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1 Differentiable Manifolds

A differentiable manifold is a topological space M which is locally diffeomor-
phic to a real Banach space X, i.e., for any a ∈ M , there is a homeomorphism
(called a chart) from a neighborhood, u : U → X, u(a) = 0, which is differen-
tiable, i.e., for any two charts u, v centered at a, the maps f := vu−1 : X → X
and f−1 are locally close to affine maps,

f(x+ h) = f(x) + f ′(x)h+ o(h), f ′(x) ∈ B(X),

where ‖o(h)‖/‖h‖ → 0 as h→ 0.
These charts generate the unique atlas of all differentiable charts that are

compatible with the generating charts.
A single chart u suffices as a chart for all points b ∈ U , using ub := u−u(b);

so a set of charts that cover M is all that is needed. The charts need only
map to an open subset u : U → V ⊆ X since V ⊇ W ∼= X. The linear map
f ′ shall also be denoted symbolically by ∂v

∂u . If a point is ‘doubled’ with the
same neighborhoods each, then the space remains a manifold; so manifolds are
usually assumed to be Hausdorff.

Examples

• Banach spaces, with the identity map as chart. More generally, any open
subset of a Banach space.

• Spheres Sn := {x ∈ Rn+1 : ‖x‖ = 1 }, with the two charts u(a1, . . . , an+1) :=
(a1, . . . , an)/(±1− an+1).

• Graphs of differentiable functions, { (x, y) ∈ X × Y : y = f(x) }.

• Grassmann manifolds: The set of k-dimensional subspaces of X, including
projective spaces (k = 1).

• Open subspaces and products are again differentiable manifolds (by (φ, ψ) :
U × V → X × Y ) with the same X. For example, Tori

Tn := S× · · · × S
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X can be generalized to a complete locally convex vector space. One can
allow X to vary with the neighborhoods, but then it has to be constant on each
connected component.

A manifold with boundary is a subset of a manifold, which has a non-empty
interior and which contains its boundary that is itself a manifold. (Unless spec-
ified otherwise, manifolds do not have a boundary.)

The boundary of a manifold of dimension N , has dimension N − 1. Points
on the boundary are locally diffeomorphic to R+ × RN−1.

1. Manifolds have all the local topological properties of Banach spaces, e.g. lo-
cally connected, locally metrizable, locally T2 (hence T1).

2. The set of points which are linked via intersecting open charts form a
path-connected component.

3. A sub-manifold need not be a topological subspace, e.g. a bijective curve
in the torus.

4. For manifolds, paracompact T2 ⇔ metrizable (by Smirnov’s theorem).
Hence, their charts have a locally finite refinement.

For metrizable manifolds, 2nd countable ⇔ separable ⇔ Lindelöf. In
this case, there is a countable cover of charts.

5. Locally compact T2 manifolds are finite dimensional. The dimension is
constant on components.
They are metrizable ⇔ second countable ⇔ σ−compact.

By taking v−1B1 for each chart v, one can form a countable cover of totally
bounded open sets, which has a locally finite refinement. These have a
countable, locally finite, partition of unity of differentiable functions. A
partition of unity can be used to patch local structures into a global one.

6. (Whitney) For a finite dimensional manifold, the differentiable charts give
rise to unique smooth charts, so the manifold is smooth.

Smooth metrizable manifolds of dimension N can be embedded in R2N .
(For paracompact manifolds, take smooth non-zero functions fi : Ui → R,
extended by zero to M , and let f : p 7→ (fi(p)).)

7. A finite-dimensional manifold is orientable when there is an atlas such that
for any two intersecting charts, (vu−1)′ is orientation-preserving (i.e., have
positive determinant). Products and open sub-manifolds of orientable
manifolds remain orientable; as is the boundary of a manifold with bound-
ary.

8. Manifolds of dimension 1, 2, or 3, have a ‘unique’ differentiable structure.
But in higher dimensions, the same manifold may have several differen-
tiable structures.
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9. Manifolds of the same dimension have a connected sum M#N by removing
B1(p) in M,N and gluing the boundaries; it is associative, commutative,
has identity Sn. Every compact manifold can be decomposed into a sum
of prime manifolds.

For example, P#T = P#P#P.

For compact connected manifolds without boundary, χ(M#N) = χ(M)+
χ(N)− χ(Sn);
also, χ(M tN) = χ(M) +χ(N), χ(M ×N) = χ(M)χ(N), if M covers N
m times, then χ(N) = χ(M)/m.

10. The 1-dimensional metrizable second countable connected manifolds are
diffeomorphic to R or S.

The 2-dimensional compact manifolds are diffeomorphic to simplicial com-
plexes and so the prime surfaces are P and T.

The 3-D compact prime manifolds can be built up from 8 types.

The 4-D manifolds cannot be distinguished by any algorithm; each has
uncountably many diffeomorphism classes.

Simply-connected 5-D manifolds (or higher) can be classified up to h-
cobordism; (it is not known if compact 5-D manifolds are diffeomorphic
to simplicial complexes); in particular, manifolds homotopic to Sn or Rn
have a unique differentiable atlas.

11. (Jordan-Brouwer-Mazur) If M is a connected finite-dimensional manifold
and A ⊆M is homeomorphic to a compact connected manifold of dimen-
sion one less than M , then the exterior of A has two connected compo-
nents.

12. The global properties of a finite-dimensional manifold can be studied as
CW-complexes, i.e., a T2 space X =

∑
iEi (cell decomposition – non-

unique), where Ei ∼= Bn(i) (Bn = B1(0) ⊆ Rn), each Ē ⊆ X, ∂E is
covered by a finite number of cells, Ā∩ Ē is closed for each A ⊆ X. Then
its m-skeleton is Skm(X) =

∑
dimEi6m

Ei, so Sk1(X) ⊆ · · ·Skn(X) = X,
e.g. the 1-skeleton is a graph with loops.

Examples: Sn ∼= B0 +Bn, Tn ∼= B0 + nB1 + · · ·
(
n
k

)
Bk + · · ·+Bn.

13. (Henderson) Every infinite-dimensional, separable, metrizable Banach man-
ifold is embedded as an open subset of `2.

14. A knot is an embedding M → N .

In particular, Sm → Sn: when n > 3
2 (m+1), or n = m+1, the embedding

is unknotted; e.g. S1 is only knotted in S3; S2 in S4. Knots are the
connected sums of prime knots. Jones/Kauffman polynomial (invariant
under Radeimeister moves).



Joseph Muscat 2021 4

Tangent Vectors

The morphisms are the differentiable maps, f : M → N such that g :=
vfu−1 : X → Y satisfy

g(x+ h) = g(x) +A(x)h+ o(h)

with A(x) ∈ B(X,Y ) (well-defined since if A and B are both candidates, then
‖(A−B)e‖ := ‖(A−B)h‖/‖h‖ 6 (oA(h)+oB(h))/‖h‖ → 0 as h→ 0 for all e).
In local coordinates, a map f : M → N can be thought of as mapping X → Y
(that depends on p); the morphisms are the ones for which this is approximately
linear locally.

A local diffeomorphism is a map f such that for any p ∈M , there is an open
neighborhood p ∈ U ⊆M with f : U → fU a diffeomorphism.

Morphisms f : M → N with f(p) = q, where M,N are locally X,Y give rise
to linear maps A ∈ B(X,Y ) based at p; A depends on the charts (modulo o)

B = v2fu
−1
2 = v2v

−1
1 v1fu

−1
1 u1u

−1
2 =

∂v2

∂v1
A
∂u1

∂u2

But the following is an equivalence relation: f ∼ g ⇔ vfu−1 − vgu−1 = o for
some charts u : M → X, u(p) = 0, and v : N → Y , v(q) = 0; transitivity: if
f ∼ g ∼ h via charts u1, v1 and u2, v2, then v1hu

−1
1 = v1v

−1
2 v2hu

−1
2 u2u

−1
1 =

v1v
−1
2 v2gu

−1
2 u2u

−1
1 + o = v1gu

−1
1 + o = v1fu

−1
1 + o. Thus A (at p) is associated

with the equivalence class [f ]. Each point in M and N has a vector space of
operators B(X,Y ) associated with it.

In particular, the tangent Banach space X ∼= B(R, X) at p is denoted TpM .
In coordinates, the vector x may be denoted by Xi in the chart u, and Y j in

the chart v, with Y j = ∂yj

∂xi X
i. The cotangent dual space B(X,R) = X∗ at p is

denoted T ∗pM ; in coordinates, Yj = ∂xi

∂yj Xi.

Hence a differentiable function induces a map f ′ : TM → TN , also denoted
Df , and also called push-forward, defined by f ′ : [x]p 7→ [f ◦ x]f(p), that is,
the operator A; in local coordinates, (f ′)ai = ∂if

a. It also acts on co-vectors
f ′
∗

: T ∗qN → T ∗pM , [α]q 7→ [α ◦ f ]p (a pull-back), i.e., by (f ′
∗
α)x = α(f ′x);

(f ′)∗ is the dual operator of f ′ and is often written as f∗ for short. For example,
v : S→M , α ∈ T ∗M , give (v∗α)t = αv(t) · v′t = αiv

i in coordinates.
f is called an immersion when f ′ is 1-1 at any point, and a submersion when

it is onto.
The tangent space TM :=

⋃
p∈M TpM is given that topology generated from

all TU , which makes it locally like U ×X in the sense that for each p ∈M with
chart u : U → X, there is a bijection φU : TU → U ×X, xa 7→ (a, x), which is a
homeomorphism in a and a Banach isomorphism in x, and such that φV ◦ φ−1

U

is differentiable in a and a Banach isomorphism in x. Then

• TM is a manifold locally isomorphic to X ×X, via the homeomorphism
φ : xp 7→ (u(p), x);

• T (M ×N) = TM × TN .
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Similarly for the cotangent space T ∗M :=
⋃
p∈M T ∗pM . More generally, tensors

form a manifold T kl M :=
⋃
p∈M T kl (TpM); each tensor has coordinates of the

form T i1...ikj1...jl
. They act on vector and covector fields pointwise, independently

of their neighborhoods,

T (x, . . . , α, . . .)p := Tp(xp, . . . , αp, . . .).

The pull-back of covariant tensors is f∗T (x1, . . . , xn) = T (f ′x1, . . . , f
′xn); the

push-forward of contra-variant tensors is f ′T (α1, . . . , αn) = T (f∗α1, . . . , f
∗αn).

In finite dimensions, T kl M has dimension dim(M)k+l.
A tensor field is a continuously differentiable choice of tensors: p 7→ Xp,

M → T kl M (i.e., π ◦X = I). They are not only multi-linear on their arguments,
but tensorial, Tp(λpxp, . . .) = λpTp(xp, . . .) (λ is a scalar field). Tensor fields
form an algebra over the differentiable scalar functions.

A k-form is a field of totally anti-symmetric tensors of type T k0 .

1. The composition of differentiable maps is differentiable,

(f ◦ g)′(x) = f ′(g(x))g′(x)

Proof: Locally, f(g(x + h)) = f(g(x) + g′(x)h + o(h)) = f(g(x)) +
f ′(g(x))(g′(x)h+ o(h)) + o(g′(x)h+ o(h)).

2. Differentiable maps are locally Lipschitz, hence continuous:

‖f(x+ h)− f(x)‖ 6 (‖f ′(x)‖+ 1)‖h‖

3. f ′(p) is an operator TpM → Tf(p)N ,

f ′(p)(x+y) = f ′(p)(x)+f ′(p)(y), f ′(p)(λx) = λf ′(p)(x), I ′(p) = I, c′ = 0

When the manifolds are Banach spaces themselves, and A ∈ B(X,Y ),
then A′(p) = A.

In local coordinates f ′ is the Jacobian f ′ = ∂if
j , i.e., the derivative along

the ith coordinate, keeping the others fixed.

For example, the derivative of a curve is its tangent vector ẋ.

4. For functions M → Y ,

(f + g)′ = f ′ + g′, (λf)′ = λf ′

5. f ′ preserves tensor products (including wedge products); in general given
a bilinear map ·, then (f · g)′(p) = f ′(p) · g(p) + f(p) · g′(p) (for example
(φf)′ = φ′f + φf ′).

f∗(A⊗B) = (f∗A)⊗(f∗B), f∗Aii = (f∗A)ii, f∗(A·X) = (f∗A)·(f∗X)
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For the reciprocal of a function to a Banach algebra, f inv : x 7→ f(x)−1,

(f inv)′ = −f invf ′f inv

(where only f ′ acts on tangent vectors.)

Proof: f(x+ h)−1 = (1 + f(x)−1f ′(x)h+ f(x)−1o(h))−1f(x)−1.

6. f ′ = 0 iff f is constant on components of M .

Proof: Let g := φ ◦ v ◦ f ◦ u−1 ◦ ψ, where φ ∈ Y ∗, ψ(t) = tv; g′ = 0. If
the difference between g(t) and tg(a)/a has a max/min at t0 ∈ ]0, a[ then
g(t0 +h)− (t0 +h)g(a)/a 6 g(t0)− t0g(a)/a (say), so o(h) 6 hg(a)/a, i.e.,
g(a) = 0. Thus g, and f , are locally constant.

7. The derivative of products is (f, g)′ =

(
∂xf ∂yg
∂xg ∂yg

)
.

Proof: (f, g)(x+ h) = (f(x+ h), g(x+ h)) = (f(x) + f ′(x)h+ . . . , g(x) +
g′(x)h+ . . .) = (f(x), g(x)) + (f ′(x), g′(x))h+ . . ..

8. If f : M → N is differentiable, then f is locally invertible at x ⇔ f ′(x)
is invertible. Then (f−1)′(y) = f ′(x)−1 when y = f(x), and f ′ can act as
both a push-forward and a pull-back on tensors: f ′

∗
Y = (f−1)′Y .

Proof: o′(h) = f ′(x + h) − f ′(x), so ‖o(h1)− o(h2)‖ 6 c‖h1 − h2‖ with
c < 1 for h small enough. So F (h) := f ′(x)−1(v − o(h)) is a contraction
map; its fixed point solves f(x+h) = y+v. Then f−1(y+v) = f−1(y)+h =
f−1(y) + f ′(x)−1v + o(v).

Hence an invertible morphism is an isomorphism.

If f : M → P ⊆ N and ι ◦ f : M → N is differentiable do not imply
f : M → P differentiable (e.g. curves).

9. For a differentiable map f , the push-forward of a vector field need not be
a vector field, but pull-backs of 1-forms remain so.

For example, f : S → R2, θ 7→ (cos θ, 1
2 sin 2θ) takes the tangent vectors

to (±1,−1) at (0, 0).

10. If f : M → N is a submersion at y ∈ N (i.e., f ′ is onto TyN), then
the ‘level surface’ f−1(y) = {x ∈ M : f(x) = y } is a differentiable sub-
manifold of M . Its tangent space is Tpf

−1(y) = ker f ′(x). (Proof: For
uγ(t) = Xt+o(t), 0 = v(q) = vfu−1uγ(t) = f ′(p)Xt+o, soX ∈ ker f ′(p).)

A point y ∈ N at which f is not a submersion is called a critical point.
For example, f : R2 → R, f(x, y) := (x2 − 1)2 + y2 has a critical point at
f = 1.

For example, for f : M → R, the covector f ′(p) annihilates tangents to
the level surface f−1(a).
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11. If f : M → N is an immersion at x ∈ M (i.e., f ′ is 1-1 Tf(x)N), then
f is a local diffeomorphism. Its tangent space is Tf(x)fU = im f ′(x). A
topological embedding which is an immersion is an embedding, i.e., M is
diffeomorphic to fM , which is thus a differentiable sub-manifold of N .

