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Introductory Mathematics
Joseph Muscat 1999

1. What, in your opinion, is a number? Can you give a real-world example
of a negative and a complex number? Are they just useful but “unreal”
numbers?

2. Find the highest common factor of 182527 and 100939.

3. Both the rational and irrational numbers are “dense” in the sense that
no matter how small an interval you consider, there are still plenty of
them. Do you think there are more/less rationals than irrationals? Is
this a meaningless question?

4. A Cretan once said “All Cretans are liars”. Comment.

5. The ancient Chinese hypothesized that n is a prime number when n
divides 2n − 2. In fact, 2 divides 22 − 2 = 2, 3 divides 23 − 2 = 6, 4
does not divide 24 − 2 = 14, 5 divides 25 − 2 = 30. Are you convinced
it’s true?

http://staff.um.edu.mt/jmus1/
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1 Logic

Logic is the language of mathematics. It tells us how to construct statements
and how to deduce one statement from another.

1.1 Statements

Definition A statement is a meaningful sentence which is either true or
false.

Ambiguous sentences, gibberish and sentences that cannot possibly be
true or false, are not called statements.

There are many ways of constructing statements. The most common ones
are the following:

• Given a statement φ, we can form its negation or opposite not φ.
The statement not φ is true when φ is false and is false when φ is
true.

• Given statements φ and ψ, we can form the or statement φ or ψ,
which is true when at least one of φ or ψ is true.

• Given statements φ and ψ, we can form the and statement φ and ψ,
which is true when both φ and ψ are true.

• The statement φ ⇒ ψ also written as if φ then ψ, means that when
φ is true, ψ must also be true; when φ is false we cannot conclude
anything about ψ i.e. ψ can be true or false.

This implication statement is the most common one in mathematics,
and has many equivalents in English eg φ implies ψ; ψ if φ; φ is a

sufficient condition for ψ; ψ is a necessary condition for φ; ψ when φ.
For example, “when the sun is up, it is daytime”, “if f(x) is a maximum
then f ′(x) = 0”.

• We also have the equivalence statement φ ⇔ ψ which is the same as
φ ⇒ ψ and ψ ⇒ φ. In this case φ is true exactly when ψ is true,
and therefore are essentially the same statement.
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1.1.1 Remarks

φ ⇒ ψ and ψ ⇒ φ are two different statements. For example: Let us
write “If it is raining it must be wet outside” in short as raining ⇒ wet. The
statement wet ⇒ raining would then mean if it is wet outside then it must

be raining which is false. Similarly n even ⇒ 2n even, but 2n even 6 ⇒ n
even!

However, φ ⇒ ψ and not ψ ⇒ not φ have the same meaning. In
the example above, the statement if it is dry outside then it is not raining is
valid and has the same meaning as the original statement.

Note that not φ ⇒ not ψ is the same as ψ ⇒ φ.
One has to be very careful when taking opposites or negations. The

opposite of it is raining is not it is shining but it is not raining (it could be
slightly cloudy, very cloudy, drizzling etc.) Similarly the opposite of n > 0 is
not n < 0 but n 6 0.

Suppose that φ ⇒ ψ. If φ is false it does not follow that ψ is false.
Statement ψ could be true for other reasons. For example, n is an odd prime
⇒ n2 is odd, is a true statement; yet n2 may be odd even if n is not an odd
prime (eg n = 9).

1.2 For All, There Exists

Sometimes we wish to concatenate an infinite number of statements:

φ1 and φ2 and φ3 and . . . .

We write this in short as,
∀x φx

Note that x does not have to be a number, as long as φx makes sense.

Similarly,
∃x φx

means φ1 or φ2 or φ3 or . . . .

1.2.1 Example.

∀x (x+ 1)(x− 1) = x2 − 1
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This is just shorthand for (1 + 1)(1 − 1) = 12 − 1 and (2 + 2)(2 − 2) =
22 − 1 and . . ..

∃n n2 = 4 means that there is at least one n (maybe there are many)
which makes the statement true. In other words the following statement is
true: 02 = 4 or 12 = 4 or 22 = 4 or 32 = 4 or . . . . The third part of this
statement is true, making the whole statement true.

One can use more variables, and can mix the two ideas:

∀x, y φx,y,

∀x∃y φx,y.

Examples: ∀x, y (x+ y)(x− y) = x2 − y2; ∀x∃y x < y.
Note, however, that ∀x∃y φx,y and ∃y ∀x φx,y are very different state-

ments — the order of placing the symbols ∀ and ∃ is very important.
Examples: Let φx,y be the statement x is a citizen of country y. Then

∀x∃y φx,y would mean every person is a citizen of some country. On the
other hand, ∃y ∀x φx,y means there is a country such that all persons are

citizens of it.
Similarly, ∀x∃y x < y is very different from ∃y ∀x x < y.

1.3 Opposites

For all the statements that we can create, we can form their opposites or
negation. Following is a list of the basic ones. More complex statements can
be negated step by step.

Statement Opposite

φ not φ
φ and ψ not φ or not ψ
φ or ψ not φ and not ψ
φ ⇒ ψ φ and not ψ
∀x φx ∃x not φx
∃x φx ∀x not φx
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1.3.1 Examples

The opposite of ∀x > 0 x2 + x > 0 is ∃x > 0 x2 + x 6 0.
The opposite of ∀ǫ > 0 ∃δ > 0 ∀x |x| < δ ⇒ x2 < ǫ is

∃ǫ > 0 ∀δ > 0 ∃x |x| < δ and x2 > ǫ.

1.4 Proofs

Consider the statements:
(i) Every number is the sum of four squares.

∀n ∃a, b, c, d n = a2 + b2 + c2 + d2

(ii) Every odd number is the sum of a prime number and twice a square
number.

∀n odd ∃a, p p is prime and n = p + 2a2

(iii) Every even number is the sum of two primes.

∀n even ∃p1, p2 prime n = p1 + p2

If one starts checking the three statements whether they are true or not,
by substituting one number after another, then all three statements would
appear true.

(i)
1 = 12 2 = 12 + 12 3 = 12 + 12 + 12

4 = 22 5 = 22 + 12 6 = 22 + 12 + 12

7 = 22 + 12 + 12 8 = 22 + 22 9 = 32

(ii) if we check just the odd non-primes,

9 = 7 + 2.12 15 = 7 + 2.22 21 = 19 + 2.12

25 = 23 = 2.12 27 = 19 + 2.22 33 = 31 + 2.12

35 = 17 + 2.32 39 = 37 + 2.12 41 = 23 + 2.32

(iii)
4 = 2 + 2 6 = 3 + 3 8 = 2 + 5
10 = 3 + 7 12 = 5 + 7 14 = 7 + 7
16 = 3 + 13 18 = 5 + 13 20 = 3 + 17
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They all appear true, but in fact only (i) is known to be true — it was
proved by J. Lagrange in the 18th century; (ii) is a false statement: the odd
number 5777 cannot be written as p+2a2 with p prime; (iii) is not currently
(2004) known to be true or false — it is called “Goldbach’s Conjecture” and
although most mathematicians think it’s true, one cannot be certain until
someone actually shows it so, which is why it is called a conjecture rather
than a proposition or theorem.

We accept a statement, which in mathematics is called a proposition,

theorem, corollary etc., to be true if there is a proof for it. Three ways of
proving a statement (but not the only ones) are the following:-

• Deductive proof

To prove a statement ω, start with a previously proven statement α,
and show step by step, that α ⇒ β, then that β ⇒ γ, and so on
until you prove ω.

α ⇒ β ⇒ γ ⇒ . . . ⇒ ω

To prove the statement α ⇒ ω, assume that statement α is true, and
continue as above to prove that ω is true.

• Contrapositive proof

To prove α ⇒ β, suppose that β is false and then show that α
must also be false. This way gives a direct proof for the statement
not β ⇒ not α which is the same as α ⇒ β.

• Proof by Contradiction

To prove a statement α, suppose that it is false and hence show that
you end up with a false statement i.e. not α ⇒ false. This cannot
possibly be the case. Therefore α must be true.

To prove α ⇒ β, suppose that it is false i.e. suppose that α is true
and β is false, then show that you get a contradiction.

1.4.1 Examples

Proposition

x2 − 3x+ 2 < 0 ⇒ x > 0
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Proof by deduction:

x2 − 3x+ 2 < 0 ⇒ 3x > x2 + 2 adding 3x on both sides
⇒ 3x > 2 since x2 is positive
⇒ x > 2/3 dividing by 3
⇒ x > 0

Proof by contrapositive:

x 6 0 ⇒ x− 1 < 0 and x− 2 < 0
⇒ (x− 1)(x− 2) > 0
⇒ x2 − 3x+ 2 > 0.

Proof by contradiction.
Suppose that x2 − 3x+ 2 < 0 and x 6 0. Then,

⇒ x2 < 3x− 2 6 −2

⇒ x2 < 0 ♯

Proposition 0 < x < y ⇒ x2 < y2.
Proof by deduction:

0 < x < y ⇒ (y − x) > 0 and (y + x) > 0
⇒ y2 − x2 = (y − x)(y + x) > 0
⇒ y2 > x2

Proof by contrapositive:

x2 > y2 ⇒ 0 6 x2 − y2 = (x+ y)(x− y)
⇒ x− y > 0
⇒ x > y

Proof by contradiction:

0 < x < y and x2 > y2 ⇒ x2 > y2 > xy
⇒ x(x− y) > 0
⇒ 0 < x < 0 ♯
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1.5 Exercises

1. The opposite of the statement “all paper comes from rainforests” is (i)
“some paper does not come from rainforests”, (ii) “all paper does not
come from rainforests” or (iii) “some paper comes from rainforests”.

2. The converse of the statement “if you study you’ll do well” is (i) “if
you don’t do well then you haven’t studied”, (ii) “if you do well then
you have studied” or (iii) “if you don’t study then you won’t do well”.

3. Show that for any statements φ, ψ and ω:

(a) φ or not φ is always true.

(b) φ and not φ is always false.

(c) not (not φ) ⇔ φ.

(d) φ and ψ ⇒ φ.

(e) φ ⇒ (ψ ⇒ φ).

(f) φ or (ψ and ω) ⇔ (φ or ψ) and (φ or ω).

(g) φ and (ψ or ω) ⇔ (φ and ψ) or (φ and ω).

(h) φ ⇒ φ and ψ is the same as φ ⇒ ψ.

(i) φ or (ψ and not φ) is the same as φ or ψ.

4. Give examples from everyday life where φ ⇒ ψ is true but ψ ⇒ φ
is false. A common error in everyday conversation is to deduce from
φ ⇒ ψ that not φ ⇒ not ψ. Give examples from newspaper
articles illustrating this error, and correct the mistakes.

5. Give your own examples of statements in which ∀x∃y φx,y is true but
∃y ∀x φx,y is false. Can you find examples where ∃y ∀x φx,y is true
but ∀x∃y φx,y is false?

6. Show that the statement u · v = 0 ⇒ u = 0 or v = 0 is false by
giving a counterexample.

7. Write a short computer program that gives a list of numbers n which
divide 2n − 2. Show that they are all prime numbers up to n = 341,
which is not.
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2 The Integers

2.1 The Natural Numbers

We first define the natural numbers, denoted by N.
The natural number 0 is defined to be the empty set { }. The natural

number 1 is defined to be a set with a single element. The number 2 is
defined to be a set with two elements, and so on.

In order that we don’t run out of symbols, we can define the natural
numbers as follows: Definition The set of natural numbers consists of the

elements (numbers):
0 = { }
1 = { 0 }
2 = { 0, 1 }
3 = { 0, 1, 2 }

· · ·

Every natural number n has a successive natural number n+ = { 0, 1, . . . , n }.
For example, 0+ = 1, 23+ = 24. It is assumed that each successor number
is different from all the other previous natural numbers, so that the process
never ends. Conversely, every natural number is a successor of the previous
number, except 0.

Notice that these numbers have an order starting from 0, followed by
1, followed by 2 and so on. We denote this by using the symbol 6. The
statement m 6 n means that the number n occurs to the right of m in this
order.

2.1.1 Principle of Induction

N satisfies the following principle, called mathematical induction.
A statement φn about natural numbers, is true for all natural numbers

n, if it can be shown that
(i) φ0 is true
(ii) φn ⇒ φn+.
In other words, if one proves that when the statement is true for the

number n then it follows that it is also true for the successive number n+,
and if we can start the whole inductive process by proving the statement for
n = 0, then φ would be true for all n.
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As an application of mathematical induction, we shall prove the following
useful theorem.

