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Geometry
Joseph Muscat 2004

1 Algebraic Curves and Surfaces

Our exposure to curves up to now has been with those that result from
polynomials in variables x, y and z.

1.1 Straight lines and Planes

The simplest polynomial equation is y = mx + c which is that of a straight
line; however it misses out the vertical lines x = c. We can include all cases
by writing it in the form

ax+ by + c = 0.

The corresponding equation in three variables is

ax+ by + cz + d = 0,

which gives a plane in three dimensions. You may be more familiar with it
in the form of a · x = d which is an equivalent formulation.

What do you think will be the simplest equation in four variables? and
what will it correspond to?

1.2 Conics

This chapter is going to deal with those curves and surfaces that come from
quadratic equations. Let’s start with quadratic equations in two variables;
the most general equation of this sort is

ax2 + bxy + cy2 + dx+ ey + f = 0.

Curves that result from such equations will be called conics. You may
already be familiar with certain special cases such as the circle with equation
x2 + y2 = r2 or the parabola y = ax2, and you may even have encountered
the ellipse and the hyperbola. Note that you can also say that the equation
includes the straight line if we take a = b = c = 0. These are all examples
of conics; the obvious question now is: are these all the conics, or are there
others?

To answer this question we will use ideas from vector spaces and we

will be using vector notation, denoting x =

(
x
y

)
. We are going to show
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that by rotating and translating the vectors, every conic is generically (i.e.
excluding exceptions) either an ellipse (which includes the case of the circle)
or a hyperbola, with the parabola as a limiting case; the exceptional cases
are those equations that correspond to a straight line, two parallel lines, two
intersecting lines or a single point.

Let’s start by rewriting the quadratic equation in vector form as

(
x y
)( a b/2

b/2 c

)(
x
y

)
+
(
d e
)(x

y

)
+ f = 0,

or in short as
x>Ax + b>x + f = 0,

where A =

(
a b/2
b/2 c

)
and b> =

(
d e
)
. Note that the matrix A is symmetric,

and from the course on vector spaces we know that every symmetric matrix
can be diagonalized,

D = P>AP,

where D is a diagonal matrix, and P is an orthogonal matrix. Recall that we
do this by finding first the eigenvalues of A with their corresponding eigen-
vectors and constructing D from the eigenvalues and P from the eigenvectors
in the same order. Recall also that P is an orthogonal matrix so that it has
the property P−1 = P> and that geometrically it has the effect of a rotation.

This would be a good thing to do for a general quadratic equation as it
gets rid of the mixed term in xy. Let’s see how it would work: let X = P>x,
so that x = PX; note that the vectors X are the vectors x rotated by the
matrix P>; then

x>Ax = (PX)>A(PX) = X>P>APX = X>DX = λX2 + µY 2.

Let’s see this part in action.

1.2.1 Example 1

Given the equation
3x2 − 2xy + 3y2 = 1,

let us get rid of the mixed term. Written in vector notation, we get

(
x y
)( 3 −1
−1 3

)(
x
y

)
= 1.
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Now find the eigenvalues of the matrix, by first writing out the characteristic
equation:

0 = det

(
3− λ −1
−1 3− λ

)
= (λ− 3)2 − 1 = λ2 − 6λ+ 8 = (λ− 4)(λ− 2).

The eigenvalues are the roots 2, 4.
Next find the corresponding unit eigenvectors, first for 2:(

3− 2 −1
−1 3− 2

)
v = 0.

Use gaussian elimination to end up with the solution(
1 −1
0 0

)
v = 0 ⇒ v =

1√
2

(
1
1

)
.

...then for the second eigenvalue 4:(
3− 4 −1
−1 3− 4

)
v = 0 ⇒ v =

1√
2

(
1
−1

)
.

We build the rotation matrix P from these unit eigenvectors. A quick
check assures us that the two eigenvectors are orthogonal.

P =
1√
2

(
1 1
−1 1

)
Note that this is a rotation by 45◦. Apply the rotation to change the variables,(

x
y

)
= P

(
X
Y

)
,

so that the original conic equation becomes(
X Y

)(2 0
0 4

)(
X
Y

)
− 1 = 0,

which works out to
2X2 + 4Y 2 = 1.

This is the equation of an ellipse in the X, Y co-ordinates. Hence the original
conic equation, in the x, y co-ordinates, was that of an ellipse rotated by 45◦.

The procedure just outlined always gets rid of the mixed quadratic term
in xy. The next step is to get rid of the X and Y terms using the X2 and
Y 2 terms, by completing the square:

λX2 + aX = λ(X + b)2 − c = λX̃2 + c,

where b = a/(2λ) and c = λb2. The second change of variable X̃ = X + b
represents a translation in the X direction. This procedure can be repeated
for the Y 2 and Y terms.
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1.2.2 Example 2

Suppose we’re given the conic equation

x2 + y2 + 6xy + 10
√

2x+ 6
√

2y + 6 = 0.

Then the first procedure of rotating the axes results in the equation (work it
out!)

2X2 − Y 2 + 8X + 2Y + 3 = 0.

Now let us continue by translating the axes, using completion of the square:

2X2 + 8X = 2(X2 + 4X) = 2(X + 2)2 − 8,

−Y 2 + 2Y = −(Y 2 − 2Y ) = −(Y − 1)2 + 1.

Hence if we let
X̃ = X + 2, Ỹ = Y − 1,

we get
2X̃2 − 8− Ỹ 2 + 1 + 3 = 0,

or
X̃2/2− Ỹ 2/4 = 1,

which is a hyperbola in the X̃, Ỹ co-ordinates. Hence the original conic
equation is that of a rotated and translated hyperbola.

1.2.3 Note

If you go back carefully to the completion of the square procedure, we divided
by λ at one stage to get b. Of course we can only do this when λ 6= 0. This
means that we can perform the translation say of the X co-ordinate as long
as there is the term in X2. If it happens that the very first step results in
no X2 term, then the second step cannot be performed to get rid of the X
term, and this will remain in the equation.

However we can use the X term in this case to get rid of the constant at
the end. It is imperative that this is done after the translations of the other
axes, so that no new constants are added.

For example, suppose that applying the first step to a conic gives the
equation

Y 2 +X + Y + 1 = 0.

Notice that there is no X2 term, so we cannot get rid of the X term. We
can only perform completion of the square on the Y variable as

Y 2 + Y = (Y +
1

2
)2 − 1

4
, Ỹ = Y +

1

2
,
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to get

Ỹ 2 − 1

4
+X + 1 = 0,

simplified to

Ỹ 2 +X +
3

4
= 0.

At this stage we can translate the X axis using X̃ = X + 3/4 to get the final
equation

Ỹ 2 = −X̃,

which is the equation of a parabola.