A point x ∈ M at which f ′ is not 1-1 is called a singular point. f ′ need
not be 1-1 even if f is. For example, the curve t 7→ (t2, t3), R → R2

does not map to a sub-manifold (at (0, 0)). A 1-1 immersion need not
be an embedding, e.g. θ 7→ (sin 2θ, sin 3θ), − 7π

12 < θ < 7π
12 ; or R → T2,

(e2πit, e2πiαt) (α ∈ Qc).

12. Example: Let f : S2 → R3, (θ, φ) 7→
(x
y
z

)
=

(
cos θ cosφ
cos θ sinφ

sin θ

)
. Then f ′ =

∂(x,y,z)
∂(θ,φ) =

(
− sin θ cosφ − cos θ sinφ
− sin θ sinφ cos θ cosφ

cos θ 0

)
maps tangent 2-vectors of S2 to tan-

gent 3-vectors in R3. The covector field (−y, x, 0) is pulled back to the

covector field on S2, (− cos θ sinφ, cos θ cosφ, 0)∂(x,y,z)
∂(θ,φ) = (0, cos2 θ).

13. A local maximum/minimum point of f : M → R occurs at a critical point
of f , f ′(p) = 0.

Proof: Take g := f ◦ u−1 ◦ ψ : R → R, ψ(t) := tv; then g(0 + h) =
g(0) + g′(0)h+ o(h) > g(0), so g′(0) = 0 and f ′(p) = 0.

14. Lagrange multiplier : A local maximum/minimum point of f : M → R
constrained on the sub-manifold g(x) = c, satisfies f ′(p) = λg′(p).

Proof: c = g ◦u−1(x+h) = c+ g′(p)h+ o(h) ⇒ f(p) 6 f ◦u−1(x+h) =
f(p) + f ′(p)h+ o(h), so ker g′(p) ⊆ ker f ′(p).

More generally, for gi constraints, f ′(p) =
∑
i λig

′
i(p) (using ∩i kerφi ⊆

kerψ ⇒ ψ ∈ [[φi]]).

15. If f : M → N is differentiable, and L ⊂∼ N and ∀x ∈ f−1L, Im f ′(x) +
Tf(x)L = Tf(x)N , then f−1L is an embedded manifold in M; in particular
if f : Rn×Rm → R is differentiable, then f(x, y) = 0 gives a local mapping
y = g(x).

16. If f : M × N → X is continuously differentiable, f(a0, b0) = c, and
f ′(a0, b0)|N , N → X is an isomorphism, then there is a local diffeomor-
phism g : U → V with a0 ∈ U , b0 ∈ V such that for x ∈ U , y ∈ V ,

y = g(x) ⇔ f(x, y) = c

17. Locally, TU ∼= U ×X, so a vector field can be given coordinates (x,X).

TM ∼= M ×X globally iff there is a basis field (i.e., vector fields that are
a basis at each point).

18. The scalar differentiable fields form a commutative C∗-algebra C1(M).
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19. Since TM and TN are themselves manifolds, can take f ′′(p) which is a
tensor from X2 to Y (more generally f (r)(x)).

20. Vectors at the boundary of a manifold are of three types: tangent (in
Tp∂M), inward, or outward.

21. (Poincaré-Hopf) For a vector field on a compact manifold,∑
i

indexi(v) = χ(M).

For example, a vector field on S2n must vanish somewhere (hairy ball
problem); so any two vector fields are linearly dependent somewhere.

22. The automorphisms of a smooth compact manifold form a Frechet-Lie
group.

23. Orientable metrizable finite-dimensional manifolds admit a volume form,
i.e., nowhere-degenerate n-form (by patching the signed Lebesgue volume
form on charts). All volume forms then partition into two orientation
types by the equivalence relation µ ∼ ν ⇔ ∃f > 0, ν = f∗µ.

Conversely, if 0 < µ(X1, . . . , Xn) = µ(∂u∂v Y, . . .) = det ∂u∂v µ(Y, . . .), then

det ∂u∂v > 0.

f∗µ = det(f ′)µ
(since (f∗µ)(v1, . . . , vn) = µ(f ′v1, . . . , f

′vn) = det(f ′)µ(v1, . . . , vn)).

24. For an orientable manifold with volume form µ, there is a dual correspon-
dence ∗ : ΛnM → ΛN−nM , A 7→ µ · A; in local coordinates, (∗A)i...j =
µi···j•···•A

•···•. Then α ∧ ∗A = (α ·A)µ, ∗(X ∧ Y ) = (∗X) · Y = X · (∗Y ).

µ has an inverse, such that µi···j•···•µ
i′···j′•···• = m! det[δk

′

k ] where m is the
number of summed variables.

Vector Field Derivatives

Flow of a vector field: the equation ẋ = Xx has a unique local solution for
X ∈ C0,1, called the local flow of X, here denoted by x(t) = Φt(x(0)). Φt is a
diffeomorphism, with

d

dt

∣∣∣∣
t=0

Φt = X, Φt+s = ΦtΦs, Φ0 = I

Morphisms preserve the flow: F (ΦXt x) = ΦF
′X

t F (x). More generally, for
“time”-dependent vector fields, ẋ = X(t, x) defines a flow Φt,sx(s) = x(t) with
Φt,s ◦ Φs,r = Φt,r, Φt,t = I.

Lie derivative of a tensor field along the flow of a vector field:

£XA =
d

dt

∣∣∣∣
t=0

(ΦXt )′
∗
A := lim

t→0

(ΦXt )∗Ax(t) −Ax(0)

t
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(i.e., d
dt (A◦φt) = φ∗t£XA). It is a tensor of the same type as A, measuring how A

changes relative to X. For a t-dependent tensor, d
dt

∣∣
t=0

(At◦φt) = ∂tAt+£XAt.
The Lie derivative of a function on a Banach space simplifies to the direc-

tional derivative

£Xf = lim
t→0

f(p+ tX)− f(p)

t
= f ′(p)X

The Lie derivative along a coordinate direction is denoted ∂i.

1. The Lie derivative is a derivation on tensor fields, characterized by

£X(A+B) = £XA+ £XB, £XλA = λ£XA,

£X(A⊗B) = (£XA)⊗B +A⊗ (£XB),

£X(A(Y, α)) = £XA(Y, α) +A(£XY, α) +A(Y,£Xα),

£Xf = f ′X,

In particular, it is preserved by differential maps F :

£X(fA) = (£Xf)A+ f£XA,

£XA
i
i = (£XA)ii

£X(A|V ) = £XA|V
F ′£XA = £F ′XF

′A

2. £X1+X2
Y = £X1

Y + £X2
Y, £λXY = λ£XY .

But it is not tensorial, £fXY = f£XY −X£Y f 6= f£XY . Hence £XA
does not depend only on the direction of X at a point p, but also on the
rate of change of X; thus Xp = Yp does not imply £XA = £YA at p.

3. In local coordinates,

£Xf = Xi∂if,

£XY = Xi∂iY
j − Y i∂iXj ,

£Xα = Xi∂iαj + αi∂jX
i,

£XA = Xi∂iA
k
j −Aij∂iXk +Aki ∂jX

i.

Proof: Yt = Y0 + tXi∂iY + o(t), so φ∗tYt = (I + t∂iX
j + o(t))−1Yt =

Y0 + t(Xi∂iY
j − ∂iXjY i) + o(t).

4. £XY = [X,Y ] is a Lie product,

£YX = −£XY, £XX = 0,

£X£Y Z + £Z£XY + £Y £ZX = 0

Then [£X ,£Y ] = £[X,Y ]. So vector fields form a Lie algebra.

The product generalizes to totally skew-symmetric contravariant tensors
(Schouten product).
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5. [X,Y ] = 0 iff the flows commute, i.e., ΦXt ΦYs = ΦYs ΦXt .

6. (Frobenius) A sub-bundle of the tangent space (i.e., a smooth choice of
vector subspaces of TpM) is the tangent space of some local sub-manifold
(called ‘integrable’) ⇔ it is a Lie subalgebra.

7. Example: LetX :=
(−y
x

)
on R2. Then its flow is Φt

(x0
y0

)
=
(

cos t − sin t
sin t cos t

) (
x0
y0

)
.

Let Y :=
(
x2

xy

)
. Φ∗tY (Φt(x0)) =

(
cos t sin t
− sin t cos t

)(
(x0 cos t− y0 sin t)2

(x0 cos t− y0 sin t)(y0 cos t+ x0 sin t)

)
=(

x0(x0 cos t− y0 sin t)
y0(x0 cos t− y0 sin t)

)
. So the derivative of Y wrt X,

£XY = limt→0
Φ∗tY (Φt(x0))−Y (x0)

t = limt→0
1
t

(
x0(−x0 + x0 cos t− y0 sin t)
−y0(x0 − x0 cos t+ y0 sin t)

)
=(

−x0y0
−y20

)
(more easily obtained from Xi∂iY

j − Y i∂iXj).

Differential of an anti-symmetric tensor field (‘form’), d : Ωk → Ωk+1

defined by

dα(X1, . . . , Xk+1) := α(X2, . . . , Xk+1)′X1 − α(X1, X3, . . .)
′X2 + . . .

1.
d(α+ β) = dα+ dβ, d(λα) = λ dα,

d(α ∧ β) =

{
dα ∧ β + α ∧ dβ, α ∈ Ωk even

dα ∧ β − α ∧ dβ, odd

d2α = 0, df = f ′, dA|V = d(A|V )

2. In local coordinates dα = ∂kαij··· dx
k ∧ dxi ∧ dxj ∧ · · · ,

df = ∂if, (grad)

dα = ∂iαj − ∂jαi, (curl)

dA = ∂iAjk + ∂jAki + ∂kAij

3. For example, in Rn, the 1-form dx1 is (x1, . . .) 7→ x1.

Change of coordinates: e.g. from Cartesian to polar, then dx∧ dy∧ dz =
d(r cos θ cosφ) ∧ d(r cos θ sinφ) ∧ d(r sin θ) = −r2 cos θ dr ∧ dθ ∧ dφ.

4. £X = dιX + ιX d (i.e., £Xα = d(X · α) +X · dα.)

Proof: by induction £XA = £X( df ∧B) = £X( df) ∧B + df ∧£XB =
d( df ∧B)(X) + d( df ∧B(X)) = dA(X) + d(A(X))).

Hence d,£X commute, and for A ∈ Ωk

dα(X,Y ) = £X(α(Y ))−£Y (α(X))− α([X,Y ]),

dα(X,Y, Z) = £X(α(Y,Z)) + £Y (α(Z,X)) + £Z(α(X,Y ))

− α([X,Y ], Z)− α([Z,X], Y )− α([Y, Z], X),

£X(A ∧B) = (£XA) ∧B +A ∧ (£XB),

£fXA = f£XA+ df ∧ ιXA,
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(since £fXA = dA(fX) + d(A(fX)) = · · · = f£XA+ df ∧A(X));

5. Morphisms preserve d, that is, F ∗ dα = d(F ∗α).

6. Forms that are ‘closed’, dα = 0, form a subspace Zk(M) := ker(d) ∩
Λk(M).

Forms that are ‘exact’, α = dβ, form a subspace Bk(M) := im(d) ∩
Λk(M) ⊆ Zk(M).

Closed ⇔ locally exact.

Proof: Transfer the closed form to the simply connected Banach space; let
Xt(x) := x/t, generates a flow φt(x) = tx, so £Xtα = dιXtα, so d

dtφ
∗
tα =

φ∗t dιXt
α = dφ∗t ιXt

α, so α− φ∗tα = d
∫ 1

t
φ∗sιXs

αds, so α = d
∫ 1

0
φ∗sιXs

αds.

Morphisms f : M → N map f∗ : Zk(N)→ Zk(M) and Bk(N)→ Bk(M).

7. The quotient spaces Hk := Zk/Bk form a co-homology.

Morphisms f : M → N map f∗ : Hk(N) → Hk(M), invariant under
homotopies (i.e., f, g homotopic implies f∗ = g∗), i.e., Hk(M) depends
only on the homotopy class of M .

The dimensions of Hk are called the manifold’s Betti numbers (when
finite): dimH0 is equal to the number of connected components. For
k > dimM , dimHk = 0. (Proof: Z0 consists of locally constant functions;
B0 = 0.)

8. In oriented finite-dimensional manifolds, the volume form µ is closed, dµ =
0. There is a co-differential, or divergence, acting on n-vectors:

δ := ∗̄ d∗ : ΛnM → Λn−1M.

Then δ2 = 0.

£Xµ = d(X · µ) = d(∗X) = (δX)µ,
£Xfµ = (£Xf + fδX)µ = δ(fX)µ.

9. There is a canonical 1-form θ : M → T ∗T ∗M defined by

θ(p,α)(v, w) = (π∗α)(v, w) = αv,

where π : T ∗M → M is the canonical projection; in local coordinates
(xi, ξj), θ = ξi dxi. For any 1-form α, α∗θ = α.

10. (Poincare-Hopf) For any vector field with isolated zeros, on a compact
manifold without boundary,

∑
i indexpi(X) = χ(M). For example, if

there exists a non-degenerate vector field, then χ(M) = 0.
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Integration

The line integral of a 1-form on a curve is defined by∫
γ

α :=

∫
γ∗α =

∫
α · γ′ =

∫
R
αi(γ(t))γ′

i
(t) dt

Similarly for the integral of an n-form on an n-dimensional patch∫
Ω

ω =

∫
φU

φ∗ω dµ =

∫
U

ωi...j dxi . . . dxj .

The integral of an n-form on an orientable paracompact T2 n-submanifold M
with a given partition of unity λU subordinate to the charts φU is∫

M

ω :=
∑
U

∫
φU

λUφ∗ω dµ

(Well-defined, independent of partition of unity and charts:
∑
U fU =

∑
U∩V fUgV

and φ∗ = (ψφ−1)∗(ψ−1)∗ = ψ∗.)

Cartan’s theorem:

If ω is an (n − 1)-form in an n-dim orientable
(sub)manifold M , with ∂M having compatible orienta-
tion, then ∫

M

dω =

∫
∂M

ω|∂M

(ω|∂M = ι∗ω where ι : ∂M →M is the embedding of the boundary.)

Proof: On a small interval,
∫ x+h

x
∂f dx = 1

h

∫ x+h

x
(f(x+h)−f(x)) dx+o(h) =

[f ]x+h
x . Hence, by subdividing a patch U into small cuboids,

∫∫ x+h

x
∂iωj... dx

i dxj . . . =

[
∫
ωj... dx

j . . .]x+h
x , so cancelling and extending to the boundary. Therefore∫

M
dω =

∑
U

∫
U
λU dω =

∑
U

∫
U

d(λUω) =
∑
U

∫
ι−1U

λUω|∂U =
∫
∂M

ω∂M
(since

∑
U d(λUω) = d(

∑
U λU ) ∧ ω +

∑
U λU dω.)

1. Change of variables: If f : M → N is an isomorphism, then∫
M

ω =

∫
fM

f∗ω.

(Proof:
∫
fU

f∗ω =
∫
ψfU

ψ∗f∗φ
∗φ∗ω =

∫
φU

φ∗ω =
∫
U
ω.)

2. Integration by parts:
∫
M
f dω =

∫
∂M

fω −
∫
M

df ∧ ω.

3. For a compact manifold without boundary,
∫
M

dω = 0. In particular, a
volume form µ cannot be exact.
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4. Special cases:

(a) Fund. Th. Calculus: For a scalar C1 function f ,
∫
γ
f ′ =

∫
γ

df =

[f ]
γ(1)
γ(0). For exact 1-forms, can define

∫ x
p
f ′; in particular,

∮
f ′ = 0.