Theorem A

Every nonempty set of natural numbers has a smallest element.

A 6= ∅ ⇒ ∃m ∈ A ∀n ∈ A m 6 n

Proof. We shall prove the statement by proving its contrapositive.
Suppose that A has no smallest element. This means

∀m ∈ A ∃n ∈ A m > n.

Now, suppose for a moment, that 0 is an element of A. We already know
that 0 is the smallest natural number. If 0 ∈ A it would follow that 0 is the
smallest element in A. But we are supposing that A has no smallest element.
Therefore, it cannot be that 0 ∈ A. This shows that 0 6∈ A.

Now suppose that, by the induction principle, we have already shown
0, . . . , n 6∈ A. Can n+ be an element of A? Suppose it were. We know that
0 up to n are not in A. Therefore, the elements of A are greater than n i.e.
∀m ∈ A m > n+. So n+ would be the smallest element. This contradicts
our original assumption, therefore n+ 6∈ A.

Combining our results and using the principle of induction, we get that
∀n n 6∈ A. The set A has no elements, it is the empty set. We have therefore
shown that if a set of natural numbers has no smallest element then it must
be empty. Equivalently if a set of natural numbers is nonempty it must have
a smallest element.

�

2.2 The Integers

The set of integers consists of two copies of the set of natural numbers N,
one copy called the positive integers, and the other the negative integers.
We distinguish between the two by placing the marks + or − in front of
the numbers, although in practice we usually omit the + sign, taking it
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for granted. Moreover we identify −0 with +0 so that it provides the link
between the two sets.

Definition The set of integers is defined by

Z = +N ∪−N

+0 = −0

Note that by this definition, every integer is automatically either positive
or negative.

In order that we can assert any statements about integers, we need to be
given some statements about Z that we take to be true. These initial state-
ments are called axioms, in our case about the integers. Which statements
we take to be our axioms is quite arbitrary, and they vary from author to
author, but as a minimum they should capture enough information about
the integers. The axioms that we will take can in fact be proved using even
simpler axioms: the interested reader can be recommended the book Naive

Set Theory by Halmos.

2.2.1 Axioms about the Integers

We shall assume the following axioms.
The set of integers Z have two operations of addition and multiplica-

tion which give an integer each time any two integers are added or multiplied.
We denote the added integers by m+ n and the multiplied integers by m.n
(although the . or × is usually omitted when it isn’t confusing).

There is also a statement called the less than statement which says
when one integer is less than or equal to another integer. We denote such a
statement by m 6 n.

Axioms about addition:

1. Associativity ∀a, b, c ∈ Z (a + b) + c = a + (b+ c)
2. Commutativity ∀a, b ∈ Z a + b = b+ a
3. Identity (zero) ∀a ∈ Z a + 0 = a
4. Inverse (negative) ∀a ∈ Z a+ (−a) = 0

Axioms about multiplication:
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5. Associativity ∀a, b, c ∈ Z (ab)c = a(bc)
6. Commutativity ∀a, b ∈ Z ab = ba
7. Identity (unity) ∀a ∈ Z a.1 = a

8. Distributivity ∀a, b, c ∈ Z a.(b+ c) = ab+ ac

Axioms about less than:

9. Transitivity ∀a, b, c ∈ Z a 6 b and b 6 c ⇒ a 6 c
10. Linear Order ∀a, b ∈ Z a < b or a = b or a > b
11. ∀a, b, c ∈ Z a 6 b ⇒ a + c 6 b+ c
12. ∀a, b ∈ Zc > 0 a 6 b ⇒ a.c 6 b.c

From these axioms we can start deducing other properties about the
integers. Following is a list of propositions, which we usually have assumed,
but that we are now proving, using the axioms.

Proposition 2.2.1

There is only one zero.

Proof. Suppose that N is an integer with the property that ∀a ∈ Z a+
N = a. By using axiom 3, then axiom 2, and then the above property of N ,
we can say

N = N + 0 = 0 +N = 0

Therefore N = 0: 0 is the only integer which can act as zero in the sense of
axiom 3.

�

Proposition 2.2.2

Each integer a has only one additive inverse, −a.

Proof. Let a be any integer. Suppose that a′ is another integer with the
property a+ a′ = 0. We would like to show that a′ = −a.
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a′ = a′ + 0 by axiom 3
= a′ + (a + (−a)) by axiom 4
= (a′ + a) + (−a) by associativity
= (a+ a′) + (−a) by commutativity
= 0 + (−a) by the assumed property of a′

= (−a) + 0 by commutativity
= −a by axiom 3

Therefore a′ = −a : every integer has only one additive inverse, its
negative.

�

We shall not always prove things in such detail, each time quoting the
relevant axiom, but it should be appreciated that for each step there must
be a reason for making the assertion.

Proposition 2.2.3

a+ c = b ⇒ a = b− c

Note that b− c is just shorthand for b+ (−c).
Proof.

a+ c = b
Therefore, (a+ c) + x = b+ x using axiom 11 twice

In particular, (a+ c) + (−c) = b− c
a + (c− c) = b− c associativity

a + 0 = b− c by axiom 4
a = b− c by axiom 3

�

Hence every integer equation x+ c = b has a solution x = b − c. This is
one of the reasons that negatives are useful. There are no natural numbers
that solve the equation x + 1 = 0, but there are integers that do, as this
proposition asserts.

Proposition 2.2.4

a+ c = b+ c ⇒ a = b
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“We can cancel an integer on both sides of the equation”
Proof.
a+ c = b+ c

a = (b+ c) − c by the previous propostion
= b+ (c− c) associativity
= b+ 0 by axiom 4
= b by axiom 3

�

Proposition 2.2.5

a.0 = 0

Proof.
a.0 + a.b = a.(0 + b) by distributivity

= ab by axioms 3 and 2
= 0 + ab by axiom 3 and 2 again

∴ a.0 = 0 by cancelling the ab
�

Proposition 2.2.6

(−a).b = −(ab) = a(−b)

Proof.
ab+ (−a)b = (a− a)b by distributivity

= 0.b by axiom 4
= 0 by the previous proposition

Therefore, transferring ab on the other side of the equation, which we can
do by one of the propositions,

(−a)b = −(ab)
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�

One can similarly prove that a(−b) = −(ab). Try it!

Proposition 2.2.7

−(−a) = a

Proof.
a− a = 0 by axiom 4

= (−a) + −(−a) again by axiom 4
= −(−a) + (−a) commutativity

Therefore, cancelling the −a on both sides,

a = −(−a)

�

Proposition 2.2.8

(−a).(−b) = ab

Proof.
(−a).x = −(ax) by proposition 2.9

In particular, (−a)(−b) = −(a(−b))
= −(−(ab)) by proposition 2.9
= ab by proposition 2.10

�

Proposition 2.2.9

c 6 0 and a 6 b ⇒ ac > bc
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Proof.
c 6 0

Therefore, 0 = c− c 6 0 − c by axioms 4 and 11
0 6 −c by axiom 3

∴, a(−c) 6 b(−c) by axiom 12
−ac 6 −bc by proposition 2.9
bc 6 ac by axiom 11,

adding ac and bc on both sides and simplifying.
�

Taking c = −1 shows that if a 6 b then −b 6 −a. Hence the negative
integers are ordered in reverse of the positive ones i.e.

. . .− 2 − 1 0 1 2 . . .

Proposition 2.2.10

a2 = a.a > 0

Proof. We know, by axiom 10, that either a > 0 or a = 0 or a < 0.
If a = 0 then a2 = 0.0 = 0 by proposition 2.8
If a > 0 then a.a > a.0 = 0 by axiom 12.
If a < 0 then a.a > a.0 = 0 by propositions 2.8 and 2.12

�

Definition The modulus of an integer a is defined to be

|a| =

{

a if a > 0

−a if a < 0

Check that the following are true:

|a| > 0
|a|2 = a2

|a| = 0 ⇔ a = 0
|a+ b| 6 |a| + |b|
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Proposition 2.2.11

ab = 0 ⇒ a = 0 or b = 0

Proof. Suppose that not (a = 0 or b = 0). That is suppose that
a 6= 0 and b 6= 0. Therefore we have either a > 0 or a < 0 and similarly
b > 0 or b < 0. In any case, |a| > 0 and |b| > 0. It follows that

|ab| = |a|.|b| > 0.|b| = 0.

Therefore, |ab| > 0, which means that either ab > 0 or ab < 0 but not ab = 0.
The conclusion is that if a 6= 0 and b 6= 0 then ab 6= 0. This is in fact what
we had to prove.

�

This proposition allows us to deduce from (x− 1)(x− 2) = 0 that x = 1
or x = 2.

Proposition 2.2.12

If c 6= 0 then ca = cb ⇒ a = b.

Proof.
ca = cb

∴ ca− cb = 0 by proposition 2.2.3
c(a− b) = 0 by distributivity

Therefore, either c = 0 or a− b = 0 by the previous proposition. But we
know that c 6= 0. Therefore it must be the case that a − b = 0, from which
follows that a = b.

�

2.3 Factors

Definition We say that a is a factor of b, written as a|b, when

∃c ∈ Z b = ac
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The terms a divides b, a is a divisor of b, b is a multiple of a all mean
the same as a is a factor of b.

Definition An integer a is even when 2|a, otherwise it is called odd
i.e. 2 6 |a.

Every integer b has a list of factors: in particular, 1 is always a factor
because b = b.1.

Proposition 2.3.1

1. If a|b and b|c then a|c

2. If a|b and a|c then a|(eb+ fc)

Proof. 1. a|b means that b = ax for some x ∈ Z. Similarly b|c means
c = by for some y ∈ Z. Combining the two, we get that

c = by = (ax)y = a(xy)

Therefore, a multiplied by some integer gives c, i.e. a|c as required.
2. a|b means that b = ax for some x. a|c means that c = ay for some

integer y. Therefore, for any integers e and f ,

eb+ fc = e(ax) + f(ay) = a(ex+ fy)

Again, a multiplied by an integer gives eb+ fc i.e. a|(ef + fc).
�

Definition c is a common factor of a and b when c|a and c|b.
c is the highest common factor of a and b, denoted by hcf(a,b), when
(i) c is a common factor i.e. c|a and c|b,
(ii) every other common factor of a and b is a factor of c i.e.

d|a and d|b ⇒ d|c
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Theorem B

The Division Algorithm.
For any integers a, b with b 6= 0, there exist integers q called the

quotient and r called the remainder, such that,

a = qb+ r 0 6 r < |b|

Proof. Let us consider first the case when both a and b are strictly
positive.

Define the set A = {a −mb > 0} = {a, a− b, . . . }. A is nonempty since
at least it contains a. Therefore we can apply theorem 2.2, and assert that A
has a smallest element, a− qb which we shall call r. Since r is an element of
A, it satisfies r > 0. Now consider the integer a− (q+1)b. It is smaller than
r since in fact it is equal to r − b and b > 0. Since r is the smallest element
of A, this new integer cannot be an element of A. Therefore it is negative ie
r − b < 0.

For the other cases concerning a and b, we can make use of what we have
proven up to now.

When a > 0 but b < 0, we get that a = q|b| + r which we can rearrange
as a = (−q)b+ r with 0 6 r < |b|.

When a < 0 but b > 0, we get −a = |a| = qb + r. If r happens
to be 0, then we get a = (−q)b; otherwise, multiplying by −1 gives us
a = (−q)b − r = (−q − 1)b + (b − r) where the new remainder satisfies
0 < (b− r) < b.

When a < 0 and b < 0, we get −a = |a| = q|b| + r, which implies that
a = qb− r = (q + 1)b+ (|b| − r) with 0 6 |b| − r < |b|.

�

The division algorithm is, in a sense, a generalization of the idea of factors:
if b is a factor of a then it will have a zero remainder when a is “divided”
by b. If we can show that when a is divided by b it leaves a remainder of 0,
then we would have shown that a|b. We will illustrate this in the following
proposition about highest common factors.

Proposition 2.3.2
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1. any two integers have a highest common factor;

2. the h.c.f. of a, b can be written as a combination of a and b;
i.e. hcf(a, b) = sa + tb for some s, t ∈ Z.

Proof. Let A = {ma + nb > 0 : m,n ∈ Z}.
Then A 6= ∅ since either a or −a is surely inA. Therefore A is a nonempty

subset of N. Therefore, by theorem 2.2, it has a minimum which we shall
call c.

