Categories

joseph.muscat@um.edu.mt 1 December 2012

1 Objects and Morphisms

A category is a class of *objects* A with *morphisms* $f : A \to B$ (a way of comparing/substituting/mapping/processing A to B) such that,

- (i) given morphisms $f: A \to B, g: B \to C, gf: A \to C$ is also a morphism,
- (ii) for compatible morphisms, h(gf) = (hg)f, and

(iii) each object A has a morphism $a: A \to A$ satisfying af = f, ga = g.

(Note: in a sense, an object A is the morphism a; so we can even do away with objects.)

Sets can be considered as 0-categories (only objects or elements), or as discrete categories with each object A having one morphism a.

The class of morphisms from A to B is denoted Hom(A, B); thus Hom(A, A) is a monoid.

Even at this abstract level there are at least three important categories:

- 1. logic (with statements as objects and \Rightarrow as morphisms),
- 2. sets (with functions as morphisms),
- 3. computing (with data types and algorithms).

1.1 Morphisms

A monomorphism $f : A \to B$ satisfies

$$\forall C, \ \forall x, y \in \operatorname{Hom}(C, A), \quad fx = fy \ \Rightarrow \ x = y.$$

$$C \xrightarrow[y]{x} A \xrightarrow{f} B$$

An **epimorphism** $f : A \to B$ satisfies

$$\forall C, \ \forall x, y \in \operatorname{Hom}(B, C), \quad xf = yf \ \Rightarrow \ x = y.$$

$$A \xrightarrow{f} B \xrightarrow{x} C$$

1. In particular, for a monomorphism $f, fg = f \Rightarrow g = \iota_A$; for an epimorphism $gf = f \Rightarrow g = \iota_B$.

- 2. The composition of monomorphisms is a monomorphism, and of epimorphisms an epimorphism.
- 3. Conversely, if fg is a monomorphism then so is g, and if it is an epimorphism then so is f.

A monomorphism $f : A \to B$ is also called a *sub-object* of B. Monomorphisms with the same codomain have a pre-order: let $f \leq g$ for $f : A \to C$, $g : B \to C$ when f = gh for some (mono)morphism $h : A \to B$;

$$A f \\ h_{\forall \not g} C$$

It can be made into a poset by using the equivalence relation $f \cong g$ when $f \leq g \leq f$.

An **isomorphism** is an invertible morphism, i.e., f has an inverse g such that $fg = \iota_B, gf = \iota_A$. In this case, A and B are called *isomorphic* (an equivalence relation); iff $f \leq g \leq f$. An isomorphism $f : A \to A$ is called an *automorphism*; for example, any ι_A ; the automorphisms of A form a group.

If $gf = \iota$ then f is called a *split monomorphism* or *section* (has a left-inverse), and g a *split epimorphism* or *retraction* (has a right-inverse). A morphism with left and right inverses is an isomorphism (since then, $g_1 = g_1 fg_2 = g_2$).

An extremal monomorphism is a monomorphism f such that the only way f = ge with e an epimorphism is that e is an isomorphism (and g a monomorphism). An extremal epimorphism is an epimorphism f such that f = eg with e a monomorphism $\Rightarrow e$ is an isomorphism (and g an epimorphism). Thus a monomorphism which is an extremal epimorphism, or an epimorphism which is an extremal monomorphism.

Let $f \perp g$ mean $gx = yf \Rightarrow \exists u \ x = uf, y = gu$. A strong monomorphism is one such that Epi $\perp f$.

 $Isomorphisms \subseteq SplitMono \subseteq StrongMono \subseteq ExtremalMono \subseteq Monomorphisms \\ Isomorphisms \subseteq SplitEpi \subseteq StrongEpi \subseteq ExtremalEpi \subseteq Epimorphisms$

Proof. If f is a split monomorphism with $gf = \iota$, then f is a monomorphism and g an epimorphism. If f = hk with k an epimorphism, then $ghk = \iota$ and kghk = k, so $kgh = \iota$; thus k has the inverse gh.

If f = ge is a strong monomorphism and e epi, then $e \perp f$, so $f\iota = ge \Rightarrow \exists u \ \iota = ue, g = fu$. So e is split and an epi, hence an isomorphism.

A morphism $f: A \to A$ is called *idempotent* when $f^2 = f$; for example, the split idempotents f = gh where $hg = \iota$.

An object is called *finite*, when every monomorphism $f : A \to A$ is an automorphism. In particular, if $B \subseteq A \cong B$ then A = B.