(b) Stokes: For a surface in R3,∫
S

(∂iFj − ∂jFi)
∂xi

∂u

∂xj

∂v
dudv =

∫
∂S

Fix
′i dt

Green: For a closed curve in R2,∫
A

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫
∂A

P dx+Qdy.

Cauchy : For a complex analytic function,
∮
f(z) dz = 0 (since

∮
(u+

iv)( dx + i dy) =
∫
A
−( ∂v∂x + ∂u

∂y ) + i(∂u∂x −
∂v
∂y ) dA = 0). So the path

in
∫
γ
f(z) dz can be deformed as long as f remains analytic.

Also
∫
S
∂jf(∂x

i

∂u
∂xj

∂v −
∂xj

∂u
∂xi

∂v ) dudv =
∫
∂S
f(xi)′ dt. (Take Fi = fai.)

(c) Gauss: For a volume V ⊆ R3,
∫
V
∂iF

i dV =
∫
∂V

εijkFi dxj dxk.

Also,
∫
V
∂if dV =

∫
∂V

fεijk
∂xj

∂u
∂xk

∂v dudv.

5. Mean Value Theorem: For a curve γ : [a, b]→M , 1
b−a

∫ b
a
γ′ belongs to the

convex hull of γ′[a, b].
(Proof: Split the curve into small pieces so (γ′(tn+1) − γ′(tn))δtn < ε,
hence integral becomes finite convex sum of γ′(tn).)

For Banach spaces, f ◦ γ : [0, 1]→ X → R, γ(t) = (1− t)a+ tb, ∃c ∈ [a, b],

f(b)− f(a) =

∫ 1

0

(f ◦ γ)′ dt = f ′(c)(b− a).

1.1 Poisson Manifolds

have an anti-symmetric bivector field πij such that

πi•∂•π
jk + πj•∂•π

ki + πk•∂•π
ij = 0.

Equivalently, it has a Poisson product on scalar fields, {f, g} := 1
2 ( df ∧ dg)π =

πij∂if∂jg, which is a Lie product (bilinear, anti-commutative, Jacobi) that
satisfies

{f, gh} = {f, g}h+ {f, h}g.

The morphisms preserve π: F∗π = π, i.e., {f, g}F (x) = {f ◦ F, g ◦ F}x.
Products M ×N are again Poisson.

Examples: T ∗M with π = ω−1, ω := dθ; in local coordinates, ω = dξi∧ dxi.
Diffeomorphisms preserve this ω.
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Every covector field is associated to a vector field: πijαi.
In particular, every scalar field is associated to its Hamiltonian vector field
Hf := π df = πij∂if .

1. The Lie product generalizes to covectors as [α, β] := £παβ − £πβα −
d(παβ). Then

(a) π[α, β] = [πα, πβ]

(b) [ df, dg] = d{f, g}
(c) [α, fβ] = [α, β]f + (£παf)β

2. Hamiltonian vector fields satisfy

[Hf , Hg] = H{f,g}, £Hf
g = {f, g}, £Hf

π = 0, F∗Hf = HF∗f

Proof: £Hf
g = ( dg)(π df) = {f, g}; HF∗f = π d(F∗f) = F∗(π df) =

F∗Hf .

Thus, the flow is a Poisson morphism; a function g is conserved along
the flow of a Hamiltonian vector field Hf if {f, g} = 0 (in particular f is
conserved).

3. At each point, the image of πij , generated by the Hamiltonian vectors, is
a subspace that integrate into foliated immersed connected sub-manifolds,
called leaves.

Complementary to them, Casimir functions satisfy Hf = 0, so they are
constant on the leaves.

4. Each leaf has a symplectic 2-form ωij = (π−1)ij ; it is nowhere-degenerate,
anti-symmetric, and closed dω = 0 (from [π, π] = 0). If finite-dimensional,
the dimension is even, and the leaf is orientable with ωn := ω ∧ · · · ∧ ω as
a volume form (called Liouville volume form).

(Darboux) Symplectic leaves (of same dimension) are locally isomorphic

since ωij =
(

0 I
−I 0

)
in a local chart.

5. A Hamiltonian vector field Hf on a symplectic leaf satisfies ωXf = df
and {f, g} := ω(Hf , Hg). A vector field is called locally Hamiltonian when
d(ωX) = 0.

6. For the cotangent manifold, a Hamiltonian vector field Hf = ω−1 df , is
associated with its Lagrangian scalar function L := θ(X) + f , and its flow
is a symplectic morphism,

£Xθ = dL, £Xω = 0

Thus the volume form is preserved, £Xω
n = 0. When a curve is moved

along the flow of X, then ∆
∫
θ =

∫
2
L−

∫
1
L.
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Proof: £Xθ = dιXθ + ιX dθ = d(θ(X)) + ωX = d(θ(X) + E) = dL.
£Xω = £X dθ = d£Xθ = d2L = 0.

For the function f(x, ξ), the flow of Hf is ẋ = −∂f∂ξ , ξ̇ = ∂f
∂x .

Proof: ω((Hf , ξ), (X,ψ)) = df(X,ψ), i.e., ψHf − ξX = ∂f
∂Hf

X + ∂f
∂ξ ψ, so

Hf = ∂f
∂ξ and ξ = − ∂f

∂Hf
.

2 Complex Manifolds

An almost-complex manifold is a differentiable manifold with a (1, 1)-tensor
field J such that J2 = −1. If finite, the dimension is even (since det(−1) > 0)
and the manifold is oriented. The tangent space splits locally into T+

p M⊕T−p M
(also T kl M), where Jv+ = v−, Jv− = −v+.

A complex manifold is a differentiable manifold which is locally analytically
diffeomorphic to a complex Banach space, i.e., for local charts f = v ◦ u−1,
z = x + iy,

f(z+h) = f(z)+(A+iB)(hx+ihy)+o(h) =

(
u(x,y)
v(x,y)

)
+

(
A −B
B A

)(
hx
hy

)
+o(h)

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

i.e., f ′J = Jf ′.
Equivalently (Newlander-Nirenberg), an almost complex manifold in which

J ∼
(

0 −I
I 0

)
throughout; equivalently, [X,Y ]+J [JX, Y ]+J [X, JY ]−[JX, JY ] =

0. Morphisms are required to be analytic, i.e., f ′J = Jf ′, hence smooth.
Examples:

• Cn and its quotients, the complex tori Cn/Z2n.

• Complex projective space (Cn+1r{ 0 })/C×.

• Any 2-D orientable metrizable manifold admits a complex manifold struc-
ture (by checking condition NJ(X,Y ) = 0).

• Hopf manifolds, Stein manifolds.

1. Locally, an analytic function f(z) = u(x, y)+iv(x, y) satisfies ∂yiv = ∂xi
u,

∂yiu = −∂yiv.

2. Not every almost-complex manifold is complex, but the only known ex-
amples are of (real) dimension 4.

3. In C, an analytic (iff conformal) 1-1 map f : A → B, A,B ⊆ C, is au-
tomatically invertible with f−1 analytic; therefore there is an equivalence
relation of regions A with f acting as morphisms.
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4. Most finite-dimensional complex manifolds cannot be embedded in any
Cm (e.g. the compact ones).

5. Any two complex surfaces are locally conformal.

A compact complex surface is a variety, i.e., the zero set of some polyno-
mial; it can be embedded in CP3.

6. For a complex manifold, the co-homology groups are of type Hp,q (Chern
classes), with dimHk =

∑
p+q=k dimHp,q (note a k-form in complex Ba-

nach spaces is of type dz1 ∧ . . . dzp ∧ dz̄1 ∧ . . . ∧ dz̄q);

7. For compact complex manifolds: (Riemann-Roch, special case of Atiyah-
Singer) arithmetic genus := h0−h1+. . .±hN is an invariant (hi :=dimension
of abelian forms of degree i).

Every compact complex surface corresponds to an irreducible polynomial
p(z, w) and can be obtained by gluing the sides of a polygon in C, S2 or
H2.

3 Geometry

Up to this point the manifold can only have global invariants (dimension, genus,
orientability, etc.) as locally it is a Banach space; to allow for local invariants
a connection of nearby tangent spaces is needed. Locally, a curve in TM takes
the form of a roving vector, u(t) = (p(t), x(t)) ∈ U × X (U ⊆ M); it can
be approximated in a chart by u(t) = (p(t), x(t)) = (p, x) + (v, w)t + o(t), so
TTM ∼= TU×X2 locally. Those roving vectors which remain at one point p, i.e.,
v = 0, form a vector space called the vertical space at p, which is properly defined
invariant of the charts as Vu := kerπ′u. A connection between tangent spaces
is a choice of a subspace of vectors (p, x) 7→ w along which roving vectors are
considered to move inM but not inX, to form a horizontal space complementary
to the vertical space.

A geometry is a differentiable manifold with a differentiable selection u 7→
Hu, (u ∈ TTM), where Hu is a linear subspace of TuTM complementary to Vu,
i.e., Hu ⊕ Vu = TuTM .

Parallel Transport

For any path p : [−1, 1]→ M with p(0) = p, and any vector x ∈ TpM , there is
a unique differentiable path u : [−1, 1]→ TM , called its ‘horizontal lift’, whose
tangent vectors are in Hu (by projection of the tangents to Hu):

u′(t) ∈ Hu(t), π ◦ u(t) = p(t), u(0) = (p, x).

It extends to tensors, e.g. Ap(t)x(t) = (Ax)(t) for any A ∈ B(X); so x or A move
in a unique way along the path. This parallel transport of vectors and tensors is
denoted τt : TpM → Tp(t)M , a linear isomorphism ‘connecting’ tangent spaces
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at different points. Thus B(X) acts on TM locally in a covariant manner,
making the manifold a local geometry in the Klein sense. For a Banach space,
τt = I.

The covariant derivative ∇X of a tensor field A in the direction of a vector
X is defined by

∇XA(p) := lim
t→0

τ−1
t Ap(t) −Ap

t

where τt is parallel transport along a path p(t), p = p(0), p′(0) = Xp.

For M a Banach space, ∇XA(p) = limt→0
Ap+tXp−Ap

t .

1. The mapping ∇A : X 7→ ∇XA is tensorial:

∇X+YA = ∇XA+∇YA, ∇fXA = f∇XA.

2. ∇ acts linearly on tensor fields as:

∇(A+B) = ∇A+∇B, ∇(λA) = λ∇A,
∇(A⊗B) = (∇A)⊗B +A⊗ (∇B),

∇Aii = (∇A)ii, ∇f = f ′

In particular ∇(fA) = (∇f)A+ f∇A.

3. For a local basis, ∇ei = Γkjiek : U ⊆ M → B(X), called the Christoffel
symbol. It contains the information about how the manifold curves; e.g. a
Banach space is flat, Γ = 0 (in standard basis). In local coordinates,

∇XA = Xi∇iA
∇f = ∂if

∇X = ∂iX
j + ΓjikX

k,

∇α = ∂iαj − Γkijαk,

∇A = ∂iA
k
j + Γki•A

•
j − Γ•ijA

k
•

Proof: If X = Xjej , then ∇X = (∂iX
j)ej + XkΓjikej . ∇(α · X) =

(∇α)jiX
i + αi(∂jX

i + ΓijkX
k) = (∂jαi)X

i + αi(∂jX
i).

4. A tensor A is parallel transported along the curve x(t) when ∇x′A = 0. In

general, the derivative of a tensor along a path is dA
dt = ∇x′A = dxi

dt ∇iA.

In coordinates, a parallel transported vector X(t) satisfies

d

dt
Xi = −Γijk(x′)jXk, X(0) = Xx(0)

5. A diffeomorphism f : M → N induces a connection on the manifold N ,
∇XA = ∇f∗Xf∗A.
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6. A Poisson manifold has also a contravariant derivative, ∇α := ∇πα. It
satisfies

∇fα = f∇α, ∇α(fA) = f∇αA+ (£παf)A

7. Higher derivatives, e.g. ∇2f = ∂i∂jf − Γkij∂kf in local coordinates.

8. Parallel transport around a knot gives an element of the connection that
depends only on the knot-type (i.e., a knot-invariant); the Loop transform
is a mapping from connections to the knot-invariants, it generalizes the
Fourier transform.

Torsion and Curvature

The torsion and the curvature tensor fields are defined by

Θ(X,Y ) = ∇XY −∇YX − [X,Y ],

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ]

1. The torsion and curvature are both tensorial and anti-symmetric in X,Y .

Proof:

Θ(fX, Y ) = f∇XY −∇Y (fX)− [fX, Y ]

= f(∇XY −∇YX − [X,Y ]) = fΘ(X,Y )

R(fX, Y ) = f∇X(∇Y )−∇Y (f∇X)−∇f [X,Y ]+fY∇X−X∇Y f

= f(∇X∇Y −∇Y∇X −∇[X,Y ]) = fR(X,Y )

2. In coordinates,

Θk
ij = Γkij − Γkji,

Rijk
l = ∂iΓ

l
jk + Γli•Γ

•
jk − ∂jΓlik − Γlj•Γ

•
ik

Proof: Rijk
lXiY jZk = (Xi∇i)(Y j∇j)Zk−(Y j∇j)(Xi∇i)Zk−[X,Y ]i∇iZk.

3. The skew-symmetric part of ∇2A is

(∇i∇j −∇j∇i)Alm = Rlij•A
•
m −Θ•ij∇•Alm −R•ijmAl• −Θ•ij∇•Alm

4. Bianchi identities

(a) d̃Θ = R′

∇[iΘ
l
jk] = ∇[iΘ

l
jk] + Θ•[ijΘ

l
•k] = Rl[ijk],

(b) d̃R = 0
∇[iR

m
jk]l + Θ•[ijΘ

m
•k]l
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5. In finite dimensions, the Ricci curvature is Ricij = Ri•j
•; in harmonic

coordinates, Ricij = 1
24gij + · · · .

Scalar curvature R := Rii.

d2µ
dτ2 = RabV

aV bµ.

6. For Poisson manifolds, there is a torsion T (α, β) = ∇αβ −∇βα− [α, β].

7. On a loop, a frame is parallel transported to Ax+ b, where b is related to
the torsion.

Geodesics

are curves x(t) which keep the same direction, ∇ẋẋ = 0.

1. In local coordinates, ẍk + Γkij ẋ
iẋj = 0.

2. The parametrization of a geodesic is unique up to affine changes.

Proof: For x(s(t)), 0 = ∇ẋẋ = ṡ∇x′(ṡx′) = s̈x′ + ṡ2∇x′x′ ⇔ s̈ = 0 ⇔
s(t) = at+ b.

The geodesic curve is determined only by the symmetric part of Γij , not
the torsion.

3. Given a vector X at a point x0, there is a unique geodesic x(t) with
x(0) = x0, ẋ(0) = X. Two such geodesics starting from the same point
meet only at isolated points.

4. The exponential of a vector field is the flow along the geodesic in the
direction of the vectors, exp(tX)(p) = γX(t).

exp((t+ s)X) = exp(tX) exp(sX), exp(0) = I

exp(X) exp(Y ) = exp((X+Y )+ 1
2 [X,Y ]+ 1

12 ([X, [X,Y ]]+[Y, [Y,X]])+· · · ),

in particular, exp(−Y ) exp(X) exp(Y ) = exp(X + [X,Y ] + · · · ).
exp( 1

nX) exp( 1
nY )nx→ exp(X + Y )x.

4 Ψ-Riemannian Manifolds

have a smooth nowhere-degenerate symmetric bilinear form gij .
Morphisms are the locally isometric differentiable maps, i.e., F∗g = g.
Examples:

• Minkowski space-time, Rn+1 with g(X,Y ) = −X0Y 0 +
∑n
i=1X

iY i.

• Any metrizable smooth manifold can be given a ψ-metric.
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1. The bilinear form extends to tensors of the same type, g(A,B); in coordi-
nates, Ai···jB

i···j .