1.2.4 Complete Example

A conic is given by the equation

6x2 − 4xy + 9y2 − 2x+ 4y − 2 = 0.

Written in vector and matrix notation it becomes(
x y
)( 6 −2
−2 9

)(
x
y

)
+
(
−2 4

)(x
y

)
− 2 = 0.

Step 1. Rotation to diagonalize the quadratic part.
The eigenvalues are found from the characteristic equation

0 = det

(
6− λ −2
−2 9− λ

)
= λ2 − 15λ+ 50 = (λ− 5)(λ− 10),

to be 5 and 10.
The eigenvectors for each eigenvalue are
for λ = 10, (

6− 10 −2
−2 9− 10

)
v = 0,

which simplifies by Gaussian reduction to(
2 1
0 0

)
v = 0,

giving the solution v =

(
1
−2

)
which is normalized to 1√

5

(
1
−2

)
;

for λ = 5, (
6− 5 −2
−2 0− 5

)
v = 0,
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which becomes (
1 −2
0 0

)
v = 0,

that has the normalized solution v = 1√
5

(
2
1

)
. Notice that the two eigen-

vectors are perpendicular to each other, as should always be the case for a
symmetric matrix.

Hence the rotation matrix ought to be

P =
1√
5

(
2 1
1 −2

)
.

Now let x = PX, and substitute into the conic equation,

(
X Y

)(5 0
0 10

)(
X
Y

)
+
(
−2 4

) 1√
5

(
2 1
1 −2

)(
X
Y

)
− 2 = 0,

which evaluates to

5X2 + 10Y 2 − 10√
5
Y − 2 = 0.

Step 2. Translation to remove the linear terms.
In this case we only need to translate the Y axis using

10Y 2 − 10√
5
Y = 10(Y 2 − 1√

5
Y ) = 10(Y − 1

2
√

5
)2 − 1

2
.

So we let
X̃ = X,

Ỹ = Y − 1

2
√

5
,

and the conic equation becomes

5X̃2 + 10Ỹ 2 − 5/2 = 0,

or
2X̃2 + 4Ỹ 2 = 1,

which is an ellipse.
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1.2.5 Classification of Conics

What are all the possible conics that can arise from the conic equation?

ax2 + bxy + cy2 + dx+ ey + f = 0

When we perform the rotation of the axes, we get the equivalent equation

λX2 + µY 2 + αX + βY + f = 0.

We then perform translation of the axes, using the X2 and Y 2 terms to get
rid of the X and Y terms respectively. But this is possible only when λ and
µ are non-zero.

Case 1. λ 6= 0, µ 6= 0
We get rid of the X and Y terms, ending with

λX̃2 + µỸ 2 = γ.

Now if γ 6= 0 then we get separate types of conics, depending on the signs of
λ and µ:

Ellipse X̃2/A2 + Ỹ 2/B2 = 1,

Hyperbola X̃2/A2 − Ỹ 2/B2 = 1,

nothing X̃2/A2 + Ỹ 2/B2 = −1.

If γ = 0 we get, depending on the signs of λ and µ,

Two Intersecting Lines X̃ = ±AỸ ,

One Point X̃ = 0 = Ỹ .

Case 2. λ 6= 0, µ = 0
In this case we can only get rid of the X term; but we can use the Y term

to get rid of the constant, so that the result is

Parabola X̃2 = AỸ .

However it may be the case that there is no Y term either, so that in this
case we get either nothing (when X̃2 = −A2), or

Two Parallel Lines X̃ = ±A,

One Line X̃ = 0.

Of course, if both λ and µ vanish, then we get a linear equation rather
than a conic.
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1.2.6 Exercises

1. Find what type of conic are the following equations:

(a) 2x2 − y2 − 2y = 5;

(b) 3x2 + 2xy + 3y2 − 2
√

2x− 6
√

2y + 4 = 0;

(c) 2x2 + 2xy + 2y2 + 3
√

2x+ 3
√

2y + 4 = 0;

(d) x2 + 10
√

3xy + 11y2 − 8(2 +
√

3)x+ 8(1− 2
√

3)y = 0;

(e) x2 + y2 +
√

3x+ y + 1 = 0;

(f) 3x2 + 2
√

3xy + y2 + 8
√

3x+ 8y = 0;

(g) x2 + 2xy + y2 + 2
√

2x+ 2
√

2y + 2 = 0;

(h) x2 + 2xy + y2 + 5
√

2x+ 3
√

2y + 6 = 0.

(Answers: hyperbola, ellipse, nothing, intersecting lines, single point,
parallel lines, single line, parabola)

2. In the above exercise, find the area enclosed by the ellipse, given that
the formula for the area is πab where a and b are the semi-major and
semi-minor axes.

3. The classical (Greek) definition of a conic is the set (locus) of points
in the plane whose distance from a fixed point (called the focus) is a
constant multiple e (called the eccentricity) from a fixed straight line
(called the directrix). Let the focus be the origin, and the directrix the
line x = d; show that this definition gives a curve with polar equation
r = ed/(1 + e cos θ), or in cartesian co-ordinates,

(1− e2)x2 + 2e2dx+ y2 − e2d2 = 0.

Show that the cases e > 1, e = 1, e < 1 and e = 0 correspond to a
hyperbola, a parabola, an ellipse and a circle respectively (Note: in this
last case, you have to take e→ 0, d→∞ such that ed = R constant).

1.3 Quadrics

A quadric is a surface described by a quadratic equation in three variables,

ax2 + by2 + cz2 + dxy + exz + fyz + gx+ hy + iz + j = 0,

which can be written in more compact form as

(
x y z

) a d/2 e/2
d/2 b f/2
e/2 f/2 c

xy
z

+
(
g h i

)xy
z

+ j = 0.
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This is the same form as for conics except that now we are using three
variables:

x>Ax + b>x + c = 0,

where x =

xy
z

. Therefore we can apply the same method as for conics,

namely the two steps:

1. Rotation by P to diagonalize the matrix A in the quadratic part; for
x = PX,

X>DX + b>PX + c = 0,

2. Translation to eliminate the linear part, if possible.

1.3.1 Example

Find what type of quadric is given by the equation

xy + yz + zx− x+ y − 2 = 0.

First write it in matrix form, where here we have multiplied the whole equa-
tion by 2 to simplify the subsequent working:

(
x y z

)0 1 1
1 0 1
1 1 0

xy
z

+
(
−2 2 0

)xy
z

− 4 = 0.