Example: For Sets, a monomorphism is a 1-1 function; an epimorphism is an onto function; such functions are automatically split; an isomorphism is thus a

bijective function; isomorphic sets are those with the same number of elements; a set is finite in the category sense when it is finite in the set sense.

Functors (or *actions*) are maps between categories that preserve the morphisms (and so the objects),

$$Ff: FA \to FB, \quad F\iota_A = \iota_{FA}, \quad F(fg) = FfFg$$

They preserve isomorphisms.

1.2 Constructions

Subcategory: a subset of the objects and morphisms; a *full subcategory* is a subset of the objects, with all the corresponding morphisms.

Dual category: C' has the same objects but with reversed morphisms $f^{\top} : B \to A$, and $g^{\top}f^{\top} := (fg)^{\top}$; so C'' = C. Every concept in a theorem has a co-concept in its dual (eg monomorphisms correspond to epimorphisms); every theorem in a category has a dual theorem in the dual category. A functor between dual categories is called a *dual functor*; a functor from a dual category to a category is called *contra-variant*, F(fg) = F(g)F(f).

A dagger category is one for which there is a functor $\dagger : \mathcal{C} \to \mathcal{C}'$, where

$$(fg)^{\dagger} = g^{\dagger}f^{\dagger}, f^{\dagger\dagger} = f.$$

(Set cannot be made into a dagger category because there is a morphism $\emptyset \to 1$ but not vice-versa).

Product of Categories: $\mathcal{C} \times \mathcal{D}$ the objects are pairs (X, Y) with $X \in \mathcal{C}$ and $Y \in \mathcal{D}$, and the morphisms are (f, g), where

$$(f_1, g_1)(f_2, g_2) := (f_1 f_2, g_1 g_2), \quad \iota_{(X,Y)} = (\iota_X, \iota_Y).$$

The projection functors are $\mathcal{C} \times \mathcal{D} \to \mathcal{C}$, $(f, g) \mapsto f$, and $\mathcal{C} \times \mathcal{D} \to \mathcal{D}$, $(f, g) \mapsto g$.

 $(\mathcal{C} \times \mathcal{D})' \sim \mathcal{C}' \times \mathcal{D}'$

(The product is the categorical product in Category)

Quotient Category: given a category and an equivalence relation on morphisms (of same objects) \sim , then \mathcal{C}/\sim is that category with the same objects and with equivalence classes of morphisms. The map $\mathcal{C} \to \mathcal{C}/\sim$ defined by $F: A \mapsto A, f \mapsto [f]$, is a functor.

Arrow Category: $\mathcal{C}^{\rightarrow}$ consists of the morphisms of \mathcal{C} (as objects), with the morphisms $f \rightarrow g$ being pairs of morphisms (h, k), such that kf = gh,

and composition $(h_1, k_1)(h_2, k_2) := (h_1h_2, k_1k_2)$, and identities (ι_A, ι_B) . Monomorphisms are those pairs (h, k) where h and k are monomorphisms. For example, the arrow category of sets is the category of functions.

Slice Category (or comma category): $C \downarrow B$ is the subcategory where the morphisms have the same codomain B and $k = \iota$; the morphisms simplify to h where f = gh; similarly for the morphisms with the same domain. An object A is called *projective* when every morphism $f : A \to B$ factors through any epimorphism $g : C \to B$, f = gh. Dually, A is called *injective* when $f : B \to A$ factors through any monomorphism f = hg.

1.3 Functors

Functors can be thought of as higher-morphisms acting on objects and morphisms; or as a model of C in D.

(Examples: the *constant* functor, mapping objects to a single one, and morphisms to its identity; the mapping from a subcategory to the parent category; forgetful functor (when structure is lost) and inclusion functor (when structure is added, minimally); the mapping which sends A to the set Hom(B, A) and a morphism f to the function $g \mapsto f \circ g$ is a functor from any category to the category of sets; similarly for $A \mapsto \text{Hom}(A, B)$ and $f \mapsto (g \mapsto g \circ f)$ (contra-variant).)

A functor is called *faithful* when it is 1-1 on morphisms (and hence objects) It is *full* when it is onto all morphisms in Hom(FA, FB); it is called *dense*, when it is onto all objects up to isomorphism. It is an *isomorphism* on categories when it is bijective on the morphisms Hom(FA, FB). A dense isomorphism is called an *equivalence*, and the two categories are said to be equivalent $\mathcal{A} \sim \mathcal{B}$.