2. Any immersion M → N pulls back g from N to M via gM (X,Y ) =
g(f ′(X), f ′(Y )).

3. When two curves meet, the vertically opposite angles are equal.

4. There is a duality between X and X∗ via g, manifested in coordinates
as raising/lowering of indices, i.e., Xi = gijX

j , denoted by ], [; the dual
of a transformation A∗ji = gj•A

•
i ; the exterior derivative now applies to

k-vector fields as well by ]d[.

5. Connections which preserve g, i.e., ∇g = 0, have a unique symmetric part,
namely

Γijk = 1
2 (∂igjk + ∂jgik − ∂kgij)

Proof: expand ∇Zg(X,Y )−∇Y g(Z,X) +∇Xg(Y,Z).

For this unique torsionless connection,

(a) Rijkl = −Rijlk = Rklij = Kπ(i, j)(gikgjl − gijgkl)
(Kπ is called the sectional curvature);

(b) £Xg = ∇iXj +∇jXi, ∇iXj −∇jXi = ( dX)ij −Θij•X
•.

(c) gij = δij − 1
N−1Ri•j◦x

•x◦ +O(3), Γkij = 0 +O(1).

(d) ∇i det(g) = (det(g))g•◦∂ig•◦ = 2 det(g)Γ•i•

(e) ∇·X = 1√
det g

∂i(
√

det gXi).

(f) ∇i∇jX l = Rlij•X
• + 1

2g
l•(∇i£Xgj• +∇j£Xgi• −∇•£Xgij)

(∇i∇j −∇j∇i)Aab = Rij•
aA•b −Rijb

•Aa•

For a submanifold, the connection associated with the inherited g is the
same as the restriction of ∇.

6. The “energy” density of a morphism F : M → N (with metrics g, h) is

‖f∗h‖2 = habg
ij∂iF

a∂jF
b; in particular the energy density of a curve is

h(ẋ, ẋ) = ẋiẋi.

For any geodesic, g(ẋ, ẋ) is constant. A vector is parallel transported along
it when X ′ = 0 so g(X, ẋ) and g(X,X) are constant.

If X is a family of geodesic curves (so X•X
• = 1, X•∇•Xj = 0) and

£XY = 0, then d
ds (X•Y

•) = 0, d2

ds2Y
l = Rl•◦?X

•Y ◦X?.

Proof: d
ds (XiY

i) = XiX
j∇jY i = Y j(Xi∇jXi) = 1

2Y
j∇j(XiX

i) = 0.
Expand Xi∇i(Xj∇jY l).

7. R =
∑
i,j Kπ(i, j);

Ricij = 1
nRgij + Sij (S traceless);

Rijkl = 1
(n−1)nR(gikgjl− gijgkl)− 1

N−2 (Silgjk +Sjkgil−Sikgjl−Sjlgik) +

Cijkl (C traceless, called Weyl tensor).
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A manifold has constant curvature when ∇R = 0.

An isotropic manifold is one with Cijkl = 0 = Sij . If the index is not 2,
then the manifold is of constant curvature. When Sij = 0 and the index
is not 2, then R is constant. When the index is 0, M is locally conformal
to a constant R manifold.

A manifold is maximally symmetric whenKπ(i, j) = κ constant, soRijkl =
κ(gikgjl − gilgjk), Ricij = (n− 1)κgij , R = n(n− 1)κ (Sij = 0 = Cijkl).

A manifold is flat when κ = 0.

8. A vector field is called Killing when its flow preserves the bilinear form,
£Xg = 0.

(a) £X commutes with lowering/raising of indices,

(b) For any geodesic, Xiẋi is constant;

(c) ∇i∇jXk = RkijlX
l;

(d) Their flow are isometries: so group of isometries of manifold have the
Lie algebra of Killing vector fields.

9. Two metrics are conformally equivalent when g̃ = eσg, so g̃(X,Y ) = 0 ⇔
g(X,Y ) = 0.

The angle between two vectors is invariant under local conformal map-
pings.

A vector field which gives rise to a conformal flow satisfies £Xg = eσg.

Under a conformal mapping, g 7→ g̃ = eσg,

Γkij 7→ Γkij + 1
2 (δkj ∂iσ + δki ∂jσ − gijgkl∂lσ),

Θk
ij 7→ Θk

ij

Rlijk 7→ Rlijk + 1
2 (δlj∇i∇kσ − δli∇j∇kσ + gik∇j∇lσ − gjk∇i∇lσ)

+ 1
4 (δli∇jσ∇kσ − δlj∇iσ∇kσ + gjk∇iσ∇lσ − gik∇jσ∇lσ + (δljgik − δligjk)∇•σ∇•σ)

Ricij 7→ Ricij +
n− 2

2
∇i∇jσ +

1

2
gij4σ +

n− 2

4
(gij∇•σ∇•σ −∇iσ∇jσ)

Sij 7→ Sij +
n− 2

2
∇i∇jσ −

n− 2

2n
gij4σ +

n− 2

4n
gij∇•σ∇•σ −

n− 2

4
∇iσ∇jσ

R 7→ e−σ(R+ (n− 1)4σ +
(n− 1)(n− 2)

4
∇•σ∇•σ)

C 7→ C

10. An embedded sub-manifold M ⊂∼ M̃ inherits the bilinear form of M̃ . It

gives rise to a decomposition of the tangent space: TpM̃ = TpM ×TpM⊥,
with projections X 7→ (Xi, Xa). Then

(a) The inherited bilinear form is gij = g̃kl∂ir
k∂jr

l, where r : M → M̃
is the embedding; called the first fundamental form.
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(b) The covariant derivative induces derivatives on tangent and normal
vectors:

∇̃iXj = (∇iXj , IIaijX
j) (Gauss)

∇̃iXa = (−IIjibX
b, DiX

a) (Weingarten)

where

i. IIaij = Γaij is called the second fundamental form of M ;

IIaijX
iXj gives the normal curvature (forX unit); the eigenvalues

of IIa are the principal curvatures. A local isometry preserves
both g and II (Theorema Egregium). The mean curvature tensor
is Ha = IIiai ;

ii. DiX
a = ∂iX

a + ΓaibX
b is called the normal form of M .

Example: For a surface in R3, ri := ∂ir,

gij = [ri · rj ] =

(
E F
F G

)
,
√

det g =

√
|r1|2 |r2|2 − |r1 · r2)|2 = |r1 × r2|

n =
r1 × r2

|r1 × r2|
, IIij = [∂i∂jr · n] =

(
L M
M N

)
,

∂irj = Γkijrk + IIijn, ∂in = −IIjirj ,

[∂in] = −IIji = −IIikg
jk = −

(
L M
M N

)(
E F
F G

)−1

so κ = det II/det g = LN−M2

EG−F 2 . κn := r′′ · n = L(u′)2 + 2Mu′v′ +

N(v′)2.

r(u, v) = a + uru + vrv + 1
2 (ruuu

2 + 2ruvuv + rvvv
2) + o(2),

so y(u, v) := 〈r − a,n〉 = 1
2 II(u, v) + o(2).

(c)

R̃ijk
l

= Rlijk + IIaikIIlja − IIajkIIlia, (Gauss)

R̃ijk
a

= ∇iIIajk −∇jII
a
ik = ∇iIIajk −∇jII

a
ik + 2Γ•jkIIai• − 2Γ•ikIIaj•, (Codazzi-Mainardi)

R̃ijb
a

= R⊥ijb
a

+ IIai•II
•
jb − IIaj•II

•
ib

= ∂iΓ
a
jb − ∂jΓaib + Γai•Γ

•
jb − Γaj•Γ

•
ib (Ricci)

(d)

£Ng = −2IIaNa,

£2
Ng = 2RiajbN

aN b − 2IIbiaIIacj NaNc

£Nµg = −IIiiµg

Proof. £Ng(X,Y ) = ∇Ng(X,Y ) = g(∇NX,Y ) + g(X,∇NY ) =
g(∇XN,Y )+g(X,∇YN) = −2II(X,Y )), £N II(X,Y ) = ∇N II(X,Y ) =
−∇Ng(∇XN,Y ) = −g(∇N∇XN,Y )−g(∇XN,∇NY ) = R(X,N, Y,N)−
II2(X,Y ). £N

√
det g = 1

2
det g√
det g

gij(−2IIij)
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Given g, II, and Γaib, that satisfy the Gauss, Codazzi-Mainardi and Ricci
equations, then there is a (simply-connected) manifold locally embedded
in Rn with those metrics and forms.

11. A point on a hypersurface M is elliptical when II is positive self-adjoint;
parabolic when 0 ∈ σ(II) (in particular planar II = 0); hyperbolic other-
wise; umbilical when II = κ.

A curve on a submanifold is called asymptotic when II(ẋ, ẋ) = 0; it is a
line of curvature when IIij ẋ

j(t) = λ(t)ẋi(t).

A line of curvature is one whose tangent is along eigenvectors of curvature.

For surfaces, det

(v′)2 −u′v′ (u′)2

E F G
L M N

 = 0.

Manifolds with zero mean curvature are called minimal.

12. For finite-dimensional manifolds, the signature of g is well-defined (con-
stant on components).

For a complete finite-dimensional manifold, the set of isometries (preserv-
ing g) form a Lie group; the stabiliser subgroup that fixes a point p is a
compact subgroup.

13. For an oriented finite-dimensional manifold, there is a natural volume form

µi···j =
√

det(g)εi···j

(because in Rn, the unit volume of a subspace imA is
√

detAT gA.)√
det[g] = 1− 1

6Rijx
ixj +O(3).

The Hodge dual then becomes a map ΛkM → ΛN−kM defined by B∧∗A =
g(A,B)µ; in coordinates (∗A)i···j = 1

k!(N−k)!µi···j
•···•A•···•. It is its own

inverse up to a sign ∗∗ = sgn(g) (but −sgn(g) when n is even, k odd); in
particular, ∗µ = 1, ∗1 = µ.

It gives rise to the following operations:
Cross product A×B := ∗(A∧B), in coordinates µk···k

′

•···•◦···◦A
•···•B◦···◦.

Grad ∇f = ]df .
Curl ] ∗ d[ : ΛnM → ΛN−n−1M .
Divergence δ = ∗̄ d∗ : ΛnM → Λn−1M ;
Laplacian 4 := ( d + δ)2 = dδ + δ d = d∗ d∗ + ∗ d∗d. It commutes with
d, δ, ∗.
Example: In R3,

(a) X×Y = εi•◦X
•Y ◦; ∇f = δi•∇•f ; ∇×X = εij•∇jX•; ∇·X = ∇•X•.

(b) The identities of d(α ∧ β) become
∇· (fF ) = ∇f ·F + f∇·F , ∇· (F ×G) = (∇×F ) ·G−F · (∇×G),
∇× (fF ) = ∇f × F + f∇× F ,
∇× (F ×G) = (∇·G + G · ∇)F − (∇· F + F · ∇)G.
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(c) ∇×∇f = 0, ∇· ∇× F = 0 (since d2 = 0).

(d) ∇× F = 0 ⇔ F = ∇f locally; ∇· F = 0 ⇔ F = ∇×A locally.

14. On a submanifold of dimension k, the volume form induces a local form
µM (v1, . . . , vk) = µ

M̃
(v1, . . . , vk, Nk+1, . . . , Nn), where Ni are orthonor-

mal vectors, normal to M .

In particular, for k = 1, [X = (X·T )µ(·, N2, . . . , Nn) = (X·T )µγ =: X· ds.
For k = n− 1, ∗[X = (X ·N)µ(. . . , N) =: X · dS(= n dS.).

Cartan’ theorem becomes:

(a) Stokes’ theorem: For a surface S ⊆ R3,∫
S

∇× F · dS =

∫
∂S

F · ds

∫
S
∇f × dA = −

∫
∂S
f ds

(b) Gauss: For a compact submanifold V ⊆ Rn,∫
V

∇· F dV =

∫
∂V

F · dS

(F can be any tensor ∇iAijk 7→ AijkNi.)

Also,
∫
V
∇f dV =

∫
∂V

f dS,
∫
V
∇× F dV = −

∫
∂V

F × dS.

Proof:
∫
S
]∗ d[F dA =

∫
S

d[F =
∫
γ
[F =

∫
γ
F · dS.∫

V
∗ d ∗ Fµ =

∫
V

d(F · µ) =
∫
∂V

F ·NµS . For corollaries, dot with a.

For a measure concentrated on a hypersurface, ∇· F = ∆F · n.

15. The integral of f on a piecewise smooth curve is
∫
f ds, where ds = ṙ dt =

t‖ṙ‖ dt.
The ‘interval’ of a curve is

∫ √
g(γ̇, γ̇) dt; invariant under reparametriza-

tions (with ‖γ̇‖ 6= 0). A geodesic is a stationary curve for energy and
intervals locally.

4.1 Riemannian Manifolds

have a positive-definite gij , i.e., a real inner product.
Examples:

• Rn, Sn, Tn, `2.

• Immersed submanifolds, inheriting g.

1. The length of a curve, L[γ] :=
∫
γ
‖r′(t)‖ dt is positive.

The curve can be reparametrised using arclength, so r′(s) is of unit length,
called the unit tangent at r(s).
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2. For points on a curve-connected subset, there is a distance function

d(x, y) = inf{L[r(t)] : r(t) connects r(0) = x to r(1) = y }

If there is a minimum distance between points, then it is achieved by a

geodesic. For a Hilbert space, ‖[r]ba‖ = ‖
∫ b
a
r′‖ 6

∫
γ
‖r′‖ = L(γ), so

straight lines are shortest.

(Hopf-Rinow) For manifolds without boundary, the metric is complete ⇔
it is geodesically complete; then the distance is achieved (by a geodesic).
(Nomizu-Ozeki) Every Riemannian manifold is conformal to a geodesically
complete manifold, and conformal to a bounded manifold (if both, then
the manifold is compact).

3. (Serret-Frenet) For any curve r(t), can orthogonalise ṙ, r̈, . . . , to get
vectors T , N1, N2, . . . , where

T ′ = κ1N1, N ′i = −κiNi−1 + κi+1Ni+1,

i.e., d
dsN = KN with K skew-symmetric. κi are called the curvatures of

the curve.

Proof: By construction, N ′i−
∑
j<i g(Nj , N

′
i)Nj = N ′i+κiNi−1 =: κi+1Ni+1

since d
ds g(Nj , Ni) = 0.

For a manifold embedded in another, the curvatures can be decomposed
into tangential and normal.

Finite-Dimensional Riemannian manifolds

1. (Crofton) The length of a rectifiable curve is 1
4

∫
n(γ) dγ where n(γ) is

the number of times that a geodesic γ intersects the curve and dγ is the
natural measure of geodesics.

2. Any paramcompact T2 finite-dimensional manifold can be given a Rieman-
nian metric (since it can be immersed in some RN inheriting its g). Any
Riemannian manifold can be embedded in R2N+1, almost always uniquely,
up to translations/isometries for N > 3 (Nash); even with negative Ricci
curvature.

3. The Lie group of isometries at a point is O(n); for an oriented manifold,
it is SO(n); and H0 = R.

4. The shortest curve between two submanifolds is a geodesic perpendicular
to both.

5. Manifolds of constant curvature are locally conformally flat.

The only simply connected complete manifolds of constant curvature are
SN , RN , HN . Isotropic hyper-surfaces must be cylindrical (only one non-
zero principal curvature) or umbilic; have constant mean curvature ‖Ha‖.
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Every orientable complete 2-manifold can be given a metric with constant
curvature.

