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CHAPTER 1

Introduction

Definition An ordinary differential equation is an equation that spec-
ifies the derivative of a function y : R → R as

y′(x) = F (x, y(x)).

More generally, an nth order ordinary differential equation specifies the nth
derivative of a function as

y(n)(x) = F (x, y(x), . . . , y(n−1)(x)).

One can visualize a first-order o.d.e. by plotting the function F (x, y) as
slopes, for example,

b

y′(x) = y(x)2 − x

3
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A solution is then a function y(x) that passes through the slopes. The
main problem in o.d.e.’s (ordinary differential equations) is to find solutions
given the differential equation, and to deduce something useful about them.

The simplest differential equation, y′ = f , can be solved by integrating
f to give y(x) =

∫
f(x) dx.

Example: Free fall. Galileo’s rule for free-fall is ẏ = −gt; integrating
gives y(t) = −1

2gt
2 + y0, where y0 is arbitrary.

We learn several things from this simple example:

(a) Solving differential equations involves integration. Unlike differentia-
tion, integration has no steadfast rules; one often has to guess the
answer. Similarly, we expect that solving a differential equation will
not be a straightforward affair. In fact many hard problems in math-
ematics and physics1 involve solving differential equations.

(b) The solution is not unique: we can add any constant to y to get another
solution. This makes sense — the equation gives us information about
the derivative of y, and not direct information about y; we need to be
given more information about the function, usually by being given the
value of y at some point (called the initial point).

1.1 Separation of Variables

The simplest non-trivial differential equations which can be solved generi-
cally are of the type

y′(x) = f(x)g(y(x)).

These can be solved by separating the y-variable from the x (or t).

Examples: Population Growth and Radioactive Decay : ẏ = ky. Col-
lecting the y-variables on the left, we get

ẏ

y
= k, ⇒

∫
1

y
dy = kt+ c

⇒ log y(t) = kt+ c, ⇒ y(t) = Aekt

where A is an arbitrary constant.

Newton’s law of cooling : Ṫ = α(T0 − T ).

∫
1

T0 − T
dT = αt+ c ⇒ − ln(T0 − T ) = αt+ c

⇒ T = T0 + (T1 − T0)e
−αt

1There is a $1 million Clay prize for showing there is a unique solution to the Navier-

Stokes equation.
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Free fall with air resistance: v̇ = −g − kv.

∫
1

kv + g
dv = −t+ c

⇒ 1

k
log |kv + g| = −t+ c

⇒ v(t) = −g/k +Ae−kt

In the general case of y′ = f(x)g(y),

y′(x)
g(y(x))

= f(x)

⇒
∫

1

g(y)
dy =

∫

f(x) dx

by the change of variable x 7→ y. If the integrals can be worked out and
inverted, we find

y(x) = G−1(F (x) + c)

Note that it may not be immediately obvious that a function F (x, y) is
separable, e.g. (x+ y)2 − x2 − y2 and sin(x+ y) + sin(x− y) are separable.
Other equations become separable only after a change of variable, e.g.

1. Homogeneous equations. y′ = F (y/x), use the change of variable u :=
y/x, so that F (u) = y′ = (ux)′ = xu′ + u and u′ = (F (u)− u)/x.

2. Similarly, for y′ = F (ax+by+c) (a, b, c constant), use u := ax+by+c,
giving u′ = a+ by′ = a+ bF (u).

1.1.1 Exact Equations

More generally, if

y′ =
f(x, y)

g(x, y)
and

∂f

∂y
+

∂g

∂x
= 0,

then there is a function F (x, y) such that ∂F
∂x = f and ∂F

∂y = −g. It can be

found by integrating F =
∫
f(x, y) dx = −

∫
g(x, y) dy. Hence d

dxF (x, y) =
∂F
∂x + ∂F

∂y y
′ = f − gy′ = 0 so the solution is given implicitly by F (x, y) = c.
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1.2 Linear Equations

1.2.1 First Order

y′(x) + a(x)y(x) = f(x)

Multiply both sides by the integrating factor I(x) := e
∫
a(x) dx, which satis-

fies I ′(x) = a(x)I(x). Hence (Iy)′ = Iy′ + aIy = If , so integrating gives

y(x) = I(x)−1

∫ x

I(s)f(s) ds+AI(x)−1.

Example. y′ = x+ 2y. The integrating factor is I(x) = e
∫
−2 = e−2x,

(e−2xy)′ = e−2x(y′ − 2y) = xe−2x

⇒ e−2xy =

∫

xe−2x dx = −1

2
xe−2x − 1

4
e−2x + c

⇒ y(x) = ce2x − 1

2
(x+

1

2
)

1.2.2 Second Order

y′′(x) + ay′(x) + by(x) = f(x), a, b constant

Factorizing the left-hand side gives (D−α)(D−β)y(x) = f(x) where α and
β are the roots of the quadratic D2+aD+ b (sometimes called the auxiliary
equation). If we write v(x) := (D−β)y(x), the equation becomes first-order,
so

y′(x)− βy(x) = v(x) = Aeαx + eαx
∫

e−αsf(s) ds

y(x) = Beβx + eβx
∫

e−βt[Aeαt + eαt
∫

e−αsf(s) ds] dt

= Beβx +
A

α− β
eαx + eβx

∫∫

e(α−β)t−αsf(s) ds dt, (α 6= β)

If α = β, the first integral becomes Axeβx instead, so the general solution is

y(x) = yp(x) +

{

Aeαx +Beβx, α 6= β

(A+Bx)eαx α = β
,

yp(x) = eβx
∫∫

e(α−β)t−αsf(s) ds dt

If the roots are complex, α = r + iω, β = r − iω, then the expression
Aeαx+Beβx = erx(Aeiωx+Be−iωx) = erx((A+B) cosωx+ i(A−B) sinωx)
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can become real when A+B is real (take x = 0) and A−B is imaginary (take
ωx = π/2), i.e., B = Ā and the solution involves Cerx cosωx+Derx sinωx
for arbitrary real constants C,D.

Example. Simple Harmonic Motion: Resonance The equation

ÿ + ω2y = cosωt

has solution
y(t) = A cosωt+B sinωt+ (2ω)−1t sinωt

which grows with t. This can occur, for example, in an oscillating spring
which satisfies ẍ = −kx − νẋ + f(t), or an electrical oscillator LÏ + Rİ +
C−1I = E(t).

Of course, this method only works when the coefficients are constant.
Even the simple equation y′′ = xy has solutions that cannot be written
as combinations of elementary functions (polynomials, exponential, trigono-
metric, etc.)

1.2.3 Reduction to Linear Equations

Several equations can become linear with a correct change of variable:
Bernoulli’s equation y′ = ay + byn (n 6= 1). Use the change of variable

u := y1−n to yield u′ + (n− 1)au = b.
Euler’s equation x2y′′ + axy′ + by = f(x), use u(X) := y(x) where X =

log x, so that xy′(x) = xu′(X)/x = u′(X), and similarly, x2y′′(x) = u′′(X),
and the equation becomes u′′ + au′ + bu = f(eX).

Riccati’s equation y′ = a + by + cy2. First eliminate the by term by
multiplying throughout by I := e−

∫
b and letting v := Iy, then substitute

v = −u′/cu to get cu′′ − c′u′ + ac2u = 0.

1.3 Non-linear Equations

These are also common in applications. Here is a sample:

1. Newton’s law of gravity: ẍ = −GM/|x|2.

2. Reaction rates of chemistry: ẋi =
∑

ij αijx
ni

i x
nj

j

3. Lotka-Volterra predator-prey equations: u̇ = uv − λu, v̇ = −uv + µv.

4. Solow’s model in economics: k̇ = sF (k)− nk

5. Geodesics in geometry: d
dt

∂L
∂ẋ = ∂L

∂x .

In general, their solution is not a straightforward affair at best. The most
that we can aim for in this course is to describe their solutions qualitatively
not solve them exactly.
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CHAPTER 2

Existence of Solutions

Definition An initial-value problem is a first order o.d.e. whose solu-
tion satisfies an initial constraint:

y′ = F (x, y) on x ∈ [α, β], y(a) = Y

An initial value problem is said to be well-posed when

1. a solution exists

2. the solution is unique

3. the solution depends continuously on Y .

It has to be remarked straightaway that initial-value problems need not

have a solution: for example, the equation y′ =

{

0 x 6 0

1 x > 0
, y(0) = 0, admits

no differentiable solutions.

Even if a solution exists, it might not be unique. Consider the example
y′ =

√
y with y(0) = 0; it has at least two solutions y(x) = 0 and y(x) =

x2/4. In fact it has many more, including

y(x) =

{

0 x < c

(x− c)2/4 x > c

Finally, even if there is only one solution, changing the initial point
slightly might produce a drastic change in the solution. For example, if we
take again y′ =

√
y with y(0) = Y 6= 0, then there is a unique solution

y(x) = (x − Y
1

2 )2 on the positive real line, until Y reaches 0 when the
solution can drastically change to y(x) = 0.

The main theorem of this chapter, Picard’s theorem, also called the
Fundamental Theorem of O.D.E.’s, is that when F is a nice enough function
of x and y, the initial value problem is well-posed.

9
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2.1 Picard’s Theorem

Definition A function F (x, y) is called Lipschitz in y in a domain A×B
when

∃k > 0 : ∀x ∈ A, ∀y1, y2 ∈ B, |F (x, y1)− F (x, y2)| 6 k|y1 − y2|

Example: Functions that are continuously differentiable in y are Lips-
chitz on any bounded domain. By the mean-value theorem, for (x, y) in the
bounded domain,

∣
∣
∣
∣

F (x, y1)− F (x, y2)

y1 − y2

∣
∣
∣
∣
=

∣
∣
∣
∣

∂F

∂y
(x, ξ)

∣
∣
∣
∣
6 k.

Thus |F (x, y1)− F (x, y2)| 6 k|y1 − y2|.
Note that Lipschitz functions are continuous in y since, as y1 → y2,

then F (x, y1) → F (x, y2). That is, the Lipschitz condition on functions is
somewhere in between being continuous and continuously differentiable.

Theorem 2.1

(Picard-Lipschitz) Fundamental Theorem of O.D.E.s

Given the initial value problem

y′(x) = F (x, y(x)), y(a) = Y,

if F is continuous in x and Lipschitz in y in a neighborhood of
the initial point x ∈ (a−h, a+h), y ∈ (Y − l, Y + l), then the o.d.e.
has a unique solution on some (smaller) interval, x ∈ (a−r, a+r),
that depends continuously on Y .

Proof. The o.d.e. with the initial condition is equivalent to the follow-
ing integral equation:

y(x) = Y +

∫ x

a
F (s, y(s)) ds

Define the following Picard iteration scheme on the interval x ∈ [α, β]:

y0(x) := Y

y1(x) := Y +

∫ x

a
F (s, Y ) ds

y2(x) := Y +

∫ x

a
F (s, y1(s)) ds

. . .

yn+1(x) := Y +

∫ x

a
F (s, yn(s)) ds
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Notice that each of these functions is continuous in x.

Initially we assume that all the x and y encountered in the expressions
are in a rectangle (a − r, a + r) × (Y − l, Y + l), where r 6 h, so that F is
Lipschitz on them

|F (x, y)− F (x, ỹ)| 6 k|y − ỹ|

We will later justify this assumption.

1. The iteration converges: for each x ∈ (a−r, a+r), the sequence yn(x)
converges. We say that yn converges pointwise to some function y. First we
prove the following by induction on n:

|yn+1(x)− yn(x)| 6
ckn|x− a|n+1

(n+ 1)!

When n is 0,

|y1(x)− y0(x)| = |
∫ x

a
F (s, Y ) ds|

6 c|
∫ x

a
1 ds|

6 c|x− a|

where c := maxs∈[a−r,a+r] F (s, Y ), which exists since F is continuous in s.

Assuming the claim for n− 1,

|yn+1(x)− yn(x)| =
∣
∣
∣
∣

∫ x

a
F (s, yn(s))− F (s, yn−1(s)) ds

∣
∣
∣
∣

6

∫ x

a
|F (s, yn(s))− F (s, yn−1(s))|ds

6

∫ x

a
k|yn(s)− yn−1(s)|ds

6 k

∫ x

a

ckn−1|s− a|n
n!

ds

=
ckn

n!

|x− a|
n+ 1

n+1

Now

∞∑

n=0

ckn

(n+ 1)!
|x−a|n+1 converges. Therefore, by comparison,

∑∞
n=0 |yn+1(x)−

yn(x)| also converges (absolutely). Hence,

lim
n→∞

yn(x) = Y +

∞∑

n=0

(yn+1(x)− yn(x))
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converges to a function y(x). Indeed the convergence is uniform in x because

|yn+1(x)− yn(x)| 6
c

k

kn+1|x− a|n+1

(n+ 1)!

⇒ |y(x)− yN (x)| 6
N−1∑

n=0

|yn+1(x)− yn(x)|

6
c

k

∞∑

n=N

kn+1|x− a|n+1

(n+ 1)!

6
c

k

kN+1hN+1

(N + 1)!
ekh

Recall that the uniform convergence of continuous functions is again
continuous.

2. y(x) is a solution: Pick yn which is close to y. This is possible since
yn converges uniformly to y.

∀ǫ > 0, ∃N, ∀x ∈ [a− r, a+ r], n > N ⇒ |yn(x)− y(x)| < ǫ

Therefore,
∣
∣
∣
∣

∫ x

a
F (s, yn(s)) ds−

∫ x

a
F (s, y(s)) ds

∣
∣
∣
∣
6 |
∫ x

a
|F (s, yn(s))− F (s, y(s))|ds|

6 |
∫ x

a
k|yn(s)− y(s)|ds|

< kǫ|x− a|
6 ǫkh

which is as small as required. So taking the limit n → ∞ of the expression

yn+1(x) = Y +

∫ x

a
F (s, yn(s)) ds

gives that y is a solution of the o.d.e.

y(x) = Y +

∫ x

a
F (s, y(s)) ds

3. y is unique: Suppose that u(x) is another solution,

u(x) = Y +

∫ x

a
F (s, u(s)) ds.

y and u are bounded functions on [a− r, a+ r] since they are continuous
(they are integrals of a continuous function).

|y(x)− u(x)| < C ∀x ∈ [a− r, a+ r]
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Therefore,

|y(x)− u(x)| =
∣
∣
∣
∣

∫ x

a
F (s, y(s))− F (s, u(s)) ds

∣
∣
∣
∣

6

∫ x

a
k|y(s)− u(s)|ds

6 kC|x− a|

|y(x)− u(x)| =
∣
∣
∣
∣

∫ x

a
F (s, y(s))− F (s, u(s)) ds

∣
∣
∣
∣

6

∫ x

a
k|y(s)− u(s)|ds

6

∫

k2C|s− a|ds

6 Ck2
|x− a|2

2

Repeating this process, we get

|y(x)− u(x)| 6 Ckn|x− a|n
n!