1. Rotation
Eigenvalues: characteristic equation

0 = det

−λ 1 1
1 −λ 1
1 1 −λ

 = det

−λ 1 1
1 −λ 1
0 1− λ −λ− 1


= −λ3 + 3λ+ 2 = −(λ+ 1)2(λ− 2),

so that the eigenvalues are the roots −1,−1, 2.
Eigenvectors:
for 2, −2 1 1

1 −2 1
1 1 −2

v = 0
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1 0 −1
0 1 −1
0 0 0

v = 0

so that the associated eigenvector is 1√
3

1
1
1

;

for −1, 1 1 1
1 1 1
1 1 1

v = 0

1 1 1
0 0 0
0 0 0

v = 0

Effectively there is only one equation x+y+z = 0, and we’re looking for two

perpendicular unit vectors satisfying it; one is easy to get, say, 1√
6

 1
1
−2

; the

other can be obtained by taking the cross-product of the previous eigenvector
with this one

1√
3

1
1
1

× 1√
6

 1
1
−1

 =
1√
2

−1
1
0

 .

Hence the required rotation matrix is

P =


1√
3

1√
6
− 1√

2
1√
3

1√
6

1√
2

1√
3
− 2√

6
0

 .

Substituting x = PX we get in general

X>DX + b>PX + c = 0,

and in this case,

2X2 − Y 2 − Z2 +
(
−2 2 0

)
1√
3

1√
6
− 1√

2
1√
3

1√
6

1√
2

1√
3
− 2√

6
0


XY
Z

− 4 = 0,

2X2 − Y 2 − Z2 + 2
√

2Z − 4 = 0.
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2. Translation
In this case we only need to do the translation for the Z variable,

−Z2 + 2
√

2Z = −(Z2 − 2
√

2Z) = −(Z −
√

2)2 + 2,

X̃ = X, Ỹ = Y, Z̃ = Z −
√

2,

to get
2X̃2 − Ỹ 2 − Z̃2 = 2,

X̃2 − Ỹ 2/2− Z̃2/2 = 1,

when written in standard form.
What does this quadric surface look like? We get a good idea by finding

its intersections with the X̃-Ỹ , and the other planes. For example, in the
Ỹ -Z̃ plane, when X̃ = 0, we get nothing; when Ỹ = 0, we get a hyperbola;
and similarly when Z̃ = 0 we also get a hyperbola. In fact this surface is
called a hyperboloid of two sheets (see its shape in the following pages).

1.3.2 Classification of Quadrics

This procedure can always be followed but we’ll get various cases as we’ve
already encountered with conics; in this case there are 15 different types, of
which only 4 are generic cases.

After the rotation the quadric equation will look like

X>Dx + B>X + c = 0,

where D is a diagonal matrix with eigenvalues λ, µ, ν.

Case 1. λ, µ, ν 6= 0
In this case we can use the X2, Y 2, Z2 variables to eliminate the linear

terms, to get
λX̃2 + µỸ 2 + νZ̃2 + c̃ = 0.

If c̃ 6= 0 then we can take it to the other side of the equation and divide
by it to get the following four possible standard forms:

Ellipsoid X̃2/A2 + Ỹ 2/B2 + Z̃2/C2 = 1;

Hyperboloid of One Sheet X̃2/A2 + Ỹ 2/B2 − Z̃2/C2 = 1;

Hyperboloid of Two Sheets X̃2/A1 − Ỹ 2/B2 − Z̃2/C2 = 1;

Nothing X̃2/A2 + Ỹ 2/B2 + Z̃2/C2 = −1.

If c̃ = 0 then again we get two additional possibilities:
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One Point X̃2/A2 + Ỹ 2/B2 + Z̃2/C2 = 0;

(Elliptical) Cone X̃2/A2 + Ỹ 2/B2 = Z̃2.

Case 2. λ, µ 6= 0, ν = 0
In this case, we can only absorb the X and Y linear terms; if the Z term

is present then we can use it to absorb the constant, getting the two possible
standard forms:

Elliptic Parabola X̃2/A2 + Ỹ 2/B2 = Z̃;

Hyperbolic Parabola X̃2/A2 − Ỹ 2/B2 = Z̃.

If however, there is no resulting Z term either, but c̃ 6= 0, then we can
divide by it to get three possibilities,

Elliptic Cylinder X̃2/A2 + Ỹ 2/B2 = 1;

Hyperbolic Cylinder X̃2/A2 − Ỹ 2/B2 = 1;

and the third possibility X̃2/A2 + Ỹ 2/B2 = −1 leads to no solution (already
included in Case 1).

When there is no Z term and no constant c̃ = 0 either, then we get two
possibilities:

Line X̃2/A2 + Ỹ 2/B2 = 0;

Intersecting Planes X̃2 = A2Ỹ 2.

Case 3. λ 6= 0, µ = ν = 0
In this case, we cannot eliminate the Y and Z terms; however in choosing

the eigenvectors for P , we can make the choice such that one of these, say
Z, vanishes; if a Y term is present, then we can use to absorb the constant,
so that we get the case

Parabolic Cylinder X̃2 = AỸ .

If however both the Y and Z terms are already zero, then we get three
possibilities,

Two Parallel Planes X̃2 = A2;

One Plane X̃2 = 0;

and the remaining possibility X̃2 = −A2 leads to no solutions.
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1.3.3 Exercises

1. Describe the following quadric surfaces

(a) 2x2 + y2 + z2/2− 2y + 2x+ z + 1 = 0;

(b) xy + yz + zx = 0;

2. Classify the quadric

3

4
x2 + y2 +

3

4
z2 +

1

2
xz −

√
2x−

√
2z = 0

Determine whether the plane x+ z =
√

8 meets the quadric.

3. Classify the quadric

3

8
x2 − 1

2
y2 +

1

8
z2 +

√
15

4
xz −

√
3x− y +

√
5z − 1

2
= 0

At how many points does the line
√

3z +
√

5x = 0, y + 1 = 0 meet the
quadric?

4. Describe the intersection of the quadric 2x2+y2+z2/2−2y+2x+z+1 =
0 with the plane x+ 1/2 = 0.

5. Describe the intersection of the cone x2 + y2 − z2 = 0 with the planes
(i) x+ y + z = 1, (ii) 2y + z = 1 and (iii) x+ z = 1.
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2 Curves

2.1 Introduction

Definition A path is a continuous map

r :
I → Rn

t 7→ r(t)

where I ⊆ R is an interval of real numbers.
A curve is a continuously differentiable path; a smooth curve is one

which is infinitely differentiable.
When n = 2 the curve is called planar; when n = 3 it is called a “space”

curve.

A curve is therefore specified by n functions, each specifying how the i-th
coordinate varies with a real parameter t.

r(t) =

x(t)
y(t)

...


Note that the terminology ‘path’, ‘curve’, ‘arc’ mean different things in

different books. Some (older) books refer to space curves as solid curves; they
also refer to a curve by its parametric equations x = x(t), y = y(t), z = z(t).