That is, c is the smallest element of A. But A consists of positive combi-
nations of a and b. Therefore c must be positive and is of the form sa + tb
for some integers s, t.

Claim: c|a, i.e. c is a factor of a
since, applying the division algorithm to a, c, we get

a = qc+ r 0 6 r < c
= q(sa+ tb) + r

hence, r = (1 − qs)a− qtb

We find that the remainder r is also a combination of a and b, and if it were
strictly positive it would be an element of A. However, since it is strictly
smaller than c, which is the smallest element of A, r cannot possibly be in
A. Therefore it is not strictly positive. But we know that r > 0. That leaves
the only possibility of r = 0: there is no remainder, a = qc i.e. c|a.

Similarly one can show that c|b (try it by first dividing b by c). Hence, c
is a common factor of a and b.

Suppose d is any other common factor: d|a and d|b. Therefore, by 2.20(2),
d|(sa+ tb) i.e. d|c.

We have shown that c is the highest common factor of a and b.
�

This last proposition assures us that the highest common factor of any
two integers exists, it does not tell us how to find it.

2.3.1 Euclidean Algorithm

To find the h.c.f. of a and b, apply the division algorithm repeatedly to a and
b and the subsequent remainders until there are no more remainders. The
last remainder is the h.c.f.
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a = q0b+ r1 . . . (1) where 0 6 r1 < |b|
b = q1r1 + r2 . . . (2) 0 6 r2 < r1
r1 = q2r2 + r3 . . . (3) 0 6 r3 < r2
. . .

rn−2 = qn−1rn−1 + rn . . . (n− 1) 0 6 rn < rn−1

rn−1 = qnrn . . . (n)

At some point, there must be a zero remainder because the rn’s form a strictly
decreasing sequence of natural numbers.

But why is rn the h.c.f. of a and b? Let us show that indeed it is a
common factor of both integers and that every other common factor must
divide rn.

From equation n, we have that rn|rn−1, and so rn|qn−1rn−1. From equa-
tion n − 1, we therefore deduce that rn|rn−2. Continuing with this line of
reasoning we can use each equation in order, and deduce that rn|rk for all k.
In particular, rn|r1 and rn|r2, and therefore, from equation 2, rn|b and from
equation 1, rn|a.

Let c be any other common factor of a and b. Therefore c|(a − q0b)
(why?), but this means c|r1 from equation 1. Similarly c|(b− q1r1) i.e. c|r2.
Continuing in this way, we find that c|rk for all k; in particular c|rn.

Example: Find the h.c.f. of 182527 and 100939.

182527 = 1 × 100939 + 81588 . . . (1)
100939 = 1 × 81588 + 19351 . . . (2)
81588 = 4 × 19351 + 4184 . . . (3)
19351 = 4 × 4184 + 2615 . . . (4)
4184 = 1 × 2615 + 1569 . . . (5)
2615 = 1 × 1569 + 1046 . . . (6)
1569 = 1 × 1046 + 523 . . . (7)
1046 = 2 × 523

∴h.c.f.(182527,100939)=523.

This algorithm also allows us to write the h.c.f. in terms of a and b. In
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the example above, we start with the penultimate equation 7.

523 = 1569 − 1046 from 7
= 1569 − (2615 − 1569) from 6
= 2 × 1569 − 2615 rearranging
= 2 × (4184 − 2615) − 2615 from 5
= −3 × 2615 + 2 × 4184 rearranging
−3 × (19351 − 4 × 4184) + 2 × 4184 from 4
= 14 × 4184 − 3 × 19351 rearranging
= 14 × (81588 − 4 × 19351)− 3 × 19351 from 3
= −59 × 19351 + 14 × 81588 rearranging
= −59 × (100939 − 81588) + 14 × 81588 from 2
= 73 × 81588 − 59 × 100939 rearranging
= 73 × (182527 − 100939)− 59 × 100939 from 1
= 73 × 182527 − 132 × 100939

Exercises: Find the h.c.f. of 276 and 161.
Find the h.c.f. of 115 and 46, and write it as a combination of the two

integers.

2.3.2 Solving integer equations

Finding the h.c.f. is important to solve equations of the form ax + by = c
where a, b, c are integers and x, y are required to be integers.

Let us investigate the equation first. Suppose d is the h.c.f. of a and
b. Then d|(xa + yb) since the right-hand side is a combination of a and b.
Therefore d|c must be true, if there is a solution (i.e. if x and y exist).

The first thing to do, therefore, is to find the h.c.f. of a and b and check
whether it divides c. If not, it cannot possibly have a solution. If it does
divide it, we can hope for a solution. Using the Euclidean algorithm, write
d as a combination of a and b, say, d = sa + tb. Now, d|c i.e. c = md =
(ms)a + (mt)b. We have thus found a solution x = ms and y = mt. Note
that this is just one solution, and there could be others.

Example: Solve 182527x+ 100939y = 1046 for x, y integers.
Solution: Apply the Euclidean algorithm to find hcf(182527,100939). We

have already done this, and found the hcf to be 523. Now, let us check
whether 523|1046; this is in fact true as 1046 = 2 × 523. Therefore, the
equation does have a solution. We have to write 523 as a combination of
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the two integers. We have done this and found that 523 = 73 × 182527 −
132× 100939. Hence, 1046 = 2× 523 = 2× (73× 182527− 132× 100939) =
146 × 182527 − 264 × 100939. One solution is therefore, x = 146, y = −264.

2.4 Prime Numbers

Definition An integer a is called prime (also called irreducible), when

1. it is not 0 or ±1;

2. its only factors are ±1 and ±a i.e.

b|a ⇒ b = ±1 or b = ±a

An integer which is not prime is called composite.

The first few (positive) primes are 2, 3, 5, 7, 11 etc.

Definition Two integers are called coprime if their only common
factors are ±1.

i.e. a, b are coprime ⇔ hcf(a, b) = 1.

For example, 15 and 16 are coprime as they don’t have common factors
except ±1.

Note that if p is a prime number and p 6 |a then p and a are coprime; since:
the factors of the prime number p are ±1 and ±p, and ±p are not factors of
a (given), so the common factors can only be ±1.

Proposition 2.4.1

Let p be a prime number; then

p|ab ⇒ p|a or p|b.

Proof. For sure, p|a or p 6 |a. One of the two must be true.
If p 6 |a, then p and a are coprime (by the note above) i.e. hcf(a, b)= 1.

Using Prop. 2.23 we can write 1 as a combination of p and a, 1 = sp + ta.
Multiplying by b gives b = spb+ tab = (sb)p+ (t)ab. But p|ab (given), hence
p|b as b is a combination of p and ab.

Therefore, either p|a or p|b.
�
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Theorem C

Fundamental Theorem of Arithmetic
Any integer a, except 0,±1, is the unique product of positive

primes and ±1 (depending on the sign of a):

a = p1 . . . pr

where pi are unique primes.

Proof. We first show that a is a product of primes. Note that we need
only prove this for positive integers. Let us prove it by induction on n.

When n = 2, 2 is prime; the prime decomposition is trivial ie 2 = 1 × 2.
Suppose every positive integer up to n has a prime decomposition, and

we need to consider the integer n+ 1.
n + 1 is either a prime number — its prime decomposition is just itself

(like the case with 2);
or n+1 is composite; ie. n+1 = ab where a, b 6= 1. Therefore a, b < n+1

(otherwise their product would be larger than n + 1); so both a and b have
a prime decomposition by the induction assumption ie a = p1 . . . pk and
b = q1 . . . qr where the pi and qj are prime numbers. Hence n + 1 = ab =
p1 . . . pkq1 . . . qr, a product of primes.

In any case, n+ 1 is a product of primes.
Let us show that when a = p1 . . . pr the prime numbers pi are unique. Let

a = q1 . . . qs be another prime decomposition of a. We have a = p1 . . . pr =
q1 . . . qs. It can happen that some of the primes are common in both de-
compositions, say, p1 = q1 up to pt = qt (of course we must allow the case
that none are common, t = 0). Cancel these primes from both lists to get
pt+1 · · · pr = qt+1 · · · qs.

Suppose that not all the primes are common, so that either there remain
some primes pi or qj on either side of the equation. Without loss of generality,
let us assume that qs remains; we find that qs|(pt+1 . . . pr). Notice it can’t
be the case that the right hand side pt+1 · · · pr = 1 since no prime can be a
factor of 1. From the definition of a prime number, qs must divide one of the
numbers pt+1, . . . , pr. By relabelling the pi’s if necessary, we can assume that
qs|pr. But pr is itself a prime: its only factors are ±1 and ±pr; in this case,
since qs is a factor of pr, it must equal it qs = pr. Hence we have found that
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one of the primes in both lists are the same, when we have already eliminated
all such common primes. This is a contradiction.

Hence the only possibility is that r = s and the primes are exactly paired
up: p1 = q1, p2 = q2, . . . , pr = qr ie the two prime decompositions are in fact
the same.

�

Theorem D

The number of primes is infinite.

Proof. Suppose there are a finite number of primes 2, 3, . . . , pN .
Let a := 2× 3× . . .× pN + 1. By the fundamental theorem of arithmetic

that we have just proved, we know that a is the unique product of primes,
say, a = q1 . . . qr. The qi’s are primes and therefore must be somewhere in
the list 2, 3, . . . , pN . For example, q1 = ps.

Now, q1 is a factor of a and also of 2 × 3 × . . .× pN ; hence it is a factor
of their difference q1|(a− 2.3 . . . pN) = 1. But it is impossible for the prime
q1 to divide 1.

Hence this contradiction implies that there must be an infinite number of
primes.

�

2.5 Exercises

1. Show that a is even ⇔ a2 is even.

That is, show that

(a) a is even ⇒ a2 is even

(b) a is odd ⇒ a2 is odd.

2. Show that if the integer a is of the form 3k+1 for some integer k, then
so is a2.
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3. Use induction to prove that for any natural numbers m,n ∈ N, m+n =
n+m. Deduce that for any integers a, b ∈ Z, a + b = b+ a. Similarly
prove that 0 +m = m and 1m = m.

4. Prove carefully that for any integers a, b ∈ Z, (i) −(a− b) = b− a, (ii)
(a− b)c = ac− bc, (iii) ab = 1 ⇒ a = b = 1 or a = b = −1.

5. Prove that if a|b and b|a then a = ±b.

6. Prove or disprove: let a, b ∈ Z; 3|(a2 + b2) ⇒ 3|a and 3|b.

7. Prove by induction on n that a− b|an − bn.

8. Find the highest common factor of 582 and 2425; and write it down in
the form 582s+ 2425t for some s, t ∈ Z; repeat for 285 and 347.

9. Prove that for a, b, c integers, if a, b are coprime and a|bc then a|c.

10. Show that the hcf of an integer is unique up to sign i.e. if c and d are
both hcf’s of a, b then c = ±d.

11. Solve for x, y ∈ Z, 57x + 87y = 9; show that the equation 9797m +
9991n = 2 has no integer solutions; find the values of d ∈ Z for which
6557x+ 7031y = d has integer solutions.

12. Using only the axioms for the integers, prove that

(a) ax = a and a 6= 0 ⇒ x = 1

(b) x2 − y2 = (x− y)(x+ y)

(c) x2 = y2 ⇒ x = y or x = −y

13. Show that if x 6= 0 then x2 > 0. Deduce that 1 > 0.

14. If c|(a+ b) and a, b are coprime, show that a, c are coprime.

15. Prove that if a, b are coprime and ab = c2 then a, b must be squares
themselves. Deduce that the product of two primes can never give a
square.

16. Show that the hcf of a = 7n+ 4 and b = 9n+ 5 must be 1 (Hint: show
that the hcf divides 9a− 7b).
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17. Find the prime decomposition of (i) 499200, (ii*) 499201.

18. * Suppose that p has the property that if it is a factor of ab then it
must be a factor of a or of b (ie p|ab ⇒ p|a or p|b). Show that it is
a prime number.

19. * Show that there are infinitely many primes of the form 4k+3. (Hint:
suppose that p1, p2, . . . , pn are the only primes of this form. Let N =
4p1 . . . pn − 1. N has its prime decomposition N = q1 . . . qr for some
primes qi. Show that among the qi’s there must be exactly one prime
of type 4k + 3 and get a contradiction.)

20. In the Division Algorithm, where a = qb + r 0 6 r < |b|, show that,
given a and b, the quotient q and the remainder r are unique. i.e. show
that if a = q1b + r1 = q2b + r2 with 0 6 r1, r2 < |b|, then q1 = q2 and
r1 = r2.

