group, distributive over composition of mor-
phisms ie f(g + h) = fg+ fh,(f + g)h = fh + gh. (then Hom(A, A) is a

ring)
Can be extended to an Abelian category.

2.5.1 Additive Categories

A pre-additive category with finite products and sums;

2.5.2 Abelian Categories

an additive category in which every morphism has a kernel and a co-kernel
(so there is a zero object), and every monomorphism is a kernel and every
epimorphism is a co-kernel.

2.6 Concrete category

one in which the objects are sets and the morphisms are functions; ie a category
which has a faithful functor C — Sets (called the forgetful functor).

2.6.1 Category of Sets

One can even consider set theory from the categorical point of view with the
following axioms:

1. Sets and functions form a category;
2. Sets have finite limits and co-limits;
3. Sets allow exponentiation;

4. Sets have a sub-object classifier (so form a topos); this is a form of com-
prehension axiom;

5. With a morphism 7": 1 — 2;

6. Sets are Boolean in the sense that the truth-value object 2 is given by
1+1;
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7. 2 has two elements (up to isomorphism);
8. Axiom of Choice (every epimorphism has a right-inverse);
9. There is an infinite (inductive) set.

It then follows that for every A # 0,4A — 1 epimorphism and 9z : 1 — A
morphisms (since A — 1 is unique, which gives A — B — 1 where A — B is
an epimorphism; but A #0 = B # 0, so B = 1; the axiom of choice gives a
morphism x : 1 — A); every monomorphism A — B induces a “complement”
monomorphism A’ — B (the pullback of B —  along F': 1 — Q).

3 Research Questions

Most grand questions in pure mathematics are of the following type:

1. Syntax: given a set of mathematical structures/examples, to find a mini-
mal set of axioms common to all.

2. Semantics: given a set of axioms, to discover all mathematical examples
satisfying them; classify all possible spaces X in a category i.e., give a concrete
description of the spaces, up to isomorphism.

This problem may be too hard or even impossible to answer, so the first
attempt is to restrict X to the smaller ones, or else ask an easier question

2a. Find a way of distinguishing spaces: given any two spaces X, Y is there
a way of showing whether they are isomorphic or not?

2b. Can one show whether X is isomorphic to a known space?

2c¢. In particular is X isomorphic to the trivial space?