It is obvious that continuous complex functions r : I → C are planar
paths by identifying C with R2.

2.1.1 Examples

1. The equation r(t) = a with parametric equations x(t) = a, y(t) =
b, z(t) = c, gives the constant “curve”, consisting of the single point a.

2. A straight line is given by the equation r(t) = a + tb.

3. A parabola is given by the equation r(t) = (t, at2).

4. An ellipse is given by the curve r(θ) = (a cos θ, b sin θ); the circle is
the special case when a = b = r0, which can then be written more
compactly as z(t) = r0e

it in the complex plane.

5. The helix is given by the curve r(θ) = (a cos θ, a sin θ, bθ).
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Definition A simple path is one which is one-one. A closed path is
one which is periodic i.e. r(t + T ) = r(t) ∀t; it repeats with period T . A
simple closed path is one which is closed and is one-one for t ∈ [0, T ).

In particular the circle is a simple closed curve.

2.1.2 Differentiation and Integration

The derivative of a vector function (called its velocity) is taken by differenti-
ating each co-ordinate function:

ṙ(t) = lim
h→0

r(t+ h)− r(t)

h
= lim

h→0

x(t+h)−x(t)
h

y(t+h)−y(t)
h

z(t+h)−z(t)
h

 =

ẋ(t)
ẏ(t)
ż(t)

 .

The integral of a vector function is evaluated by integrating each co-
ordinate function: ∫ t1

t0

r(t) dt =


∫ t1
t0
x(t) dt∫ t1

t0
y(t) dt∫ t1

t0
z(t) dt


2.1.3 Parametrization

Two paths can trace out the same set of points. For example the three curves

r1(θ) =

(
cos θ
sin θ

)
, r2(t) =

(
sin t
cos t

)
, r3(u) =

(
sechu
tanhu

)
,

all trace out part of the same circle of points but in different ways. They are
considered as different paths; it is usual, however, to say that they are the
same path with different parametrizations.

In general, given two parametrizations r1(t) = r2(u) we can always write
one parameter in terms of the other as u = u(t), whenever they trace out
each point on the curve once only.

For example, for r1(θ), r2(t) given above, t = π/2− θ.

2.1.4 Exercises

1. Sketch the following curves (i) r(t) = (t cos(t), t sin(t)); (ii) r(t) =
(t2, t3); (iii) r(t) = (a sec(t), b tan(t)).
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2. Find a different parametrization for the straight line and for the circle.

Is the curve r(t) =

a sin(t)
a cos(t)
bt

 a different parametrization of the helix

given in the examples above?

2.2 Length of a Curve

Definition The length of a curve is

L[r] :=

∫ t1

t0

|ṙ(t)| dt.

The idea behind this definition is that the curve can be split up into very
small pieces, each of which is approximately straight, so that the total length
will be a large sum of parts of type |r(ti+1)− r(ti)| ≈ |ṙ(ti)|δt.

2.2.1 Example

The length of one turn of a helix is

L =

∫ 2π

0

∣∣∣∣∣∣
−a sin θ
a cos θ
b

∣∣∣∣∣∣ dθ =

∫ 2π

0

√
a2 + b2 dθ = 2π

√
a2 + b2.

Proposition 2.2.1

The length does not depend on the parametrization.

That is, two parametrizations r(t) = R(u) along the same curve, t0 6
t 6 t1 and u0 6 u 6 u1, should give the same length between corresponding
points. In fact, changing parameters u = u(t)∫ u1

u0
|R′(u)| du =

∫ t1
t0
|R′(u(t))||du

dt
| dt

=
∫ t1
t0
|dR
du
· du
dt
| dt

=
∫ t1
t0
|ṙ(t)| dt.

�
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2.2.2 Arclength Parametrization

Define the arclength function from an initial point r(t0) by

s(t) :=

∫ t

t0

|ṙ(t)| dt.

We can use this arclength s itself as a standard parameter. Whatever pa-
rameter t we start off with to describe the curve, the arclength parameter s
will be unique (from the same initial point). Note that

ds

dt
= |ṙ|.

In particular, when taking t = s,

|r′(s)| = 1.

We often write ds instead of |ṙ| dt in integrals, and dr instead of ṙ dt, so that∫
f(s) ds =

∫
f(s(t))|ṙ(t)| dt,∫

f(s) dr =

∫
f(s(t))ṙ dt.

2.2.3 Example

For the helix, as worked above, s(t) =
√
a2 + b2 t so that the unique arclength

parametrization of the helix, starting from (a, 0, 0) is

r(s) =

a cos(s/
√
a2 + b2)

a sin(s/
√
a2 + b2)

b(s/
√
a2 + b2)

 .

2.2.4 Exercise

1. Verify that the length of (i) a straight line segment from a to b is |a−b|;
(ii) an arc of a circle is given by rθ.

2. Find the arclength parametrization of the circle of radius r (starting
from (r, 0, 0)). Verify that you get the same parametrization starting
from r3 (Hint: you need

∫ u
0

sechu du = 2 tan−1 tanh(u/2).)

3. * Let r1 ∼ r2 be true when they trace out the same curve with possibly
different parametrizations. Show that this is an equivalence relation.
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2.3 Tangent, Normal and Binormal

Suppose we take the Taylor expansion of the co-ordinate functions x(t), y(t), z(t)
near to a point t = t0; we get

x(t0 + h) = x(t0) + hẋ(t0) + . . . ,

and similarly for y and z, which can be grouped together into a vector equa-
tion

r(t0 + h) = r(t0) + hṙ(t0) + . . . .

These first two terms define a tangent line to the curve at the point r(t0),
with equation

rtangent(t) = r(t0) + (t− t0)ṙ(t0),

assuming that ṙ(t0) 6= 0.
A point r(t0) whose velocity ṙ(t0) = 0 is called a singular point; there is

no tangent line defined at such a point.
The tangent line remains the same when we change parametrization, say

t = t(u):
d

du
r(t(u)) =

d

dt
r(t)

dt

du
.

The direction of the velocity remains the same, but its length (the speed) is
not.

The tangent vector is then defined as the unit vector in the direction of
the tangent line; in particular if we take the arc-length parametrization, then
the tangent vector is defined as follows

Definition The tangent vector at a point r(s) of a curve, in arc-length
parametrization, is given by

t(s) := r′(s) =
dr

ds
(s).

Note that t is a unit vector, and that given a curve in any parametrization
r(t), then t = ṙ/|ṙ|.