A (left) **adjoint** of a functor is $F^* : \mathcal{D} \to \mathcal{C}$ with natural isomorphisms e, i such that $e : FF^* \to 1, i : 1 \to F^*F$ and $\operatorname{Hom}(F^*A, B) \sim \operatorname{Hom}(A, FB)$; hence $(FG)^* = G^*F^*$. (For example, a forgetful functor and inclusion functor are adjoints, with *i* being the embedding)

2-Categories: Categories with functors as morphisms form a Category; the identity functor is the one which leaves objects and morphisms untouched; (there is an initial object namely \emptyset , and a terminal object, $\{.\}$ It has the additional structure of a 2-functor, called a "**natural transformation**" (or 'homotopy'), between functors on the same categories, $\tau : F \to G$; two such functors map an object $A \in C$ to two objects FA and GA in \mathcal{D} , and a natural transformation determines a morphism $\tau_A : FA \to GA$ between the two, such that $\forall f : A \to B, (Gf)\tau_A = \tau_B(Ff)$ (so $Ff \sim Gf$). A *natural isomorphism* is a natural transformation for which τ_A are isomorphisms.

With these notions, two categories are equivalent when there are functors F and F^* such that $F^*F \sim 1, FF^* \sim 1$ (or equivalently when F and F^* are isomorphisms with $F^*F \sim 1$). The auto-equivalences of a category form a symmetric monoidal category.

More generally, a 2-category is a set of objects A, with morphisms $f : A \to B$, and 2-morphisms $\tau : f_1 \to f_2$ (for some $f_1, f_2 \in Hom(A, B)$); 2-morphisms can be combined either "vertically" by composition $\tau_2 \tau_1$, (and must be associative, with an identity), or "horizontally" $\sigma \circ \tau$: $gf \mapsto \sigma(g)\tau(f)$, such that

$$\tau_2\tau_1\circ\sigma_2\sigma_1=(\sigma_2\circ\tau_2)(\sigma_1\circ\tau_1).$$

A 2-category with 1 object gives rise to a monoidal category (of the morphisms and 2-morphisms of the object); a 2-category with 1 object and 1 morphism gives a commutative monoid (of 2-morphisms).

The functors themselves form a category $\mathcal{D}^{\mathcal{C}}$ where morphisms are the natural transformations. $\mathcal{C}^1 \sim \mathcal{C}$; \mathcal{C}^2 is the category of arrows on \mathcal{C} .

2 Limits

When a category maps under a functor $F : \mathcal{C} \to \mathcal{D}$ to another category, the image of an object may have morphisms that were not present in \mathcal{C} ; an object $A \in \mathcal{D}$ may sometimes determine a unique (up to isomorphism) object (called a **universal**) U_A in \mathcal{C} , which makes $F(U_A)$ closest to A in the sense that there is a unique morphism $\phi_A : F(U_A) \to A$, such that

A co-universal is similarly an object $U_A \in \mathcal{C}$ with a morphism $\phi_A : A \to F(U_A)$ such that $\forall f : A \to F(B), \exists !g : U_A \to B, f = F(g)\phi_A$.

In particular, sub-categories \mathcal{C} may have universal properties:

Terminal object 1: $\forall A, \exists ! f : A \to 1$ (for the empty sub-category). **Initial object** 0: $\forall A, \exists ! f : 0 \to A$.

 $0 \longrightarrow A \longrightarrow 1$

(0,0) is an initial object in $\mathcal{C} \times \mathcal{D}$. For example, $\{0\}$ and \emptyset are the terminal and initial objects of sets; TRUE and FALSE are the ones for logic.

Isomorphism The closest objects for an object A with its identity morphism (the category 1), are its isomorphic copies. For example, sets with the same cardinality are isomorphic, while statements $A \Leftrightarrow B$ are so in logic.

Products: For the subcategory 2 (with only the identity morphisms), the closest object of A and B is $A \times B$, with morphisms $\pi_A : A \times B \to A$, $\pi_B :$

 $A \times B \to B$ such that any other morphisms $p_A : C \to A$, $p_B : C \to B$ factor out through a unique morphism $g : C \to A \times B$, $p_A = \pi_A g$, $p_B = \pi_B g$.

 $1 \times A \cong A; A \times B \cong B \times A; (A \times B) \times C \cong A \times (B \times C).$

For example, the usual product $A \times B$, and the statement A AND B are the products for sets and logic respectively.

More generally, starting with a discrete category, the closest object of A_i is $\prod_i A_i$, with $\pi_i : \prod_i A_i \to A_i$ i.e., if $p_i : X \to A_i$ are morphisms then there is a morphism $h : X \to \prod_i A_i$ with $p_i = \pi_i h$. A repeated product gives $A^{\mathcal{C}}$ (starting with a constant functor from a discrete category).

A relation on objects A, B is a monomorphism $R : \rho \to A \times B$.