21. Define

(

n
m

)

=
n!

m!(n−m)!
. Prove by induction on n (keeping m fixed)

that

(

n+ 1
m

)

=

(

n
m

)

+

(

n
m− 1

)

. Hence prove the binomial theorem,

again by induction on n,

(x+ y)n =
n
∑

m=0

(

n
m

)

xmyn−m.

22. What is the largest prime number that you can prove is prime? (Note:
Of course, there is no largest prime; Hint: if a number n is not prime
then it is divisible by an integer smaller than

√
n.)

23. Write a computer program which defines N = 2.3.5.7.11 . . .97, and
then gives the highest common factor of N and any other integer M .
Use it further to find the prime factor decomposition of (fairly small)
integers, say 499201.
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3 Rational Numbers

While the natural numbers and integers are good at describing “whole” ob-
jects, they cannot be used for “measurements” because these often come in
“fractions”; we usually wish to measure something in arbitrarily small step
values to get accurate measurements. This means that we want a unit of
measurement a such that for any given object of size say b, we can measure
b using a as b = na. But the integers are inadequate for such requirements
e.g. 8 = 5n has no integer solutions. We need new numbers to tackle this
situation.

Definition A rational number q is a pair of integers a, b ∈ Z with
b 6= 0.

The first integer is called the numerator of q, while the second integer
is called the denominator of q.

We usually write the pair as a/b or a
b

to distinguish between them. The
rational numbers of the form a

1
are simply written as a.

Definition Two rational numbers p, q are equal when

a

b
=
c

d
⇔ ad = bc as integers

The addition of p and q is defined by,

a

b
+
c

d
=
ad+ bc

bd

The product (or multiplication) of p and q is defined by

a

b
· c
d

=
ac

bd

p is less than or equal to q when, for b and d positive integers,

a

b
6
c

d
⇔ ad 6 bc as integers

Notes: 1. The denominator in the definitions of p+ q and pq is non-zero
as both b and d are non-zero.

2. The relations p < q, p > q, p > q are defined in similar ways.
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3. From the definition of equality, we find that a
b

= −a
−b

. Therefore, we
can always assume the denominator to be a positive integer; if it is not, we
can multiply the numerator and denominator by −1, to make it positive.

4. Also, −a
b

= −a
b

, since −1 · a
b

= −a
b

.
5. The rational numbers 0/b are all equal to 0: 0

b
= 0

1
since 0×1 = 0 = 0b.

6. Any rational number a
b

is equal to another c
d

with c, d coprime. Suppose
a, b have a common factor e, then a = ec and b = ed; therefore ad = (ec)d =
c(ed) = cb ie a

b
= c

d
. We can therefore eliminate any common factors from a

and b until they are coprime. This process of removing the common factors
is called “reduction to lowest terms”

Properties of Q

Rational numbers have the following properties: ∀p, q, r ∈ Q

associativity (p+ q) + r = p+ (q + r) (pq)r = p(qr)
commutativity p+ q = q + p pq = qp
identities p+ 0 = p p1 = p
inverses p+ (−p) = 0 ∀p 6= 0 p(p−1) = 1
distributivity p(q + r) = pq + pr
less than p 6 q and q 6 r ⇒ p 6 r

p < q or p = q or p > q
∀r p 6 q ⇒ p+ r 6 q + r, ∀r > 0 p 6 q ⇒ pr 6 qr

Note that addition, multiplication and less than have all the properties
of integers with the important addition that non-zero rational numbers have
inverses p−1.

Proof. Associativity:

(
a

b
+
c

d
) +

e

f
= ad+bc

bd
+ e

f
= (ad+bc)f+e(bd)

(bd)f
= a(df)+b(cf+ed)

b(df)

= a
b

+ cf+ed
df

= a
b

+ ( c
d

+ e
f
)

(a
b
c
d
) e
f

= (ac
bd

) e
f

= (ac)e
(bd)f

= a(ce)
b(df)

= a
b
ce
df

= a
b
( c
d
e
f
)

Commutativity:

a

b
+
c

d
=
ad+ bc

bd
=
bc + ad

bd
=
cb+ da

db
=
c

d
+
a

b

a

b

c

d
=
ac

bd
=
ca

db
=
c

d

a

b
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Identities:
a

b
+

0

1
=
a1 + 0b

b1
=
a+ 0

b
=
a

b
a

b

1

1
=
a1

b1
=
a

b

Inverses: Given p = a
b
, let −p = −a

b
.

a

b
+

−a
b

=
ab− ba

b2
=

0

b2
= 0

Also let p−1 = b
a
; this is possible when a 6= 0 ie when p 6= 0.

a

b

b

a
=
ab

ba
=

1

1
= 1

Distributivity:

a
b
( c
d

+ e
f
) = a

b

cf+ed
df

= a(cf+ed)
b(df)

= acf+aed
bdf

= acf

bdf
+ aed

bdf
= ac

bd
+ ae

bf
= a

b
c
d

+ a
b
e
f

Less than: Given a
b

6 c
d

and c
d

6 e
f
, assuming without loss of generality

that all the denominators are positive, by definition these inequalities mean
that ad 6 bc and cf 6 de. Therefore, (ad)f 6 bcf 6 (bd)e, which can be
written as a

b
= ad

bd
6 e

f
.

Finally, given a
b

and c
d
, with b, d > 0, consider the integers ad and bc. One

of ad > bc or ad = bc or ad < bc must be true. Therefore, a
b
> c

d
or a

b
= c

d
or

a
b
< c

d
must be true.

The last two properties are left as exercises.

Proposition 3.0.1

The equation px = q where p 6= 0, q are rational numbers, has a
unique solution x = p−1q.

Proof. Suppose x is a solution of the equation px = q. Then multiplying
by p−1 on both sides we get x = 1x = (p−1p)x = p−1(px) = p−1q.

Let us check that p−1q does indeed satisfy the equation: px = p(p−1q) =
(pp−1)q = 1q = q.

�
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One can prove other propositions, similar to the ones for integers, in the
same way, since rational numbers have the same properties as integers; for
example 0p = 0, −(−p) = p, pq = 0 ⇒ p = 0 or q = 0.

Proposition 3.0.2

Q is dense i.e. between any two rationals there is another rational.

∀p, q ∈ Q : p < q ∃r p < r < q

Proof. Let r be the average of p and q.
�

Thus the set of rational numbers has no ‘atoms’ — you can keep on
dividing an interval into smaller and smaller intervals.

Corollary

(Archimedean Property for Q) ∀ǫ > 0 ∃n ∈ N 0 < 1
n
< ǫ

Proof. Between 0 and ǫ there is a rational number 0 < m
n
< ǫ; hence

0 < 1
n
< m

n
< ǫ.

�

Now that we can solve equations of type ax = b, we go on to study the
equation x2 = a but we immediately run into problems:

Proposition 3.0.3

There are no rational numbers that solve the equations x2 = 2 and
x2 = 3.

Proof.
(i) Suppose x = a

b
solves x2 = 2 i.e. (a

b
)2 = 2. Therefore 2

1
= a

b
a
b

= a2

b2
.

We can moreover assume that x is in its lowest terms i.e. a, b are coprime (if
not, first reduce it).
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Therefore, a2 = 2b2 . . . (∗). a2 is even, and so a must also be even
(why? see the exercises for integers) i.e. a = 2k. Substituting into (*), we
get 4k2 = 2b2 which implies b2 = 2k2 an even number. Hence, again, b is
even. Thus, both a and b are even; but a,b were presumed to be coprime
with no common factors — contradiction: no rational number can satisfy the
equation.

(ii) Suppose x = a
b

satisfies x2 = 3, again assuming, without loss of
generality, that x is reduced to its lowest terms with a, b coprime.

Then, a2 = 3b2 . . . (∗∗) is a multiple of 3. Claim: a must also be a
multiple of 3; since if a = 3k + 1 then a2 = (3k + 1)2 = 9k2 + 6k + 1 not a
multiple of 3; if a = 3k + 2 then a2 = (3k + 2)2 = 9k2 + 12k+ 4, again not a
multiple of 3; therefore the only possibility is that a = 3k.

Substituting into (**), we get, 9k2 = 3b2 and so b2 = 3k2; hence again,
since b2 is a multiple of 3, so must b be a multiple of 3. But then both a and
b have the common factor 3, which is a contradiction.

�

This kind of proof also shows that x2 = 5, x2 = 7 etc cannot have
rational solutions. In fact most quadratic equations ax2 + bx + c = 0 even
with a, b, c ∈ Z do not have rational solutions.

3.1 Exercises

1. Prove that the equation ax + b = c, where a 6= 0, b, c are rational
numbers, has a unique solution.

2. Prove that x2 = 3 has no rational solution. Deduce that 2n
√

3 is irra-
tional.

3. If a
b

and c
d

are two rational numbers, show that a+c
b+d

is a rational number
in between the two.

4. Show that
√

2 +
√

3 and 2
√

2 −
√

10 cannot be rational.

5. The following is a simpler proof that
√

2 is not rational: Suppose
√

2 =
a/b with a, b having no common factors. Then a2 = 2b2; but the left
hand side must have an even number of primes, whereas the right hand
side has an odd, and this is impossible. Generalize this proof to show
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that the square root of any integer that has a prime factor repeated an
odd number of times (including once only) is irrational.

6. Generalize this argument even further: suppose c/d is a rational num-
ber that satisfies the polynomial equation anx

n + · · · + a0 = 0 where
ai ∈ Z. Show that c|a0 and d|an.

7. Use the preceding exercise to show that the equations x4 +4x2 − 1 = 0
and x6−3x4 +3x2−3 = 0 cannot have rational solutions. Deduce that
√√

5 − 2 and
√

3
√

2 + 1 are irrational.
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4 Sets

A set is a collection of elements, which we can write explicitly as { a, b, c, . . . }.
For example, the collection { 1, 2, 4 } is a set with the elements 1, 2 and 3.
However we will be needing a more general definition.

Definition A set is a collection of objects x which satisfy a certain
property or statement φ(x).

A = { x : φ(x) }

We say that x is an element of A, and write x ∈ A when φ(x) is true.

In practice, the objects x come from some universal set V , that would be
understood in context. For example it could be the set of integers. Strictly
speaking, we should therefore write { x ∈ V : φ(x) } instead of { x : φ(x) }
to avoid confusion.

4.0.1 Examples

1. The set { x ∈ Q : x2 = 1 } consists of the elements 1 and −1; it can
also be written as { 1,−1 }.

2. The set { x ∈ C : x2 = −1 } has two elements i and −i.

3. {n ∈ Z : 4|n } consists of all multiples of 4; more generally, the set of
all multiples of n is Mn = { x ∈ Z : n|x }.

4.1 Subsets, Intersections, Unions, ...

Definition The empty set is the set with no elements

∅ = { }

Definition Two sets A, B are equal when they have the same ele-
ments:

A = B ⇔ ∀x (x ∈ A ⇔ x ∈ B)
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If A = { x : φ(x) } and B = { x : ψ(x) }, then A = B with this definition
would mean ∀x φ(x) ⇔ ψ(x).

Definition A is a subset of B when all elements of A are also elements
of B:

A ⊆ B ⇔ ∀x (x ∈ A ⇒ x ∈ B)

In terms of φ(x) and ψ(x), this would be true when ∀x φ(x) ⇒ ψ(x).
Note that if A ⊆ B and B ⊆ A then A = B (i.e. if φ ⇒ ψ and ψ ⇒ φ

then φ ⇔ ψ).
Note also that ∅ ⊆ A is always true.

Definition The complement of a set A consists of all those elements
of the universal set which are not elements of A:

A′ = { x : x 6∈ A } = { x : not φ(x) }

We also write,

B − A = {x : x ∈ B and x 6∈ A}

Exercise: Show that A′′ = A; ∅′ = V ; V ′ = ∅;
Example: M ′

2 is the set of all odd numbers.

Definition The union of two sets A and B is the set of the elements
of A combined with those of B:

A ∪ B = { x : x ∈ A or x ∈ B } = { x : φ(x) or ψ(x) }

Definition The intersection of two sets A and B is the set of elements
that are in both A and B:

A ∩B = { x : x ∈ A and x ∈ B } = { x : φ(x) and ψ(x) }

Note that A∪A = A; A∩A = A; A∪A′ = ∅; A∪A′ = V . (Prove these
statements!)
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Definition Two sets are said to be disjoint when they have no ele-
ments in common i.e. when A ∩B = ∅.