Example. Suppose that a curve is such that its tangent vector is constant
t = a. Then we have that r′(s) = a, and integrating with respect to s gives

r(s) = sa + b,

which is the equation of a straight line.
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If we repeat the Taylor series approximation using second-order terms we
get the following:

x(s0 + h) = x(s0) + hx′(s0) +
1

2
h2x′′(s0) + . . . ,

and similarly for y and z; when grouped together in vector form,

r(s0 + h) = r(s0) + hr′(s0) +
1

2
h2r′′(s0) + . . . .

We have already defined the unit vector t = r′, so we need to define a unit
vector in the direction of r′′ = t′, called the normal of the curve.

Definition The normal vector at a point of a curve is defined as the
unit vector in the direction of t′. The curvature is defined as κ = |t′|. The
inverse of the curvature 1/κ is called the radius of curvature.

The normal is defined only when t′ 6= 0; otherwise when t′ = 0 we can
only say that κ = 0 and the normal direction remains unspecified (e.g. the
straight line).

When it is defined, the normal is perpendicular to the tangent vector.
This is because t·t = 1, so differentiating with respect to s gives t′ ·t+t·t′ = 0
which implies κt · n = 0.

In this case, we get

r(s0 + h) = r(s0) + ht +
κh2

2
n + . . .

This means that if we take the origin to be r(s0) and the axes to be along the
directions t and n, then the curve is given up to order 2 by the r(s0 + h) =(

h
κh2/2

)
which is a parabola. That is, at any point on a curve, we can

approximate the curve up to second order by a parabola, just as we can
approximate up to first order by a tangent line.

2.3.1 Examples

(i) Find the curvature and normal vector at any point of the circle r(t) =(
a cos t
a sin t

)
.

First we find the arc-length parameter s = at; then we find the tangent
and normal by differentiation with respect to s:

t = r′ = ṙ/ṡ =
a

a

(
− sin t
cos t

)
,
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κn = t′ = ṫ/ṡ =
1

a

(
− cos t
− sin t

)
,

hence κ = 1/a and n = −
(

cos t
sin t

)
.

(ii) The log spiral has equation r(θ) = ekθ
(

cos θ
sin θ

)
. Find the length of

one turn from i, and the curvature, tangent and normal vectors.
First, the arc-length

ṡ = |ṙ| =

∣∣∣∣(kekθ cos θ − ekθ sin θ
kekθ sin θ + ekθ cos θ

)∣∣∣∣
= ekθ

∣∣∣∣(k cos θ − sin θ
k sin θ + cos θ

)∣∣∣∣
= ekθ

√
k2 + 1.

∴ s(θ) =

∫
|ṙ| dθ =

√
k2 + 1

∫
ekθ dθ =

√
k2 + 1

k
ekθ.

In particular, the length of one turn of the log spiral is

s(2π) =

∫ 2π

0

|ṙ| dθ =

√
k2 + 1

k
e2kπ.

Now for the tangent,

t = r′ = ṙ/ṡ =
1√

k2 + 1

(
k cos θ − sin θ
k sin θ + cos θ

)
.

The normal,

κn = t′ = ṫ/ṡ =
e−kθ

k2 + 1

(
−k sin θ − cos θ
k cos θ − sin θ

)
;

κ =
e−kθ

k2 + 1

∣∣∣∣(−k sin θ − cos θ
k cos θ − sin θ

)∣∣∣∣ =
e−kθ√
k2 + 1

=
1

ks
.

n = t′/κ =
1√

k2 + 1

(
−k sin θ − cos θ
k cos θ − sin θ

)
.

Definition The binormal vector at a point of a curve is defined as
b = t× n.

This means that the vectors t,n, b form a set of three perpendicular
vectors just like i, j,k except that instead of being fixed, they change their
direction as they move along the curve.
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2.4 Serret-Frenet Formulæ

Proposition 2.4.1

There is a scalar function τ(s) called the torsion at a point on the
curve, such that

t′ = κn,

n′ = −κt + τb,

b′ = −τn.

Symbolically, t′

n′

b′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 t
n
b

 .

Proof. The first equation is really the definition of the curvature and
normal vectors. For the second equation, differentiate the equation n ·n = 1
with respect to s to get 2n′ · n = 0; similarly differentiate n · t = 0 to get
n′ · t + n · t′ = 0 which gives n′ · t = −κ, since t′ = κn. But t,n, b form a
basis of vectors at any point on the curve; hence we get n′ = −κt+τb where
τ = n′ · b.

For the last equation, differentiate b · t = 0 to get b′ · t + b ·κn = 0 which
gives b′ ·t = 0; similarly differentiating b·n = 0 gives b′ ·n+b·(−κt+τb) = 0
and hence b′ · n = −τ ; finally differentiating b · b = 1 gives 2b′ · b = 0. The
result is that b′ = −τn.

�

2.4.1 Example

Find the curvature and torsion, and the tangent, normal and binormal vectors

at any point of the helix r(t) =

a cos t
a sin t
bt

. We find the arc-length s(t) =

t
√
a2 + b2, then differentiate:

t = r′ = ṙ/ṡ =
1√

a2 + b2

−a sin t
a cos t
b

 ,
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κn = t′ = ṫ/ṡ =
1

a2 + b2

−a cos t
−a sin t

0

 ,

so that κ = a/(a2 + b2) (constant) and n = −

cos t
sin t

0

. Notice that the

radius of curvature is larger than a, which is the radius of the helix when
seen along its axis.

b = t× n =
1√

a2 + b2

−a sin t
a cos t
b

×−
cos t

sin t
0

 =
1√

a2 + b2

−b sin t
b cos t
a

 .

Hence

−τn = b′ = ḃ/ṡ =
1

a2 + b2

−b cos t
−b sin t

0

 ,

so that τ = b/(a2 + b2), constant.

Proposition 2.4.2

When defined,

κ(t) =
|ṙ × r̈|
|ṙ|3

, τ(t) =
ṙ × r̈ · ...r
|ṙ × r̈|2

.

Proof. We know that
ṙ = ṡt.

Differentiating with respect to t we get

r̈ = s̈t + ṡ2t′ = s̈t + ṡ2κn.

Again,
...
r = At +Bn + ṡ3κτb.

Hence,
ṙ × r̈ = ṡ3κb,

and
ṙ × r̈ · ...r = ṡ6κ2τ.
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This gives the required formulæ for κ and τ .
�

There is a theorem that states that there is a unique curve (up to rotations
and translations) with specified κ(s) and τ(s). That is, if we are given κ(s)
and τ(s), both continuous functions, then we ought to, in principle, be able
to find only one curve with the curvature and torsion equal to κ(s) and τ(s).
In practice this is easy to show directly only in a few cases. The proof of
this theorem relies on a theorem (Picard’s) from differential equations that
states that a system of equations, such as the Serret-Frenet equations, has a
unique solution when its matrix is continuous (in this case when κ and τ are
continuous).