Each prime compact 3-manifold without boundary can be decomposed
along tori into components that are either S3, H3, R3, S2 × R, H2 × R,

SL2(R), Nil (=

(
1 ∗ ∗
0 1 ∗
0 0 1

)
), or Sol (=

(
∗ ∗
0 ∗

)
) (each has a unique differen-

tiable atlas).

6. Complete manifolds with Ric > 0 have volume of balls less than those of
same radius in Rn (Bishop).

Complete non-compact manifolds with Kπ > 0 are diffeomorphic to RN .
(Cheeger-Gromoll)

Complete simply-connected manifolds with Kπ 6 0 are diffeomorphic to
RN . (Cartan-Hadamard)

7. Liouville surfaces have a first fundamental form of the type E = G =
f(u) + g(v), F = 0. Geodesics satisfy f(u) sin2 θ − g(v) cos2 θ = c, where
θ is the angle it makes with a parallel.

Compact Riemannian manifolds

1. All distances are equivalent (since a 6 g1(X,X)
g2(X,X) 6 b). Manifold is complete,

hence geodesically complete.

2. Orientable manifolds are conformal to a constant-curvature manifold.

Proof: let g̃ij = φmgij , with m = 4/(N − 2), then R̃ = φ−m−2(Rφ2 +
m(N − 1)φ4φ + m(N − 1)(mN/4 − m/2 − 1)∇φ · ∇ψ); let B(φ, ψ) :=∫
Rφψ+m(N−1)∇φ ·∇ψ, then ‖φ‖

L( 1
2
− 1

N
)−1 6 cB(φ, ψ) where c is called

the Yamabe constant; hence can solve m(N−1)4φ+Rφ = +1, 0,−1φm+1.

3. (Chern) For even dimensions,

1

(2π)n/2

∫
M

Pf(Ω)µ = χ(M) +

∫
∂M

Φ ·Nµn−1

where Pf(Ω) =
√

det Ω, Ω = dΦ is the curvature form. For odd dimen-
sions, both sides of the equation reduce to 0. (Special case of Atiyah-Singer
theorem with D = d + d∗.)
In particular, for no boundary, 1

(2π)n/2

∫
Pf(Ω) = χ(M).

For 4k-dimensions, (special case of Atiyah-Singer) ∀α, β ∈ H2,
∫
α ∧ β =

index(M), in particular 1
24π2

∫
Ωji ∧ Ωij = index(M).

(Gauss-Bonnet) For polygons in a surface,∫
M

κ = 2π −
∑
i

(π − θi)−
∫
∂M

κg
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In particular for the whole oriented compact surface 1
2π

∫
M
κ = χ(M). For

example, geodesic polygons,
∫
M
κ =

∑
i θi − (n− 2)π.

Proof: first show for small local triangles
∫
T
κ = 2π−

∑
i θ
′
i−
∫
∂M

κg; then
add up for a triangulation; thus

∑
i θ
′
i = 2πEint + πEext −

∑
i(π − θi);

Eext = Vext;
∑
i 2π = 2πF .

Corollaries:

(a) Compact surfaces of positive curvature are homeomorphic to sphere
(since χ > 0).

(b) If κ 6 0 then any two geodesics that meet at two points must contain
a ‘hole’.

(c) If κ > 0, then any two closed simple geodesics intersect (else they
enclose a sub-surface of χ = 0)

4. For negatively curved compact manifolds, geodesics are ergodic.

5. For compact Riemannian manifolds without boundary,

There are a countable number of diffeomorphic classes of compact Rie-
mannian manifolds, increasing in |Kπ|, diameter, decreasing in volume.
(Cheeger)

Ric < 0 ⇒ isometry group is discrete (so no Killing vector fields);
Ric 6 0 ⇒ every Killing vector field is parallel;
Ric > 0 ⇒ first Betti number 6 n (Bochner);
Ric > 0 ⇒ every Killing vector field must have a 0.
Ric > c > 0, complete, connected ⇒ compact. (Bonnet-Myers)
Ric > n−1

r2 g ⇒ diam(M) 6 πr (e.g. Kπ > 1/r2)

Complete simply connected with 1/4 + ε 6 Kπ/K 6 1 is homeomorphic
to Sn.

If Kπ > 0 then each Betti number of its components is less than some Cn
(Gromov).

4.1.1 Hermitian Manifolds

An almost-Hermitian manifold is a Riemannian manifold with a compati-
ble almost complex structure J , g(Ju, Jv) = g(u, v). (At least the symmetric
part g̃(u, v) := 1

2 (g(u, v) + g(Ju, Jv)) preserves J .) A paracompact T2 almost-
complex manifold can be given an almost-Hermitian structure.

Equivalently, a Riemannian manifold with a skew-symmetric 2-form Jij ; then

Jji = Ji•g
•j , gij = Ji•J

•
j , Jij = J•i g•j .

A Hermitian manifold is a differentiable manifold with a complex inner
product h; equivalently, a complex manifold with a Riemannian metric, g =
Re(h), J = Im(h).

• Complex Hilbert spaces.
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• Grassmannians of Cn (acted upon by GL(n)).

There is a unique connection, called the Chern connection, satisfying∇h = 0,
so ∇Xh(A,B) = h(∇XA,B) + h(A,∇XB).

Every 2-D Hermitian manifold is conformal to one with constant curvature.

4.1.2 Kähler Manifolds

An almost-Kähler manifold is a Riemannian manifold with a symplectic form
ω, i.e., dω = 0 (hence skew-symmetric); equivalently, an almost-Hermitian
manifold with ∇J = 0.

A Kähler manifold is a Hermitian manifold with a symplectic ω.
Example:

• S6

• Algebraic varieties embedded in a projective space.

• CPn with Fubini-Study metric.

1. The connection as a Riemannian manifold coincides with the Hermitian
one.

2. The Lie group of isometries is U(n/2).

3. Calabi-Yau manifolds are compact Kähler manifolds which are Ricci flat;
their Lie group is a subgroup of SU(n/2).

They are for real dimension n = 2 the tori, for n = 4 the torus T4 or the
K3 surfaces; (for n = 6 unknown).

4.1.3 Hyper-Kahler manifolds

are differentiable manifolds with a quaternionic inner-product.
Their Lie group is USp(n/4); they are Ricci-flat.
The only compact ones of dimension 4 are T4 and the K3 surfaces.

4.2 Lorentzian Manifolds

are pseudo-Riemannian manifolds whose g has signature (−1, 1, . . . , 1).
Vectors classify as (i) time-like if g(X,X) < 0, (ii) null if g(X,X) = 0, (iii)

space-like if g(X,X) > 0.
Examples: Every non-compact metrizable manifold can be given a Lorentz

metric.

1. Lorentzian manifolds with a non-degenerate time-like vector field have
χ(M) = 0; e.g. compact Lorentzian manifolds.
A manifold may be complete for time-like geodesics but not for space-like
geodesics, and vice-versa. A compact Lorentzian manifold with a timelike
Killing vector field is geodesically complete (Romero-Sanchez).
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2. Causal manifolds have no closed time-like/null curves; they have a nowhere-
degenerate time-like vector field; they are non-compact.
Strongly causal manifolds do not have time-like/null curves do return ar-
bitrarily close to itself; they have distinct past/futures for distinct points
(so are causal). They are conformal to a time-like/null geodesically com-
plete manifold.
Globally hyperbolic manifolds have Cauchy surfaces with a time-like vector
field, ⇔ strongly causal with the intersection of past and future of distinct
points being compact. In the future and past closed sets, any two points
are joined by a maximal geodesic of finite length, and is homeomorphic to
N × R.

5 Riemannian Manifolds of Constant Curvature

The simply connected smooth Riemannian manifolds of constant sectional cur-
vature are unique and of three types, according to curvature. Hence smooth
manifolds of the same constant curvature are locally isometric.

5.1 Flat, Euclidean Space Rn

1. The metric is δij in Cartesian coordinates; in spherical-polar coordinates,
1 0 · · ·
0 r2

r2 cos2 θ1

...
. . .

r2 cos2 θ1 · · · cos2 θn−2


2. The group of isometries (dim = n(n+1)

2 ) is generated by translations Rn,
rotations SO(n), and a reflection; and similarity (scalar multiplication) is
a conformal mapping.

Translations are generated by ∇i, rotations by xi∇j − xj∇i, scaling by
xi∇i.

3. Γ = 0, parallel transport preserves the coordinates of vectors.

4. Similar shapes of dimension k have ‘volume’ proportional to sidesk.

The volume of a ball of radius r is Vn(r) = πn/2

(n/2)!r
n (= 2k+1πk

n!! for n =

2k + 1); its surface area is An(r) = d
dr Vn(r) = n πn/2

(n/2)!r
n−1

5. Compact convex sets: (Helley) if every N + 1 members of a family of
compact convex sets have non-empty intersection, then the whole family
has non-empty intersection; implies
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(a) if A and B are two compact sets, and if every N + 2 points in A∪B
can be separated by hyperplane (into A and B points), then the two
sets can be separated by a hyperplane;

(b) every compact convex set has a point such that chords through it are
divided in a ratio 6 2N ;

(c) every open set V of dimension N has a point x such that every
hyperplane through x contains at least 1

N+1vol(V );

(d) if I1, . . . , In are intervals in R such that any N +2 have a polynomial
of degree N passing through them, then there is a polynomial of
degree N passing through all the In;

6. (Cauchy) The average projected ‘area’ of a convex body (in all directions)
is a constant kn−1 of the surface area, where kn is the ratio of the volume
to surface area of the unit ball in Rn; e.g. in R3, k2 = 1

4 .

For line segments, k0 = 2
π , and extends to any curve (by summing); hence

for a closed curve, πdiam(γ) 6 L[γ].

Curves

1. Geodesics are the straight lines a + te.

There is a unique line passing through a point and parallel to a given line;
any two points can be joined by a straight line; two straight lines meet in
at most one point; parallel lines never meet.

Angles: when a line meets two parallel lines (or subspaces), the alternate
angles are equal and the interior angles sum to π.

2. A point on a hyper-plane has one perpendicular (normal); three parallel
hyper-planes cut any (non-parallel) line in the same ratio.

3. x1, . . . , xn are collinear iff detA = 0 where Aij = d(xi, xj)
2 for i, j 6 n,

Ai,n+1 = An+1,i = 1 for i 6 n, An+1,n+1 = 0.

4. The external angles of a planar polygon sum to 2π; hence the internal
angles sum to (n− 2)π; in particular, the angles of a triangle is π.

5. The points equidistant from two points form a perpendicular hyper-plane;
the points equidistant from two hyper-planes form an angle bisector hyper-
plane; points equidistant from an r-plane and an s-plane form a second
order “quadric”, in general.

6. Triangles with SAS, ASA or SSS (or RHS) equal are congruent; triangles
with AAA (or SAS, ASA, SSS with sides proportional) are similar; AA
equal iff SS equal (isosceles).

The area of a triangle is half base times height 1
2‖a× b‖

(= 1
4

√
(a+ b+ c)(a+ b− c)(a+ c− b)(b+ c− a));
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AB2 = BC2 +AC2− 2AC.BC cosC (in particular Pythagoras’ theorem).

Medians meet at one point (of trisection).Let X be on BC, cutting it in
ratio α : β (α + β = 1); then AX2 = αAB2 + βAC2 − αβBC2; AX
is the bisector of A ⇔ BX

CX = BA
CA ⇔ AB.AC = αAB2 + βAC2 =

AX2 +BX.XC.

The perpendiculars from the vertices meet at a point (the orthocenter) and
form the pedal triangle, bisecting its angles; removing the pedal triangle
gives triangles that are similar to the original (in particular for right-angled
triangles).

Isosceles triangles: median iff perpendicular.

7. Quadrilaterals: Area equals half diagonal times altitude.

Trapezium area is mean of parallel sides times altitude.

Parallelogram (pairs of parallel lines) ⇔ opposite angles are equal ⇔
opposite sides equal ⇔ diagonals bisect; diagonal bisects parallelogram
into congruent triangles; sum of squares on sides equals sum of squares on
diagonals.

8. Envelope curves: The curve which is tangent to a family of curves rs(t)
satisfies ∂F

∂t (x) = 0, Ft(x) = 0, i.e., det[∂ir
j ] = 0 (since it is the limit of

the intersection of two curves as t→ t0).

Evolute/Involute: the evolute is the envelope of the normal lines to a
curve, r + n/κ (its tangent is n); the involute is the unwinding of a curve
along its tangent, r(s)− st(s); they are inverses of each other in 2-D.

The pedal curve of a curve is the projection of a fixed point to its tangent
line r + t · (a− r)t.

9. Tangent of a planar curve is of form (cos θ, sin θ), so κn = t′ = θ′n, hence
κ = θ′. A planar curve with constant curvature is a circle.

For a closed planar curve:
∫
γ
κds = [θ] = 2πm (m called the ‘winding

number’). If κ 6 κ0 then diam> 2/κ0 (else enclosed in circle touching at
a point), so length> 2π/maxκ.

A closed planar curve is convex iff it is simple and has κ > 0; has
winding number 1; it has at least four ‘vertices’ (i.e., max/min of κ);
area6 1

4π (length)2.

(Fenchel) For a simple closed curve,
∫
κ > 2π; equality holds iff convex

planar. (Fary-Milnor) For a knot,
∫
κ > 4π.

10. A spiral is a planar curve with positive (or negative) curvature. The
evolute of a curve with increasing/decreasing curvature has non-vanishing

curvature; so (Kneser) |e(t)− e(t0)| 6
∫ t
t0
|r′n| = r(t0)− r(t); so the curve

cannot self-intersect and is a spiral.
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Hypersurfaces

1. (Hartman-Nirenberg) A complete hyper-surface with Kπ = 0 is a cylinder
over some curve.

2. (Alexandrov-Hadamard) A connected compact hyper-surface with con-
stant mean curvature is diffeomorphic to a sphere.

3. A connected umbilical hypersurface in R3 (all points umbilical) is part of
a sphere or plane.

Proof: II = κ, so for any two indices, Nu = κgu, Nv = κgv, so 0 = Nuv −
Nvu = κvgu − κugv, so κu = 0 = κv by independence of tangent vectors.
So κ is locally constant, hence globally. If κ = 0 then Nu = Nv = 0 so
N is constant, so r · N =const. If κ 6= 0 then r − 1

κN is constant c, so
|r − c| = 1

κ .

4. The only complete, embedded, simply-connected minimal surfaces in R3

are the plane and helicoid.

For an embedded minimal surface in R3, each end is asymptotic to the
end of a plane or catenoid.

Projective Spaces

PRn is the space of 1-dimensional subspaces of Rn+1. The morphisms are the
maps in PGL(n+ 1).

1. Any two subspaces generate a higher plane u ∧ v (the join) and intersect
in a lower plane (u ∨ v) := (u∗ ∧ v∗)∗ (meet) where ∗ is the Hodge dual,
(so u ∨ v = u∗ · v.

Tu ∧ Tv = (detT )u ∧ v; T (u ∨ v) = detT−1T (u) ∨ T (v).

2. A straight line is given by the equation u∧v∧x = 0; 3 lines are coincident
when (u ∨ v) ∧ w = 0; Desargues’ theorem.

3. PR is homeomorphic to S1, PC to S2, PH to S4, and PO to S8. PO2 has
a metric, and is compact.

4. Projective space RPn; χ =

{
1 n even

0 n odd
.

Varieties

A variety is the complex manifold with singularities that arises from simultane-
ous polynomial equations.

The morphisms are polynomial functions p : Cn → Cm, x 7→ (p1(x), · · · , pm(x));
or rational functions. Finite unions, intersections, and products of varieties are
again varieties.
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1. Polynomials of degree > 2 can be reduced to quadratic by introducing
variables, e.g. x2yz4 = uv where u = x2, v = yt, t = r2, r = z2.