Sums (or Co-products): $\coprod_i A_i$ is the dual of the product in the dual category i.e., it is the closest object with morphisms $\pi_i : A_i \to \coprod_i A_i$. For example, A+B (disjoint union) and A OR B.

Equalizer: starting from the category with two objects A, B, and morphisms $f_i : A \to B$, their equalizer is the closest object E with (extremal mono-)morphism

eq:
$$E \to A$$
, $\forall i, j, f_i \text{eq} = f_j \text{eq}.$
 $E \xrightarrow{\text{eq}} A \xrightarrow{f_1}_{f_2} B$

For example, for Sets, $\{x : f_1(x) = f_2(x)\}.$

Equalizers are monomorphisms: let e = eq, if xe = ye then xef = xeg, so $\exists !u, xe = ue, x = u$; similarly y = u = x.

Co-equalizer: similarly an (extremal epi-)morphism

$$\operatorname{coeq}: Y \to E, \quad \forall i, j, \ \operatorname{coeq} f_i = \operatorname{coeq} f_j.$$

For example, the co-equalizer of a relation on a set X is the partition on it (for an equivalence relation, this partition is compatible with the relation).

Pullback (fibre product): starting from the category with objects X_i and morphisms $f_i : X_i \to Z$, then the pullback is the (unique...) closest object $\prod_Z X_i$ with morphisms

$$\pi_i: \prod_Z X_i \to X_i, \quad f_i \pi_i = \pi_Z.$$

The equalizer is a special case when the morphisms start from the same object. If Z is the terminal object, then $\prod_Z X_i = \prod_i X_i$. For example, the pullback on sets is $X \times_Z Y = \{(x, y) : f(x) = g(y)\}$; in particular when g is the identity, $X \times_Z Y = f^{-1}Y$.

Pullback lemma: pullbacks form squares $(X \times_Z Y, X, Z, Y)$; if two adjacent squares form pullbacks, then so does the outer rectangle; if the outer rectangle and the right (or bottom) square are pullbacks, then so is the left (or upper) square.

Pullbacks preserve monomorphisms: If fu = vg with f mono, and gx = gy, then fux = vgx = vgy = fuy, so ux = uy and x = y by uniqueness of pullbacks. **Push** out is that closest chieft $\mathbf{U} = \mathbf{V}$ with

Push-out is that closest object $\coprod_Z X_i$ with

$$\pi_i: X_i \to \coprod_Z X_i, \quad \pi_i f_i = \pi_Z.$$

For example, for sets, the push-out $X \cup_Z Y$ is the set $X \cup Y$ with the elements $f(z) \in X$ and $g(z) \in Y$ identified.

Inverse Limit: starting from the subcategory of a chain of objects A_i with morphisms $f_{j,i}$ (such that $f_{k,i} = f_{k,j}f_{j,i}$), the inverse limit is the closest object $\lim_{\leftarrow} A_i$ with morphisms

$$\pi_i : \lim_{\leftarrow} A_i \to A_i, \qquad \pi_j = f_{j,i}\pi_i.$$
$$\lim_{\leftarrow} A_i \xrightarrow{\pi_i} \cdots A_3 \xrightarrow{f_{23}} A_2 \xrightarrow{f_{12}} A_1$$

(More generally, can start with a topology of objects rather than a chain.) The pullback is a special case. For example, the inverse limit of sets X_i is the set of sequences $x_i \in X_i$ such that $x_j = f_{j,i}(x_i)$.

Co-limit (Direct Limit) is similar with $\lim_{\to} A_i$ and morphisms

$$\pi_i: A_i \to \lim A_i, \qquad \pi_i = \pi_j f_{j,i}.$$

More generally, for any subcategory, or any functor, $F : \mathcal{C} \to \mathcal{D}$ there may be a **limit** object lim F in \mathcal{D} with (unique) morphisms $\pi_A : \lim F \to A \ (A \in \mathcal{C})$ such that for any $f : A \to B, A, B \in \mathcal{C}$,

$$f\pi_A = \pi_B$$

$$\lim F \xrightarrow{\pi_A} A \xrightarrow{f} B$$

and it is the closest such object in the sense that for any other $C \in \mathcal{D}$ with $fp_A = p_B$ then $\exists ! u : C \to \lim F, \pi_A u = p_A$. A limit, if it exists, is unique up to isomorphism.

A co-limit is similar with $f_A: F(A) \to \operatorname{colim} F$ such that

$$\forall f: A \to B, \quad f_B F(f) = f_A.$$

In general, any functor from a category with an initial object to C has a limit; and any functor from a category with a terminal object has a co-limit.