2.4.2 Example

1. κ = 0. Then t′ = 0, and integrating gives r′ = t = a, integrating again
r = sa + b, which is the equation of a straight line.

2. When the torsion is zero, the curve is planar. τ = 0 ⇒ b′ = 0, hence b
is a constant vector and (r ·b)′ = r′ ·b = 0, which implies that r ·b = c,
which is the equation of a plane; i.e. the curve lies on a plane.

3. κ = κ0 constant and τ = 0. By the second example, we know that
the curve is planar, and we get from n′ = −κt that r′ = t = −n′/κ0;
integrating gives r = −n/κ0 + a i.e. r−a = −n/κ0 or |r−a| = 1/κ0

which means that the distance from a fixed point is constant i.e. the
planar curve is part of a circle.

4. It is left as an exercise to show that when κ = κ0 and τ = τ0 both
constants, then the curve must be a helix.

2.4.3 Exercises

1. Consider the curve given by the graph of a real-valued function: r(t) =
(t, f(t)). Show that the curvature is given by

κ(t) =
f ′′(t)

(1 + f ′(t)2)
3
2

In particular, show that for the catenary for which f(t) = a cosh(t/a),
the radius of curvature is given by

ρ = a cosh2(t/a) = a+ s2/a

where s is the arclength from t = 0.
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2. Calculate
∫ 2πr0

0
xy ds for the circle with equation r(θ) =

(
r0 cos θ
r0 sin θ

)
.

3. The log spiral is the planar curve r(θ) = ekθ(cos θ, sin θ). Show that
the arclength between the point (1, 0) and the origin is finite. Show
also that the angle between the tangent vector and r is constant and
equal to cot−1 k.

4. The tractrix is the planar curve r(t) = (log(tan 1
2
t) + cos t, sin t) for

0 < t < π. Show that t − r lies on the x-axis. Find the curvature
of the curve in terms of t and deduce that it satisfies the differential
equation

dκ

ds
= κ(1 + κ2)

5. Show that

t =
ṙ

|ṙ|
, n =

r̈ − r̈ · t t

|r̈ − r̈ · t t|
, b =

t× r̈

|t× r̈|
.

6. Show that r′′′ = −κ2t + κ′n + κτb. Hence show that if we take the
Taylor series at a point of a curve, up to third order in h, and place
the axes along the vectors t,n, b we get the approximating curve

r(s0 + h) =

 h− κ2h3/3!
κh2/2 + κ′h3/3!

κτh3/3!

 ≈
 h

κh2/2
κτh3/3!

 .

7. Now suppose that t = 0 (ie at a singular point); show that if we place
the axes along the vectors n, b we get the curve

r(s0) ≈
(
κh2/2
κτh3/3!

)
.

8. Show that if the curvature κ = κ0 and the torsion τ = τ0 of a curve are
constant, then the curve must be part of a helix.

(Hint: find n′′ and integrate twice.)

9. Let r(t) trace out a conic curve given by equation

r>Ar + b>r + c = 0.

By differentiating with respect to t, show that the tangent line at a
point r0 is the line x = r0 + λṙ satisfying the equation

r>0Ax + b>
x + r0

2
+ c = 0.



2.4 Serret-Frenet Formulæ J MUSCAT 25

10. Given a curve r(t) define the curve R(t) = Pr(t) + a where P is a
rotation (orthogonal) matrix and a is a constant vector (in other words
rotate and translate the original curve). Show that the corresponding
tangent, normal and binormal vectors for the new curve are T = P t,
N = Pn and B = Pb. Deduce that the curvature and torsion of the
new curve are unchanged.

11. The evolute of a planar curve r(t), is defined to be the curve R = r+ 1
κ
n

where n is the normal vector and κ the curvature.

Differentiate R twice with respect to s, the arclength of r, and deduce
that the curvature of R is equal to κ3/κ′.

Show that the evolute of a helix is another helix.

(*)Show that the evolute of the log spiral defined above is another log
spiral.

12. A space curve r(t) satisfies the following equation r̈ = eB × ṙ (eg a
charged particle moving in a magnetic field), where eB is a constant
vector.

Write the equation in terms of t,n, b and deduce that ṡ is constant and
that κ̇ = 0 = τ̇ . Deduce that the curve is a helix.

13. A curve r(t) satisfies the equations r · n = c and b = αt + a where
c, α,a are constants. Show that the curve must be a helix.

14. Let r(s) be a closed planar curve. Then its tangent vector at a point

is given by t(s) =

(
cos θ(s)
sin θ(s)

)
where θ(s) is the angle that the tangent

makes with the horizontal. Show that r(s) =
∫

t(s) ds and that n(s) =(
− sin θ
cos θ

)
. By integrating t′ · n show that

∫
κ(s) ds = ∆θ = 2π.

You already know this theorem for polygons: the sum of the external
angles of any polygon is equal to 360◦; for triangles it can be modified
to read that the sum of the internal angles is 180◦.

15. Let r(t) be a curve with tangent vector t(s). Show that

d

dt
r(t) = t(s)ṡ,
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d2

dt2
r(t) = ṡ2κn(s) + s̈t(s),

and hence show that the plane generated by the vectors ṙ and r̈ is the
same as the plane generated by t and n (assuming κ 6= 0); hence this
plane is independent of parametrization and is called the osculating
plane at the point r(t).

16. * More generally, for a curve in RN , prove by induction that the vec-
tor dnr/dtn can be written as a linear combination of the vectors
t, t′, . . . , t(n−1). These subspaces are called the osculating subspaces
of the curve.

17. * For a curve in RN , generalize the Serret-Frenet formulæ by showing
that there is an orthogonal set of vectors at each point, t1 = t, t2 =
n, t3, . . . , tN and ‘curvatures’ κ1 = κ, κ2 = τ, κ3, . . . , κN−1 such that
t′i = −κi−1ti−1 + κiti+1.

You may have noticed that when κ = 0 = τ then the curve is a straight
line (a one-dimensional subspace); when κ 6= 0, τ = 0 the curve is
planar (in a two-dimensional subspace); when κ, τ 6= 0 the curve is
a ‘space’ curve (three-dimensional). Generalize this, and show that
if κ1, . . . κi 6= 0, κi+1 = 0 then the curve is in an (i + 1)-dimensional
subspace.
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3 Surfaces

3.1 Introduction

Definition A surface is a continuous map

r : R2 → R3

(u, v) 7→ r(u, v) =

x(u, v)
y(u, v)
z(u, v)


A map from a subset of R2 is also accepted.

3.1.1 Examples

The plane is given by r(u, v) =

uv
0

 , u, v ∈ R.

The sphere is given by the (longitude-latitude) map

r(u, v) =

cosu cos v
cosu sin v

sinu

 , −π
2
< u <

π

2
, 0 6 v < 2π.