2. In projective space, the polynomials are homogeneous. The tangent plane
is 0 = (x−a) ·∇p(a) = x ·∇p(a) since a ·∇p(a) = d

dt p(ta) = k1k−1p(a) = 0.

Points with [∇ipj(a)] of less than full rank are singular, e.g. ∇p(a) = 0 for
one polynomial.

A point at “infinity” is a solution of the homogeneous equation p(x, z) = 0
with z = 0, i.e., the highest-degree part of p is zero; its “asymptote” is
the direction x.

3. Varieties in Cn can be represented by ideals of C[x], since every such ideal
is finitely generated (see Rings); so the intersection and union of varieties
is another variety. They are not compact.

W ⊆ V (J) ⇔ J E I(W ), so U ⊆ W ⇒ I(W ) E I(U). I(V (J)) is the
radical of J ; so radical ideals are the ‘closed’ ones, in 1-1 correspondence
with varieties. Maximal ideals correspond to points.

The ideal I(V ) decomposes into prime ideals (so that p ∈ I(V ) ⇔ p =∑k
i=1 ai(x)pi(x) for some pi(x) ∈ I(V )); a prime ideal corresponds to an

irreducible variety, i.e., , not the union of two varieties; irreducible varieties
are preserved by regular maps.

Each irreducible variety V gives rise to a unique reduced integral domain
R(V ) = C[x]/I(V ) (called the coordinate ring of V ); morphisms V → W
correspond to algebra-morphisms R(W )→ R(V ); J/I is a prime ideal in
R(V ) ⇔ J is prime in C[x]; the subvarieties of V correspond to the ideals
in R(V ).

4. Every irreducible subvariety W in V gives rise to an integral domain called
the local ring RW (V ), i.e., , the ring of fractions generated from R(V ),
α/β where α, β ∈ R(V ), but β 6∈ I(W )/I(V ); if W1 ⊆W2 then RW1

(V ) ⊆
RW2

(V ); RV (V ) is in fact a field (of fractions);
⋂

dimW=0RW (V ) = R(V ).

The free group generated by the irreducible subvarieties of V , each of
dimension m, is called Gm(V ); each element is of the type

∑
i niWi

(called an m-cycle); any two irreducible varieties P,Q gives P ∩ Q =∑
i niWi with dimWi = dimP + dimQ − dimV ; so Gm(V ) ∩ Gn(V ) =

Gm+n−dimV (V ); two m-cycles are “homotopic” when there is an m + 1-
cycle whose boundaries are the two m-cycles; the m-cycles that are homo-
topic to 0 is called g(V ) E G(V ), and so Am(V ) := Gm(V )/gm(V ), and

so A(V ) :=
∑N
i=0Ai(V ), which is a ring (Chow ring) but not necessarily

preserved by regular maps.

5. Algebraic curves are varieties in R2, satisfying some polynomial p(x, y) =
0. They cross any line in a finite number of points (at most deg p).

Over C, the ‘curve’ is a surface. They can be represented by rational
functions in one variable. The genus of a non-singular algebraic curve is
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(
m−1

2

)
− s where m is the degree of the polynomial and s the number of

ordinary singularities (immersion overlaps).

(a) genus 0 - have 0 or ∞ number of rational points (a ‘conic’);

(b) genus 1 - are either ‘elliptic’ curves (with finitely-generated abelian
group of rational points) or have no rational points;

(c) genus > 2 - have a finite number of rational points.

6. (Chow) Every compact projective complex manifold is a projective variety
(there is algebraic structure), i.e., every compact submanifold of CPn is of
the type Z(p1, . . . , pn).

7. Generalized Riemann-Roch theorem - χ(V ) = dimH0 − dimH1 + . . ..

Lattices

1. Lattices in Rn (discrete subgroups) are isomorphic to Zn via a basis∑
i Zvi. Products of lattices are themselves lattices.

Every finite spanning set with 〈ui, uj〉 ∈ Q generates a lattice. (Proof:
Reduce to a basis; the rest are rational linear combinations by inverting
Gram matrix; there is a largest denominator.)

In particular, the root lattices

(a) An generated by ei − ei+1 in Rn+1; { (ai) ∈ Zn+1 :
∑
i ai = 0 },

or { (a1+···+ai−iai+1√
i(i+1)

) ∈ Rn : (ai) ∈ Zn+1,
∑n+1
i=1 ai = 0 }.

(b) Bn generated by ei; Zn.

(c) Dn generated by 2ei and ei − ei+1; { (ai) ∈ Zn :
∑
i ai ∈ 2Z }.

(d) D+
n , { (ai) ∈ Zn ∪ (Z+ 1

2 )n :
∑
i ai ∈ 2Z }, two copies of Dn; only for

n even; e.g. diamond lattice.

2. The densest lattices in n-dimensions for n = 1, 2, . . ., are Z = A1, trian-
gular A2, D3, D4, D5, E6, E7, E8 (= D+

8 ), . . .

3. The only lattice in R is Z; there are two types of ‘frieze patterns’, with/out
reflections.

4. R2 has 5 types of lattices, by symmetry, generated by:

parallelograms (p1, p2),
rectangles (pg, pm, pmg, pmm, pgg),
rhombi (cm, cmm),
squares (p4, p4m, p4g),
equilateral triangles (p3, p3m1, p31m, p6, p6m)

(17 wall-paper patterns in brackets). The one-dimensional lattice can
have 7 frieze patterns. The regular tessellations are square and triangu-
lar/hexagonal.
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If the lattice points are treated as complex numbers ω, then the lattice
is determined by the numbers g2 :=

∑
ω 6=0

1
ω4 and g3 =

∑
ω 6=0

1
ω6 . By

removing the degenerate lattices (∆ := (60g2)3 − 27(140g3)2 = 0) and
fixing the fundamental area (to factor out scaling), the space of lattices
is isomorphic to S3r∆ (a sphere minus a trefoil knot). The curve t 7→
(etg2, e

−tg3) is called modular flow: it contains periodic orbits which are
geodesic knots; horocyclic flow is (et, set + ie−t), with complicated knots.

5. R3 has 14 lattices in 7 ‘systems’:

name types faces
triclinic P 3parallelograms
monoclinic P C 2 rectangles, 1 parallelogram
orthorhombic PIFC 3 rectangles
tetragonal PI 1 square, 2 rectangles
rhombohedral P 3 rhombi60◦

hexagonal P 2 rectangles, 1 rhombus60◦

cubic PIF 3squares, D3 = A3 =cF

P=primitive, I=body-centered, F=face-centered, C=base-centered; P has
points at vertices of repeating cuboid, IFC have extra points at center of
body, all faces, pair of opposite faces; e.g. FCC is cF, BCC is cI. There are
219 space groups (plus 11 chiral copies). The one-dimensional lattice can
have 13 patterns; the 2-D lattices can have 80 patterns. The only regular
tessellation is cubic.

6. R4 has 64 lattices of three tessellation types: cubic, 16-cell, and its dual
24-cell; has 4783 space groups.

R5 has 189 lattices (all of hypercubes) and 222018 space groups. Every
tessellation of Rn, n > 5, is of hypercubes.

5.2 Positive, Spheres Sn

1. Spherical-polar coordinates r(θ1, . . . , θn) = R


cos θ1 · · · cos θn
cos θ1 · · · sin θn

...
sin θ1

;

First fundamental form

R2


1 0 · · ·
0 cos2 θ1

...
. . .

cos2 θ1 · · · cos2 θn−1


Stereographic projection r 7→ x = r−(r·a)a

1±x·a ,Snr{±a } → Rn; inversely,

r(x) = 2x+(|x|2−1)a
1+|x|2 .
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2. Geodesics are great circles.

3. The group of isometries is O(n+ 1); the conformal group is O(n+ 1, 1).

4. Orientable (since its stereographic atlas of two charts has a connected
overlap). S2 is a complex manifold, but in addition only S6 has an almost
hermitian structure.

5. In S2, geodesic triangles satisfy the sine rule

sinA

sin a
=

sinB

sin b
=

sinC

sin c

6. The Betti numbers of Sn are 1, 0, . . . , 0, 1,

so χ(Sn) = 1 + (−1)n =

{
2 neven

0 nodd
.

Hence the area of a polygon in S2 is 1
κ (
∑
i θi − (n− 2)π).

7. Lattices:

S1 has lattices with any number of points (polygons), with symmetry Im.

S2 has cylindrical lattices of any n (with cyclical symmetry nn, ∗nn, n×,
n∗, or dihedral 2∗n, 22n, ∗22n), and three proper lattices: tetrahedron,
cube/octahedron, dodecahedron/icosahedron (H3 ⊃ A5), (each with sym-
metries that are chiral or full (with reflection); the tetrahedron can also
have symmetry 3∗2 with inversion); space groups: 332, *332, 432, *432,
3*2, 532, *532.

S3 has 6 proper lattices: simplex, hypercube/orthoplex (tesseract), 24-cell
(F4), 120-cell/600-cell (H4).

Sn (n > 4) has 3 proper lattices: simplex (An = Sn+1), hypercube/orthoplex
(BCn ⊃ Sn).

5.3 Negative, Hyperbolic spaces Hn

1. Poincaré model: Unit ball in Rn, p = x

1+
√

1+|x|2
, with metric

δij
(1−|p|2)2 .

Upper-half region Rn+ with
δij
p2n

(nth component of p).

Hyperboloid model r = (
√

1 + |x|2,x).

First fundamental form for surfaces:

(
1 0

0
sinh2
√
|κ|ρ

|κ|

)
.

2. Hn is diffeomorphic to Rn. The isometries are O+(1, n) (no similarity).
For n = 2, SO+(1, 2) ∼= PSL±(R2).
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3. Geodesics are arcs of circles in the Poincaré model, intersecting the bound-
ary at right angles.

There are many geodesics through a point that do not intersect another
geodesic.

The area of a geodesic polygon is Area +
∑
i θi = (n− 2)π. So rectangles

do not exist. Triangles are congruent iff they have the same angles.

4. Every complete manifold of constant curvature is the quotient of Hn by a
lattice, e.g. H2/Z2.

(Hilbert) No H2/Γ can be isometrically immersed in R3.

5. Lattices:

H2 has tessellations of any type (p, q) with p-faces and q-vertices such that
1
p + 1

q <
1
2 , symmetry ∗pq2; including apeirogons with an infinite number

of sides.

H3 has 4 regular tessellations (‘honeycombs’): cubic, icosahedral, dodeca-
hedral of orders 4 or 5; and 11 regular ones touching the boundary.
H4 has 5 regular tessellations and 2 touching the boundary.
Hn, n > 5, has no regular tessellations, except H5 has 5 touching the
boundary.

6 Lie Groups

A Lie group is a manifold that is also a topological group, such that the group
operations are differentiable.

Lie subgroup iff subgroup submanifold. Products are again Lie groups.
Morphisms are the differentiable group morphisms.

Examples:

• Banach spaces with translation.

• The unit circle S1, the unit quaternions S3, with multiplication.

• The Heisenberg group, R3 with (x1, y1, z1) ∗ (x2, y2, z2) = (x1 + x2, y1 +
y2, z1 + z2 + x1y2).

• GL(Rn), the invertible n × n matrices; since it is the open submanifold

det−1 R× of Rn2

. It is disconnected into GL(Rn)+ and GL(Rn)−. More
generally, the group of invertibles of B(X) for X a Banach space.

• More generally, GL(g) for any Lie algebra g.

• The isometries of a ψ-Riemannian manifold (with compact-open topol-
ogy).

A complex Lie group is a complex manifold with group operations that are
analytic.
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1. A vector field is left-invariant when Lg∗Xh = Xgh for all g ∈ G. The
tangent vectors at 1 extend to all of G by Xg = Lg∗X1; it is left-invariant.

2. So tangent spaces are all isomorphic to a Lie algebra Lie(G) (with dimen-
sion dimG), via left-invariance;

Lg∗[X,Y ] = [Lg∗X,Lg∗Y ] = [X,Y ].

Hence the tangent manifold is trivial TG ∼= X×G; hence orientable, with
left-invariant measure obtained by translating a volume form at one point.

3. The exponential map exp : Lie(G)→ G is

exp(X) := x(1), x′(t) = Xx(t), x(0) = 1

The morphism expX : R → G maps to a one-parameter subgroup, e.g.,
exp(X)−1 = exp(−X). The solution of x′(t) = Xx(t), x(0) = g, for a left-
invariant vector field is x(t) = g exp(tX); for right-invariant vector field,
it is exp(tX)g.

4. As locally connected topological groups, any connected neighborhood of 1
generates G1, a normal clopen subgroup, via the exponentials; so G/G1 is
discrete. (If abelian, G/G1

∼= Zk×H with H finite.) Any discrete normal
subgroup of G1 is in the center.

First countable Lie groups have a norm and translation invariant metric,
with d(g, h) = ‖g−1h‖.
Hilbert’s 5th problem: every locally Euclidean group is a Lie group.

5. If f : G → H is a morphism, then f ′p is a Lie algebra morphism; exp(X)
is mapped to exp(f ′X).

6. The Killing form is the symmetric quadratic form B(X,Y ) = tr[X, [Y, ·]].
Its kernel {X : B(X,Y ) = 0,∀Y } is an ideal.

For an automorphism, B(AX,AY ) = B(X,Y ),
for an inner automorphism, B(AX,Y ) +B(X,AY ) = 0.

Proof: Differentiate [etAX, etAY ] = [X,Y ].

Example: The Killing form of gl(n) is 2(n tr(X2)− (trX)2).

7. For any c, ∇XY = c[X,Y ] is a connection.

Θ(X,Y ) = (2c− 1)[X,Y ], R(X,Y ) = c(c− 1)∇[X,Y ].

(a) c = 1 gives positive torsion, no curvature.

(b) c = 1
2 gives zero torsion, negative curvature.

(c) c = 0 gives negative torsion, no curvature.

8. Lie groups act on homogeneous topological spaces (e.g. G/H where H
is a subgroup of G); they are parallelizable, so orientable, Riemannian
manifolds, with a (left)-translation-invariant volume form ω.
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Structure of Lie Groups

1. There is a correspondence between the connected immersed Lie subgroups
and the Lie subalgebras; H E G1 ⇔ Lie(H) E Lie(G) (as ideals).

Proof: h = TIH ⊆ TIG = g. Conversely, (Lx)′h is an integrable vector
field.

For example, Lie(Z(G)) = Z(Lie(G)), an abelian ideal of Lie(G). Simple
connected Lie groups correspond to simple Lie algebras.

2. A Lie subgroup is embedded iff it is closed.

3. H covers G1 ⇔ G1
∼= H/N a discrete subgroup of the center Z(H).

(They all have the same Lie algebra.)

If H is simply connected and φ : h → g is a Lie algebra morphism, then
there is an associated Lie group morphism f : H → G with f ′ = φ.

Hence Lie algebras are in 1-1 correspondence with simply connected Lie
groups, up to isomorphism; all connected Lie groups with this Lie algebra
are discrete subgroups of this group’s center.

4. The map G → GL(Lie(G)), g 7→ Ag, where Ag(X) = (LgRg−1)′X, is a
morphism; for G1, the kernel is Z(G1).

For GL(X) with X a Banach algebra, the Lie algebra product is xy− yx.
(Let Lgh := gh, then Lg∗[X,Y ] = [Lg∗X,Lg∗Y ] = [X,Y ] if X,Y are left-
invariant; so the left-invariant vector fields form a lie subalgebra of the
algebra of vector fields - it is the Lie algebra of G. Right-multiplication
gives Rgh = hg, [RgX,RgY ] = −[LgX,LgY ])

The component of 1 is an open normal subgroup generated by eX . If X
is commutative, then the component of 1 is eX (since exey = ex+y).