→ 0 as n → ∞

We conclude that y(x) = u(x) on [a− r, a + r].

4. The solution depends continuously on Y : Let y be that unique solution
of the o.d.e. with initial condition y(a) = Y ; and let u be that unique solution
with initial condition u(a) = Y + δ. They satisfy the equations

y(x) = Y +

∫ x

a
F (s, y(s)) ds, u(x) = Y + δ +

∫ x

a
F (s, u(s)) ds

So,

|y(x)− u(x)| 6 |δ| +
∫ x

a
|F (s, y(s))− F (s, u(s))|ds

6 |δ| + k

∫ x

a
|y(s)− u(s)|ds (2.1)

As y and u are continuous functions, their difference must be bounded,
|y(x)− u(x)| 6 C on (a− r, a+ r); so substituting into (2.1) we get

|y(x)− u(x)| 6 |δ|+ kC|x− a|
which is a slight improvement. This substitution can be repeated, and in
general, we can show, by induction, that

|y(x)− u(x)| 6 |δ|
(

1 + k|x− a|+ k2|x− a|2
2!

+ · · · + kn|x− a|n
n!

)

+
Ckn+1|x− a|n+1

(n+ 1)!

→ |δ|ek|x−a|
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Hence, |y(x) − u(x)| 6 |δ|ek|x−a| which implies that u(x) → y(x) as
δ → 0.

5. Now we have assumed that all the y’s encountered remain in (Y −
l, Y + l) so that we could apply the Lipschitz inequality. We still have to
show that this is the case.

Let r = min(h, l/M) where M = maxx∈(a−h,a+h) |F (x, y)|.
For x ∈ (a− r, a+ r),

y0(x) = Y ∈ (Y − l, Y + l)

|yn+1(x)− Y | = |
∫ x
a F (s, yn(s))

ds
d|

6 M |x− a| 6 Mr 6 l

Therefore yn+1(x) ∈ (Y − l, Y + l) by induction on n.

�

Alternative Proof using Banach’s Fixed Point Theorem

Consider the set of continuous functions on some bounded closed interval
I ⊂ R, and define ‖f‖ := maxx∈I |f(x)|. It is easy to show that ‖f + g‖ 6

‖f‖ + ‖g‖. Note that ‖fn − f‖ → 0 precisely when fn converges to f
uniformly. If f is a vector function, then interpret |f(x)| as the Euclidean
modulus of f .

Banach’s Fixed Point Theorem: If T is a contraction map on the interval
I, that is, there is a constant c < 1 such that

‖T (y1)− T (y2)‖ 6 c‖y1 − y2‖,

then the iteration yn+1 := T (yn) starting from any y0, converges to some
function y which is that unique fixed point of T , that is, T (y) = y.

Proof. (of Banach Fixed Point Theorem)

‖yn+1 − yn‖ = ‖T (yn)− T (yn−1)‖
6 c‖yn − yn−1‖
6 cn‖y1 − y0‖

using induction on n. Hence for n > m

‖yn − ym‖ 6 ‖yn − yn−1‖+ · · ·+ ‖ym+1 − ym‖
= ‖T (yn−1)− T (yn−2)‖+ · · ·+ ‖T (ym)− T (ym−1)‖
6 (cn−1 + · · · + cm)‖y1 − y0‖

6
cm

1− c
‖y1 − y0‖ → 0 as n,m → ∞
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Thus, |yn(x) − ym(x)| 6 ‖yn − ym‖ → 0 at each point x, hence there is
convergence yn(x) → y(x). Indeed this convergence is uniform in x, that is,
‖yn − y‖ → 0 as n → ∞. It then follows that

‖T (yn)− T (y)‖ 6 c‖yn − y‖ → 0

so that in the limit as n → ∞, the equation yn+1 = T (yn) becomes y = T (y).
This fixed point is unique, for if u = T (u) as well, then

‖y − u‖ = ‖T (y)− T (u)‖ 6 c‖y − u‖
∴, 0 6 (1− c)‖y − u‖ 6 0

∴, max
x∈I

|y(x)− u(x)| = ‖y − u‖ = 0

and y = u on the interval I.
�

Proof.(of the Fundamental Theorem of O.D.E.s) Let

T (y) := Y +

∫ x

a
F (s,y(s)) ds

on an interval x ∈ [a− h, a+ h] with h to be chosen later. Then

|T (y1)− T (y2)| = |
∫ x

a
F (s,y1(s))− F (s,y2(s)) ds|

6

∫ x

a
|F (s,y1(s))− F (s,y2)|ds

6

∫ x

a
k|y1(s)− y2(s)|ds

6 k|x− a|‖y1 − y2‖
∴ ‖T (y1)− T (y2)‖ 6 kh‖y1 − y2‖

If h is chosen sufficiently small, i.e., h < 1/k, then T would be a contraction
mapping. As before, consider the Picard iteration yn+1 := T (yn). Each new
iterate is a continuous function because F and integration are continuous
operations. The Banach fixed point theorem then guarantees that they con-
verge uniformly to some function y (‖yn−y‖ → 0 as n → ∞). This unique
function is the fixed point of T , that is, y = T (y) = Y +

∫ x
a F (s,y(s)) ds.

Differentiating gives y′(x) = F (x,y(x)) by the Fundamental Theorem of
Calculus; also y(a) = Y .

If F is Lipschitz only in a neighborhood of the initial point (a,Y ), then
the interval may need to be restricted further to ensure that each iterate yn

remains within this neighborhood. This follows by induction on n,

|yn+1(x)− Y | 6
∫ x

a
|F (s,yn(s))|ds

6 hc 6 l,
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assuming h 6 l/c, where c is the maximum value of |F (x,y)| on the given
rectangular neighborhood.

To show that y depends continuously on Y , let u be the unique solution
of u′ = F (x,u) with u(a) = Y + δ. Then u = Y + δ +

∫ x
a F (s,u(s)) ds.

Thus,

‖y − u‖ = ‖T (y)− T (u)− δ‖
6 |δ|+ ‖T (y)− T (u)‖
6 |δ|+ c‖y − u‖

∴ ‖y − u‖ 6
|δ|

1− c

So u → y uniformly as δ → 0.

�

Example

The o.d.e. y′(x) =
√
x+y
x−y , y(0) = 1 has a unique solution in some interval

about 0.

Solution. The function F (x, y) :=
√
x+y
x−y is continuous in x when x−y 6= 0

and x+y > 0, and Lipschitz in y when |∂F∂y | = | 3x+y
2(x−y)2

√
x+y

| 6 k; both these

conditions are met in the square (−1
3 ,

1
3) × (1 − 1

3 , 1 +
1
3) because the lines

y = ±x are avoided. Picard’s theorem then assures us that there is a solution
in some interval about 0.

To find a specific interval, we need to ensure h 6 l/max |F |; in this case

max |F | 6
√

5/3

1/3 < 4, so taking r := 1/3
4 = 1/12, we can assert that there

is a unique solution on −1/12 < x < 1/12. (Of course, the real interval on
which there is a solution could be larger; solving this equation numerically
gives a solution at least on −1.6 < x < .31.)

Note that if F (x, y) is Lipschitz for all values of y (i.e., l = ∞), then the
equation is well-posed on at least [a− h, a+ h], without the need to restrict
to a smaller interval.

It shouldn’t come as a surprise that even if F (x, y) is “well-behaved” at
all points (x, y) ∈ R

2, the solutions may still exist on only a finite interval.
The following are two such examples:
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y′ = 1 + y2 y′ = −x/y

2.2 Extensions of Picard’s theorem

2.2.1 Vector valued functions

A system of first order differential equations are of the type

u′(x) = f(x, u(x), v(x), . . .) u(a) = U
v′(x) = g(x, u(x), v(x), . . .) v(a) = V
. . .

Writing y(x) :=






u(x)
v(x)
...




, we find that

y′(x) =






u′(x)
v′(x)
...




 =






f(x, u(x), v(x))
g(x, u(x), v(x)

...




 = F (x,y(x)).

This is a vector first-order equation, and indeed, Picard’s theorem can be
generalized to this case. All we need is an analogue of the Lipschitz condi-
tion.

We say that F satisfies a Lipschitz condition in y when,

|F (x,y1)− F (x,y2)| 6 k|y1 − y2|

where | · | denotes the norm or modulus of a vector.
With this definition, we can repeat all the steps of the main proof, taking

care to change all y’s into vector y’s.
If F is continuous in x and Lipschitz in y in a region x ∈ A, y ∈ B

containing x = a, y = Y , then the o.d.e. y′(x) = F (x,y(x)) with initial
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condition y(a) = Y is well-posed on a (smaller) interval about a; that is,
there is a unique solution y(x) which depends continuously on Y .

Proof. Exercise: Go through the proof of Picard’s theorem again, using
vector variables throughout.

There is a simpler criterion which is equivalent to the Lipschitz condition:

If every component Fi(x,y) is Lipschitz in y =






u
v
...






|Fi(x,y1)− Fi(x,y2)| 6 ki(|u1 − u2|+ |v1 − v2|+ · · · )

then the vector function F is Lipschitz in y.

Proof. The following inequalities hold for any positive real numbers
a1, . . . , an, ∣

∣
∣
∣
∣
∣
∣






a1
...
an






∣
∣
∣
∣
∣
∣
∣

6 a1 + · · ·+ an 6
√
n

∣
∣
∣
∣
∣
∣
∣






a1
...
an






∣
∣
∣
∣
∣
∣
∣

So

|F (x,y1)− F (x,y2)| 6
∑

i

|Fi(x,y1)− Fi(x,y2)|

6
∑

i

ki(|u1 − u2|+ |v1 − v2|+ · · · )

6 K|y1 − y2|

where K :=
√
n
∑

i ki.

Exercise: Prove the converse.

Example

Show that the system of equations

u′(x) = xu(x)− v(x), u(0) = 1
v′(x) = u(x)2 + v(x), v(0) = 0

has a unique solution in some interval about x = 0.

This is an equation y′(x) = F (x,y(x)) where F (x, u, v) =

(
xu− v
u2 + v

)

. It

is obviously continuous in x everywhere. Consider the components of the
function F :

|(xu1 − v1)− (xu2 − v2)| 6 |x||u1 − u2|+ |v1 − v2|
6 (k1 + 1)(|u1 − u2|+ |v1 − v2|)
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as long as |x| 6 k1;

|(u21 + v1)− (u22 + v2)| 6 |u1 + u2||u1 − u2|+ |v1 − v2|
6 (2k2 + 1)(|u1 − u2|+ |v1 − v2|)

as long as |u1|, |u2| 6 k2. This is enough to show that F is Lipschitz in the
region (−1, 1) × (−1, 1), say. Hence, Picard’s theorem assures us there is a
unique solution in some (smaller) neighborhood.

2.2.2 Higher order o.d.e.’s

Consider the nth order ordinary differential equation with initial conditions

y(n)(x) = F (x, y(x), . . . , y(n−1)(x))

given y(a) = Y0, y
′(a) = Y1, . . . , y

(n−1)(a) = Yn−1

It can be reduced to a first order vector o.d.e. as follows:

Let y(x) =








y(x)
y′(x)
...

y(n−1)(x)







. Differentiating gives:

y′(x) =








y′(x)
y′′(x)

...

F (x, y(x), . . . , y(n−1)(x))








= F (x, y(x), . . . , y(n−1)(x))

with y(a) =








Y0

Y1
...

Yn−1







.

Therefore, as long as F is Lipschitz in the vector sense, and continuous
in x, then the differential equation is well-posed.

If F (x, y, y′, . . .) is continuous in x and Lipschitz in y in the sense that

|F (x, y1, y
′
1, . . .)− F (x, y2, y

′
2, . . .) 6 k(|y1 − y2|+ |y′1 − y′2|+ . . .),

then the differential equation

y(n)(x) = F (x, y(x), . . . , y(n−1)(x)) given y(a) = Y0, y
′(a) = Y1, . . . , y

(n−1)(a) = Yn−1

has a unique solution in some neighborhood of a.
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Example

Show that the equation

y′′(x) + cos x y′(x)− sinx y(x) = tan x, y(0) = 1, y′(0) = 0

has a unique solution in some interval about 0.

Solution: Convert it to a vector first-order equation,

u′(x) = v(x) u(0) = 1
v′(x) = tan x+ sinx u(x)− cos x v(x) v(0) = 0

The right-hand side is continuous in x in the interval −π/2 < x < π/2, and
Lipschitz in u, v,

|(tan x+sinx u1−cos x v1)−(tan x+sinx u2−cos x v2)| 6 |u1−u2|+|v1−v2|.

Picard’s theorem then implies there is a unique solution in some interval
about 0.

Exercises 2.2

1. Find regions for which the following functions F (x, y) are Lipschitz in
y:

1− xy, (x+ y)2, y + ex/y, sin(x+ y), tan(xy).

2. Show that
√
y is not Lipschitz in y in any region that includes y = 0.

3. By first proving that F (y) = y + 1
y is Lipschitz in a certain region,

show that the equation

y′ = y +
1

y
y(1) = 1

is well-posed in a neighborhood of x = 1, y = 1 and find the first three
approximations in the Picard iteration scheme.

4. Consider the simultaneous differential equations,

u′(x) = 2− u(x)v(x), u(0) = −1,
v′(x) = u2(x)− xv(x), v(0) = 2.

By considering (u(x), v(x)) as a vector function, apply the vector ver-
sion of the Picard iteration scheme to find the first three iterates.
Does the o.d.e. satisfy a Lipschitz condition, and what conclusions do
we draw from Picard’s theorem?
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5. Repeat for
u′ = uv, u(0) = 0,
v′ = u+ v, v(0) = 1

6. Apply Picard’s method for the o.d.e.

y′(x)− xy(x)2 = 1, y(0) = 0

to get the first four approximations to the solution. Find the best
Lipschitz constant for x ∈ [−h, h] and y ∈ [−l, l]. On what interval
about 0 does Picard’s theorem guarantee that a solution exists?

7. Show that the following second-order equation is well-posed in a neigh-
borhood of x = 1,

xy′′ − y′ + x2/y = 0, y(1) = 1, y′(1) = 0.