The helicoid is given by the map

r(u, v) =

u cos v
u sin v
v

 , 0 < u, v ∈ R.

The torus is given by the map

r(u, v) =

(a+ b cosu) cos v
(a+ b cosu) sin v

b sinu

 , 0 6 u < 2π, 0 6 v < 2π.

Graphs of Functions, z = f(x, y)
For any given function of two variables f(x, y), we can form the surface,

called its graph, using the map

r(u, v) =

 u
v

f(u, v)

 .



3.1 Introduction J MUSCAT 28

For example, the cone has a map

r(u, v) =

 u
v√

u2 + v2

 ,

while the elliptic paraboloid has a map with f(u, v) = u2/a2 + v2/b2.

Surfaces of Revolution
When we start with a function f(u) and rotate it completely around the

u-axis, we get a surface in three-dimensions. The map in this case is given
by

r(u, v) =

f(u) cos v
f(u) sin v

u

 .

For example, the circular cylinder is a surface of revolution with f(u) = 1;
the circular hyperboloid of one sheet has f(u) =

√
1 + u2; the catenoid has

f(u) = coshu.

What are the following surfaces?

r(u, v) =

 u
v√

u2 + v2 − 1

 ,

a cosu cos v
b cosu sin v
c sinu

 ,

u cosu(a+ cos v)
u sinu(a+ cos v)

u sin v

 .

3.1.2 Parametrizations

As with curves, there may be several parametrizations r(u, v) giving the
same surface; although the maps themselves may be different, the end-result
is the same.

For example, the sphere (which is the most well-studied example histor-
ically) has several other parametrizations (historically called projections).
The following are a few examples:

orthogonal projection r(u, v) =

 u
v√

1− u2 − v2

 ;

Mercator projection r(u, v) =

sechu cos v
sechu sin v

tanhu

 ,
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Lambert projection

cosU cosV
cosU sinV

sinU

 ,

where U = cot−1
√
u2 + v2 and V = tan−1(v/u);

stereographic projection r(u, v) =
1

u2 + v2 + 4

 2u
2v

u2 + v2 + 2

 .

Notice moreover, that in some cases, the map leaves out a few points,
or even whole areas out. For example, the longitude-latitude map leaves
out the north and south poles; the orthogonal projection leaves out a whole
hemisphere; the stereographic projection leaves out just the north pole. To
remedy this, we can use more than one map to cover the whole surface e.g.
in actual atlases, a longitude-latitude map may be used to cover most of the
world, and two orthogonal projections are used to cover Antarctica and the
Arctic.

3.2 Tangents and Normal

Consider the curves r(u, v0) and r(u0, v). On the u-v map they appear as
straight horizontal and vertical lines. On the surface, however, they become
curves lying in the surface itself; they form what is called the wire-frame
model of the surface, and is used by computers as a first step to draw the sur-
faces. For example, the wire-frame model for the latitude-longitude sphere,
giving the latitudes and longitudes on the sphere, is a very familiar picture.

Let us investigate how we can represent vectors on a surface. Notice that
if we draw a curve on the u-v map, it will be mapped to a curve on the
surface; and hence we expect the tangent vectors to be mapped to tangent
vectors on the corresponding surface curve. In particular, for the horizontal
and vertical lines mentioned above, we get that the tangents on the u-v map
straight lines, namely,

i =
d

du

(
u
v0

)
, j =

d

dv

(
u0

v

)
,

will be mapped to the tangents on the surface curve,

gu =
d

du
r(u, v0) =

∂

∂u
r(u, v0),

gv =
d

dv
r(u0, v) =

∂

∂v
r(u0, v).
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This way we get two tangent vectors at each point r(u0, v0) on the surface.

Definition The canonical tangent vectors at a point r(u, v) on the
surface are defined by gu = ∂r

∂u
, gv = ∂r

∂v
.

A vector x =
(
A,B

)
= Ai +Bj on the u-v map, will then be mapped to

the vector X = Agu +Bgv.

To complete the picture, we define the normal vector at a point on the
surface as that unit vector perpendicular to the canonical tangent vectors;

Definition The normal vector at a point r(u, v) on the surface is
given by

n =
gu × gv
|gu × gv|

.

Notice that for curves, which are 1-dimensional, there is one tangent and
two normals at each point, while for surfaces, which are 2-dimensional, there
are two tangents and one normal at each point.

Notice also, that the normal is really defined only up to a sign; if we
switch the u-v axis we get the opposite normal.

3.3 Scalar Product of Vectors

To be able to measure the length of a vector or the angle between vectors at a
point, we need to be able to find the scalar product between any two vectors.
Of course we know how to find such a product for any 3-dimensional vectors,
but in this case, we would like to find the product in terms of the vectors as

written in the u-v map. In other words, if x =

(
A
B

)
and y =

(
C
D

)
are two

vectors based at the point

(
u
v

)
on the u-v map, then

X · Y = (Agu +Bgv) · (Cgu +Dgv)
= ACgu · gu + ADgu · gv +BCgv · gu +BDgv · gv
=
(
A B

)(E F
F G

)(
C
D

)
= x>gy,

where we have taken the following definitions,

Definition The first fundamental form of a surface is the matrix

g :=

(
E F
F G

)
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where
E := gu · gu, F := gu · gv, G := gv · gv.

Notice that the actual product X · Y is not equal to x · y because the
first fundamental form g is not usually equal to the identity matrix. Hence
the length of a vector X and the angle between two vectors X,Y on the
surface, are not usually the same as the length of x and the angle between
x,y on the u-v map.

In particular, the vectors gu and gv may not be unit length or perpen-
dicular to each other (check this out by finding gi · gj for i, j = u, v, for any
surface.)

3.3.1 Example

For the sphere with the latitude-longitude map, the tangent vectors are given
by

gu =

− sinu cos v
− sinu sin v

cosu

 , gv =

− cosu sin v
cosu cos v

0

 .

Hence the cross product gu × gv =

− cos2 u cos v
− cos2 u sin v
− sinu cosu

, and dividing by its

length gives the normal vector

n =

− cosu cos v
− cosu sin v
− sinu

 .

Taking the various scalar products of gu and gv gives the first fundamental
form

E = gu · gu = sin2 u cos2 v + sin2 u sin2 v + cos2 u = 1,

F = gu · gv = sinu cos v cosu sin v − sinu sin v cosu cos v = 0,

G = gv · gv = cos2 u sin2 v + cos2 u cos2 v = cos2 u,

g =

(
E F
F G

)
=

(
1 0
0 cos2 u

)
.