If X = B(H) (complex), then GL(B(H)) is connected and generated by
eX . det : GL(X) → R× is a morphism with det′ = tr. exp(X) = eX =∑
n

1
n!X

n. ad(g)X = gXg−1.

In U(H), ‖[S, T ]− 1‖ 6 2‖S − 1‖‖T − 1‖ (since [S, T ]−1 = S−1T−1ST −
1 = S−1T−1(TS−ST ); so ‖[S, T ]− 1‖ = ‖ST − TS‖ = ‖(S − 1)(T − 1)− (T − 1)(S − 1)‖).
The affine transformations (Tx + a, T ∈ GL(X)) form a lie group. Simi-
larly, the isometries Ux+ a, U ∈ U(X).

5. The Lie algebra of GL(g) is g. So every Lie algebra is the tangent space
of some Lie group.

The subgroup of automorphisms has Lie subalgebra of derivations. It
contains the subgroup of inner automorphisms, generated by the inner
derivations, isomorphic to G/Z(G).

Proof: A[X,Y ] = [AX,AY ], so Aut(g) is a subgroup. If B is a derivation,
d
dt |t=0[etBX, etBY ] = [BX,Y ] + [X,BY ] = B[X,Y ] = d

dt |t=0e
tB [X,Y ], so

[etBX, etBY ] = etB [X,Y ], so eB ∈ Aut(g).
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6. A Lie group is called Lie-simple (semi-simple) when its Lie algebra is
simple (semi-simple); its only connected normal subroups are 1 and G1,
but it may have other discrete normal subgroups.

The center of a semi-simple Lie group is discrete (since Lie(Z(G)) =
Z(g) = 0).

The Lie-simple abelian connected Lie groups are R and its quotient S; thus
the abelian connected Lie groups are Rn × Tm, with trivial Lie algebra.
Then exp(X + Y ) = exp(X) exp(Y ).

The Betti numbers of Tn are
(
n
i

)
.

7. G1 contains maximal compact subgroups, all conjugates (Cartan-Iwasawa-
Malcev).

The maximal connected solvable normal subgroup of G1 is called its solv-
able radical Gsol. G1 is a product of Gsol, simple groups, and a discrete
group. The derived subgroup [Gsol, Gsol] is a nilpotent group.

8. (Iwasawa) If G is semi-simple, then G1 is diffeomorphic to K ×A×N →
G1, with K compact, A abelian, N nilpotent, i.e., every g ∈ G1 can be
written as g = kan (non-uniquely, not a group morphism; generalized QR
decomposition).

If G has nilpotent Lie algebra, then G1 is diffeomorphic to Rn and is
generated by exp g; but the nilpotent Lie groups are not classified.

9. Connected semi-simple or nilpotent Lie groups are unimodular, i.e., µ(Ex) =
µ(E).

Proof: d∆ is a Lie algebra morphism Lie(G) → R; if G is semi-simple
then d∆(Lie(G)) = d∆[Lie(G),Lie(G)] = [ d∆Lie(G), d∆Lie(G)] = 0, so
∆ = 1; if G is nilpotent, then exp is onto G, so ∆(x) = |det AdjG| =
|det eadX | = etr adX = 1.

Compact Lie Groups

1. G1 = exp g is clopen, so G has a finite number of components (cosets of
G1); for G connected, χ(G) = 0.

2. G has a metric, invariant under both left/right translations, and inversion
g 7→ g−1.

On g, 〈X,Y 〉 :=
∫
G
〈g ·X, g · Y 〉ω, where ω is an invariant volume form

and the dot product is any on g. On G, 〈X,Y 〉g := 〈(L′g−1)gX, (L
′
g−1)gY 〉.

Then ∇XY = 1
2 [X,Y ], R(X,Y )Z = − 1

4 [[X,Y ], Z].

3. The Lie algebra is the sum of the center and a semi-simple algebra [g, g].

The center of a compact semi-simple Lie group is finite (since compact
discrete).



Joseph Muscat 2021 41

A Lie algebra with trivial center cannot be the Lie algebra of a compact
and a non-compact Lie group.

4. A maximal torus is the Lie subgroup generated by a maximal abelian
subalgebra. Any two maximal tori are conjugate; together they cover all
of the group. The integral lattice of G is {X : exp(2πiX) = 1 } for X in
this subalgebra.

Every point of a Dynkin diagram of the Lie algebra corresponds to a
reflection. The subgroup they generate is called the Weyl group, equal to
NG(T )/T , where NG(T ) is the normalizer of the maximal torus.

5. The compact abelian Lie groups are Tm×H where H is a finite (discrete)
group.

6. Every connected compact group is the discrete quotient of a product of
Lie-simple, simply connected, compact Lie groups and the maximal torus
Tn. The Lie-simple connected compact Lie groups are

simple Lie algebra compact Lie group

R S
An SU(n+ 1)
Bn SO(2n+ 1)
Cn Sp(n)
Dn SO(2n)

G2, . . . G2, F4, E6, E7, E8

(but there may be other real compact, non-compact, or complex groups
with the same Lie algebra, e.g. Spin(n) is the simply connected (and com-
pact) cover of SO(n)).

7. The finite-dimensional irreducible representations of a solvable Lie group
are one-dimensional. When a semi-simple Lie group acts on a finite-
dimensional vector space, the latter splits as a direct product into invariant-
subspaces.

7 Examples

7.1 Curves

1. Circle: A diameter bisects the circle into congruent pieces. The tangent
at a point is perpendicular to the radius.

For an arc, length is rθ, length of chord is l = 2r sin θ
2 , distance of chord

from center is h = r cos θ2 ; the angle an arc makes with any point on the
circle outside the arc is equal to half the angle at the center; the points
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with the same angle from two points form an arc of a circle; the angle
between the tangent vector at an endpoint and the chord is θ/2.

There is a unique circle passing through three non-collinear points (the
circumscribed circle), with center the intersection of the perpendicular
bisectors and diameter AB.AC/h; the feet of the perpendiculars from the
circum-circle to the sides are collinear.
There is a unique circle passing through two points and tangent to a given
line, or through a point and tangent to two lines, or tangent to three lines
(e.g. the inscribed circle of a triangle, with center the intersection of the
angle bisectors ie the centroid; also the escribed circles).
A triangle has a 9-point circle passing through the side midpoints, the feet
of the perpendiculars from the vertices, and the midpoints of the vertices-
orthocenter (its center is the midpoint between the orthocenter and the
circum-center, its radius is half that of the circum-circle; the centroid,
the circum-center, the orthocenter and the center of the 9-point circle are
collinear).
Four points lie on a circle ⇔ the opposite angles sum to π.

If two chordsAB, CD meet atM (inside or outside circle), thenAM.MB =
CM.MD; in the limit, if CM is tangent, AM.MB = CM2; the tangents
from an external point to a circle are two and equal, and have the same
angles.

Two circles are bisected by the line joining their centers; two circles meet
at two points at most; the common chord of two circles and the line joining
their centers bisect each other orthogonally; if two circles touch, then the
centers and the point of contact are collinear.

2. Conics: quadratics in R2; r(1 + e cos θ) = l, the points whose distance
from a point (the focus) is a constant multiple (eccentricity) to the distance
from a line (the directrix).

Ellipse, e < 1 (circle e = 0); x2

a2 + y2

b2 = 1;
(
a cos t
b sin t

)
, 1

1+t2

(
a(1−t2)

2bt

)
; has area

πab; focus is eccentric by ea, a2 = b2 + (ae)2; sum of distances from foci
is constant 2a and reflect;
parabola e = 1; y = ax2; focus is (0, a/4); equidistant between focus and
directrix line; lines from focus reflect to parallel lines; the pedal line of the
focus is a straight line; the envelope of lines s(1− t)a + t(1− s)b.

hyperbola e > 1 (right hyperbola e =
√

2); x2

a2 −
y2

b2 = 1;
(
a cosh t
b sinh t

)
,

1
2t

(a(t2+1)

b(t2−1)

)
; a2 + b2 = (ae)2; foci are at ±ae; difference of distances to

foci is constant 2a; asymptotes are y = ± b
ax; lines from one focus reflect

out of other focus.

3. Cubics: cissoid y2 = xr2 2t2

1+t2

(
1
t

)
the pedal curve and inverse of parabola

in its vertex;
strophoid y2(1 − x) = x2(1 + x), folium of Descartes x3 + y3 = 3xy,
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Tschirnhausen x3 = x2 − 3y2 (1− t2)
(

1
t

)
,

witch of Agnesi y(x2 + 1) = 1, serpentine x2y = x− y.

Quartics: cardioid r = cos θ + 1, conchoid r = sec θ + d, limacon r =
cos θ + d (the inverse of a conic in a focus),
lemniscate r2 = cos 2θ, the inverse of a hyperbola in the center, product
of distances from foci is constant,
Devil’s curve y2(y2 − 1) = ax2(x2 − 1), kappa curve xr = y.

Fermat parabolas yn = xm; Lamé curves xn + yn = 1; pearls of Sluze
yn = (1− x)kxm.

4. Helix: The curve with constant curvature a
a2+b2 and torsion b

a2+b2 in R3

is the circular helix
(a cos t
a sin t
bt

)
.

5. Fourier Knots:
∑
n an cos(nt) + bn sin(nt), e.g. Lissajous knots: one

term each coordinate; figure-8 knot

 cos t+ cos(3t)
(sin t)/2 + sin(3t)
sin(3t)/2− sin(6t)


Roses: r = cosnθ,

cosnt cos t
cosnt sin t

sinmt


Astroids: (cosn t, sinn t)

Hypo/Epitrochoids:

(
m cosnt− a cosmt
m sinnt∓ a sinmt

)
, hypo/epicycloids a = n;

Cycloids

(
t
0

)
− a

(
cos t
sin t

)
;

Torus knots:

cosnt(2 + cosmt)
sinnt(2 + cosmt)

sinmt

, e.g. trefoil (n,m) = (2, 3).

6. Polynomial curves: (p1(t), . . . , pn(t)).

Polynomial knots: trefoil

 t3/3− t
t4/4− t2
t5/10− t

, figure-8

 t3/5− t
t5/7− 4t
t7/32− t3


7. Spirals: logarithmic r = eθ, r = θc (Archimedes’ c = 1, Fermat’s c = 1

2 ,
Cotes’ c = − 1

2 , hyperbolic c = −1)

7.2 Surfaces

1. Sphere S: simply connected, compact, constant positive curvature. Latitude-

longitude map

cosu cos v
cosu sin v

sinu

, g =

(
1 0
0 cos2 u

)
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2. Quadrics:

Hyperbolic paraboloid:

u+ v
u− v
uv

, Ellipsoid:

a cosu cos v
b cosu sin v
c sinu


Hyperboloid of two sheets:

tanu cos v
tanu sin v

secu

, of one sheet:

secu cos v
secu sin v

tanu

 orcosu
sinu

0

+ v

− sinu
cosu

1

 (a ruled surface).

Monkey saddle: (u, v, u3 − 3v2u).

Klein quartic x3y + y3z + z3x = 0.

3. Graphs of functions: orientable (one chart).

Implicit graphs: {x ∈ Rn : f(x) = 0 }, the boundary of the manifold
{x ∈ Rn : f(x) > 0 }. Its tangent hyper-plane is ∇f(a) · (x− a) = 0.

Example: Scherk surface: log cos x
cos y , the only graph that is a minimal sur-

face.
sin z = sinhx sinh y, a minimal surface.
Fermat surface xn + yn = zn.

4. Torus T: compact, flat;

cosu(2 + cos v)
sinu(2 + cos v)

sin v

, thus S × S ∼= T2. More

generally, nT of genus n, χ = 2− 2n.

5. Projective space RP2 :

 cos(2u) cos(v)
cos(2u) sin(v)

1
4 (1 + 3 sin(2u)− sin(2v) + sin(2u) sin(2v))

;

compact, non-orientable, χ = 1, metric d(x, y) = arccos x·y
‖x‖‖y‖ , constant

positive curvature, geodesics are great circles; any two lines intersect in
one point; isotropic, homogeneous; acted upon by O(n+ 1)/O(1).

Möbius Strip:

cos(2u)(2 + v sinu)
sin(2u)(2 + v sinu)

v cosu

, −1 < v < 1, 0 6 u < π.

More generally, nP, χ = 2− n; RPn, χ = n+ 1.

Klein bottle 2P:

cos(2u)(cosu sin v − sinu sin(2v) + 2)
sin(2u)(cosu sin v − sinu sin(2v) + 2)

sinu sin v + cosu sin(2v)


6. Addition of curves: r1(u) + r2(v).

7. Ruled surfaces: r1(u) + vr2(u); have negative curvature κ 6 0, flat iff
‘developable’, i.e., can be reparametrized so r′2 ∈ [[r′1, r2]].

(a) Cylinders r(u) + va (flat);
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(b) Cones vr(u) (flat);

(c) Tangent surface: r(u) + vt(u) (flat);

(d) Normal surface: r(u) + vn(u); if lengths of curve and perpendicular
line are a and b then area is ab.

Example: Helicoid

v cosu
v sinu
u

, only ruled surface that is minimal (ex-

cept plane); genus 0.

8. Tubular surface: r(u)+ε(n(u) cos v+b(u) sin v). Area equals 2πε×length.

9. Surfaces of Revolution:

r(u) cos v
r(u) sin v

u

; g =

(
1 + r′(u)2 0

0 r(u)2

)
. Pap-

pus: Area equals 2π
∫ L

0
r(s) ds. So are Liouville surfaces. Geodesics satisfy

r cos θ = c.

Example: Tractroid r(u) = e−u, has constant negative curvature.
Catenoid : (coshu cos v, coshu sin v, u), the only surface of revolution that
is a minimal surface; has total curvature −4π, genus 0; the only embedded
minimal surface in R3 with finite topology and two ends.

More generally

f(u) cos v
g(u) sin v

u

.

10. Enneper’s surface:

u(1− u2/3 + v2)
v(1− v2/3 + u2)

u2 − v2

; a minimal surface; total curva-

ture −4π; genus 0, one end.
There are many more examples of minimal surfaces.

7.3 Lie Groups

1. Rn, group of translations: abelian; exp(v) = v; the dual of Rn is Rn.

2. R×n, group of scalings: exp(v) = (evi); 2n connected components; 1-
component is R+n. The dual of R× has measure dx/x.

3. S: exp(it) = cos t+ i sin t.

4. S3: exp(w) = cos |w|+ sin |w|ŵ; center is {±1 }.

5. Tori, Tn, with pointwise multiplication; abelian; χ = 0.

6. Unit Hyperbola: ±(cosh t, sinh t) with product
(x1
y1

)
∗
(x2
y2

)
:=
(x1x2+y1y2
x1y2+x2y1

)
.

exp(jt) = cosh t+ j sinh t, where j2 = 1.

http://www.math.umass.edu/~bill/papers/examples-print.pdf
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Matrix Groups

7. (a) GL(Rn) General Linear group, the linear automorphisms of Rn:
preserve linearity;
– dimension = n2;
– exp(A) = eA =

∑
n

1
n!A

n; Lie algebra is Mn(R);
– conjugacy classes are represented by real Jordan forms; – 2 con-
nected components; 1-component is GL+(n) (det > 0);

GL(n) =

{
GL+(n)× {±1 }, n odd

GL+(n) o { I, P }, n even
; the universal cover of GL+(n)

is not a matrix group.
– center is Z = R×, and GL(n)/Z =: PGL(n);
– not compact, maximal compact subgroups are OQ(n), with Q pos-
itive definite (since it has a Haar measure and hence an invariant
inner product 〈x, y〉 =

∫
G
〈gx, gy〉dg); polar decomposition.