8. Show that the differential equation yy′′ + (y′)2 = 0 with y(0) = 1 and
y′(0) = 1 has a unique solution on some interval about 0. Find the
solution (hint: divide the equation by yy′).

9. If the Lipschitz function F (x, y) is periodic (with period T ), and it
happens that y repeats the initial condition, i.e.,

F (x+ T, y) = F (x, y), y(a+ T ) = y(a)

show that the unique solution is also periodic.

10. A Lienard equation is one of the form y′′ = a′(y)y′ + b(y). Use the

substitution

(
u
v

)

:=

(
y

y′ − a(y)

)

to reduce it to a first-order equation
(
u′

v′

)

=

(
v + a(u)
b(u)

)

.

11. When a second order equation y′′ = F (y, y′) is reduced to a first order
equation using the substitution v = y′, show that we get v dv

dy = v′ =
F (y, v). One can solve this first, then solve y′ = v(y). Use this method
to solve y′′ = 2y′y.

12. Suppose F (x, y) is Lipschitz in y and continuous in x, and let y be a
solution of y′ = F (x, y), y(0) = Y , existing on an interval I. Show
that it must also be unique on I, i.e., no other solution can be identical
to it on any subinterval J ⊆ I.
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CHAPTER 3

Linear Ordinary Differential Equations

Definition A first order linear o.d.e. is one of type:

y′ = A(x)y + f(x).

It can be rewritten in short as Ly = f where L = D −A.

The operator L is a linear transformation on the vector space of real or
complex functions, since taking derivatives and multiplying by matrices are
both linear operations. That is,

L(y1 + y2) = Ly1 + Ly2

L(αy) = αLy1

Examples.

1. Two thermal layers lose heat according to Newton’s cooling law,

u̇ = −k1(u− v)

v̇ = −k2v + k1(u− v).

2. Two connected springs (or pendulums) attached at their ends satisfy
the equations

m1v̇ = −k1x+ k2(y − x), m2ẇ = −k2(y − x)
ẋ = v, ẏ = w

So






ẋ
v̇
ẏ
ẇ







=







0 1 0 0

−k1+k2
m1

0 k2
m1

0

0 0 0 1
k2
m2

0 − k2
m2

0













x
v
y
w







23



24 J Muscat Linear O.D.E.s

Proposition 3.1

(Special case of Picard’s theorem)

If A(x) and f(x) are continuous in x on a bounded
closed interval, then the differential equation

y′ = Ay + f

is well-posed in that interval.

Proof. We need to check that F (x,y) := A(x)y + f is Lipschitz in y.

‖(Ay1 + f)− (Ay2 + f)‖ = ‖A(y1 − y2)‖
= ‖Au‖‖y1 − y2‖

where u = (y1 − y2)/‖y1 − y2‖ is a unit vector.

‖A(x)u‖ =
∥
∥






a11(x)u1 + · · ·+ a1n(x)un
...

an1(x)u1 + · · ·+ ann(x)un






∥
∥ 6 |a11(x)u1|+ · · · + |ann(x)un|

6 |a11(x)|+ · · ·+ |ann(x)|
6 K

since |ui| 6 1 and aij(x) are continuous, hence bounded, functions on an
interval [α, β].

�

In particular, when A is a constant matrix (independent of x), the
equation y′ = Ay, y(0) = Y , has a unique solution for all x. In this
case the solution can be written explicitly as y(x) = exAY , where exA =
I + xA+ (xA)2/2! + · · · .

Proof. Suppose y is any solution of y′ = Ay, and let v(x) := e−xAy(x).

v′(x) = −Ae−xAy(x) + e−xAy′(x) = −Av(x) +Av(x) = 0

so v(x) = v(0) = Y , and y(x) = exAY . We now show that y(x) := exAY
is indeed a solution: y′(x) = AexAY = Ay and e0A = I, so y satisfies both
the differential equation and the condition.

Note that we did not need to resort to Picard’s theorem to show unique-
ness of this solution.

�
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3.1 Homogeneous and Particular Solutions

We can use the methods and terminology of linear transformations to tackle
linear differential equations. The first thing that comes to mind is to try to
find the inverse L−1 of the operator L. However in differential equations,
these operators are not invertible, e.g. the D operator sends all the constant
functions to 0. We are therefore led naturally to the study of the kernel of
L:

Definition The kernel of L is the set kerL = {u : Lu = 0 }.
The equation Lu = 0, that is y′ = Ay, is termed a homogeneous

o.d.e..

By choosing any initial condition y(a) = Y , Picard’s theorem shows that
there exist solutions to the equation Lu = 0. The kernel kerL is therefore
non-trivial, so that L is not 1-1 (because both y = u and y = 0 are mapped
by L to Ly = 0), hence not invertible.

A particular solution is a single function yP which is a solution of
LyP = f , among the many that exist.

The following proposition states that the general solution of a linear
o.d.e. splits up into two parts:

Proposition 3.2

Every solution of Ly = f is the sum of the particular
solution and a solution of the homogeneous equation.

Proof. Suppose that Ly = f .
L(y − yP ) = Ly − LyP = f − f = 0
∴ y − yP ∈ kerL
∴ y − yP = yH for some yH ∈ kerL
∴ y(x) = yP (x) + yH(x)

�

This suggests that we divide the original problem

y′ = Ay + f , y(a) = Y

into two parts:

the homogeneous equation: the particular equation:
LyH = 0 with yH(a) = Y LyP = f with yP (a) = 0
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Note. The initial condition for the particular solution was chosen to be
0, but this is quite arbitrary. If it is easier to solve the particular equation
for other initial conditions, say yP (0) = V , then this can be done as long
as one compensates in the homogeneous solution with yH(0) = Y − V .

3.1.1 The Homogeneous Equation

In this section we will investigate how many linearly independent homoge-
neous solutions there can be; in other words we will find dimkerL.

Let us denote by u1 the solution of the linear equation with some specific
initial condition, say u1(0) = e1, the first canonical basis vector. Then we
can solve the equation y′ = Ay for any multiple of this condition y(0) =
αe1: the unique solution is y = αu1. Thus varying the initial condition
along a one-dimensional subspace of RN gives a one-dimensional space of
solutions of the homogeneous equation. It is clear that if we consider an
independent initial condition, y(0) = e2, then the solution u2 will not be
in this subspace, i.e., it will be linearly independent also. The following
proposition generalizes this argument and makes it rigorous:

Proposition 3.3

Let e1, . . . ,eN be a basis for R
N . The set of functions

u1(x), . . . ,uN (x), which satisfy

Lui = 0, ui(0) = ei,

is a basis for kerL; so its dimension is N .

Proof. Let e1, . . . ,en be a basis for R
n, and let ui(x) be the unique

solutions of the following o.d.e.’s.

Lu1 = 0 u1(a) = e1
Lu2 = 0 u2(a) = e2
· · ·
LuN = 0 uN (a) = eN

More compactly, they can be written as Lui = 0 ui(a) = ei. Note that
Picard’s theorem assures us that ui(x) exists and is unique.

These solutions can be combined together to form a matrix Ux = [u1 . . .un]
that therefore satisfies the equation U ′ = AU .

u1(x), . . . ,uN (x) span kerL: Let y(x) ∈ kerL; that is Ly = 0. Let
Y = y(a); we can write Y =

∑

i αiei since the latter form a basis for RN .
Define the function

v(x) := α1u1(x) + α2u2(x) + · · · + αNuN (x).
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Therefore, since L is a linear operator, and Lui = 0,

Lv(x) = α1Lu1(x) + · · ·+ αNLuN (x) = 0.

Also

v(a) = α1u1(a) + · · ·+ αNuN (a)

= α1e1 + · · · + αNeN

= Y

Hence both y and v are solutions of Ly = 0 with the same initial
conditions. By uniqueness of solution, this is possible only if

y(x) = v(x) = α1u1(x) + · · ·+ αNuN (x)

Therefore every function in kerL can be written as a linear combination
of the ui.

The functions u1, . . . ,uN are linearly independent : Suppose that

α1u1(x) + · · ·+ αNuN (x) = 0 ∀x,

then it follows that at x = a,

α1e1 + · · ·+ αNeN = 0.

But the vectors ei are linearly independent so that αi = 0. Hence the
functions ui(x) are linearly independent.

We have just shown that ui(x) form a basis for kerL, the space of ho-
mogeneous solutions. Its dimension is therefore N , the number of variables
in y.

�

Originally we wanted to solve the homogeneous equation, LyH = 0, yH(a) =
Y . We now know that yH is a linear combination of the N functions ui(x),

yH(x) = α1u1(x) + · · ·+ αnun(x) = Uxα.

To determine the unknown vector α, we substitute the initial condition,

Y = yH(a) = Uaα,

which implies that α = U−1
a Y . Hence,

yH = UxU
−1
a Y .

Note that if the initial basis for R
N were chosen to be the standard

basis, then Ua, and hence U−1
a , is just the identity matrix, making the

above expression slightly simpler.
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3.1.2 Solutions of Homogeneous Equation in Two Variables

Method 1.

First work out y′1, y
′′
1 , . . . , y

(n)
1 in terms of the variables y′i using the given N

equations. Invert this matrix to get an Nth order differential equation for
y1.

Example 1. Solve u′ = v, v′ = −u. Differentiate the first equation to
get u′′ = v′, and then use the second equation to write it in terms of u i.e.,
u′′ = −u which can be solved. v can then be obtained from v = u′.

Example 2. Solve u′ = u + 2v, v′ = u − v. We get u′′ = u′ + 2v′ =
u′ + 2(u− v) = u′ + 2u− (u− u′) = u+ 2u′, which can be solved.

Method 2.

This second method works only for the case when the coefficients of the
matrix A are constant. Any matrix can be made triangular by a suitable
change of variables, A = P−1TP where T is a triangular matrix and P is
a matrix of eigenvectors. Making the substitution Y (x) := Py(x) gives the
equation Y ′ = Py′ = PAP−1Y = TY . This set of equations Y ′ = TY can
be solved line by line starting from the bottom.

This method is preferable to the first one when there are a large number
of equations, but for two equations or so the first method is just as good
and more practical.

We will in fact use this method to classify the different possible differ-
ential equations for N = 2. We assume, from Linear Algebra, that any real
2×2 matrix A, has zero, one, or two eigenvalues λ and µ, with the following
properties:

• Two distinct eigenvalues λ and µ; then A is diagonalizable.

• One eigenvalue λ = µ; then A may not be diagonalizable, but can be
made triangular.

• Zero real eigenvalues; the eigenvalues are complex, λ = r+ iω, µ is its
conjugate r − iω; A is diagonalizable but with complex eigenvectors.

Let us consider each possibility:

Eigenvalues real and distinct

The matrix A is diagonalizable, Y ′ =

(
λ 0
0 µ

)

Y has solution Y (x) = aeλx+

beµx. The exponential eλx grows when λ > 0, it decreases when λ < 0 and
remains constant when λ = 0. One therefore gets various pictures of the
solution for various combinations of the values of λ and µ.
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Node Saddle Focus
λ, µ > 0 or λ, µ < 0 µ < 0 < λ λ = µ

If both eigenvalues are positive, the solutions form what is called a
source node; if both are negative they form a sink node; if one is positive
and the other negative the origin is called a saddle point; for the special
case in which the eigenvalues are equal but A is still diagonalizable, the
solution is termed a proper node (source or sink).

In general, an equation whose solutions converge towards the origin is
called a sink, while one for which the solutions diverge away from the origin
is called a source.

Eigenvalues complex conjugates

In the case that λ = r + iω, µ = r − iω, the solutions in general are
Aerxeiωx +Berxe−iωx. But these include complex-valued solutions; such a
linear combination is real when

0 = Im(Aeiωx +Be−iωx) = (A2 +B2) cosωx+ (A1 −B1) sinωx

where A = A1 + iA2, B = B1 + iB2, which holds if, and only if, B = A.
This implies Aeiωx + Be−iωx = 2A1 cosωx + 2A2 sinωx. In this case the
solution is called a spiral and can be written as

Y (x) = aerx cosωx+ berx sinωx

The solutions spiral in or out towards 0 (sink or source) depending on
whether the real part r is negative or positive respectively.

The special case in which Re(λ) = r = 0 is called a center.
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spiral center
λ, µ = r ± iω λ, µ = ±iω

Eigenvalues real, equal and not diagonalizable

In this case, the equations take the form

Y ′ =

(
λ a
0 λ

)

Y (a 6= 0)

which has solution

Y (x) = aeλx + bxeλx

The solution therefore depends on the sign of λ as in the first case.

The solution in this case is called an deficient node.

Note: These are the plots of U against V ; if one were to convert back
to u and v the plot would look like squashed/rotated versions of them. For
example, a center might look like
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node: source sink

saddle focus

inspiral outspiral center

Figure 3.1: Click inside a diagram to start a solution.
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3.2 The Particular Solution

3.2.1 Variation of Parameters

Consider a linear equation in two variables, y′ = Ay + f(x), and suppose
the solutions of the homogeneous equation are au(x) + bv(x), where a and
b are arbitrary scalars. It was Lagrange who had the idea of trying to find
a solution of the full equation of the type y(x) := a(x)u(x) + b(x)v(x). We
find

y′ = a′u+ au′ + b′v + bv′

= a′u+ b′v + aAu+ bAv

= Ay + a′u+ b′v

If we can find functions a(x) and b(x) such that a′u + b′v = f then the
differential equation is completely solved.

More generally, suppose we have at our disposal the N homogeneous
solutions u1, . . . ,un each satisfying u′

i = Aui, and which can be combined
together to form a matrix Ux = [u1 . . .un] that therefore satisfies the equa-
tion U ′ = AU .

We can use these homogeneous solutions to find a particular solution
satisfying y′ = Ay + f . Let a be defined by

y(x) = Uxa(x).

Therefore,

y′ = U ′a+ Ua′

= AUa+ Ua′

= Ay + Ua′

therefore Ua′ = f

⇒ a′(x) = U−1
x f(x)

⇒ a(x) =

∫ x

a
U−1
s f(s) ds+ c

⇒ y(x) =

∫ x

a
UxUs

−1f(s) ds

︸ ︷︷ ︸

yP (x)

+ Uxc
︸︷︷︸

yH (x)

So one particular solution is yP (x) =

∫ x

a
UxU

−1
s f(s) ds. The matrix

UxUs
−1 is called the Green’s function for the system of equations. It can be

calculated once and used for different functions f .
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To fully justify the above proof, we need to show that Ux is invertible.