Given vectors on the map, say

(
1
1

)
and

(
1
−1

)
at the point (u, v) =

(π/4, 0), then their true scalar product (on the surface) is

X · Y = x>

(
E F
F G

)
y =

(
1 1
)(1 0

0 cos2(π/4)

)(
1
−1

)
= 1− 1

2
=

1

2
;



3.4 Length of a Curve J MUSCAT 32

similarly we find that |X| =
√

X ·X =
√

3/2 and |Y | =
√

3/2, so that
the true angle between the two vectors on the surface is given by cos θ =
(X · Y )/(|X||Y |) = 1/3 and θ = 70.5◦. Whereas the angle as measured on
the u-v map would be cosα = (x · y)/(|x||y) = 0 and α = 90◦.

3.4 Length of a Curve

We can now use the first fundamental form to find the length of curves on a
surface.

A curve on a surface is given by a curve (u(t), v(t)) on the u-v map via
r(u(t), v(t)). That is, as we trace out the curve on the surface, we trace out
a corresponding curve on the u-v map. Taking the derivative with respect to
t gives

d

dt
r(u(t), v(t)) =

∂r

∂u

du

dt
+
∂r

∂v

dv

dt
= u̇gu + v̇gv.

That is the vector ṙ on the surface corresponds to the vector (u̇, v̇) on the
u-v map.

Now the actual length of a curve was found in Chapter 2 to be given by
the formula:

L =
∫ t1
t0
|ṙ(t)|dt =

∫ t1
t0

√
ṙ(t) · ṙ(t) dt

=
∫ t1
t0

√(
u̇ v̇
)(E F

F G

)(
u̇
v̇

)
dt

=
∫ t1
t0

√
Eu̇2 + 2Fu̇v̇ +Gv̇2 dt.

3.4.1 Example

For example, let us find the length of the latitude at π/4 on the unit sphere,
between longitudes from 0 to π: First we find the curve on the u-v map that
corresponds to this curve, namely u(t) = π/4 and v(t) = t, with 0 6 t 6 π,
then we substitute into the above formula to get

L =

∫ π

0

√
0 + 0 + cos2(π/4)1 dt =

∫ π

0

1√
2
dt =

π√
2
.

Note that this is completely different from the apparent length as found
on the u-v map, where all the latitudes have the same length.

3.5 Area of a Region

A region Ω on the u-v map will be mapped to a region rΩ on the surface.
To find the surface area of rΩ we will divide the corresponding region Ω on
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the u-v map into very small rectangles of sides δu i and δv j. These small
rectangles will be mapped to a very good approximation to a parallelogram
on the surface with sides δu gu and δv gv. Now, in general, any parallelogram
with sides a and b has area given by |a||b| sin θ where θ is the angle between
a and b; this area can be written as |a × b|. So, in our case of the small
parallelograms, we get each small area to be equal to δu δv |gu×gv|. Summing
up all the parallelogram areas that are in the region rΩ gives the total area
A ∼

∑
u,v |gu×gv|δuδv, which motivates the following definition: Definition

The area of a region rΩ on the surface is defined to be

A =

∫∫
Ω

|gu × gv|dudv.

Furthermore, we denote

dS = |gu × gv|dudv,

dS = (gu × gv)dudv = ndS,

so that the area of a region is just
∫∫

Ω
dS. We also use these symbols to

define the integrals∫
f(r)dS,

∫
f(r)dS,

∫
f(r)dS,

∫
f(r) · dS,

∫
f(r)× dS.

Before we proceed with an example, let us derive an equivalent formula.
One of the vector identities reads

(a× b)× c = (a · c)b− (b · c)a,

from which follows

(a× b) · (a× b) = (a · a) (b · b)− (a · b)2.

Applying this to a = gu and b = gv we get

|gu × gv|2 = EG− F 2 = det g,

and

A =

∫∫
Ω

√
det g dudv.
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3.5.1 Example

Find the area of a region on the sphere, which appears as the rectangle
0 6 u 6 π/4, 0 6 v 6 π/2 on the latitude-longitude map.

From the first fundamental form of the sphere, we find that det g =
EG− F 2 = cos2 u. Hence the required area is

A =

∫ π/2

0

∫ π/4

0

| cosu|dudv =
π

2
sin

π

4
=

π

2
√

2
.

Proposition 3.5.1

The Area formula is well-defined, in the sense, that if the same
region on the surface is given by different parametrizations, the

resulting area is still the same.

Proof. Suppose that a region on the surface is given by both Ω on a
u-v map, and also by Ω′ on a U -V map, where r(u, v) and R(U, V ) are two
parametrizations of the same surface.

Then
gU × gV = ∂R

∂U
× ∂R

∂V

=
(
∂r
∂u

∂u
∂U

+ ∂r
∂v

∂v
∂U

)
×
(
∂r
∂u

∂u
∂V

+ ∂r
∂v

∂v
∂V

)
=
(
∂u
∂U

gu + dv
dU

gv
)
×
(
du
dV

gu + dv
dV

gv
)

=
(
du
dU

dv
dV
− dv

dU
du
dV

)
gu × gv

Hence |gU × gV | = J |gu × gv|, where J is the Jacobian determinant for
a change of basis from U, V to u, v. So,

A =
∫∫

Ω′
|gU × gV |dUdV

=
∫∫

Ω′
|gu × gv|J dUdV

=
∫∫

Ω
|gu × gv| dudv,

where we applied a change of variable from U, V to u, v.
�

3.6 Exercises

1. For the sphere with latitude-longitude parametrization, find
∫∫

Ω
F (r) ·

dS where F (x, y, z) = (y, z, x) and Ω is the region corresponding to
0 6 u 6 π/2, 0 6 v 6 π.
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2. Find the first fundamental form of the catenoid surface given by the
map

r(u, v) =

coshu cos v
coshu sin v

u


where −u0 < u < u0,0 < v < 2π and hence find the length of the closed
curve, with u = 0, 0 6 v < 2π, on the surface.

3. Find the first fundamental form for the helicoid given parametrically
by (u cos v, u sin v, v).

4. Find the length of the curve u(t) = t, v(t) = log(sec t + tan t) on the
sphere parametrized by latitude/longitude u, v.

5. Find the first fundamental form of the tractroid surface given by the
map

r(u, v) =

 cosu cos v
cosu sin v

log(secu+ tanu)− sinu


where −π

2
< u, v < π

2
and hence find its area.

6. Show that if E = G and F = 0 then the angles between two vectors
on a map and the corresponding vectors on the surface parametrized
by the map are equal. We call such maps conformal. Find examples of
conformal maps.

7. * Show conversely that a conformal map must satisfy E = G and F = 0.

8. Show that if EG − F 2 is constant, independent of u and v, then the
area of a region on a surface is a constant multiple of the corresponding
region on the map. We call such maps area-preserving. Find examples
of area-preserving maps.
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