We can obviously generalize to unions and intersections of a larger number
of sets e.g. A ∪B ∪ C or A ∩B ∩ C etc.

Proposition 4.1.1

1. A ⊆ B ⇔ B′ ⊆ A′

2. (A ∩B)′ = A′ ∪B′; (A ∪ B)′ = A′ ∩B′

3. A ∪A′ = V ; A ∩ A′ = ∅.

Proof. 1. We are given that A ⊆ B. This means that ∀x x ∈ A ⇒ x ∈ B
(*).

Let x be any element ofB′. This means that x 6∈ B; but by the implication
in (*) this implies that x 6∈ A i.e. x ∈ A′. Hence B′ ⊆ A′.

2. x ∈ (A ∩ B)′ means x 6∈ (A ∩B) i.e. not (x ∈ A and x ∈ B) which
is equivalent to x 6∈ A or x 6∈ B; this we can write as x ∈ A′

or x ∈ B′ i.e.
x ∈ (A′ ∪ B′). Since the two statements are equivalent we have just shown
that (A ∩ B)′ = (A′ ∪ B′).

Similarly, x ∈ (A ∪ B)′ means x 6∈ (A ∪ B) i.e. not (x ∈ (A ∪ B)).
Remembering how to take opposites of statements, we find that this is equiv-
alent to x 6∈ A and x 6∈ B, which is the same as x ∈ A′

and x ∈ B′ i.e.
x ∈ (A′ ∩ B′).

3. For each x either x ∈ A or x 6∈ A must be true i.e. x ∈ (A ∪ A′)
is always true. But x ∈ V is also always true; therefore they are the same
statement and the two sets are equal.

On the other hand, x ∈ A and x 6∈ A cannot both be true i.e. x ∈ (A∩A′)
is always false, which means that (A ∩ A′) has no elements and is therefore
the empty set.

�

4.2 Products of Sets ...

Definition An ordered pair of elements is denoted by (x, y).
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The order that the elements are written down is important in this defini-
tion i.e. (x, y) is not the same as (y, x) in general.

We can generalize this to any ordered list of elements (x1, x2, . . . , xn).

Definition The (Cartesian) product of two sets A and B is the set of
all ordered pairs of elements, in which the first elements in the pair is chosen
from A and the second from B:

A× B = { (x, y) : x ∈ A and y ∈ B }

Again we can generalize to a product of more than two sets e.g. A×B×
C = { (x, y, z) : x ∈ A, y ∈ B, z ∈ C }.

We write A2 for A×A, A3 for A×A× A etc.
Note that A×B and B ×A are different sets. The first consists of pairs

(x, y) where x ∈ A and y ∈ B, while the second consists of pairs (y, x) with
y ∈ B and x ∈ A.

Sometimes we will need to consider unions, intersections and products of
an infinite number of sets; so we make the following definition:

Definition Let A1, A2, . . . be an infinite number of sets; then

∞
⋃

i=1

Ai = { x : x ∈ Ai ∃i }

∞
⋂

i=1

Ai = { x : x ∈ Ai ∀i }

∞
∏

i=1

Ai = { (x1, x2, . . .) : xi ∈ Ai ∀i }

Definition The power set of a set A is a set of all the subsets of A:

P (A) = {B : B ⊆ A }

Note carefully that the elements of P (A) are themselves sets, in fact the
subsets of A. For example, the power set of the set { 1, 2, 3 } is the set
P ({ 1, 2, 3 }) = {∅, { 1 }, { 2 }, { 3 }, { 1, 2 }, { 1, 3 }, { 2, 3 }, { 1, 2, 3 } }.
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Sometimes the power set P (A) is written as 2A.

Definition We say that the sets Ai cover the set B when

B ⊆
⋃

i

Ai

or equivalently, ∀x ∈ B ∃i x ∈ Ai.

For example, the sets An = { x ∈ Q : n− 3
4

6 x 6 n + 3
4
} is a cover of

Q.

Definition A partition of a set B are sets Ai such that:

1. Ai cover B i.e. B ⊆ ⋃iAi;

2. the Ai’s are disjoint i.e. i 6= j ⇒ Ai ∩Aj = ∅.

Note that in a partition, each element of B belongs to exactly one set Ai.

4.3 Exercises

1. Let

A = {(x, y) : x ∈ R, y ∈ R, x2 + y2 = 1}
B = {(x, y) : x ∈ R, y ∈ R, y2 = 4x}
C = {(x, y) : x ∈ R, y ∈ R, y2 = x3}

Draw the sets and find A ∩ B, A ∩ C, B ∩ C, A ∩ B ∩ C, A ∪ B,
(A ∪B) ∩ C, (A ∩ C) ∪ (B ∩ C).

2. Prove

(a) (A ∪ B) ∩ C ⊆ (A ∩ C) ∪ (B ∩ C);

(b) (A ∪ B) ∩ C ⊇ (A ∩ C) ∪ (B ∩ C).

What conclusion can we draw from (i) and (ii)?

3. Prove or find a counterexample for:

(a) A−B = ∅ ⇒ A ⊆ B;

(b) A− (B − A) = A;
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(c) (A ∪ B)′ = A′ ∪ B′;

(d) A ∩ (B − C) = (A ∩ B) − (A ∩ C);

(e) A ⊆ B ⇔ B − (B −A) = A;

(f) A× (B ∪ C) = (A× B) ∪ (A× C).

4. For each positive rational number q ∈ Q+ and positive integer n ∈ N,
let

Aq = {x ∈ Q : −1
q

6 x 6 1
q
}

Bn = {x inf Q : − 1
n
< x 6 n}

Find
⋂

q∈Q+ Aq,
⋃

n∈N Bn, and
⋂

n∈N Bn.

5. Prove

(a) [(A ∪B)′ ∪A]′ = B ∩ A′

(b) A ∩ (B ∪ A) = A

(c) (A ∪ B′)′ = A′ ∩ B

6. Write down { 1, 2, 3 }×{ 1, 2 } and P({ 1, 2, 3, 4 }). How many elements
do they have?

7. Prove that

(a) union of sets is distributive over intersection

(b) intersection is distributive over union

8. Show that if A ⊆ N, 0 ∈ A and n ∈ A ⇒ n+ ∈ A then A = N. This
is just the principle of induction written in set notation.
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5 Relations

Very often we need to write sentences about two objects; e.g. x is the father

of y; x is taller than y; x rhymes with y; x and y are produced by the same

firm; x is symmetric to y; x 6 y; x = y + 2.
Such statements about x and y are called relations and will be denoted

by x ∼ y. Obviously relations will not always be true for any x and y. So
the effect of a relation is to associate certain x’s with those y’s that make
the statement true.

Definition A relation is a statement about two objects (x, y), denoted
by x ∼ y.

The inverse relation of x ∼ y is x ∼−1 y which would be true exactly
when y ∼ x.

What kind of properties can relations have? Here are four properties that
are of importance:

Definition A relation ∼ is said to be:

1. reflexive when ∀x ∈ X x ∼ x;

2. symmetric when ∀x, y ∈ X x ∼ y ⇔ y ∼ x;

3. transitive when ∀x, y, z ∈ X x ∼ y and y ∼ z ⇒ x ∼ z;

4. antisymmetric when ∀x, y ∈ X x ∼ y and y ∼ x ⇒ x = y.

For a symmetric relation, the order in which one writes x ∼ y or y ∼ x is
not important — they both mean the same; but for non-symmetric relations
the order may or may not make a difference.

For an anti-symmetric relation, it makes a big difference whether one
writes x ∼ y or y ∼ x; in fact they can never both be true unless x = y.

5.1 Equivalence Relations

Definition An equivalence relation is a relation which is reflexive, sym-
metric and transitive.

For each x ∈ X, we can find those elements y which are related to x and
form a set from them.
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Definition The equivalence class of x is the set,

[x] = { y ∈ X : y ∼ x }

Theorem A

Given an equivalence relation ∼ on a set X, then the equivalence
classes of ∼ form a partition of X.

Proof. We need to show that the sets [x] cover X and are disjoint.
(i) Suppose x ∈ X. Then x ∼ x by the reflexive property of ∼. Therefore

x ∈ [x] since x is related to itself i.e. x is in at least one equivalence class,
and as this is true for any x, the sets [x] cover all of X.

(ii) We would like to show that the sets [x] are disjoint i.e. [x] 6= [y] ⇒
[x] ∩ [y] = ∅. We can show this by proving its contrapositive statement:
[x] ∩ [y] 6= ∅ ⇒ [x] = [y].

Suppose z is an element of [x] ∩ [y], so that z ∈ [x] and z ∈ [y]. These
statements mean that z ∼ x and z ∼ y. Now we can use the symmetric
property of ∼ to switch round z and x to get x ∼ z, which together with
z ∼ y and the transitive property of ∼ imply that x ∼ y. This is going to be
a useful piece of information that we have gathered. We still have to show
that [x] = [y].

So let a be any element of [x] i.e. a ∈ [x] which means a ∼ x. Together
with x ∼ y, it implies that a ∼ y (why?), and so a ∈ [y]. Conversely, if
a ∈ [y] then a ∼ y which together with y ∼ x (how do we know y ∼ x?)
implies that a ∼ x i.e. a ∈ [x]. Thus all the elements of [x] are in [y] and
vice-versa, so that the two sets are the same.

�

Theorem B

Let Ai be a partition of the set X, then we can create an
equivalence relation ∼ on X whose equivalence classes are

precisely the Ai’s.
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Proof. The Ai’s form a partition of X. This means that X =
⋃

iAi (i.e.
∀x ∈ X∃i x ∈ Ai) and i 6= j ⇒ Ai∩Aj = Ø. Every element will be covered
by a single set Ai; of course if we pick two elements at random, x and y, they
might not be in the same set.

Let us define the relation x ∼ y to mean x and y belong to the same set

Ai i.e. ∃i x, y ∈ Ai. We would like to show that ∼ is an equivalence relation.
(i) Reflexive. x lies in some set Ai, as these cover X. Hence x and x are

both in the same Ai i.e x ∼ x.
(ii) Symmetric. Suppose x ∼ y i.e. x, y ∈ Ai; then changing the order of

x and y obviously does not change the fact that they are in the same set i.e.
y, x ∈ Ai i.e. y ∼ x.

(iii) Transitive. Suppose x ∼ y and y ∼ z. These mean according to our
definition, that x and y belong to the same set, say Ai, while y and z belong
to the same set, say Aj . So y is in both Ai and Aj i.e. Ai ∩ Aj 6= Ø. Since
the sets Ai are disjoint, this can only be true when Ai = Aj , so that x, y
and z all belong to the same set; in particular x and z are in Ai, and hence
x ∼ z.

We finally have to show that the equivalence classes of ∼ are the sets Ai.
By definition, [x] = { y ∈ X : y ∼ x } = { y ∈ X : x, y ∈ Ai }. Therefore
[x] consists of all those y which are in the same set Ai as x. What are these
elements? One moment’s thought reveals that it is precisely the elements of
Ai which are in the same set as x i.e. [x] = Ai.

�

5.1.1 Example

Let a be a fixed integer. Define the relation ∼ on integers to mean a|(x− y).
Claim: ∼ is an equivalence relation.

Reflexive: ∀x ∈ Z, a|0 = (x− x);
Symmetric: ∀x, y ∈ Z, if a|(x − y) i.e. x − y = ka, then y − x = (−k)a

and so a|(y − x) i.e. y ∼ x;
Transitive: ∀x, y, z ∈ Z, if x ∼ y and y ∼ z then a|(x− y) and a|(y − z),

so that a|((x− y) + (y − z)) = (x− z) i.e. x ∼ z.
Since this relation is used often, it is customary to write x ≡ y (mod a)

instead of x ∼ y. What are its equivalence classes? If we pick x, then
[x] = { y ∈ Z : y ∼ x } = { y : a|(y − x) }. But a|(y − x) means y − x = ka
i.e. y = x + ka for some integer k. Therefore [x] = { x + ka : k ∈ Z }. In
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particular note that [0] = Ma the multiples of a; also, if we choose a = 2,
then [0] is the set of even numbers, while [1] is the set of odd numbers: in fact
these two form a partition of the set Z, as the theorem assures us happens
for all equivalence relations.