Proof. Let W (x) := det[u1, . . . ,uN ], called the Wronskian of the
functions ui.

Jacobi’s formula states that W ′ = (trA)W . To show this recall Laplace’s
formula for the determinant detU =

∑

k uik(adjU)ki, where adjU is the
classical adjoint of U ; then taking the derivative on both sides gives

W ′ =
∑

ij

∂

∂uij
detU.u′ij

=
∑

ij

(
∑

k

δjk(adjU)ki + uik0)u
′
ij

=
∑

ij

(adjU)jiu
′
ij

= tr(adjU)U ′ = tr(adjU)AU

= trU(adjU)A = tr(detU)A = (trA)W.

(Note also that, for any matrix A, det eA = etrA; this can be proved by
considering a basis in which A is triangular.)

Solving gives W (x) = W (0)e
∫ x trA; as W (0) = detU0 6= 0, it follows

that W (x) is never 0 and Ux is invertible.

�

Example 1

Consider the equations

u′ = u− v + f(x)

v′ = 2u− v + g(x).

When written in vector form we get

y′ =

(
1 −1
2 −1

)

y + f ,

where y :=
(
u
v

)
and f :=

(
f
g

)
.

We first find a basis for the homogeneous solutions,

y′ =

(
1 −1
2 −1

)

y, which is just
u′ = u− v
v′ = 2u− v

.

These can be solved as follows,

u′′ = u′ − v′ = u′ − (2u− v) = u′ − 2u+ (u− u′) = −u
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⇒ u(x) = A cos x+B sinx

v(x) = u(x)− u′(x) = A(cos x+ sinx) +B(sinx− cos x)

y(x) =

(
u(x)
v(x)

)

= A

(
cos x

cos x+ sinx

)

+B

(
sinx

sinx− cos x

)

.

We can therefore take u1(x) =
( cos x
cos x+sinx

)
and u2(x) =

(
sinx

sinx−cos x

)
as

our basis for kerL. The particular solution would therefore be

yP (x) =

(
uP (x)
vP (x)

)

=

(
cos x sinx

(cos x+ sinx) (sinx− cos x)

)

×
∫ x((cos s− sin s) sin s

(cos s+ sin s) − cos s

)(
f(s)
g(s)

)

ds

For example, if f(x) = 1 and g(x) = −1, the integral works out to

∫ x(cos s− 2 sin s
2 cos s+ sin s

)

ds =

(
sinx+ 2cos x
2 sin x− cos x

)

,

yP (x) =

(
uP (x)
vP (x)

)

=

(
cos x sinx

(cos x+ sinx) (sin x− cosx)

)(
sinx+ 2cos x
2 sinx− cos x

)

=

(
2
3

)

Of course, we could have got this result much simpler by putting a trial
solution, but the point here is that there is a general formula which applies
for any function f .

Example 2

Solve the equations

u′ = 2u+ v + 3e2x u(0) = 3
v′ = −4u+ 2v + 4xe2x v(0) = 2

First solve the homogeneous equation:

u′′ = 2u′ + v′ = 4u′ − 8u

to get the roots 2± 2i, hence

yH(x) =

(
uH(x)
vH(x)

)

= Ae2x
(

cos 2x
−2 sin 2x

)

+Be2x
(

sin 2x
2 cos 2x

)
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Putting the two independent solutions into the matrix U and working out
its inverse we get

U−1f =
1

2
e−2x

(
2 cos 2x − sin 2x
2 sin 2x cos 2x

)(
3e2x

4xe2x

)

=

(
3 cos 2x− 2x sin 2x
3 sin 2x+ 2x cos 2x

)

Its integral is
(

sin 2x+x cos 2x
− cos 2x+x sin 2x

)
, so the general solution is given by

y = yH + Ux

∫ x

U−1
s f(s) ds

= Ae2x
(

cos 2x
−2 sin 2x

)

+Be2x
(

sin 2x
2 cos 2x

)

+ e2x
(

cos 2x sin 2x
−2 sin 2x 2 cos 2x

)(
sin 2x+ x cos 2x
− cos 2x+ x sin 2x

)

= e2x
(

cos 2x sin 2x
−2 sin 2x 2 cos 2x

)(
A
B

)

+ e2x
(

x
−2

)

To satisfy the initial conditions, we need
(
3
2

)

= y(0) =

(
1 0
0 2

)(
A
B

)

+

(
0
−2

)

,

that is, A = 3, B = 2.

In practice, the integrals need not give well-known functions. Also, the
method for solving the homogeneous equation can only be used for equations
with the coefficients of u, v being constants. The following cannot be solved
this way:

Legendre u′(x) = v(x)/(1 − x2) Hermite u′(x) = ex
2

v(x)

v′(x) = −2u(x) v′(x) = −λe−x2

u(x)

Bessel u′(x) = v(x)/x Laguerre u′(x) = v(x)/x
v′(x) = (λ/x− x)u(x) v′(x) = (x− 1)u(x) + v(x)

Exercises 3.4

1. Solve the simultaneous equations

u′(x) = v(x) + x

v′(x) = u(x)− 1

given the initial conditions u(0) = 1 and v(0) = 2.

(Answer: u(x) = 3
2e

x − 1
2e

−x, v(x) = −x+ 3
2e

x + 1
2e

−x.)

2. Solve the simultaneous equations

u′(x) = u(x) + v(x) + 1

v′(x) = −u(x) + v(x) + x
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with initial conditions u(0) = 1, v(0) = 0. (Assume
∫
xe−xeix dx =

1
2e

−x(((x+ 1) sin x− x cos x) + i((1 + x) cos x+ x sinx)).)

(Answer: u(x) = 1
2e

x(2 cos x+sinx)+x/2, v(x) = 1
2e

x(cos x−2 sinx)−
(x+ 1)/2.)

3. Show that the solution of the first-order equation y′ + a(x)y = f(x),
for scalar functions y(x), as solved by the method in this chapter, is
the same solution as given by the integrating factor method.

4. Use the Picard iteration scheme to show that the solution of y′ = Ay,
y(0) = Y , with A a constant matrix (independent of x), is y(x) =
exAY .

Show that Ux = exA and that the Green’s function is given by eA(x−s).

If A is diagonalizable A = P−1DP , then eA = P−1eDP , where eD is
the diagonal matrix with the diagonal components being eλi , λi = Dii.

5. Given the equation y′ = Ay+f , y(0) = Y , let v(x) := y(x)−Y . Show
that v satisfies the equation v′ = Av + f̃ where f̃(x) = AY + f(x).

6. Volterra: The equation y′′ + a1y
′ + a0y = f , y(a) = 0 = y′(a) has a

solution if, and only if, u+
∫ x
a k(x, s)u(s) ds = f has a solution. (Hint:

take u := y′′ and k(x, s) := a1(x) + a0(x)(x − s).

7. An ‘arms race’ can be modeled by using two variables u, v denoting
the value of arms in two countries. In normal circumstances, obsolete
arms are replaced by newer ones, and so u̇ = α − αu settling to a
stable value of u(t) = 1. But under the pressure of a second country,
the resulting equations may be

u̇ = k1v + α(1− u)

v̇ = k2u+ β(1− v)

What are the meaning of the terms in these expressions? What is the
solution, and why is it related to an arms race?



CHAPTER 4

Higher Order Linear O.D.E.’s

4.1 Initial Value Problem

We will consider higher-order linear o.d.e.’s of the type:

an(x)y
(n)(x) + . . . + a1(x)y

′(x) + a0(x)y(x) = f(x).

From the second chapter, we know that we can transform this equa-
tion into n first order equations by introducing the vector variable y =
(
y y′ . . . y(n−1)

)
. In this case, because of the form of the equation, the re-

sulting first order equation is linear and therefore we can apply the methods
that were devised in chapter 2.

y′ =






0 1 . . . 0
...

. . .
...

−a0/an −a1/an . . . −an−1/an




y +






0
...

f/an






First, we find conditions when the equation is well-posed.

Proposition 4.1

(Special case of Picard’s theorem)

Given the o.d.e.

an(x)y
(n)(x) + . . .+ a0(x)y(x) = f(x)

y(a) = Y0, . . . , y
(n−1)(a) = Yn−1,

if ai(x) for i = 0, . . . , n and f(x) are continuous functions
and an(x) > c > 0 on an interval [α, β], then there exists a
unique solution to the above equation in [α, β].

The proof is obvious, since ai/an and f/an are continuous functions with
the given hypothesis.

37
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Examples

The equation

x2y′′ − xy′ + (sinx)y = tan x, y(1) = 0, y′(1) = 1,

is well-posed on the interval (0, π/2).

For the equation

x2y′′ − 3xy′ + 3y = 0, y(0) = 0, y′(0) = 1,

a2(x) vanishes at the initial point and the proposition does not apply. In
fact it is not well-posed and has many solutions y(x) = Ax3 + x for any A.

Most of the methods that will be developed in this chapter carry over
to nth order equations, but we will only consider second-order equations for
their simplicity and because they occur very widely in applications.

The initial value problem in this case is of the form,

a2(x)y
′′(x) + a1(x)y

′(x) + a0(x)y(x) = f(x)

y(a) = Y0 y′(a) = Y1

where a0, a1, a2, f are given functions and Y0, Y1 given constants, and it is
required to find y(x).

From the previous chapter, we know that we need to solve two equations
and find

1. A basis for the homogeneous equation y′(x) = Ay(x) which in this
case translates to:

a2(x)y
′′
H(x) + a1(x)y

′
H(x) + a0(x)yH(x) = 0.

2. A particular solution yP satisfying,

a2(x)y
′′
P (x) + a1(x)y

′
P (x) + a0(x)yP (x) = f(x).

4.1.1 Homogeneous Equation

The homogeneous equation can only be solved easily in a few cases, e.g. con-
stant coefficients, or Euler’s equations, whose solutions take the form of ex-
ponentials, or sines and cosines, together with polynomials and logarithms.
If the coefficients are polynomials it may be possible to use a general method
called the Frobenius method. The following is a short list of the most com-
mon second order o.d.e.’s that are encountered in applications.
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Bessel’s equation x2y′′ + xy′ + (x2 − n2)y = 0

Laguerre’s equation xy′′ + (1− x)y′ + ny = 0

Hermite’s equation y′′ − (x2 − n)y = 0

Legendre’s equation (1− x2)y′′ − 2xy′ + n(n+ 1)y = 0

Chebyshev’s equation (1− x2)y′′ − xy′ + n2y = 0

Airy’s equation y′′ − xy = 0

Euler’s equations x2y′′ + axy′ + by = 0

Reduction of Degree. If one solution u of the homogeneous equation
is found (in some way), the other can be found by letting w := y/u, i.e.,
y = uw, so that y′ = uw′ + u′w and y′′ = uw′′ + 2u′w′ + u′′w; hence

0 = y′′ + ay′ + by = uw′′ + (2u′ + au)w′

which is a first order equation in w′. (This also works for higher-order linear
equations: they are transformed to lower order equations, hence the name.)

Exercise. Solve uw′′ + (2u′ + au)w′ = 0 by separation of variables to get
the second solution v(x) = u(x)

∫ x
(u(s)2e

∫ s a)−1 ds.

The Power Series Method

Given y′′ + ay′ + by = 0 where a and b are polynomials (or more gen-
erally, power series). The idea is to suppose y(x) to be a power series
y(x) =

∑∞
n=0 anx

n, substitute into the equation to get an infinite number
of equations in the unknown coefficients a0, a1, . . ..

Examples. Harmonic equation y′′ + y = 0. Suppose

y(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·
y′(x) = a1 + 2a2x+ 3a3x

2 + 4a4x
3 + · · ·

y′′(x) = 2a2 + 3.2a3x+ 4.3a4x
2 + 5.4a5x

3 + · · ·
y′′(x) + y(x) = (2a2 + a0) + (3.2a3 + a1)x+ (4.3a4 + a2)x

2 + · · ·

If this power series is to be zero, then its coefficients must vanish:

a2 = −a0
2
, a3 = − a1

3.2
, a4 = − a2

4.3
, . . . , an = − an−2

n(n− 1)
.

Thus there are two series,

a0, a2 = −a0/2, a4 = a0/4.3.2, a6 = −a0/6.5.4.3.2, . . . , a2n =
(−1)na0
(2n)!

;

a1, a3 = −a1/3.2, a5 = a1/5.4.3.2, . . . , a2n+1 =
(−1)na1
(2n + 1)!

.
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The first few terms of the solution is

y(x) = a0 + a1x− a0
2!
x2 − a1

3!
x3 +

a0
4!
x4 + · · ·

= a0(1−
x2

2!
+

x4

4!
− x6

6!
+ · · · ) +

a1(x− x3

3!
+

x5

5!
+ · · · )

The two linearly independent solutions are the two series enclosed in brack-
ets; they can be recognized as cosx and sinx.

Airy’s equation y′′ + xy = 0. This time

y′′(x) + xy(x) = 2a2 + (a0 + 3.2a3)x+ (a1 + 4.3a4)x
2 + (a2 + 5.4a5)x

3 + · · ·

If this series is to vanish, then its coefficients must all be zero, an−1 + (n+
2)(n + 1)an+2 = 0, i.e.,

a2 = 0, a3 = −a0/6, a4 = a1/12, a5 = 0, . . . , an = −an−3/n(n− 1),

; using this formula, it is clear that there are three sets of coefficients,

a2 = a5 = a8 = · · · = 0, a0, a3 = −a0/3.2, a6 = a0/6.5.3.2, a9 = −a0/9.8.6.5.3.2, . . .

a1, a4 = −a1/4.3, a7 = a1/7.6.4.3, . . .

The first few terms of the solution is

y(x) = a0 + a1x− a0
3.2

x3 − a1
4.3

x4 +
a0

6.5.3.2
x6 + · · ·

= a0(1−
1

3!
x3 +

4

6!
x6 − 7.4

9!
x9 + · · · ) +

a1(x− 2

4!
x4 +

5.2

7!
x7 + · · · )

Again the two linearly independent solutions are the two series enclosed in
brackets.