A **complete** category is one in which every subcategory (or functor) has a limit. For example, the category of sets is complete and co-complete.

So, every functor has an adjoint $F^* : \mathcal{D} \to \mathcal{C}$ mapping $A \mapsto U_A$ and $f \mapsto g$; so that $FF^* \sim 1$, and similarly $F^*F \sim 1$.

A functor is said to be **continuous** when it preserves limits (e.g. rightadjoints) i.e., $\forall G, \lim(FG) = F(\lim G)$. It is *co-continuous* (e.g. left-adjoints) when it preserves co-limits.

The existence of products $A \times B$ and equalizers implies the existence of all finite limits. The Hom(A, .) functor is continuous, so it represents these limits by sets (and Hom(., A) takes colimits to limits).

A family of **zero morphisms** 0 are such that

$$\forall f, g, \quad 0f = g0$$

for example, when $0 \cong 1$ (called a zero object), $0 : A \to 0 \to B$ are zero morphisms.

$$0 \bigvee \frac{f}{0} \bigvee 0$$

In this case, the *kernel* of a morphism is the equalizer of f and 0 i.e., the closest (mono)morphism $k: K \to A$ such that fk = 0.

$$K \xrightarrow{k} A \xrightarrow{f} B$$

The co-kernel is the co-equalizer is the closest (epi)morphism $k': B \to K'$ such that k'f = 0.

A **pre-sheaf** is a contra-variant functor from a pre-order (or topology) to a category $F : O \to C$ (the F(x) are called *sections* of F over x) such that $x \leq y \Rightarrow$ there is a restriction morphism $F(x) \to F(y)$ with $\operatorname{res}_{x,x} = \iota_{F(x)}$ and $x \leq y \leq z \Rightarrow \operatorname{res}_{y,x}\operatorname{res}_{z,y} = \operatorname{res}_{z,x}$.

A sheaf is a continuous pre-sheaf (preserves limits). On a topological space X, the *stalk* at $x \in X$ is the direct limit of the open neighborhoods of x. So there is a morphism $F(U) \to F_x$ for $x \in U$ open (if the morphism is a function $f \mapsto f_x$, where f_x is called the germ at x). The *etale* space E is the space of stalks, with the continuous map $E \to X$, $F_x \mapsto x$. (the set of sheaves form

a topos, with Ω = the disjoint union of all open sets) The space E is locally homeomorphic to X (i.e., there are isomorphic open sets in E and X that cover F_x and x).

For example, a sheaf of sets is a *bundle*, i.e., a collection of disjoint sets A_i with a map $\pi : \bigcup_i A_i \to I$, $\pi^{-1}(i) = A_i$; the category of bundles over I is the same as the comma category.

2.1 Monoidal Categories

Objects have an associative functor tensor product $A \otimes B$ and an object I (called *unit*) such that

$$I \otimes A \cong A \cong A \otimes I$$
$$(A \otimes B) \otimes C \cong A \otimes (B \otimes C)$$
$$(A \otimes I) \otimes B \cong A \otimes B \cong A \otimes (I \otimes B)$$

(the isomorphisms in the first two lines are called the two *unitor* and one *associator* natural isomorphisms; more generally, any product of n objects are isomorphic to each other). Product of morphisms $f \otimes g : A \otimes B \to C \otimes D$.

The tensor product is like treating two objects in parallel; so a morphism $f: A \otimes \ldots \otimes B \to C \otimes \ldots \otimes D$ takes *n* objects and "maps" them to *m* objects, and looks like a Feynman diagram. The unit object is null, so $f: I \to A$ "creates" one object. The tensor product is different from the categorical product in that there need not be projections.

The morphisms Hom(I, I) now have two operations: $(f \otimes g)(h \otimes k) = (fh) \otimes (gk)$; but from universal algebras, this implies that $f \otimes g = fg$ and is commutative.

Set with \times is monoidal (in fact cartesian-closed); Set with disjoint union is also monoidal.

The (right) **dual** of an object A is another object A^* (unique up to isomorphism), such that there are "annihilation/creation" morphisms

called the *co-unit* of A and the *unit* of A, respectively, satisfying the zig-zag equations, i.e., creating then annihilating A and A^* leaves nothing I; (A^* can be represented as a line in the opposite direction of A; A is called the left dual of A^*).

2.1.1 Braided Monoidal categories

A monoidal category in which there is a natural isomorphism that switches objects around,

$$A \otimes B \cong B \otimes A,$$

such that all permutations of products become isomorphic, e.g. $(A \otimes B) \otimes C \cong C \otimes (B \otimes A)$, i.e.,

It need not be its own inverse! Its inverse is:

The Yang-Baxter equation states

Left duals are duals.