5.2 Example

Consider the set R2 whose elements are u = (x, y), x, y ∈ R. Let u ∼ v be
the relation on the elements u,v:

|u| = |v|

The statements |u| = |u|, |u| = |v| ⇔ |v| = |u|, and |u| = |v| and ‖v| =
|w| ⇒ |u| = |w| are exactly what is required to show that ∼ is reflexive,
symmetric and transitive, and hence an equivalence relation.

Its equivalence classes are [u] = {v ∈ R2 : |v| = |u| }. Which points v
have the same length |v| as u? Precisely those points on a circle with radius
equal to the length of u i.e. [u] is a circle centred at the origin with radius
|u|.

5.3 Order Relations

Definition An order relation is a relation which is reflexive, transitive
and antisymmetric; and is denoted by x � y.

For example, the relation x|y on the set of positive integers is an order
relation, since it is obviously reflexive and transitive and moreover, if x|y and
y|x then x = y (as we are restricting to the positive integers).

Definition An order relation � is called a linear order if it also has
the property that

∀x, y ∈ X x � y or y � x

The most important example of a linear order is the less than relation 6.
We know that for any rational numbers p, q ∈ Q, p 6 q and q 6 p together
would imply that p = q, so that 6 is antisymmetric; also one of p 6 q or
q 6 p has to be true, so that 6 is a linear order. In what follows we will only
consider this linear order 6, but most of the definitions can be generalized
to any linear order �.
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Definition Suppose A is a subset of X, which has a linear order 6

defined on it.

1. b is an upperbound of A means ∀a ∈ A a 6 b; we also say that A is
bounded above by a.

2. α is a least upperbound (or supremum) of A, written as α = supA,
means that

(a) α is an upperbound of A i.e. ∀a ∈ A a 6 α

(b) all the other upperbounds of A are larger than α i.e. if b is an
upperbound then α 6 b.

3. α is a maximum of A, written as α = maxA, means that

(a) α is an upperbound of A;

(b) α ∈ A

Similarly define, Definition c is a lowerbound of A when ∀a ∈
A c 6 a; and we say that A is bounded below by c;

γ is a greatest lowerbound (or infimum) of A, written as γ = inf A,
when γ is a lowerbound of A and every other lowerbound of A is smaller
than γ.

γ is a minimum of A, written as γ = minA, when it is a lowerbound
and an element of A.

Note that a maximum of A is a least upperbound of A; suppose b is any
upperbound of A and let α be the maximum of A; then, since α is an element
of A, it must be smaller than b; as this is true for all upperbounds b, α is
the least upperbound of A. Similarly a minimum of a set must be a greatest
lower bound (check!).

There can only be ONE least upperbound of a set A, and ONE greatest
lowerbound; this is quite obvious since if α and β are both least upperbounds
of A, then α 6 β (because α is the least upperbound) and β 6 α (because
β is the least upperbound); hence, by the anti-symmetric property of 6 it
follows that α = β.
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5.3.1 Exercises

1. Find relations that have any combination of the reflexive, symmetric
and transitive properties.

2. Show that, for the set of triangles in the plane, the relations “is con-
gruent to” and “is similar to” are equivalence relations.

3. Let ∼ be the relation on R2 defined by

(

x1

y1

)

∼
(

x2

y2

)

⇔ y1x
2
2 = y2x

2
1.

Show that ∼ is an equivalence relation and find its equivalence classes.

4. Let the plane R2 be partitioned into circles of radius r i.e. R2 = ∪rSr
where Sr = {x ∈ R2 : |x| = r }, r > 0. Show that the sets Sr form a
partition of the plane. What is the associated equivalence relation?

5. Repeat the exercise above for the straight lines through the origin,
Ba,b = {x = (x, y) ∈ R2 : ay = bx and x 6= 0 }.

6. What is wrong with the following ”proof” that a symmetric and tran-
sitive relation is always reflexive:

x ∼ y ⇒ y ∼ x,

∴ x ∼ y ⇒ (y ∼ x and x ∼ y) ⇒ x ∼ x,

∴ x ∼ x.

7. * Suppose we start with an equivalence relation ∼; the associated par-
tition of equivalence classes induces a new equivalence relation. Show
that this is identical to ∼ itself.

8. Show that the relation x|y (x divides y) on N is an order relation.

9. Show that the set of natural numbers is not bounded above.

10. Show that the set of numbers xn = 1 + 1/2 + 1/22 + 1/23 + · · ·+ 1/2n

is bounded above by 2. (Hint: use induction and the equation xn+1 =
1 + xn/2.)
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11. Deduce that the set of numbers yn = 1 + 1 + 1/2! + 1/3! + · · · + 1/n!
is bounded above by 3.

12. Define A + B = { a + b : a ∈ A, b ∈ B }. Show that sup(A + B) =
supA+ supB.

13. * Consider the set of positive integers with the order relation a|b. Show
that it is in fact an order relation, and that the supremum and infi-
mum of two integers are their lcm and hcf respectively. (Remember to
substitute a|b instead of a 6 b throughout the definitions)
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6 Real Numbers

Using the rational numbers, we have seen that it is impossible to solve the
equation x2 = 2. Let us examine why. It is not because there aren’t many
rational numbers; in fact Q is dense. Moreover we can find rational numbers
that are as good an approximation to the solution as we want them to be, but
they cannot ever equal the exact solution. The real numbers we are going to
consider in this chapter are a completion of the rational numbers; we ’invent’
new numbers, called real, to “fill in the gaps”.

6.0.2 Example

Let us take x2 = 2 as our model problem (but we can choose any other such
equation). Consider the set of rational numbers

A := { x ∈ Q : x2 < 2 }.
For example, 1, 1

2
, 1.1 are all elements of A.

A is bounded above, for example by 2; since let x ∈ A ie x2 < 2. Suppose
x > 2, then x2 > 4 ⇒ x 6∈ A so that x ∈ A ⇒ x < 2.

Claim: there are rational numbers x such that x2 is as close an approxi-
mation to 2 as we wish.

Claim reworded rigorously: For any rational number ǫ > 0, there is a
rational number p = m/n such that 2 − ǫ < p < 2.

Proof of claim: Suppose that ǫ > 0 is given, and let us assume that ǫ < 1;
then we can use the Archimedean property for rational numbers to deduce
that there is a natural number n < ǫ/10. Now find another natural number
m such that (m/n + ǫ/10)2 > 2; this will be possible because the left-hand
side will grow to infinity as m increases in value. In fact choose the smallest
such m so that ((m− 1)/n+ ǫ/10)2 < 2 (it cannot equal 2, why?).

We deduce two facts. Firstly, the last inequality shows that

m2

n2
<

(

m

n
+

ǫ

10
− 1

n

)2

=

(

m− 1

n
+

ǫ

10

)2

< 2.

This in turn implies that m/n < 2. Secondly, expanding out (m/n+ǫ/10)2 >
2 gives

m2

n2 > 2 − 2m
n

ǫ
10

− ǫ2

100

> 2 − 4ǫ
10

− ǫ2

100

> 2 − 4ǫ
10

− ǫ
100

> 2 − ǫ
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Hence 2 − ǫ < m2/n2 < 2.
Using a very similar argument, we can show that there are rational num-

bers m/n such that 2 < m2/n2 < 2 + ǫ, no matter how small ǫ is.

From this it follows that the set A does not have a least upperbound:
1. The upperbounds of A satisfy p2 > 2; since suppose p is an upperbound

of A with p2 6 2, then p2 < 2 since no rational number when squared gives
2; hence there is a p′ > p such that (p′)2 < 2 ie p′ > p and p′ ∈ A; but p was
supposed to be an upperbound; hence p2 > 2.

2. Let p be an upperbound of A; hence p2 > 2; then ∃p′ ∈ Q such that
(p′)2 > 2 and p′ < p; this means p′ is another upperbound of A smaller than
p; hence there cannot be a least upperbound of A.

This problem with the rational numbers is actually very common, not
just in trying to solve equations like x2 = 2, x3 = 5 etc but also many other
equations of the type f(x) = 0. We often can get close to the solutions but
not exactly ie the sets { x ∈ Q : x2 < 2 }, { x ∈ Q : x3 < 5 }, and more
generally { x ∈ Q : f(x) < 0 } have upperbounds but not least upperbounds.

Hence we introduce the real numbers as numbers having all the properties
that rational numbers have, but in addition have the completeness axiom

which states:

Every nonempty set in R that has an upperbound, has a least upperbound.

Would such an axiom help in solving the equation x2 = 2. Let us take
the set A = { x ∈ R : x2 < 2 }. As before it is non-empty (1 ∈ A), it has
upperbounds (e.g. 2); hence with this completeness axiom it would have
a least upperbound, α. Suppose that α2 < 2; then we would be able to
find another real number x such that x ∈ A and α < x as we did for the
rational numbers; but this is a contradiction since α is an upperbound for
A. Suppose that α2 > 2; then we can again find a real number y such that
y2 > 2 but y < α; this means that y is a smaller upperbound than α which
is impossible. The only remaining possibility is that α2 = 2 which solves the
equation x2 = 2.

The Real Number system is defined to be a set of numbers on which
are defined addition, multiplication and ’less than’, having the properties
(axioms):

Addition:
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Associative 1. (a+ b) + c = a+ (b+ c)
Commutative 2. a+ b = b+ a
Identity (zero) 3. a+ 0 = a
Inverses 4. a+ (−a) = 0.

Multiplication

Associative 5. (ab)c = a(bc)
Commutative 6. ab = ba
Identity (one) 7. a1 = a for a 6= 0
Inverses 8. ∀a 6= 0 a 1

a
= 1

Distributive 9. a(b+ c) = ab+ ac

Less Than

Transitive 10. a 6 b and b 6 c ⇒ a 6 c
Linear 11. a < b or a = b or a > b

12. a 6 b ⇒ a+ c 6 b+ c
13. a 6 b and c > 0 ⇒ ac 6 bc

Completeness 14. Every nonempty set with an upperbound has a least
upperbound (the supremum).

Note: It also follows that every nonempty set with a lowerbound has a
greatest lowerbound (the infimum).

We have only stated what properties we would like the real numbers to
have, but we have not yet defined them. We will take a straightforward but
tedious approach — there are more elegant, though abstract, ways of defining
R.

Definition A real number is an infinite series of fractions (base 10
say),

x = m+
m1

10
+
m2

100
+ . . .+

mn

10n
+ . . . ,

where m ∈ Z, mn ∈ { 0, 1, 2, . . . , 9 }.
This is often written as m ·m1m2 · · · ; eg 1.789000 · · · and 2.8182536 · · ·

are both real numbers.
Addition, multiplication and ‘less than’ can be defined as follows:
For x = m.m1m2 · · · and y = n.n1n2 · · · , let

x+ y := (m+ n) + (m1 + n1)/10 + (m2 + n2)/102 + . . . ,
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xy := (mn) + (mn1 + nm1)/10 + (mn2 +m1n1 + nm2)/102 + . . . ,

x < y ⇔ m < n or (m = n, . . . ,mk = nk, mk+1 < nk+1).

A lot of care must be taken in interpreting these definitions for addi-
tion and multiplication: whenever the digits sum up to more than their
denominator, then they must carry over to the preceding decimal place e.g.
π + e = 3.14159265 · · ·+ 2.71828182 · · · = 5.85987448 · · · .

Note that, with these operations, it is possible to get decimal expansions
that end in a string of 9s i.e. m.m1 · · ·mn9999 · · · ; such numbers are identi-

fied with the number m.m1 · · · (mn + 1)000 · · · , and it is assumed that real
numbers are in this standard format.

Definition The absolute value of a real number is

|x| =

{

x if x > 0

−x if x < 0

The integer part of a real number x = m.m1m2 · · · is ⌊x⌋ = m. The
fractional part is x− ⌊x⌋ = 0.m1m2 · · · .

Hence |x| > 0 no matter what sign x has.

Definition An interval of real numbers is defined as a set of type

(a, b) = { x ∈ R : a < x < b }, [a, b] = { x ∈ R : a 6 x 6 b },

(a, b] = { x ∈ R : a < x 6 b }, [a, b) = { x ∈ R : a 6 x < b }
(−∞, a) = { x ∈ R : x < a }, (a,∞) = { x ∈ R : a < x }
(−∞, a] = { x ∈ R : x 6 a }, [a,∞) = { x ∈ R : a 6 x },

(−∞,∞) = R.