Hermite’s equation y′′ − x2y = 0. This time

y′′(x)− x2y(x) = 2a2 + 3.2a3x+ (4.3a4 − a0)x
2 + (5.4a5 − a1)x

3 + · · ·

hence a2 = 0 = a3, a4 = a0/4.3, a5 = a1/5.4; in general an = an−4/n(n−1),
so there are two independent series solutions

a0(1 +
1

4.3
x4 +

1

8.7.4.3
x8 + · · · )

a1(x+
1

5.4
x5 +

1

9.8.5.4
x9 + · · · )
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Legendre’s equation (1− x2)y′′ − 2xy′ + 2y = 0. This time we get

(2a2 + 2a0) + 3.2a3x+ (4.3a4 − 4a2)x
2 + · · ·

so a2 = −a0, a3 = 0, a4 = a2/3, and in general, an+2 = an(n
2 − 2)/(n +

2)(n+ 1), so a3 = 0 = a5 = . . ., and a2 = −a0, a4 = − 4
4!a0, a6 = −14.4

6! , etc.
Notice that x is a solution.

The general method is to let

y(x) =

∞∑

n=0

anx
n, y′(x) =

∞∑

n=1

nanx
n−1, y′′(x) =

∞∑

n=2

n(n− 1)anx
n−2

then substitute into the equation y′′ + a(x)y′ + b(x)y = 0; this gives a
recurrence equation for the coefficients which can be solved to give the two
linearly independent solutions. There is a theorem which states that this
method always works as long as a(x) and b(x) are power series with some
positive radius of convergence.

Bessel’s equation y′′ + 1
xy

′ + y = 0 (There is no guarantee that there is
a power series solution, but in this case there is one.) Substituting gives

y′′ +
y′

x
+ y = a1x

−1 + (4a2 + a0) + ((3.2 + 3)a3 + a1)x+ · · ·

Hence a1 = 0, a2 = −a0/4, a3 = 0, etc.

Euler’s equation x2y′′ + xy′ − y = 0. Trying a power series we find
∑∞

n=0(n
2 − 1)anx

n = 0. Thus an = 0 unless n = 1; so the only power series
solution is x. This is to be expected if the second linearly independent
solution is not a power series, such as

√
x or 1/x. In fact, using reduction of

degree, we find the other solution to be x log x. Other equations may have
no power series solutions at all.

Try some other problems of this type: Laguerre’s equation y′′ + 1−x
x y′ +

1
xy = 0; x2y′′ + xy′ + y = 0 (has no power series solutions).

Regular Singular Points: If a(x) has a simple pole and b(x) has a
double pole (at most), then we can try a series of the type

y(x) = a0x
−r + · · ·+ ar + ar+1x+ ar+2x

2 + ar+3x
3 + · · ·

y′(x) = −ra0x
−r−1 + · · ·+ ar+1 + 2ar+2x+ 3ar+3x

2 + 4ar+4x
3 + · · ·

y′′(x) = r(r + 1)a0x
−r−2 + · · ·+ 2ar+2 + 3.2ar+3x+ 4.3ar+4x

2 + · · ·

Example. y′′ + 2
xy

′ + y = 0. Let y(x) :=
∑∞

n=0 anx
n−r. Then

y′′ +
2

x
y′ + y =

∞∑

n=0

((n− r)(n− r − 1)an + 2(n− r)an + an−2)x
n−r−2
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The first term of this series determines r and is called the indicial equation:
r(r + 1) − 2r = 0, i.e., r(r − 1) = 0, i.e., r = 0, 1. Choosing r = 1, we
find n(n − 1)an + an−2 = 0, i.e., an = −an−2/n(n − 1) (n 6= 0, 1); thus
a2 = −a0/2!, a4 = a0/4!, . . . , and a3 = −a1/3!, a5 = a1/5!, . . . , so the
solution is

y(x) = a0
cos x

x
+ a1

sinx

x

The general Frobenius method is to let

y(x) := xr
∞∑

n=0

anx
n

where a0 6= 0, and r can be fractional or negative, so that

y′(x) =
∞∑

n=0

an(n+ r)xn+r−1, y′′(x) =
∞∑

n=0

an(n+ r)(n+ r − 1)xn+r−2,

and then substitute. The coefficient in front of the lowest order term must
be equal to zero and this gives the indicial equation for r.

Examples. x2y′′ + xy′ − 1
4y = 0 (a1 is a simple pole and a0 is a double

pole). Let y = xr(a0 + a1x+ a2x
2 + · · · ), then we get

∞∑

n=0

((n + r)(n+ r − 1) + (n+ r)− 1

4
)anx

n+r = 0.

The first coefficient, corresponding to n = 0, gives the indicial equation
r(r − 1) + r − 1

4 = 0, i.e., r = ±1
2 . For r = 1

2 , we get ((n + 1
2 )

2 − 1
4)an = 0,

so an = 0 unless n = 0,−1. This means that the solution is y(x) = a0
√
x.

For r = −1
2 , we get ((n − 1

2)
2 − 1

4)an = 0, so an = 0 unless n = 0, 1, hence

y(x) = x−
1

2 (a0 + a1x). The two independent solutions are
√
x and 1/

√
x.

Note that in general, the smaller r will include the larger value of r if the
difference between them is a positive integer.

4xy′′ + 2y′ + y = 0 (both a1 and a0 are simple poles). Trying y =
xr(a0 + a1x+ a2x

2 + · · · ) gives
∞∑

n=0

(4(n + r)(n+ r − 1)an + 2(n + r)an + an−1)x
n+r−1 = 0

(take a−1 = 0). The indicial equation is r(2r−2+1) = 0, giving two possible
values of r = 0, 12 .

For r = 0, we get an = an−1

2n(2n−1) and yielding

y(x) = a0(1−
x

2
+

x2

4!
− x3

6!
+ · · · ) = a0 cos

√
x,
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while for r = 1
2 , we get an = − an−1

2n(2n+1) and

y(x) = a0
√
x(1− x

3!
+

x2

5!
− x3

7!
+ · · · ) = a0 sin

√
x.

x2y′′+xy′+y = 0. The power series is now
∑∞

n=0((n+ r)(n+ r−1)an+
(n+r)an+an)x

n+r = 0, so the indicial equation is r2+1 = 0. This seems to
indicate that there are no solutions, but in fact power series still make sense
for complex numbers, indeed have a nicer theory in that context. So we
should try r = ±i. For r = i, we find (show!) y(x) = a0x

i, while for r = −i,
we get y(x) = a0x

−i. Note that x±i = e±i log x = cos log x ± i sin log x, and
further that if y(x) = αxi + βx−i is to be real, then β = α and y(x) =
A cos log x+B sin log x.

There are special cases when this method may not work: when r is a
double root, or when r has roots which differ by an integer, the method may
give one solution only, in which case use reduction of degree to find the other.
Another failure case is when a1 is not a simple pole and a0 a double pole:
e.g. x2y′′ + (3x− 1)y′ + y = 0 gives the “solution” y(x) =

∑∞
n=0 n!x

n which
has zero radius of convergence; x4y′′ + 2x3y′ − y = 0 gives no solutions at
all. In such cases one can also consider power series about a different point.

Exercises 4.2

1. Solve y′ = y using the power series method.

2. x2y′′−2xy′+2y = 0, y′′+xy′+y = 0, y′′−xy′+y = 0, y′′−3y′+2xy = 0,
y′′ + (1− x2)y′ − xy = 0, y′′ = x2y.

3. In these problems, a power series solution is not guaranteed:

(a) xy′′ + 2y′ + xy = 0 (has one power series solution sinx/x)

(b) xy′′ − (1− x)y′ − 2y = 0 (gives x2)

(c) xy′′ + (1− 2x)y′ − (1− x)y = 0 (gives ex)

(d) 4x2y′′ + 4xy′ − y = 0

4. Solve the problems above using Frobenius’ method.

5. 4x2y′′ + 4x2y′ + y = 0, x3y′′ − xy′ + y = 0 (show that x is a solution,
hence find the other solution by reduction of degree; can you see why
the second solution cannot be written as a power series?), Bessel’s
equation x2y′′ + xy′ + (x2 −m2)y = 0.

6. Solve the equation x4y′′ + 2x3y′ − y = 0 by using the transformation
t = 1/x.
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Proposition 4.3

(Sturm separation theorem)

The zeros of the two independent solutions of

y′′ + a1(x)y
′ + a0(x)y = 0

(with a1, a0 continuous) are simple and interlace.

Proof. Let u, v be two linearly independent solutions of the equation,
and let a, b be two successive zeros of u. As u is continuous, it must remain,
say, positive between the two zeros, by the Intermediate Value Theorem (if u
is negative, replacing u by −u makes it positive without altering the zeros).
Hence u′(a) > 0 and u′(b) 6 0.

But the Wronskian W = uv′ − u′v remains of the same sign throughout
the interval of existence of u and v. At a, W = u′(a)v(a) 6= 0, so u′(a) > 0
(a must be a simple zero) and v(a) has the same sign as W . At b however,
W = u′(b)v(b), so u′(b) < 0 and v(b) must have opposite sign toW . It follows
by the intermediate value theorem that there is a zero of v in between a and
b. This zero is in fact the only one, otherwise the same argument with u
and v in reverse roles would imply there is another zero of u in between the
two zeros of v.

�

Corollary: If u oscillates, then so does v.

Proposition 4.4

In the equation y′′ + ay = 0 (a continuous),

If a increases then the distance between the zeros
decreases,

If a > ω2 > 0 ω ∈ R, then the solutions are oscil-
latory; more generally, if

∫∞
α a = ∞ then the

solutions are oscillatory on [α,∞[.

Proof. (a) Suppose a2 > a1 and let y1, y2 be the two solutions of
the two corresponding equations y′′ + ay = 0. Translate y2 so y1 and y2
have same zero at 0. Without loss of generality, y1 is positive up to its
next zero at x = α. So y′1(0) > 0 and y′1(α) < 0. Suppose y′2(0) > 0,
then −y2y

′′
1 − a1y1y2 = 0 and y1y

′′
2 + a2y1y2 = 0. Hence (y1y

′
2 − y2y

′
1)

′ =
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(a1 − a2)y1y2, so y2(α)y
′
1(α) = W =

∫ α
0 (a1 − a2)y1y2, so y2(α) < 0 and y2

has a zero before α.

(b) Since y′′+ω2y = 0 has oscillatory solutions, the solutions of y′′+ay =
0 must remain oscillatory by (a).

More generally, if y is not oscillatory beyond β, let v := y′/y, so the
equation becomes v′ + v2 = −a, which gives v(x) = −

∫ x
β v2 + a → −∞. So

v(x) 6 −
∫ x
β v2, so v(x)2 > (

∫
v2)2. Let R(x) :=

∫ x
v2, then R2 > R′, so

R(x) 6 − 1
x+c , i.e., x 6 x0 +

1
R(x0)

6 A.

�

4.2 Green’s Function

We now substitute into the formula found in Chapter 3 to get a concise
formula for the particular solution.

Theorem 4.5

The equation, y′′(x) + a1(x)y
′(x) + a0(x)y(x) = f(x) has a

particular solution,

yP (x) =

∫ x

G(x, s)f(s) ds

where G(x, s), the Green’s function for the initial value
problem is defined by

G(x, s) =
u(s)v(x) − v(s)u(x)

W (s)

where u and v form a basis for the solutions of the
homogeneous equation and

W (s) = u(s)v′(s)− v(s)u′(s).

Proof. Following the method in chapter 2, we define the matrix Ux =
(
u(x) v(x)
u′(x) v′(x)

)

, and its determinant W (x) = detUx. We can now substitute
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into the formula

y′(x) = Ux

∫ x

U−1
s f(x) ds+ Uxc

(
y(x)
y′(x)

)

=

(
u(x) v(x)
u′(x) v′(x)

)∫ x 1

W (s)

(
v′(s) −u(s)
−u′(s) v(s)

)(
0

f(s)

)

ds

=

∫ x( −u(x)v(s) + v(x)u(s)
−u′(x)v(s) + v′(x)u(s)

)
f(s)

W (s)
ds+

(
Au(x) +Bv(x)
Au′(x) +Bv′(x)

)

.

Reading off the first component we get

yP (x) =

∫ x u(s)v(x)− v(s)u(x)

W (s)
f(s) ds.

The first part is the particular solution, which is of the required form, while
the remaining part is the homogeneous solution.

�

Examples

1. Solve the equation y′′(x) + y(x) = tan x y(0) = 1, y′(0) = 0.

Solution. There is a unique solution because the coefficients are con-
stant and tanx is continuous in x around the initial point x = 0.
y′′ + y = 0 has solutions cos(x) and sin(x), which we can take to be
the basis for kerL. Their Wronskian is

W (s) = det

(
cos(s) sin(s)
− sin(s) cos(s)

)

= 1

Therefore the Green’s function for this problem is given by,

G(x, s) = cos(s) sin(x)− sin(s) cos(x)

and the particular solution by,

yP (x) =

∫ x

0
[sin(x) cos(s) tan(s)− cos(x) sin(s) tan(s)] ds

= sin(x)

∫ x

0
sin(s) ds− cos(x)

∫ x

0
sec(s)− cos(s) ds

= − sin(x)(cos(x)− 1)− cos(x)(log(sec(x) + tan(x))− sin(x))

= sin(x)− cos(x) log(sec(x) + tan(x))

The general solution is,

y(x) = A cos(x) +B sin(x) + sin(x)− cos(x) log(sec(x) + tan(x))
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Substituting the initial conditions,

1 = y(0) = A, 0 = y′(0) = B + 1− 1

gives the solution

y(x) = cos x+ sinx− cos x log(sec(x) + tan(x))

2. Solve xy′′(x) − 2(x + 1)y′(x) + (x + 2)y(x) = ex, y(1) = 0 = y′(1),
given that the solutions of the homogeneous equation are of the type
exg(x).

Solution. There is a unique solution because the coefficients are con-
tinuous in x around the initial point x = 1. Substituting y = exg,
y′ = ex(g′ + g), y′′ = ex(g′′ + 2g′ + g) into the homogeneous equation
gives, after simplifying and dividing by ex,

xg′′(x)− 2g′(x) = 0

This can be solved: if necessary, substitute h(x) := g′(x) to get

h′

h
=

2

x
⇒ g′(x) = h(x) = cx2 ⇒ g(x) = Ax3 +B

yH(x) = Ax3ex +Bex

So, u(x) = x3ex, v(x) = ex.

The Wronskian is then

W (x) = det

(
x3 1

3x2 + x3 1

)

ex = −3x2e2x

and the Green’s function is

G(x, s) =
s3esex − x3exes

−3s3e2s
.