A braided monoidal category is called *symmetric* when the switching isomorphism is its own inverse.

2.2 Closed Monoidal Categories

A monoidal category is **closed** when every set of morphisms Hom(A, B) has an associated object B^A , with

$$\operatorname{Hom}(A \otimes B, C) \cong \operatorname{Hom}(B, C^A)$$

(or alternatively $\operatorname{Hom}(A \otimes B, C) \cong \operatorname{Hom}(A, C^B)$) (via "currying" natural isomorphisms). That is, every morphism can be treated as an object (without inputs). In particular $f: A \to B$ is associated to $I \to B^A$.

For example, in sets, the powerset axiom asserts that Hom(A, B) is a set B^A ; in logic the distinction is between the morphism $A \vdash B$ and the object $A \Rightarrow B$.

A monoidal category is **compact** (or *autonomous*) when every object has a dual and a left dual. In this case it is closed, with $A^B := B^* \otimes A$, i.e., $A^* \cong \text{Hom}(A, I)$; in particular the unit I corresponds to a unit inside $A^* \otimes A$.

The reverse of currying, changing an object into a morphism, is an evaluation morphism

$$eval: A \otimes B^A \to B, \quad eval(f \otimes \iota_A) = f.$$

(So morphisms of two variables become morphisms of one variable.)

For example, in sets (and functional programming languages), eval(f, x) = f(x); in logic, it is modus ponens, A and $A \Rightarrow B$ gives B.

2.3 Cartesian-closed categories

Finite products exist and are closed, i.e., every functor $\times A$ has a right-adjoint A , called exponentiation,

$$\operatorname{Hom}(A \times B, C) \cong \operatorname{Hom}(B, C^A)$$

This means that every morphism $f : \prod_i A_i \to C$ can be represented by an ordered set of morphisms $f_i : A_i \to C$.

It is thus symmetric braided monoidal, with \otimes being \times and the unit being the terminal object 1; but has more properties in that it can *duplicate* objects via $\Delta : A \to A \times A$; and *delete* objects by mapping to 1, i.e., $! : A \mapsto 1$; every morphism $f : 1 \to A \times B$ is of the type $(1, 1) : 1 \to A, 1 \to B$.

(e.g. the adjoint of $X \mapsto (X, X)$ is $(X, Y) \mapsto X \times Y$.)

 $f \times g : A \times B \to C \times D$ can be defined as that unique morphism induced by $f\pi_A, g\pi_B$. In particular, $(1_a, 1_b) = 1_{a \times b}$. Similarly, can define the sum f + g.

2.3.1 Evaluation

$$eval: A \times B^A \to B, \quad eval(f \times \iota_A) = f.$$

An element or point of A is a morphism $x : 1 \to A$; so eval(f, x) = fx.

In particular a morphism $f : A \to B$ corresponds to an element $1 \to B^A$ (called the *name* of f).

In such categories, dual concepts lose their symmetry:

There are no morphisms $A \to 0$ unless $A \cong 0$, in particular if $0 \cong 1$, then all objects are isomorphic; $0 \to A$ is monic.

$$0 \times A \cong 0, \ A^1 \cong A, \ A^0 \cong 1, \ 1^A \cong 1$$

(proofs: there is only one morphism $0 \to B^A$, so only one morphism $0 \times A \to B$ so $0 \cong 0 \times A$, and $A \to 0 \times A \cong 0 \to A$ forces them to be isomorphisms; $eval: A^1 \to A$ is an isomorphism; $1 \to A^0$ corresponds to $0 \cong 1 \times 0 \to A$ which is unique, so $1 \to A^0$ and $A^0 \to 1$ are inverses; $1^A \to 1$ must be ι and $1 \to 1^A$ corresponds to $A \to 1$ also unique; any map $B \to 0$ is a unique isomorphism so $fg = fh \Rightarrow g = h$)

$$X^{A+B} \cong X^A \times X^B, \qquad (A \times B)^C \cong A^C \times B^C,$$

$$(C^A)^B \cong C^{A \times B}, \qquad X \times (A+B) \cong X \times A + X \times B$$

(Proofs: the inclusions $A, B \to A + B$ give $X^{A+B} \to X^A \times X^B$; conversely, $X^A \times X^B \to X^{A+B}$ correspond to $A + B \to X^{X^A \times X^B}$ i.e., to two inclusion maps, and hence the projections $X^A \times X^B \to X^A, X^B$;