One can check that the real numbers, so defined, satisfy axioms 1 to 14,
but it is very tedious and slightly difficult to do so, although they follow
from the same properties for the rational numbers. We ought to prove the
completeness axiom, but we will only give a sketch proof (you can fill in the
details):

Sketch proof of completeness axiom. Let A be a non-empty set of real
numbers that has an upperbound. Consider the set of all integers that are
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upperbounds of A; take the smallest such upperbound, and letm be that inte-
ger which is one smaller than it. Subdivide the interval [m,m+1) into tenths
— again find which are still upperbounds and take that tenth m1/10 which is
just smaller than these. Continue this process, dividing into hundredths, etc,
each time obtaining a digit mn. The number so obtained α = m.m1m2 . . .
is smaller than all the upperbounds, but bigger than all the elements of A,
hence must be the least upperbound.

Proposition 6.0.1

Let α be the supremum of A; then there are elements of A that
are as close to α as you wish ie

∀ǫ > 0 ∃a ∈ A α− ǫ < a 6 α.

Proof. α is the least upperbound of A. It follows that α − ǫ is not an
upperbound of A; hence there is an element a ∈ A such that a > α− ǫ. But
a 6 α since a ∈ A and α is an upperbound of A.

�

Proposition 6.0.2

(Archimedean Property for the Reals)

∀ǫ > 0 ∃n ∈ N 0 <
1

n
< ǫ.

Proof. We are required to show that for any real number ǫ > 0, there is
a natural number n ∈ N such that 1/ǫ < n. But this is obvious: take the
integer part of 1/ǫ and add one to get a larger natural number.

�

Proposition 6.0.3

The rational numbers are dense in the reals i.e.

∀x, y ∈ R, (say x < y), ∃p ∈ Q x < p < y.
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Proof. Let ǫ = (y − x); then by the Archimedean property there is an
n ∈ N such that 1/n < ǫ. Also by the Archimedean property there is an m ∈
N such that 1/m < 1/(nx) i.e. m/n > x. In fact choose the smallest such
natural number m. Then (m−1)/n < x so that m/n < x+1/n < x+ ǫ = y.

�

A simpler proof is to take the decimal expansions of x and y, see where
they differ and take that rational number which agrees with the first few
identical digits of x and y, but stops at the decimal place where they differ
e.g. if x = 3.12345 . . . and y = 3.12389 . . . then take p = 3.1235.

Proposition 6.0.4

The rational numbers are precisely those real numbers with a
recurring decimal expansion i.e.

p = m.m1 · · ·mnk1 · · · krk1 · · ·kr · · ·

Proof. Let x be a real number with a recurring expansion. Then

x = m.m1 · · ·mnk1 · · · krk1 · · · kr · · ·
∴ 10nx = mm1 · · ·mn.k1 · · · krk1 · · ·kr · · ·

∴ 10(r + n)x = mm1 · · ·mnk1 · · · kr.k1 · · · krk1 · · ·kr · · ·

Subtracting gives an integer

10r+nx− 10nx = mm1 · · ·mnk1 · · ·kr −mm1 · · ·mn = N.

Hence x = N/10n(10r − 1) ∈ Q, a rational number.
Conversely, suppose that p = M/N is a rational number. Then we can

divide M by N to give an integer m and a remainder r1 < N . We can write
this as M = mN + r1. This implies p = M/N = m + r1/N . Repeat the
argument with 10r1 to get 10r1 = m1N + r2.

M = mN + r1
10r1 = m1N + r2
10r2 = m2N + r3

. . .
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M
N

= m+ r1
N

= m+ m1

10
+ r2

10N

= m+ m1

10
+ m2

100
+ r3

100N

. . .

This gives the decimal expansion of p; but all the remainders rk are less than
N , so that there are at most N different such remainders. After at most N
such divisions, the next remainder must be one of the values r1, . . . , rN , and
hence we end up in a cycle i.e. a recurring decimal expansion.

�

Definition The set of irrational numbers is R − Q.

6.0.3 Exercises

1. Show that if |x| < ǫ then −ǫ < x < ǫ.

2. Prove the following properties of the absolute value:

| − a| = |a|, |a+ b| 6 |a| + |b|.

3. Prove that distinct real numbers cannot have the same decimal expan-
sion as follows: suppose x and y are two distinct real numbers. Use
the Archimedean property to show that there is an n ∈ N such that
1/10n < |x− y|, and hence that they differ at the nth decimal place or
before.

4. Find the binary expansion (the first few terms) of π and e.

5. Write the real number 0 · 185324324 . . . as a fraction.

6. Show that the set of numbers { 1, 1.1, 1.11, . . .} has a supremum equal
to 10/9 which is not a maximum.

7. Show, by contradiction, that the sum or product of a rational number
and an irrational number is irrational.

8. Deduce that the set of irrational numbers is dense in R.
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7 Complex Numbers C

With the set of real numbers R, we cannot solve the equation x2+1 = 0, since
x2 > 0 for any real number x (see the proof that m2 > 0 for the integers).

Definition A complex number is a pair of real numbers z = (a, b);
the set of complex numbers C = R × R.

Addition and multiplication of complex numbers is defined by:

(a, b) + (c, d) = (a+ c, b+ d)

(a, b) · (c, d) = (ac− bd, ad+ bc)

For convenience we write a = (a, 0) and ib = (0, b) so that every complex
number can be written as

z = (a, b) = (a, 0) + (0, b) = a+ ib.

Hence the addition and multiplication of complex numbers in this notation
is

(a+ ib) + (c+ id) = (a + c) + i(b+ d),

(a+ ib)(c + id) = (ac− bd) + i(ad+ bc).

The notation is consistent in the sense that ai = (a, 0) · (0, 1) = (0, a).
Complex numbers of the type ib are sometimes called purely imaginary; they
may have seemed mysterious a long time ago, but you can see that there’s
really nothing fictitious about them.

Notice that now i2 = (0, 1) · (0, 1) = (−1, 0) = −1. Similarly (−i)2 = −1.
We have found two complex solutions to the equation x2 + 1 = 0.

We cannot define a ‘less than’ relation on C, since suppose there were
such a relation 6; then whether 0 < i or 0 > i (in which case −i > 0), we
have 0 < i2 = −1 (or 0 < (−i)2 = −1) which implies that 1 < 0 < −1
(by adding 1 on both sides); hence, multiplying by the ‘positive’ −1 we get
1 < 0 < 1 a contradiction.

We can check that the associative, commutative, identity, inverses and
distributive properties hold for C. For example the zero complex number
is 0 = (0, 0), the negative of z = a + ib is −z = (−a) + i(−b), while its
multiplicative inverse is z−1 = a

a2+b2
+ i −b

a2+b2
.
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So now we have reached our aim of having a number system with the
usual algebraic properties, but without a compatible order relation, which
solves all linear equations as well as x2 + 1 = 0. What about the other
polynomial equations? The remarkable “fundamental theorem of algebra”
(which is proved in a course on complex numbers) states that every polyno-
mial equation (even those with complex number coefficients) have solutions
in C. As far as algebraic equations are concerned, the set of complex num-
bers is sufficient to get all solutions; we do not need to extend any further to
more esoteric number systems.

Definition The modulus of a complex number z = a + ib is defined
as

|z| =
√
a2 + b2.

7.1 Exponential Function

Definition

ez =

∞
∑

n=0

1

n!
zn

In particular, when z = x is real, then the exponential function reduces
to the familiar real exponential function.

Proposition 7.1.1

(i)
d

dz
ez = ez;

(ii) ez1+z2 = ez1ez2 .

Proof. Differentiating with respect to x gives ddx

dddx e
x =

∑

∞

n=0
1
n!
nxn−1 =

∑

∞

n=1
1

(n−1)!
xn−1 = ex. More generally, ddz

dddz e
z = ez.

Now consider the function f(z) = ez2−zez, and differentiate with respect
to z: f ′(z) = −ez2−zez + ez2−zez = 0, hence f(z) = c constant; but f(0) =
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ez2 so that ez2 = ez2−zez for any z and z2. Substitute z = z1 + z2 to get
ez2 = e−z1ez2+z2 (1). Putting z2 = 0 shows that 1 = e−zez for any z ∈ C ie
e−z = 1/ez. Hence the required identity is obtained from equation (1).

�

When z = ix is purely imaginary, we get

eix =
∑

n=0∞

1

n!
inxn =

(

∞
∑

k=0

(−1)k

(2k)!
x2k

)

+ i

(

∞
∑

k=0

(−1)k

(2k + 1)!
x2k+1

)

.

Its real part is called the cosine of x, the imaginary part is called the sine of
x:

Definition

cosx =

∞
∑

n=0

(−1)n

(2n)!
x2n,

sin x =

∞
∑

n=0

(−1)n

(2n+ 1)!
x2n+1.

Applying this to z = x+ iy gives

ex+iy = exeiy = ex cos(y) + iex sin(y).

In particular the identity eiθeiψ = ei(θ+ψ) becomes the identities

cos(θ + ψ) = cos(θ) cos(ψ) − sin(θ) sin(ψ),

sin(θ + ψ) = cos(θ) sin(ψ) + sin(θ) cos(ψ).

7.1.1 Polar Form

Definition The argument (or angle) of a complex number a+ib is defined
as that real number in the range −π < θ 6 π,

θ = arctan(b/a) : a + ib = r(cos θ + i sin θ) = reiθ.

The logarithm of a+ ib is then defined as

log z = log r + iθ.
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The power of two complex numbers is

zw = ew log z.

What other numbers are there? The Algebraic Numbers are those com-
plex numbers that are solutions of some polynomial equation with integer
coefficients. These form a countable set. The transcendental numbers are
the complex numbers that are not algebraic.

Vectors are ordered sets of real or complex numbers: we can define addi-
tion and ‘scalar’ multiplication on them. On some dimensions we can define
a proper multiplication; obviously C consists of ordered pairs of real num-
bers, but more generally can define the quaternions on R4, the octonions (on
R8), the sedonians (on R16) etc but the multiplication gets more and more
complicated, satisfying less and less of the axioms we mentioned.

7.2 Exercises

1. Use induction to show that zn = |z|n(cosnθ+i sin nθ for z = |z|(cos θ+
i sin θ).

2. Find the logarithm of i, −i and 1 + i.

3. Show that log(zw) need not be equal to log z + logw for all values of
z, w ∈ C. Deduce that zw1+w2 = zw1zw2 need not be true.

4. What is wrong with the following argument? 1 =
√

1 =
√

(−1)(−1) =√
−1

√
−1 = i2 = −1.
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8 Functions

Definition A function is a rule which takes elements from a set X, called
the domain, and gives an element from a set Y , called the codomain,
denoted by

f : X → Y
x 7→ f(x)

such that for each element x ∈ X the rule gives a single element f(x) ∈ Y ie

∀a, b ∈ X a = b ⇒ f(a) = f(b)

Two functions are considered to be equal when they have the same do-
mains and codomains and for each x ∈ X, we have f(x) = g(x).

The graph of a function is the set { (x, f(x)) : x ∈ X } ⊆ A× B.
Examples: The rules x 7→ x2 and x 7→ ex are both functions on the real

numbers and the complex numbers (they are considered as different).

Definition A function f can also be used to map subsets of the domain
A ⊆ X by

fA = { f(x) ∈ Y : x ∈ A }.
Conversely, for a subset B ⊆ Y , we denote

f−1B = { x ∈ X : f(x) ∈ B }.
The range or image of a function f is the set fX. Note that the image

of a function need not be the whole of the codomain.

Definition A function f : A → B is called onto or surjective when
its image equals the codomain ie

∀y ∈ Y, ∃x ∈ X, f(x) = y.

A function is called 1-1 or injective when distinct elements of X are
mapped to distinct elements of Y ie

f(x) = f(y) ⇒ x = y.

A function is called bijective when it is 1-1 and onto.

Notice that by changing the codomain to equal the range, we can always
make a function onto. By restricting the domain, we can always make a
function 1-1.
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8.0.1 Examples

The exponential function exp: R → R defined by x 7→ ex is not onto but
is 1-1. The sine function sin : R → R is not onto and not 1-1. The cubic
function f : R → R defined by f(x) = x3 − x is onto but not 1-1. The
tangent function tan : (−π/2, π/2) → R is 1-1 and onto.

Proposition 8.0.1

f(A ∪B) = fA ∪ fB,

i.e. x ∈ A ∪ B ⇔ f(x) ∈ fA ∪ fB.