A particular solution is then

yP (x) =

∫ x

G(x, s)f(s) ds =
x3ex

3

∫ x 1

s3
ds− ex

3

∫ x

1 ds = −exx

2

Combined with u and v, we get the general solution

y(x) = Ax3ex +Bex − 1

2
xex

Substituting the initial conditions,

0 = y(1) = Ae+Be− 1
2e

0 = y′(1) = 4Ae +Be− e
⇒ A = 1/6, B = 1/3

and the solution is

y(x) =
ex

6
(x3 − 3x+ 2)
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Notice that once G(x, s) is found for L, it can be used for another f to
give the corresponding particular solution.

Trial solutions The method outlined above need not be the best method
to apply when f is a simple function such as polynomials, exponentials or
trigonometric functions; in this case, one can often guess the answer or try
solutions of the same type. For example, y′+y = ex gives y(x) = Ae−x+ 1

2e
x

by inspection.

Linearity of the Particular Solutions Of course one can split f into sim-
pler parts f = f1 + · · ·+ fN and find a particular solution yi for each fi; in
this case y1 + · · ·+ yN is a particular solution for f , by linearity.

4.3 Boundary Value Problem

Second order differential equations require two conditions to determine the
constants A and B that appear in the homogeneous solution. Up to now we
have considered initial conditions, but there can also be boundary condi-
tions of the type:

y(a) = Ya y(b) = Yb

where Ya, Yb are given constants. Such equations are called boundary value
problems.

Note that boundary value problems are not of the type treated by Pi-
card’s theorem, and in fact we are not guaranteed that solutions always exist
in this case. For example, there are no solutions of y′′ − y = 0 which satisfy
the conditions y(0) = 0 = y(1); there are an infinite number of solutions of
y′′ + y = 0 satisfying y(0) = 0 = y(π).

However a solution, if it exists, will be of the type found above.

y(x) = yP (x) +Au(x) +Bv(x)

One can proceed to find A and B via

Ya = y(a) = yP (a) +Au(a) +Bv(a)

Yb = y(b) = yP (b) +Au(b) +Bv(b),

which is equivalent to solving

(
u(a) v(a)
u(b) v(b)

)(
A
B

)

=

(
Ya − yP (a)
Yb − yP (b)

)

.

It can happen however that the matrix on the left is not invertible, and
hence either no A and B exist or an infinite number of them do, depending
on whether the equations are consistent or not.

Exercises 4.6
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1. Determine ranges where the following equations have unique solutions:

(a) y′′ + y = tan x, y(0) = 1, y′(0) = 0,

(b) x2y′′ − xy′ + y = x, y(1) = 1, y′(1) = 1,

(c) xy′′ − 2(x+ 1)y′ + (x+ 2)y = ex/x, y(1) = 0 = y′(1)

(d) xy′′ − (sinx)y = 0, y(1) = 0 = y′(1).

2. By first solving the homogeneous equation, calculate the Green’s func-
tion of the following differential equation:

y′′ − 3y′ + 2y = f(x) y(0) = 1 y′(0) = 2

Solve the equation for the case f(x) = ex.

(Answer: 2e2x − ex(1 + x))

3. Find the general solutions of the equations

(i) y′′ + 4y = sin 2x,

(ii) y′′ + 2y′ + (1 + α2)y = f, α 6= 0.

(Answers: (i) 1
16 sin 2x− 1

4x cos 2x+A cos 2x+B sin 2x, (ii) G(x, s) =
(ex+s sinα(x− s)/αes.

4. Find the general solutions of

(a) x2y′′−2xy′+2y = x5 given that the solutions of the homogeneous
equation are of the type xn. (Answer: 1

12x
5 +Ax2 +Bx)

(b) xy′′ − 2(x + 1)y′ + (x + 2)y = ex/x given that y(x) = exg(x).
(Answer: ex(log x− x)/2 +Ax2ex +Bex)

(c) x2y′′−xy′+y = x given that y(x) = g(log x). (Answer: −1
2x(log x)

2+
Ax+Bx log x)

5. Solve the equation,

y′′ − (2 +
1

x
)y′ + (1 +

1

x
)y = xex−1

with initial conditions y(1) = 0, y′(1) = 1.

(Hint: the solutions of the homogeneous equation are of the form
exg(x). Answer: 1

3 (x
3 − 1)ex−1)

6. Solve
y′′ + (tanx− 2)y′ + (1− tan x)y = cos x

given that the homogeneous solutions are of the type exg(x) and that
the initial conditions are y(0) = 1, y′(0) = 0.

(Answer: 1
2(e

x + cos x− sinx))
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7. By making the substitution x = eX , find y′(x) and y′′(x) in terms of
dy/dX and d2y/dX2. Find two linearly independent solutions of the
equation,

x2y′′ + xy′ + y = 0

and calculate the Green’s function.

Hence find the solution of the equation,

x2y′′ + xy′ + y = 1 y(1) = 0 y′(1) = 2

(Answer: 2 sin log x− cos log x− 1)

8. Solve
x2y′′ − xy′ + y = 1

given the initial conditions y(1) = 1, y′(1) = 1.

(Answer: x log x+ 1)

9. Assume that two linearly independent solutions of the equation,

x2y′′ + xy′ + (x2 − 1)y = 0

are J(x) and Y (x) (Do not attempt to find them).

Calculate the Green’s function for the equation, and use it to find a
formula (involving integrals) for the general solution of the equation,

x2y′′ + xy′ + (x2 − 1)y = f(x) y(1) = A y′(1) = B

10. Let u, v be two solutions of the linear second order o.d.e.

a2y
′′ + a1y

′ + a0y = 0,

where a0, a1, a2 are continuous, a2 6= 0.

Show that the Wronskian of u and v satisfies the differential equation
a2W

′ + a1W = 0.

Solve this differential equation to get an explicit formula for W (x).

Deduce that W vanishes if it vanishes at one point.

11. (*) Show that the Green’s function G(x, s) has the properties (a)
G(s, s) = 0, (b) ∂xG(s, s) = 1/a2(s), (c) LG = 0, and that these
properties determine G.



CHAPTER 5

Dynamical Systems

Let us return to the general non-linear o.d.e. for a function y(x),

y′(x) = F (y(x)).

Such differential equations are usually impossible to solve in closed form
i.e., written in terms of some standard functions. Only a handful of such
equations can in fact be so analyzed.

But such equations are very common in nature or in applications.

Examples

1. Consider a model for rabbit reproduction, where u(t) denotes the num-
ber of rabbits at time t,

u̇ = au(1− u/b), u(0) = u0.

The parameter a is the natural fertility rate minus the natural death
rate, while b is a term that gives the stable population given the size of
the habitat etc. This equation can in fact be solved explicitly (exercise)
to give

u(t) = b/(1 + (b/u0 − 1)e−at).

The rabbits increase or decrease in number until they reach to the
fixed value b, independent of the initial number u(0).

Now consider a model representing the interaction between rabbits u
and foxes v, where the latter prey upon the former. The model now
consists of two interdependent differential equations.

u̇ = au(1 − u/b) − cuv

v̇ = duv − ev

This time, although there is a unique solution for every initial condition
(by Picard’s theorem), we cannot write it in closed form.

51
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2. The pendulum satisfies the differential equation,

θ̈ = − sin θ − cθ̇

This is not first order, but we can change it to one, by introducing the
variables v = θ̇ and u = θ,

u̇ = v

v̇ = − sinu− cv

3. A model for how the body’s immunization proceeds is to consider two
types of immunity cells, called lymphocytes, denoted here by u(t) and
v(t), which depend on each other via

u̇ = a− bu+
cuv

1 + duv

v̇ = a′ − b′v +
c′uv

1 + d′uv

Different persons have different values for the constants a, b, . . ..

4. A van der Pol electrical circuit is such that the current and voltage
satisfy the equations,

u̇ = v + u− p(u, v)

v̇ = −u

where p(u, v) is a cubic polynomial of u and v. This electrical circuit
behaves abnormally in that it keeps oscillating with a strange wave-
form.

5. A very simple model of the atmosphere, using the barest minimum of
variables, consists of the equations,

u̇ = −10(u − v)

v̇ = 30u − v − uw

ẇ = uv − 3w

6. The onslaught of a contagious disease can be modeled using three
variables u, v, w denoting respectively the number of persons who have
not yet had the disease, the number who are currently ill, and the
number who have had the disease and are now immune to it. One
model is the following:

u̇ = −auv + λ− λu,
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v̇ = auv − bv − µv,

ẇ = bv − λw,

where a is the rate at which infections occur, λ is the birth rate (equal
to the normal death rate in this case), µ is the rate at which the ill die,
and b is the rate at which they recover (and become immune). Try
values a = 4, b = 2, λ = 0.02 and varying values of µ.

7. Applications to economics involve the dynamic evolution of income,
consumption, investment, inflation and unemployment. To chemistry
includes the variation of chemical concentrations while they are react-
ing or mixing. See the section on Non-linear equations in the Intro-
duction.

5.1 State Space

In this chapter we analyze, in a general way, autonomous equations of the
form

y = F (y).

More general differential equations of the type y′ = F (x,y), can be
reduced to this form by letting v := (x,y) so that v′ = (1,F (v)) = G(v)
(at the cost of incrementing the number of variables).

We call the space Rn of variables u, v, . . ., the state space of the system.
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For simplicity we restrict ourselves to the case of two variables u, v. The
presence of more variables makes the analysis progressively harder with ever
more possibilities for the behavior of the solutions. With three or more
variables, the solutions may behave chaotically without ever converging yet
not diverging to infinity, or they may “converge” and trace out a surface
that may be as simple as a torus or more complicated shapes, called strange
attractors. The weather example above “converges” to the Lorenz attractor.

At each point (u, v) in the state space there is a corresponding vector
y′ = (u′, v′) = F (u, v) which indicates the derivative of a solution y(x) =
(u(x), v(x)) passing through that point. Solutions must be such that they
follow the vectors of the points that they traverse, starting from any initial
point. It follows that if we plot these vectors in the state space we ought to
get a good idea of how the solutions behave. Such a plot of the vector field
F (u, v) is called a phase portrait and is usually done using a computer.
The commands are usually variants of VectorPlot and StreamPlot.

-2 -1 0 1 2

-2

-1

0

1

2

Figure 5.1: The vector field of the predator-prey equations u̇ = 2u−u2−uv,
v̇ = uv − v.

The problem with such simple computer plots is that one cannot be
sure that all the important information has been captured within the range
of the plot. Moreover, we would need to substitute particular values for
the parameters and initial conditions. In this section we develop a more
comprehensive treatment.

A good way to analyze the vector field is to divide it into separate regions,
each region having corresponding vectors in the four quadrant directions i.e.,
N/E, S/E, S/W and N/W. The boundaries of such regions will have vectors
that point purely to the “north”, “east”, “south” or “west”.
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Figure 5.2: A schematic plot of the vector field of the same predator-prey
equation.

To do this we can plot the set of curves resulting from u′ = 0 (vertical
vectors) and v′ = 0 (horizontal vectors). Moreover we can decide whether
vertical vectors are pointing “north” or “south”, and similarly for horizontal
vectors, by taking sample points on them and checking whether v′ or u′ is
positive or negative.

5.1.1 Equilibrium Points

The path that a solution y(x) takes as x ranges in R is called a trajectory
(depending on the initial point). One of the aims of Dynamics is to describe,
at least qualitatively, the possible trajectories of an equation. There are
three basic types: those that remain fixed at one point, those that close
on themselves (periodic), and those that never repeat. Note carefully that
trajectories cannot intersect (otherwise there would be two tangent vectors
at an intersection point).

Definition An equilibrium point or fixed point is a point y0 in
the state space with zero tangent, i.e., y′ = F (y0) = 0.

If a solution y(x) is started at an equilibrium point y(0) = y0 it re-
mains there. They can be found at the intersection of the boundaries of the
different regions.

Exercise: Show that the equilibrium points for the examples given above
are, respectively, 2) (0, nπ), 4) (0, 0), 5) (0, 0, 0).

The equilibrium points are important because they are the points to
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which the solution may converge to. Each such equilibrium point has its own
basin of attraction set: a solution that starts from inside a basin converges to
the associated equilibrium point. However, solutions may diverge to infinity,
or even “converge” to a limit cycle, as happens with the van der Pol equation.
So knowing the fixed points only gives us partial answers to the behavior of
the variables.

We can see what goes on near to an equilibrium point by taking points
y = y0 + h with h = (h, k) small in magnitude. Substituting into the
differential equation leads to a linear differential equation, approximately
correct in the vicinity of the equilibrium point y0. This is achieved by
taking a first order Taylor expansion of F (y) around the fixed point:

y′ = F (y) = F (y0 + h) = DyF (y0)h+O(2).

Notice that for equilibrium points, F (y0) = 0. Also, the second term
DxF (x0) is simply a matrix A with constant coefficients.

Therefore we get
h′ = Ah+O(2).

We have already treated such equations in Chapter 2, where we found
that the eigenvalues of A are, in almost all cases, enough to specify the type
of solution. In our case these solutions will only be accurate near to the
equilibrium points, as the further we go from them, the larger h becomes
and the O(2) terms cannot be neglected any more.

Not all equilibrium points are similar. Some are stable, meaning that
slight changes to y lead to solution curves y(x) that converge back to the
equilibrium point. Others are unstable: any slight change in y from y0

increases in magnitude, with y(x) moving away from the equilibrium point.
We have already classified all the possible generic types of linear equa-

tions in two variables. Each equilibrium point will, in general, be one of
these types:

Node/Saddle: Both eigenvalues real (positive/negative). Of these only a
node sink is stable (both eigenvalues negative).

Spirals: Eigenvalues are complex conjugates. The equilibrium point is
stable if Re(λ) is strictly negative and unstable if it is strictly positive. It is
neutral if it is zero.

Deficient node: Eigenvalues are equal, and non-diagonalizable. A de-
ficient node is stable or unstable depending on whether the eigenvalue is
negative or positive respectively.

In short, an equilibrium point is stable if all its eigenvalues have negative
real part. If at least one eigenvalue has a positive real part then it is unstable.
In the special case that one eigenvalue has negative real part and the other
zero, or both have zero real part, then the first-order term in the Taylor
expansion is not enough to decide stability.
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Examples

1. Resistive Pendulum Find and analyze the fixed points of the “resistive”
pendulum:

θ̈ = −bθ̇ − a sin θ,

where a and b are positive constants.

Defining v = θ̇ and u = θ we get the system of equations,

u̇ = v

v̇ = −bv − a sinu

To find the fixed points, we set both equations equal to 0, and solve
simultaneously to get the points (nπ, 0).