The projections $A \times B \to A, B$ give rise to a map $(A \times B)^C \to A^C \times B^C$; its inverse is $A^C \times B^C \to (A \times B)^C$ which corresponds to $C \times A^C \times B^C \to A \times B$ i.e., to $C \times A^C \times B^C \to A, B$, i.e., the projections $A^C \times B^C \to A^C, B^C$; $C^{A \times B} \to (C^A)^B$ corresponds to $B \times C^{A \times B} \to C^A$, i.e., the evaluation map $A \times B \times C^{A \times B} \to X$, similarly $(C^A)^B \to C^{A \times B}$ corresponds to the double

evaluation $B \times A \times (C^A)^B \to C$.;

The maps $A + B \to (X \times A + X \times B)^X$ correspond to the inclusions $X \times X$ $A, X \times B \to X \times A + X \times B$) There is a functor mapping morphisms $f: X_1 \to X$ X_2 to $Ff: X_1^Y \to X_2^Y$ defined by (Ff)g = fg for $g: Y \to X_1$. There is another contra-variant functor (restriction?) mapping morphisms $f: Y_1 \to Y_2$ to $Ff: X^{Y_2} \to X^{Y_1}$, defined by (Ff)g = gf.

$\mathbf{2.4}$ Topos

A category with finite limits, exponentials (i.e., cartesian-closed), and a subobject classifier.

A sub-object classifier is an object Ω (unique up to isomorphism) and a morphism True : $1 \to \Omega$ such that monomorphisms $f : A \to B$ ("sub-objects") correspond to unique morphisms

$$\chi_f: B \to \Omega, \qquad \chi_f f = A \to 1 \to \Omega$$

In particular True corresponds to $\chi_{\text{True}} = \iota_{\Omega}$, and the unique monomorphism $0 \to \Omega$ corresponds to a morphism $\neg : \Omega \to \Omega$; hence False := $\neg True : 1 \to \Omega$.

For example, for sets $\Omega = 2$; sub-objects $B : I \to X$ correspond to subsets $B \subseteq X$; subsets are maps $A \to 2$ and correspond to the characteristic maps $\chi_A: 1 \to 2^A$; a singleton is a map $A \to 2^A$.

Other logical connectives are defined in terms of their characteristic maps:

AND : $\Omega \times \Omega \to \Omega$	(True, True) : $1 \to \Omega \times \Omega$
$\text{OR} : \Omega \times \Omega \to \Omega$	$(\operatorname{True}_{\Omega}, \iota_{\Omega}), (\iota_{\Omega}, \operatorname{True}_{\Omega}) : \Omega + \Omega \to \Omega \times \Omega$
$\Rightarrow:\Omega\times\Omega\to\Omega$	$2 \to \Omega \times \Omega$ (where 2 is the category $0 \leq 1$)
complement of f	$\neg \chi_f$
intersections $f \cap g$	$\chi_{f\cap g} := \chi_f$ and χ_g
unions $f \cup g$	$\chi_{f\cup g} := \chi_f \text{ OR } \chi_g.$

But there may be several truth values, i.e., Ω may have several elements $1 \to \Omega$, not just True and False.

 Ω is injective, i.e., for any monomorphism $f: A \to B$ and any morphism $g: A \to \Omega$, there is a morphism $\overline{g}: B \to \Omega$ such that $g = \overline{g}f$. Ω^A can be thought of as a "dual" of A; the Fourier map $\hat{}: A \to \Omega^{\Omega^A}$ defined by $\hat{x}(f) = fx$;

 $f \cong g \Leftrightarrow \chi_f = \chi_g$; the sub-objects of A form a bounded lattice, $Sub(A) \cong Hom(A, \Omega)$. A morphism is an isomorphism \Leftrightarrow it is both mono and epi (called a bi-morphism) (since an epi monomorphism $f : A \to B$ is the equalizer of χ_f and True_B). Every morphism factors as f = gh where h is epi and g is mono (via the object fA obtained by the pushout of f with itself). The pull-back of an epimorphism is also epi. Coproducts preserve pullbacks. (implies finite co-limits also exist)

Every category can be extended to a topos. The product of topoi is a topos. A comma category C/A of a topos is also a topos; its elements are bundles of elements (i.e., sections) of A.

Every topos has power objects $P(A) := \Omega^A$, meaning objects P(A) and ϵ_A and a monomorphism $\in: \epsilon_A \to P(A) \times A$ such that every relation (i.e., monomorphism) $r: R \to B \times A$ has an associated unique morphism $f_r: B \to P(A)$ such that $R \to B \times A \to P(A) \times A = R \to \epsilon_A \to P(A) \times A$.

$$\begin{array}{ccc} \epsilon_A & \stackrel{\epsilon}{\longrightarrow} A \times P(A) \\ \uparrow & & \uparrow \\ R & \stackrel{r}{\longrightarrow} A \times B \end{array}$$

 $\Omega \cong P(1)$. Conversely every category with finite limits and power objects is a topos.