Proof. Let y ∈ f(A ∪B); that is y = f(x) for some x ∈ A ∪ B. Then,

y = f(x) ∃x ∈ A or x ∈ B,

⇔ y ∈ fA or y ∈ fB,

⇔ y ∈ fA ∪ fB.
�

Proposition 8.0.2

f(A ∩B) ⊆ fA ∩ fB,

x ∈ A ∩B ⇒ f(x) ∈ fA ∩ fB.

Proof. Let y ∈ f(A ∩ B), that is y = f(x) with x ∈ A ∩ B. Then
y = f(x) ∈ fA since x ∈ A and y = f(x) ∈ fB since x ∈ B, so that
y ∈ fA ∩ fB.

�

Note that the converse is false ie f(x) ∈ fA ∩ fB 6 ⇒ x ∈ A ∩ B.
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8.1 Composition

Definition The composition of two functions, f : X → Y and g : Y → Z
is the function g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x)).

Proposition 8.1.1

The composition of functions is associative,

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Proof. To show that the two functions h ◦ (g ◦ f) and (h ◦ g) ◦ f are equal
we need to check that their domains and codomains are the same, and that
they map the elements in identical ways.

The domains of both functions is X, and their codomains are Z. Now
let x ∈ X; then g ◦ f(x) = g(f(x)) so that h ◦ (g ◦ f)(x) = h((g ◦ f)(x)) =
h(g(f(x))); similarly ((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) = h(g(f(x)).

�

Note that composition of functions is not in general commutative ie f◦g 6=
g ◦ f . For example, sin(x2) 6= (sin x)2.

Proposition 8.1.2

(i) If f and g are 1-1, then so is g ◦ f .
(ii) If f and g are onto, then so is g ◦ f .

Proof. Suppose that g◦f(x) = g◦f(y). Then g(f(x)) = g(f(y)), therefore
f(x) = f(y) since g is 1-1, and so x = y since f is 1-1.

Let z ∈ Z; then there is an element y ∈ Y such that g(y) = z since g is
onto. Then there is also another element x ∈ X such that f(x) = y since f
is onto. Combining the two we get,

g ◦ f(x) = g(f(x)) = g(y) = z.

�
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8.2 Identity Function

Definition The identity function on a set X is the function

ιX : X → X
x 7→ x

Proposition 8.2.1

ιY ◦ f = f, f ◦ ιX = f.

Proof. The domains of ιY ◦ f , f ◦ ιX and f are all X; their codomains
are all Y . Moreover, letting x ∈ X we get

ιY ◦ f(x) = ιY (f(x)) = f(x),

f ◦ ιX(x) = f(ιX(x)) = f(x).

�

8.3 Inverse Functions

Definition The inverse of a function f : X → Y is another function,
denoted by f−1 : Y → X such that f−1 ◦ f = ι and f ◦ f−1 = ι.

Not every function has an inverse function. Functions that are not onto,
or that are not 1-1 cannot have inverse functions, either because it would
not be defined on the whole of Y or because there would be more than one
x ∈ X to map to.

Proposition 8.3.1

A function has an inverse function if, and only if, it is bijective.
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Proof. Suppose f is invertible; then f−1(f(x)) = x, and f(f−1(y)) =
y. Suppose that f(x1) = y = f(x2); then x1 = f−1(f(x1)) = f−1(y) =
f−1(f(x2)) = x2 so that f is 1-1. Next, let y ∈ Y , and let x = f−1(y); then
f(x) = f(f−1(y)) = y, so that f is onto as well.

Conversely, suppose f : X → Y is bijective (1-1 and onto). Then for every
y ∈ Y there will always be elements x ∈ X such that f(x) = y. But since f
is 1-1, there must be exactly one element x which maps to y. Hence we can
define the map f−1 : Y → X by mapping y to this unique x. Moreover,

f−1 ◦ f(x) = f−1(f(x)) = f−1(y) = x,

f ◦ f−1(y) = f(f−1(y)) = f(x) = y.

�

8.4 Exercises

1. Find examples of functions that are (i) bijective, (ii) 1-1 but not onto,
(iii) onto but not 1-1, (iv) neither 1-1 nor onto.

2. Show that if f is 1-1, then f(A ∩ B) = fA ∩ fB, and (fA)′ ⊆ f(A′)
for any subset A of the domain. When does equality hold?

3. Show that for any function f : X → Y and any subsets B ⊆ Y and
A ⊆ X, then A ⊆ f−1fA and ff−1B ⊆ B. Moreover prove that when
f is 1-1, A = f−1fA and when f is onto, ff−1B = B. Find examples
of functions for which these equalities are false.

4. Let f(x) = (ax + b)/(cx + d) be defined on all real numbers except
x = −d/c. Show that it is bijective when ad − bc 6= 0, and find
its inverse. Now let g(x) = (px + q)/(rx + d) with ps − qr 6= 0.
Show that g ◦ f is another function of the same type, and verify that
(g ◦ f)−1 = f−1 ◦ g−1.

5. Show that the function f(x) = (x + 1/x)/2 is a bijection on the set
J = { x ∈ R : x > 1 }.

6. Use the functions f(x) = x + 1 and g(x) = x − 1/x to show that the
statement ”f ◦ g is a bijection ⇒ f, g are bijections” is false.
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7. Let f : X → Y be a function. Define the relation ∼ on the set X by

x1 ∼ x2 ⇔ f(x1) = f(x2).

Show that ∼ is an equivalence relation and find the equivalence classes.
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9 Cardinality

How do we count objects? We take the set of objects and mentally label
each element by a number in the order 1, 2, 3, etc. When we arrive at the
last object, the number last called out is the number of the set.

♠ ♥ ♦ ♣ c© £

1 2 3 4 5 6

To count correctly, we need to make sure that we don’t leave any object
out and that we don’t count an object twice. Mathematically speaking, we
are creating a function from the set of objects to a subset of the natural
numbers which is 1-1 and onto ie a bijection,

f : {♠,♥,♦,♣, c©,£ } → { 1, 2, 3, 4, 5, 6 }

Definition Two sets are cardinally equivalent, A ≡ B, when there
is a bijection map between them, f : A→ B 1-1 and onto.

In this point of view, the sets { 1, 2, 3 }, { one, two, three }, { I, II, III }
are all essentially the “same” as far as sets are concerned.

Proposition 9.0.1

Cardinal equivalence is an equivalence relation.

Proof. For any set A, A ≡ A since ι : A → A is a bijective map, so that
the relation is reflexive.

If A ≡ B then there is a bijective map f : A→ B. Then f−1 : B → A is
also a bijective map, so that B ≡ A, and the relation is symmetric.

If A ≡ B and B ≡ C then we have two bijective maps f : A → B and
g : B → C. Then g ◦ f : A → C is also a bijective map, so that A ≡ C, and
the relation is transitive.

�

This means that we can partition all the sets into equivalence classes.
Each equivalence class can be assigned a cardinal number, that is a set of
numbers that has the same number of elements.

The simplest equivalence class is that of the empty set itself. Its cardinal
number is defined to be 0 = { } = ∅.
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Next, there are all the sets with one element, and assigned the cardinal
number 1 = { 0 }.

The sets with two elements are all cardinally equivalent to the number
2 = { 0, 1 }; and so on.

Definition A set is called finite if it has cardinality equal to n for
some n ∈ N; that is, if it is cardinally equivalent to a set { 0, 1, . . . , n− 1 }.

Otherwise, it is called infinite.

Of course, not all sets are finite. For example, the set of natural numbers
N is not finite; for suppose { 0, . . . , N } ≡ N, then there is a map f with
f(0) = n0, f(1) = n1, . . . , f(N) = nN . But take the maximum of the numbers
n0, . . . , nN ; there is a natural number greater than all of them, say M. Then
f is not onto since it does not map to it, which is a contradiction.

Definition A set is called countably infinite when it is cardinally
equivalent to the set of natural numbers, A ≡ N.

A set is called countable when it is either countably infinite or finite.

Proposition 9.0.2

The set of integers is countably infinite, Z ≡ N.

Proof. Consider the function

f : N → Z

n 7→
{

−k when n = 2k

k when n = 2k − 1

Then f is 1-1, since suppose that f(n1) = f(n2) = k; then if k is positive,
it must be the case that n1 = 2k− 1 = n2; if negative then n1 = 2k = n2. In
either case n1 = n2.

f is also onto, since let a ∈ Z. If a is positive, let n = 2a − 1, so that
f(n) = a; if a is negative, let n = −2a so that f(n) = −(−a) = a.

Hence f is a bijection between Z and N.
�

Proposition 9.0.3

If A1, A2, . . . are countably infinite, then so is
⋃

∞

n=1An.
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Proof. The fact that the sets An are countably infinite means that there
are bijective maps fn : N → An, say mapping fn(m) = anm. Hence we have
the following lists,

A1 = { a11, a12, a13, . . . }
A2 = { a21, a22, a23, . . . }
A3 = { a31, a32, a33, . . . }

. . .

We can therefore make a list of
⋃

∞

n=1An by listing the elements diagonally
as

{ a11, a12, a21, a13, a22, a31, . . . },
and so create the function g : N →

⋃

nAn by letting g(1) = a11, g(2) =
a12, g(3) = a21, g(4) = a13, g(5) = a22, . . .. This function is 1-1 and onto
because we never repeat elements and we don’t leave out any anm. Hence
N ≡ ⋃nAn.

�

Corollary

If A is countably infinite, then so is A ∪ { x }.

Proposition 9.0.4

If A is countable, then so is any subset B ⊆ A.

Proof. Exercise.

Proposition 9.0.5

If A and B are countably infinite, then so is A× B.

Proof. Let A = { a1, a2, . . .} and B = { b2, b2, . . . } be countably infinite
sets. Then we can use the same diagonal listing sequence as in the previous
proposition to make a listing of A× B as

A× B = { (a1, b1), (a1, b2), (a2, b1), (a1, b3), (a2, b2), . . . }.
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Hence we can create a bijective map from N to A× B.
�

Proposition 9.0.6

The set of rational numbers is countably infinite, Q ≡ N.

Proof. The set of integers is countably infinite. Hence Z × Z is also
countably infinite; but Q is a subset of Z2 since each rational number is a
pair of integers, hence it is itself countably infinite.

�

Theorem A

The set of real numbers is not countably infinite.

Proof. Suppose that R ≡ N, that is it can be listed as R = { x1, x2, x3, . . . }.
Write out each real number in the list as a decimal expansion:

x1 = m1 · n11n12n13 . . .
x2 = m2 · n21n22n23 . . .
x3 = m3 · n31n32n33 . . .

. . .

Now consider the real number y = 0.m1m2m3 . . . where m1 6= n11, m2 6=
n22, m3 6= n33, . . . , mk 6= nkk, . . .. It follows that y 6= x1 since they differ in
the first decimal position (ie m1 6= n11); similarly y 6= x2 because they differ
in the second decimal position etc. In fact y 6= xn, ∀n. That is y is a real
number that is not in the list; but the list was supposed to be exhaustive of
all the real numbers, a contradiction.

�

This is a stunning result, that not all infinite sets are cardinally equivalent;
some infinite sets have more elements than other infinite sets! In fact, there
are infinite sets which are not cardinally equivalent to either N or to R; the
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number of equivalence classes of infinite sets is itself infinite: there are an
infinity of infinities!

We can arrange sets in increasing order of their cardinality, as follows:
Sets Cardinal Number
∅ 0

{ ∗ } 1
{ ∗, ◦ } 2

. . .
{ a1, . . . , an } n

. . .
N,Z,Q, . . . ω
R,C, . . . c

. . . . . .
We assign the cardinal number ω to all the countably infinite sets, and

the cardinal number c to all the sets that are cardinally equivalent to R.
For example, every interval of the type [a, b], [a, b), (a, b) etc. have cardi-

nality equal to c.
The set of irrational numbers R−Q is uncountable since suppose it were

countable; then R = Q ∪ Q′ would itself be countable, which it isn’t.

9.1 Exercises

1. Show that (i) the set of square numbers { 1, 4, 9, . . .}, (ii) Q × Q, are
countably infinite.

2. Prove that every infinite set has a proper subset which is itself infinite.

3. Show that if the sets { 1, . . . , n } and { 1, . . . , m } are cardinally equiv-
alent then n = m.

4. Prove that C is cardinally equivalent to R.

5. Show that the set of functions f : N → N is uncountable.

6. Show that the set of polynomials with integer coefficients is countably
infinite. Deduce that the set of algebraic numbers (the roots of such
polynomials) is also countably infinite; and hence that the set of tran-
scendental numbers is uncountable.
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