Let us fix n, and linearize the equations about this fixed point by taking
u = nπ + h and v = 0 + k. The Taylor expansion gives, up to first
order, ḣ = 0+k and k̇ = −b(0+k)−a sin(nπ+h) = −bk−a cos(nπ)h,
that is

ḣ =

(
0 1

(−1)n+1a −b

)

h

The eigenvalues of the matrix are

1

2
(−b±

√

b2 − 4(−1)na)

For n odd, there are two real eigenvalues, with one of them certainly
positive, making the fixed point unstable;

For n even, the discriminant may be positive or negative: if b2−4a > 0
(i.e., the resistive forces are high) then the eigenvalues are both real
and negative, making the fixed point stable; if the discriminant is
negative, then the eigenvalues are complex, but with negative real
part −b/2; the fixed point is stable in this case also.

2. Species Habitat What happens to a species if its habitat is destroyed
slowly? Will it reduce in number proportionally, or will something
more catastrophic happen?

A simple model that includes two predator/prey species and a habitat
parameter D is the following:

u′ = u(D − u)− uv,

v′ = uv − v.

The curves in state space with u′ = 0 are given by u = 0 or v = D−u.
Similarly v′ = 0 gives v = 0 or u = 1. The equilibrium points are
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therefore

(
0
0

)

,

(
D
0

)

and

(
1

D − 1

)

. The last two points are only

feasible when D > 0 and D > 1 respectively. Let us analyze each in
turn:

At

(
0
0

)

, we let u = 0 + h, v = 0 + k to get

(
h′

k′

)

=

(
D 0
0 −1

)(
h
k

)

+O(2).

The point is therefore a saddle point when D > 0, a sink otherwise.

At

(
D
0

)

, we let u = D + h, v = 0 + k to get

(
h′

k′

)

=

(
−D −D
0 D − 1

)(
h
k

)

+O(2).

When D > 1 the point is a saddle point again, but when 0 < D < 1 it
is a sink.

At

(
1

D − 1

)

, we let u = 1 + h, v = (D − 1) + k to get

(
h′

k′

)

=

(
−1 −1

D − 1 −1

)(
h
k

)

+O(2).

Its eigenvalues are −1 ±
√
1−D. Hence we get an inward spiral if

D > 1.

We get the following picture: when the habitat is still large, D > 1,
both species coexist spiralling about the third fixed point. As the
habitat is reduced beyond a critical value, D < 1, the predator species
becomes extinct and the prey stabilize to the second fixed point. With
a further reduction in habitat to D < 0, the solution converges to the
origin, and even the prey species becomes extinct.

Other Cases

Degenerate Equilibrium Points It is possible for an equilibrium point to
consist of two or more superimposed simple equilibrium points as described
above, in which case it is called non-hyperbolic or degenerate. The picture
below shows a spiral coinciding with a saddle point. The analysis of such
an equilibrium point yields a number of zero eigenvalues (or zero real parts)
which cannot specify the type of point: higher-order terms are needed.

Limit Sets In some differential equations, the solutions converge to a
set other than an equilibrium point, such as a periodic orbit. The van der
Pol equation, and the equation governing the heart, are two such examples.
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These special points are often said to be non-wandering : the trajectory
of such a point y0 returns infinitely often to its vicinity,

∀ǫ > 0,∀x0,∃x > x0, ‖y(x)− y0‖ < ǫ.

Chaos theory essentially started when it was discovered that in 3 dimensions
or higher, there may be non-wandering points other than equilibrium or
periodic points (forming strange attractors or repellers).

Figure 5.3: An example of a degenerate equilibrium point u̇ = uv, v̇ = u−v.

Exercises
Describe the fixed points of the following differential equations and make

a sketch of the phase portrait (for the 2-D problems):

1.

u′ = uv − v2

v′ = 1− u2

2.

u′ = v

v′ = 2− u2v

3.

rlu′ = uv

v′ = −4u+ sin 2v
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4.

rlẋ = x+ y + zy

ẏ = −2y + z

ż = 2z + sin y

5.

ẍ+ ẋ+ x = 0

6.

ẍ− ẋ+ x = 0

7. For which values of a, b in ẍ+ aẋ2 + bx = 0 does x(t) have non-trivial
periodic solutions?

8. Duffing’s equation u′′ = u− u3 − u′.

9. Show that in R
2, an equilibrium point is stable if detA > 0 and

trA < 0, and unstable if detA < 0 or detA > 0 but trA > 0. Note that
the stability of the equilibrium point cannot be decided if detA = 0.

5.1.2 Gradient Flows

A gradient flow is a set of equations of the type ẋ = −∇V (x) where V is a
differentiable function (the sign is negative by convention). The dynamics
of these equations are special:

The equilibrium points are the maxima/minima/critical points of V . In
general, V (x(t)) is decreasing (because d

dtV (x(t)) = ∇V · ẋ = −‖∇V ‖2) so
the trajectories x(t) move away from the maxima and towards the minima,
and there can be no periodic solutions.

5.1.3 Hamiltonian Flows

u′ = ∂H
∂v , v

′ = −∂H
∂u . The function H(u, v) is called the Hamiltonian of the

system.

Conservation of Energy : The Hamiltonian function is preserved along a
trajectory H(u(x), v(x)) is constant, independent of x. That is, the trajec-
tories belong to the level curves of H.

Proof.

d

dx
H(u(x), v(x)) =

∂H

∂u
u′(x) +

∂H

∂v
v′(x)

= v′(x)u′(x)− u′(x)v′(x) = 0

�
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Example, u′ = av, v′ = −bu (a, b constant), is a Hamiltonian flow with
H := 1

2(bu
2 + av2). More generally, the system u′ = f(v), v′ = g(u) is

Hamiltonian with H = F (v) −G(u), where F and G are the integrals of f
and g. In particular, equations of the type u′′ = −V ′(u) (so the Hamiltonian
is 1

2p
2 + V (x).

The equilibrium points of a Hamiltonian flow are also the maxima/minima/critical
points of H(u, v), but this time the trajectories move “around” such points.

At an equilibrium point, (u0, v0), let u = u0 + h, v = v0 + k, then

h′ =
∂2H

∂u∂v
h+

∂2H

∂v2
k

k′ = −∂2H

∂u2
h− ∂2H

∂u∂v
k

This gives a matrix of the type K :=

(
a b
−c −a

)

, which has eigenvalues

λ = ±
√
− detK. There are thus two possibilities, either a center or a saddle

point (unless degenerate).
A remarkable property of Hamiltonian flows is that areas are preserved:

consider an infinitesimal rectangle with one corner (u, v) and sides δu, δv.
After x changes to x+ δx, the corners move to new positions; (u, v) moves
to

u(x+ δx) = u(x) +
∂H

∂v
δx

v(x+ δx) = v(x)− ∂H

∂u
δx

(u+ δu, v) moves to

(u+ δu)(x + δx) = u(x) + δu(x) +
∂H

∂v
δx+

∂2H

∂u∂v
δuδx

v(x+ δx) = v(x)− ∂H

∂u
δx− ∂2H

∂u2
δuδx

(u, v + δv) moves to

u(x+ δx) = u(x) +
∂H

∂v
δx+

∂2H

∂v2
δvδx

(v + δv)(x + δx) = v(x) + δv(x) − ∂H

∂u
δx− ∂2H

∂u∂v
δvδx

So the sides of the infinitesimal rectangle become the vectors

(

1 + ∂2H
∂u∂v δx

−∂2H
∂u2 δx

)

δu

and

(
∂2H
∂v2

δx

1− ∂2H
∂u∂v δx

)

δv. Its area, which initially was δuδv, becomes |side1 ×

side2| = δuδv|1 + detKδx2|. To first order, there is no change in the area,
i.e., dArea

dx = 0.
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CHAPTER 6

Numerical Methods

Since most non-linear differential equations are impossible to solve analyti-
cally, it becomes imperative to have algorithms for such cases. We seek meth-
ods to get an approximate solution for y(x) that satisfies y′(x) = F (x, y),
y(0) = Y , where F is continuous in x and Lipschitz in y. The methods that
we will describe here work by dividing the range [0, x] into small steps of size
h, so that xn = nh, and finding approximations yn ≈ y(xn) for the solution.

The algorithm must have two important properties:

1. The approximations yn must converge to the real solution y(x) when
we take smaller step sizes i.e., as h → 0;

2. The algorithm must be numerically stable, meaning that slight errors
in round-off do not swamp the results.

In the following sections we will denote y′n := F (xn, yn). This is not in
general equal to y′(xn) = F (xn, y(xn)) because yn may not be equal to the
solution y(x). In fact the difference en := y(xn) − yn is the total error of
the algorithm. Recall from the first chapter that when a solution is started
at a slightly different point y(0) = Y + δ, the difference tends to increase
exponentially; this means that the errors en may, and often will, become
magnified.

6.1 Euler’s Method

The simplest iteration is the following:

yn+1 := yn + hy′n, y0 := Y.

The idea is that y(xn+1) = y(xn + h) ≈ y(xn) + hy′(xn) and we use the
available information to substitute yn instead of y(xn) and y′n instead of
y′(xn).

63
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Example

Let us try this method on y′ = y, y(0) = 1, whose exact solution we know.
The iteration becomes

yn+1 := yn + hyn, y0 := 1.

Try it out with some value of h, say 0.1, and see whether the values are close
to the actual solution y(x) = ex. For this simple example we can actually
get an exact formula for yn by solving the recursive equation to get

yn = (1 + h)n.

Since xn = nh we have yn = (1+h)xn/h → exn as h → 0. So Euler’s method
does work for this simple problem.

6.1.1 Error Analysis

Let us see how the errors increase in size in general. Let en := y(xn) − yn
be the total error at the point xn. Then, by Taylor’s theorem (assuming y
is twice differentiable),

y(xn+1) = y(xn + h) = y(xn) + hy′(xn) +O(h2),

yn+1 = yn + hy′n.

Subtracting gives,

en+1 = en + h(y′(xn)− y′n) +O(h2).

But from the Lipschitz property of F (x, y),

|y′(xn)− y′n| = |F (xn, y(xn))− F (xn, yn)| 6 k|y(xn)− yn| = k|en|.

So
|en+1| 6 |en|+ hk|en|+ ch2 = α|en|+ ch2

where c is the maximum of the residual O(h2) function, given approximately
by |y′′(x)/2|. Taking the worst case for the error at each stage, we get (for
h sufficiently small)

|en| 6 αn|e0|+ ch2(1 + α+ . . .+ αn−1

= (1 + hk)n|e0|+ ch2[(1 + kh)n − 1]/hk

= (1 + xnk/n)
n|e0|+

ch

k
[(1 + kxn/n)

n − 1]

6 ekxn |e0|+
ch

k
(ekxn − 1)

6 ekxn(|e0|+
ch

k
)

We can conclude various results here:
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1. An error is introduced at each step, of order h2 at most; and the total
error added by the algorithm is proportional to h. Hence halving the
step size reduces this algorithmic error en by half.

2. There is a second error term, called the propagation error, originating
from |e0|. This is the same error we had analyzed in Chapter 1, where
we called e0 = δ. But it can also represent the computer number
accuracy. Both errors increase exponentially as we get further away
from the initial point. The worst error can be expected to be at the
furthest point from 0.

3. The step size should be chosen so that ch
k (e

kx−1) < ǫ, the target error;
but it does not make sense to make it smaller in value than |e0|ekx.

4. Decreasing the step size h, increases the number of steps n to get to
the same point x. There is therefore a trade-off between accuracy
and speed. In fact we can get a relation between the total number of
calculations and the target accuracy ǫ, as follows:

ǫ ≈ ch = cx/n

implying that the number of calculations needed is inversely propor-
tional to target accuracy. In practice there is a limit to how small we
can take h to be due to round-off error.

5. Large values of k or c lead to larger errors. In particular, corners in
the solution (large y′′) and large powers of y in F (large k) must be
treated with more care. Note further that usually we will not get the
worst errors as we have supposed in the error analysis above, so that
k and c should be average values not maxima.

6.2 Improving the Euler method – Taylor series

An obvious way to improve upon the Euler method, is to take further terms
in the Taylor series:

y(xn + h) = y(xn) + hy′(xn) +
1

2
h2y′′(xn) +O(h3)

where we substitute y′ = F (x, y(x)) and so y′′ = F1(x, y) :=
d
dxF (x, y(x)) =

∂F
∂x + ∂F

∂y y
′ = ∂F

∂x + ∂F
∂y F . This gives the following algorithm

yn+1 := yn + hy′n +
1

2
h2y′′n, y0 = Y

where y′n := F (xn, yn), y
′′
n := F1(xn, yn).

For example, if we want to solve the equation y′ = 1 + xy2, y(0) = 0,
then y′′ = y2 + x(2y)y′ = y2 + 2xy(1 + xy2) = y(y + 2x+ 2x2y2). So we let
yn+1 = yn + h(1 + xny

2
n) =

1
2h

2yn(yn + 2xn + 2x2ny
2
n), starting from y0 = 0.
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6.2.1 Error analysis

Taking the difference between the equations

y(xn + h) = y(xn) + hy′(xn) +
1
2h

2y′′(xn) +O(h3)

yn+1 = yn + hy′n + 1
2h

2y′′n

we get

en+1 = en+h(F (xn, y(xn))−F (xn, yn))+
1

2
h2(F1(xn, y(xn))−F1(xn, yn))+O(h3)

so that, assuming that both F and F1 are Lipschitz, we get

|en+1| 6 |en|+ hk|y(xn)− yn|+
1

2
h2k1|y(xn)− yn|+O(h3)

6 |en|(1 + hk +
1

2
h2k1) + ch3

6 αn|e0|+ ch3(1 + α+ . . .+ αn−1)

6 αn|e0|+ ch2(αn − 1)/(α − 1)

≈ ekx(|e0|+ ch2/k)

The algorithmic error is guaranteed to be of order h2. This is a huge
improvement over the Euler method.

For example, let us suppose that we wish the maximum error ǫ, at x = 10,
to be at most 0.01, and that c = 1, k = 1; then for the Euler method, we
need ch/k 6 ǫ, so h 6 ǫk/c = 0.01; thus we need n = x/h = 10/0.01 = 1000
steps. For the improved Euler-Taylor method we need ch2/k 6 ǫ; so h 6
√

ǫk/c = 0.1, and we need n = x/h = 100 steps, an improvement of 10.
Note, in practice the improvement is not this large, because we have

slightly more to calculate at each step. Moreover this method assumes that
F (x, y) is differentiable in x, which it need not be the case in general.