2.4.1 Well-pointed topos

A topos that satisfies the extensionality axiom, elements are epi:

$$\forall x: 1 \to A, fx = gx \implies f = g.$$

A morphism is mono \Leftrightarrow it is 1-1, i.e., $fx = fy \Rightarrow x = y$ for all $x, y : 1 \to A$. A morphism is epi \Leftrightarrow it is onto, i.e., $\forall y : 1 \to B, \exists x : 1 \to A, fx = y$.

The only non-empty object (i.e., without any elements $1 \to A$) is the initial object (since $\chi_{1_A} \neq \chi_{0_A}$). The only elements of Ω are *True* and *False* (bivalent), and $\Omega \cong 1+1$ (Boolean). In fact a topos is well-pointed \Leftrightarrow the only non-empty object is the initial one, and $\Omega \cong 1+1$.

The arrow category Set^{\rightarrow} is neither Boolean nor bivalent; Set^2 is Boolean but not bivalent; the category of actions of a monoid (that is not a group) is bivalent but not Boolean.

2.4.2 With Axiom of Choice

A category is called **balanced** when f is an isomorphism \Leftrightarrow it is a monomorphism and an epimorphism.

A category satisfies an **Axiom of Choice** when every epimorphism is right-invertible (splits). So balanced.

For example, in sets, every monomorphism has a left-inverse, except for $0 \rightarrow A$; the axiom of choice says that every epimorphism has a right-inverse.

Strong Axiom of Choice: $\forall f, \exists g, f = fgf$.

A topos with the axiom of choice has the *localic* property: $\exists i : C \to 1$ monomorphism and $g_1 \neq g_2 \Rightarrow \exists f : C \to A, g_1 f \neq g_2 f$.

Also every object has a complement X = A + A'.

2.5 Pre-additive Categories

When Hom(A, B) is an abelian group, distributive over composition of morphisms ie f(g+h) = fg + fh, (f+g)h = fh + gh. (then Hom(A, A) is a ring)

Can be extended to an Abelian category.

2.5.1 Additive Categories

A pre-additive category with finite products and sums;

2.5.2 Abelian Categories

an additive category in which every morphism has a kernel and a co-kernel (so there is a zero object), and every monomorphism is a kernel and every epimorphism is a co-kernel.

2.6 Concrete category

one in which the objects are sets and the morphisms are functions; ie a category which has a faithful functor $\mathcal{C} \to \text{Sets}$ (called the forgetful functor).

2.6.1 Category of Sets

One can even consider set theory from the categorical point of view with the following axioms:

- 1. Sets and functions form a category;
- 2. Sets have finite limits and co-limits;
- 3. Sets allow exponentiation;
- 4. Sets have a sub-object classifier (so form a topos); this is a form of comprehension axiom;
- 5. With a morphism $T: 1 \rightarrow 2$;
- 6. Sets are Boolean in the sense that the truth-value object 2 is given by 1 + 1;

- 7. 2 has two elements (up to isomorphism);
- 8. Axiom of Choice (every epimorphism has a right-inverse);
- 9. There is an infinite (inductive) set.

It then follows that for every $A \neq 0, \exists A \to 1$ epimorphism and $\exists x : 1 \to A$ morphisms (since $A \to 1$ is unique, which gives $A \to B \to 1$ where $A \to B$ is an epimorphism; but $A \neq 0 \Rightarrow B \neq 0$, so B = 1; the axiom of choice gives a morphism $x : 1 \to A$); every monomorphism $A \to B$ induces a "complement" monomorphism $A' \to B$ (the pullback of $B \to \Omega$ along $F : 1 \to \Omega$).

3 Research Questions

Most grand questions in pure mathematics are of the following type:

1. Syntax: given a set of mathematical structures/examples, to find a minimal set of axioms common to all.

2. Semantics: given a set of axioms, to discover all mathematical examples satisfying them; classify all possible spaces X in a category i.e., give a concrete description of the spaces, up to isomorphism.

This problem may be too hard or even impossible to answer, so the first attempt is to restrict X to the smaller ones, or else ask an easier question

2a. Find a way of distinguishing spaces: given any two spaces X, Y is there a way of showing whether they are isomorphic or not?

2b. Can one show whether X is isomorphic to a known space?

2c. In particular is X isomorphic to the trivial space?