6.3 Improving the Euler method – Interpolation

Let us rewrite each step for the solution as

y(xn+1) = y(xn + h) = y(xn) +

∫ xn+1

xn

y′(s) ds = y(xn) + h〈y′〉,

where 〈y′〉 is the average value of y′ in the range [xn, xn+1]. Hence Euler’s
method is equivalent to making the approximation 〈y′〉 = y′(xn) i.e., the
average over the range is taken to be the value at the first endpoint. This
rough estimate works as we have seen, but it is not difficult to improve upon
it — in most cases, at least for small steps, the value of y′ is either increasing
or decreasing, so the value y′(xn) is an extreme one.
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We should get better results if we find better ways of approximating the
average value of y′ over each step. There are two obvious improvements (i)
take 〈y′〉 to be approximately the value of y′(xn + 1

2h), or (ii) take 〈y′〉 to
be approximately the average of the two slopes at the extreme ends 〈y′〉 ≈
(y(xn) + y(xn+1)/2. The problem is that we do not know the value of y at
these other points! But we can use the Euler estimate to get approximate
values for them, as in the following sections.

6.3.1 Midpoint Rule

Start with y0 = Y , and at each step, let

y′n := F (xn, yn),

u := yn +
1

2
y′n,

u′ := F (xn+1/2, u),

yn+1 := yn + hu′.

where xn+1/2 = xn + 1
2h.

Error Analysis: The algorithm has errors of order O(h2).
Proof. Consider

y(xn+1) = y(xn + h) = y(xn) + hy′(xn) +
1

2
h2y′′(xn) +O(h3)

y′(xn+1/2) = y′(xn +
1

2
h) = y′(xn) +

1

2
hy′′(xn) +O(h2)

so , y(xn+1) = y(xn) + hy′(xn+ 1

2

) +O(h3)

Now,

|y′n − y′(xn)| = |F (xn, yn)− F (xn, y(xn))| 6 k|yn − y(xn)| = ken.

|u− y(xn+1/2)| = |yn +
1

2
hy′n − y(xn)−

1

2
hy′(xn) +O(h2)|

6 |yn − y(xn)|+
1

2
h|y′n − y′(xn)|+O(h2)

6 en +
1

2
hken +O(h2).

So,

|u′ − y′(xn+1/2)| = |F (xn+ 1

2

, u)− F (xn+1/2, y(xn+1/2))|
6 k|u− y(xn+1/2)|

6 k(1 +
1

2
hk)en +O(h2)
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And finally,

|yn+1 − y(xn+1)| = |yn + hu′ − y(xn)− hy′(xn+1/2) +O(h3)|
6 |yn − y(xn)|+ h|u′ − y′(xn+1/2)|+O(h3)

en+1 6 en + hk(1 +
1

2
kh)en + ch3

Let α = 1 + hk + 1
2h

2k2, so that by iterating we get

en 6 αne0 + ch3(1 + α+ . . .+ αn−1)

6 αne0 + ch3
αn − 1

α− 1

6 αn(e0 + ch2/k)

6 ekx(e0 + ch2/k).

�

Trapezoidal Rule

At each step, let

y′n := F (xn, yn),

u := yn + hy′n,

u′ := F (xn+1, u),

yn+1 := yn + h(y′n + u′)/2,

y0 := Y.

Error Analysis: the algorithm has errors of order O(h2).
Proof.

y(xn+1) = y(xn + h) = y(xn) + hy′(xn) +
1

2
h2y′′(xn) +O(h3)

y′(xn+1) = y′(xn + h) = y′(xn) + hy′′(xn) +O(h2)

so (y′(xn+1) + y′(xn))/2 = y(xn) +
1

2
h(y′(xn+1) + y′(xn)) +O(h2)

∴ y(xn+1) = y(xn) +
1

2
h(y′(xn) + y′(xn+1)) +O(h3)

As before, we have
|y′n − y′(xn)| 6 ken

|u− y(xn+1)| = |yn + hy′n − y(xn)− hy′(xn) +O(h2)|
6 |yn − y(xn)|+ h|y′n + y′(xn)|+O(h2)

6 en + hken +O(h2)
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So,

|u′ − y′(xn+1)| = |F (xn+1, u)− F (xn+1, y(xn+1))|
6 k|u− y(xn+1)|
6 k(1 + hk)en +O(h2)

So,

|yn+1 − y(xn+1)| = |yn + h(y′n + u′)/2 − y(xn)− h(y′(xn+1) + y′(xn))/2 +O(h3)|

6 |yn − y(xn)|+
1

2
hken +

1

2
hk(1 + hk)en +O(h3)

Hence we get the same error at each step of en+1 6 (1+hk+ 1
2h

2k2)en+
ch3 as in the midpoint algorithm. The total error is therefore at most
en 6 ekx(e0 + ch2/k).

�

Note that now the error introduced in each stage is proportional to h3,
and hence the total error is proportional to h2. This is called quadratic
convergence which is much faster than the linear convergence of the simple
Euler method. The total number of calculations needed is now inversely
proportional to the square root of the accuracy N = c/

√
ǫ.

In practice, the method can be improved even further by inserting more
averaging steps as follows:

u = yn + hy′n

v = yn +
1

2
h(y′n + u′)

yn+1 = yn +
1

2
h(y′n + v′).

6.3.2 Error Stability

It is not enough to have an algorithm that converges to the required solution,
using exact calculations. In practice every computer (including working by
hand) introduces round-off errors at some stage. The algorithm must be
immune to these errors i.e., these errors ought not to increase to a value
larger than the inherent errors of the algorithm. Here is an example of
a method that appears better than the simple Euler method but is not
numerically stable.

Let

yn+1 := yn−1 + 2hy′n, y0 := Y,

and use some method (Euler’s or the trapezoid rule) to estimate y1.
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It is not too difficult (exercise) to show that this method has quadratic
convergence with

|en| 6 Aλn +Bµn +
h2M

2k

where λ, µ = hk±
√
1 + h2k2 ≈ ±1+hk. If we take |e0| = 0 and |e1| = O(h2)

we would get A = B = O(h2), so that the total error |en| 6 ch2.

However let us apply this algorithm to an example y′ = −y, y(0) = 1
(for which we know the solution y(x) = e−x.) The algorithm becomes

yn+1 = yn−1 − 2hyn, y0 = 1.

This is a recurrence equation that can be solved (exercise) to get

yn = Aλn +Bµn,

= A(1 − h+ . . .)x/h +B(−1)n(1 + h+ . . .)x/h

≈ Ae−x + (−1)nBex

where λ, µ = −h±
√
1 + h2 ≈ ±1−h+O(h2). Even if we take |e0| = 0 = |e1|,

that is y0 = 1 and y1 = e−h, we get (exercise) that A = 1 + O(h2), B =
O(h2). Hence B, although small, is non-zero and the term Bµn increases
exponentially with each step.

6.4 Runge-Kutta Method

One can improve further on the trapezoid rule by using Simpson’s rule,

1

h

∫ a2

a1

f ≈ 1

6
(f(a1) + 4f(a1.5) + f(a2)),

which is exact on quadratic functions. Adapting it to our case we get,

1

h

∫ xn+1

xn

y′ ≈ 1

6
(y′(xn) + 4y′(xn + h/2) + y′(xn + h)).

This is a weighted average of the function y′. However we do not know
this function yet, so we must devise some method to estimate the terms in
the bracket. The Runge-Kutta method does this in the following way, for
each step:

u1 := yn,

u2 := yn +
1

2
hu′1,

u3 := yn +
1

2
hu′2,

u4 := yn + h
u′2 + u′3

3
,
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and then let
yn+1 := yn + h(u′1 + 2u′2 + 2u′3 + u′4)/6.

Note that in fact, taking u4 := yn + hu′3 is just as good.

It can be shown that the error for this method is of order 4 ie. |en| 6 ch4,
making the Runge-Kutta one of the most popular algorithms for solving
differential equations numerically.

Of course, there are yet other formulas of higher order (cubic) that are
more accurate than Simpson’s. However these need not necessarily be more
accurate when applied to differential equations. Each step may be more
accurate but more calculations would be needed, introducing more round-
off errors. For example a fourth-order method with step-size h need not be
more accurate than a second-order method (eg Runge-Kutta) with step-size
of h/2.

6.5 Adams-Bashfort Method

The formula
1

h

∫ xn+1

xn

y′ =
1

2
(−y′(xn−1) + 3y′(xn))

is another approximation that is accurate to first order. This gives rise to
the following method of calculating yn+1 from yn and yn−1.

u := yn−1 + h
−y′n−1 + 3y′n

2
,

yn+1 := yn +
1

2
h
y′n + u′

2
.

The steps involve a predictor u of y(xn+1) using the above approximation,
and a corrector step using the trapezoid rule and the predicted value u. To
start the iteration we need y0 = Y and y1 estimated by using some accurate
method, say the trapezoid rule iterated several times.

These predictor-corrector methods, as they are called, can have different
methods for the predictor/corrector stages. In fact the simplest is to use
the trapezoid method for both, but the Adams-Bashfort is more accurate
(of order O(h4)). Such methods are in general faster than the interpolation
methods used in the previous sections.

Bulirsch-Stoer Method

In fact the unstable midpoint method described previously can be salvaged
in this manner. At each step calculate

u := yn−1 + 2hy′n,
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v := yn + hu′,

yn+1 := u+ v/2.

Because of the changing sign of B, the average of u and v almost cancels
it out, giving a stable algorithm with error of order O(h2).

6.6 Improvements

All of the above methods can be improved further in accuracy. The Achilles’
heel, so to speak, of the methods is to choose a good value of h that is good
enough but that does not make the algorithm too slow.

Adaptive Step Size

The best solution is to find some method how to estimate the step size,
making it smaller when y is changing rapidly, and larger when a small value
is not needed. We want the total error for the final point to be at most
ǫ. To achieve this we need to make sure that each step introduces an error
smaller than ǫ/N i.e.,

|en+1 − en| 6 hǫ/x,

so that
eN 6 e0 +Nhǫ/x = e0 + ǫ.

Suppose we are working with an order O(h4) method (say Runge-Kutta),
which has an error at each step of order O(h5). This means that |en+1−en| ≈
cnh

5, except that we would not know cn precisely. If we are able to estimate
cn then we can estimate h. To do so we can adopt the following method:

1. Evaluate y(xn + h) using the algorithm with step size of h. This gives
an error from the true value of about cnh

5.

2. Evaluate y(xn + h) again using two steps of size h/2. This gives an
error from the true value of about 2cn(h/2)

5 = cnh
5/16, which is much

smaller than the error in 1.

3. Hence we can say that the difference between the two estimates, call
it δ, is approximately equal to en+1 − en and is equal to cnh

5. Hence
cn ≈ δ/h5.

4. The ideal step size would therefore be hnew for which cnh
5
new ≈ hnewǫ/x.

Now that we have an estimate for cn, we get h4new ≈ ǫh5/(δx). Hence
we modify the step size to

hnew = h 4
√

ǫ/δx

Note that the exact power of h ought to be h5/4 but the proposed
formula is even better.
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Half Step Trick

Suppose we are working with an algorithm which is accurate to order O(h2).
Let us get approximate solutions for y(x), once using a step size of h and
again using a step size of h/2. Call the two approximations un and vn, so
that un ≈ y(x) ≈ v2n. Since the error is of order O(h2) we get

un = y(x) + ch2 +O(h3)

v2n = y(x) + c(h/2)2 +O(h3).

We can get rid of the ch2 terms by taking

yn =
4v2n − un

3
,

making the error better by one order i.e., yn = y(x) +O(h3).

This trick can be applied to any other algorithm already described. In
practice it is always used when adaptive steps are taken because it involves
a very few extra calculations.

Extrapolation with h → 0

For very accurate results, one can evaluate the approximate values of yn
with smaller values of h. As h → 0, the worked-out values become closer
to the true value y(x). For each x one can plot these approximate values
against h and extrapolate by finding a statistical best-fit to h = 0.

Exercises 6.1

1. Apply the Euler method to get an approximate solution for the equa-
tion y′ = 1 + xy2, y(0) = 0 for the region x ∈ [0, 1], using a step size
of (i) h = 0.1, (ii) h = 0.05, (iii) h = 0.1 with y(0) = 0.05.

2. Repeat for the equation y′ = 12y, y(0) = 1. Compare with the exact
solution.

3. Repeat the first exercise using the Trapezoid rule, and the Runge-
Kutta method, with a step size of 0.1.

4. In practice, algorithms are run by computers, which make round-off
errors with each calculation. Suppose that at each step of the Euler
method (or any other method), an additional error of δ is introduced
so that we have

en+1 6 (1 + hk)en + ch2 + δ.

Show that the final error en 6 ekx(e0 + ch/k+ δ/hk), and deduce that
making h too small actually increases this error.



74 J Muscat Numerical Methods

5. In the section on Error Stability, show the two unproved assertions
about |en| and yn. (Hint: use Taylor’s theorem for y(xn ± h).)

6. In the Euler method, we took yn+1 = yn + hy′n. Suppose now that we
can easily evaluate ∂F/∂y. Suppose that we are at the nth step.

(a) Let

u = yn, u′ = F (xn+1, yn), k =
∂F

∂y
(xn+1, yn).

Show that y′n+1 is approximately equal to u′ + k(yn+1 − yn).

(b) By taking yn+1 = yn+hy′n+1 and the above approximation, show
that yn+1 = yn + h(1− hk)−1u′.

(c) Show further that the total error in this case is equal to en =
(1−hK)−ne0+ . . ., where K is the largest value of k, and deduce
that the propagation error remains small even when the step size
is large.

7. Find general conditions on A,B,C which make

1

h

∫ xn+1

xn

f ≈ Af(xn) +Bf(xn+ 1

2

) + Cf(xn+1)

exact on quadratic expressions i.e., on f(x) = ax2 + bx+ c. Solve the
resulting simultaneous equations to get Simpson’s coefficients. (Note:
you need only consider the case xn = 0.)

8. Show that if the formula

1

h

∫ xn+1

xn

f ≈ Af(xn−1) +Bf(xn)

is correct on linear expressions i.e., on f(x) = ax+ b, then we get the
Adams-Bashfort coefficients.

9. Devise a predictor-corrector method using the Trapezoid rule for both
steps.

10. Apply the adaptive step analysis to an algorithm that is accurate to
order O(h2). Show that the step size should be taken to be hnew =
constant× h

√

ǫ/δx.

11. Apply the half-step trick to an algorithm of order O(h4).
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