(b) GL(Cn): preserve AJ = JA, J =
(

0 −I
I 0

)
;

– dimension = 2n2; connected;
– conjugacy classes are represented by Jordan forms;

– embedded in GL(R2n) via A+ iB 7→
(
A −B
B A

)
; contains GL(Rn) as(

A 0
0 0

)
; center is C×,

(
λ −µ
µ λ

)
;

– not compact, maximal compact subgroups are UQ(n).

(c) GL(Hn): preserve J̄ (where j(u+jv) = −v+ju, (u+jv)j = −v̄+jū =
J̄(u+ jv)); and AJi = JiA (with J2J1 = −J1J2)
(Note: det(AB) 6= detAdetB, tr(AB) 6= tr(BA), but (AB)∗ =
B∗A∗ is true);
– dimension 4n2;

– embedded in GL(C2n), by A+ jB 7→
(
A −B̄
B Ā

)
(since Ajv = jĀv).

– A = ReS with R ∈ USp(n), S = S∗; so GL(Hn) is diffeomorphic to
USp(n)× Rn(2n−1).

8. (a) SL±(Rn) Special Linear group, with detA = ±1; shear matrices,
preserve volume;
– dimension n2 − 1;
– Lie algebra is of traceless matrices (semi-simple);
– 2 connected components; 1-component is SL(Rn) (= ker det, a level
surface)
– not compact; maximal compact subgroups are SOQ(n);
– there is a semi-norm |||T ||| := ln(‖T‖‖T−1‖) with zero set being
O(Rn);
– it is the commutator subgroup [GL(Rn),GL(Rn)]; GL(Rn)/SL(Rn) =
R×;
– center is SZ(Rn) = { I } or {±I }; SL(Rn)/SZ(Rn) =: PSL(Rn);
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universal cover of SL(Rn) is not a matrix group; SL(R2n) contains
Sp(R2n);.
– For SL(Rn), by polar decompositionA = eReB withB,R anti/symmetric
traceless (dimensions

(
n+1

2

)
− 1,

(
n
2

)
).

– SL(R2) of Möbius transformations consists of classes of rotation-
like, shear-like, and inversion-like matrices (depending on their trace);
the modular group PSL(2,Z) is generated by z 7→ −1/z and z 7→ z+1;
contains discrete subgroups (Fuchsian groups): the non-uniform lat-
tice SL(2,Z), other subgroups Γ(N) withA = ±I mod N , e.g. Γ(2) ∼=
S3. More generally many groups (the semi-simple algebraic groups
over a local field) G(R) contain an arithmetic group G(Z); all lat-
tices in SL(n) are arithmetic (Margulis). SL(R2) is homeomorphic
to S1 × R2 (Iwasawa).

(b) SL(Cn):
– dimension 2n2 − 2;
– simply connected; not compact, maximal compact subgroups are
SUQ(n);
– polar decomposition, A = eReiS with R,S self-adjoint, traceless
(each dimension n2 − 1);
– center is Cn = { e2πki/n }; SL(C4) covers SO(C6).

– PGL(C2) = PSL(C2) is the group of Mobius transformations (au-
tomorphisms of Riemann sphere); elements are either (i) parabolic,
i.e., translations with a+ d = 2, have one fixed point, or (ii) elliptic
(rotations) with −2 < a+ d < 2, two fixed points, or (iii) hyperbolic
(scaling) |a+ d| > 2, or (iv) loxodromic (scaled rotation) with a+ d
complex, two fixed points.

(c) SL(Hn) = SL(C2n) ∩ GL(Hn).

9. CO(n) Conformal group: O(n) with scalings, preserve angles;

– CO(n) =

{
O(n)× R×, n odd,

O(n)× R+, n even
; CSO(n) = SO(n)× R+.

– CO(2) ∼= S2, CO(3) includes inversion as well.

10. OQ(n) = {A : A∗QA = Q } for a quadratic form Q;
– Lie algebra is soQ(n) = {A : A∗Q+QA = 0 } (Proof: d

dt (A(t)∗QA(t)) =
A∗Q+QA for A(t) = etA);
– has subgroup SOQ(n), and its 1-component SO+

Q(n).
– the subgroups OQ(n) with Q positive definite, form one conjugacy class
in GL(V );
– The Clifford group { a ∈ Cl(V,Q) : aV a∗−1 ⊆ V }; it contains the
subgroup of rotors PinQ(V ) = { r : r∗r = 1 }, which covers OQ(V ), and its
subgroup SpinQ(V ) = { a ∈ PinQ(V ) : det = 1 }, which covers SO+

Q(V ).

11. O(n) Orthogonal group: preserves norm/inner-product, have orthonor-
mal columns/rows;
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– dimension
(
n
2

)
;

– Lie algebra is set of skew-adjoint matrices (semi-simple);
– 2 connected components, compact;
– universal cover is Pin(n) (for n > 2); the center is 1 for n odd, ±1 for n
even;
– conjugacy classes consist of matrices with a number of 1s, −1s, and Rθs
(0 6 θ 6 π), hence a product of n reflections at most; every 2× 2 rotation
is the product of two reflections Rθ = (Rθ/2P )(PRθ/2);

– has O(n−1) as subgroup, e.g.
(
A 0
0 1

)
, O(n)/O(n−1) ∼= Sn as manifolds.

SO(n), the 1-component of O(n), path-connected via etA; consists of 2D-
rotations and possibly I; hence the maximal torus is Tbn/2c;
– for n odd, SO(n) is simple; for n even, SO(n) has largest normal subgroup
{±1 } (except SO(4) which also has S3

L and S3
R);

– acts transitively on Sn−1 with stabilizer group at a point being SO(n−1),
so SO(n)/SO(n− 1) = Sn−1;
– its universal cover is Spin(n) for n > 2, with center Z2 if n is odd, Z4 if
n = 2 (mod 4), Z2

2 if n = 0 (mod 4) .

The lattices (discrete/finite subgroups) of O(n) generated by reflections
are the Coxeter groups. A rotation/reflection in such a subgroup can
be represented by an integer matrix such that Ar = I; if r =

∏
i p
k
i ,

the first dimension which allows such a rotation/reflection is
∑
i ψ(pki )

where ψ(pki ) = (pki − p
k−1
i ) (and ψ(2) = 0) (so the dimension is even). –

SO(2) ∼= S1 (via Rθ 7→ eiθ); contains all cyclic groups Cn; dual of S1 is Z.

SO(3); consists of rotations cos θI+(1−cos θ)aa∗+sin θa×, where a is the
axis vector; ∼= RP3 (solid ball with antipodes identified); the irreducible
representations of SO(3) are the n+1 symmetric spinors ψ(A · · ·φB) (A, . . . , B =
0, 1). Spin(3) ∼= S3 ∼= USp(1) acts on SO(3) (by unit non-real quaternion
x acting on vectors xvx−1).

Banach-Tarski : SO(3) contains the free subgroup generated by two rota-
tions P (through arccos(1/3) in xy plane), Q (through arccos(1/3) in yz
plane), acting on S2; the fixed points are countable, divide the rest into
orbits M , and let Xw := {wbx : ∃b, x ∈ M }; then M = Xa ∪ aXa−1 =
Xb ∪ bXb−1 , even though all these sets are as large as M .

Spin(4) ∼= S3 × S3 (via v 7→ qvr̄, with q, r non-real unit quaternions),
Spin(5) ∼= USp(2), Spin(6) ∼= SU(4).

12. O(p, q) := O(Rp+q); O(p, q) ∼= O(q, p); O(3, 1) is called the Lorentz group;
– dimension

(
n
2

)
;

– Lie algebra is semi-simple
– 4 connected components; 1-component is SO+(p, q);
– not compact; maximal compact subgroup is O(p)× O(q).
– universal cover is Pin(p, q); for n odd, Spin(n, 1) ∼= SL(C(n+1)/2), via
Aµν 7→ Aµνσ

µ
AB′σ

ν
CD′ , gµν = εACεB′D′ ; hence XA = εABX

B , ∇µXA =



Joseph Muscat 2021 49

∂µX
A + ΓABµX

B , ∇µεAB = 0, ∇µσνAB′ = 0.

13. (a) Sp(R2n), Symplectic group: preserve skew-symmetric form Ω =(
0 I
−I 0

)
, A>ΩA = Ω (so a subgroup of SL(2n)); generated by the

subgroup
(
A 0
0 A−>

)
(A ∈ GL(n)), the subgroup

(
I A
0 I

)
(A > 0), and

J ;
(
A B
C D

)−1

=
(
D −C
−B A

)>
;

– dimension
(

2n+1
2

)
; connected;

– Lie algebra: AΩ + ΩA> = 0,
(
A B
C −A>

)
, B> = B, C> = C;

– not compact; the unique compact real group is USp(R2n); maximal
compact subgroup is U(n)
– center is ±I; – polar decomposition A = ReS with R ∈ U(n),
S ∈ sp(Rn), S∗ = S; diagonalization A = P1DP2 where D is diagonal
(with λi, λ

−1
i ) and Pi orthogonal.

(b) Sp(C2n):
– simply connected;
– A = ReS with R ∈ USp(n,C), S ∈ sp(n,C), S∗ = S.

– maximal torus consists of diagonal matrices
(
A 0
0 A∗

)
;

– not compact; maximal compact subgroup is USp(n).

(c) Sp(p, q) := Sp(C2n) ∩ U(p, q).

14. U(Cn) Unitary group: preserve the inner-product on Cn, U∗U = 1, i.e.,(
I 0
0 −I

)
and

(
0 I
−I 0

)
, |detA| = 1; U(n) = O(2n) ∩ Sp(R2n) = O(2n) ∩

GL(Cn) (by embedding of GL(Cn));
– Lie algebra u(n) is not a complex Lie algebra;
– dimension n2; connected (via diagonal matrices (eitλ)), compact;
– diffeomorphic to SU(n)× S1;
– center is eiR; maximal torus is Tn, consisting of the diagonal unitaries;
conjugacy classes are classified by the spectra, i.e., , n-subsets of eiR;
– there is an outer automorphism A 7→ Ā for n > 3;
– U(n) contains O(n); U(1) = O(2);

– U(2) consists of matrices
(
a −eiθ b̄
b ā

)
=
(
a −b̄
b ā

)(
1 0
0 eiθ

)
= R(a,b)Fθ;.

SU(Cn): have det = 1;
– simply connected; Lie algebra is semi-simple;
– dimension n2 − 1,
– maximal torus consists of diagonal elements;
– contains O(Rn), USp(n), and SU(m)× SU(n−m)× U(1);
– SU(2) ∼= S3 ∼= USp(1) (for (z, w) ∈ S3 (i.e., |z|2 + |w|2 = 1), (z, w) 7→
R(z,w)) (the latitudes t = c correspond to trA = 2c; longitudes to diagonal
matrices in SU(2)).
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15. USp(n) = U(Hn): preserve inner-product of Hn, 〈q1u, q2v〉 = q̄1〈u, v〉q2

(extends the ip of C2n, so preserves complex inner-product and acts on
unit sphere in Hn);
– USp(n) = GL(Hn) ∩ U(C2n) = Sp(C2n) ∩ U(C2n) = GL(Hn) ∩ SU(C2n);
– dimension

(
2n+1

2

)
; Lie algebra is semi-simple;

– simply connected, compact;
– maximal torus of diagonal elements;
– contains O(n), USp(n− 1), and U(n); USp(1) ∼= S3;
– USp(n) ⊂ SU(2n) ⊂ U(2n) ∩ SO(4n) ⊂ O(4n)

16. Affine(n): GL(n) oRn with (A, a) ∗ (B, b) = (AB, a+Ab);
– dimension n(n+ 1);

– embedded in GL(n+ 1) as
(
A a
0 1

)
; every subgroup of GL(n) has an affine

version, e.g. Affine+(n), CO(n) oRn, with scaling.
– Affine(1) is solvable but not nilpotent, not unimodular.

– Euclidean group E(n) := O(n) o Rn, isometries of Rn: translations,
rotations, reflections/inversions, glides, screws;
– dimension

(
n+1

2

)
;

– 1-component of the orientation-preserving isometries E+(n) (= SO(n)o
Rn, screws).

17. IUT(Rn) of invertible upper triangular matrices.
– dimension

(
n+1

2

)
– Lie algebra of upper triangular matrices;
– 2n connected components, according to sign of diagonal elements; 1-
component is IUT+(n) with positive diagonal;
– solvable; (Lie) any simply connected solvable Lie group is embedded in
IUT(n).

– IUT1(Rn) of unipotent matrices, with 1s on the main diagonal;
– dimension

(
n
2

)
– nilpotent; any simply connected nilpotent Lie group is embedded in it.

– contains the Heisenberg group Hn of matrices

(
1 u> a
0 I v
0 0> 1

)
, of dimension

2n− 3; simply connected.
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A non-exhaustive list of the first few connected Lie groups (bold = simple):

Dimension Group
0 { I } = SO(1) = SU(1) = SL(1) = SL(C) = SO(C)
1 R ∼= R+ =∼= GL+(1) ∼= CSO(1) ∼= SO+(1, 1) ∼=

IUT1(2)
S1 = R/Z ∼= U(1) = SO(2) ∼= Spin(2)

2 R2 T2, T×R ∼= C× = GL(C) ∼= R××S1 ∼= SO(C2)
Aff+(1) = R+ oR

3 R3 T3, T2 × R, T× R2

E+(2)
S3 ∼= USp(1) = SU(2) = Spin(3)

SO(3) = PSU(2), covered by S3

SL(2) = Sp(R2) ∼= SU(1, 1) ∼= Spin+(1, 2)
SO+(1,2) in Spin+(1, 2) covered by SL(2)

H3 = IUT1(3)
IUT(2)

4 R4 T4, T3 × R, . . .
GL+(2)
H× = GL(H)
U(2)

5 R5 T5, T4 × R,. . .
H4

6 R6 T6, T5 × R, . . .
Aff+(2)
E+(3)
IUT(3)
IUT1(4)
SL(C2) ∼= Sp(C2)

SO(C3) ∼= PSL(C2) ∼= SO+(1, 3)
SO(4) covered by SU(2)× SU(2) ∼= Spin(4)
SO(2, 2)

7 R7 T7, T6 × R, . . .
H5

8 R8 T8, T7 × R, . . .
GL(C2)
SL(3)
SU(3)
SU(1,2)

9 R9 T9, T8 × R, . . .
GL+(3)
U(3)
H6
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Dimension Group
10 R10 T10, T9 × R, . . .

E+(4)
USp(2) = Spin(5)
Sp(4)
Sp(2, 2)
SO(5)
SO+(1,4)
SO+(2,3)
IUT(4)
IUT1(5)

11 R11 T11, T10 × R, . . .
H7

12 R12 T12, T11 × R, . . .
Aff+(3)
SO(C4) covered by SL(C2)2

13 R13 T13, T12 × R, . . .
H8

14 R14 T14, T13 × R, . . .
G2 subgroup of O(7), contains O(3)

15 R15 T15, T14 × R, . . .
E+(5)
SL(4)
SU(4) ∼= Spin(6)
SU(1,3)
SU(2,2)
SO(6)
SO(3, 3)
SO(2, 4)
SO(1, 5)
SL(H2)
IUT(5)
IUT1(6)
H9

16 R16 T16, T15 × R, . . .
SL(C3)
GL+(4)
GL(H2)
U(4)

17 R17 T17, T16 × R, . . .
H10

18 R18 T18, T17 × R, . . .
GL(C3)

19 R19 T19, T18 × R, . . .
H11

20 R20 T20, T19 × R, . . .
Aff+(4)
Sp(C4) covers SO(C5)
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Exceptional Groups:
G2 contains O(3), SU(3), and USp(1)
F4 contains O(9) and USp(4)
E6 contains O(10) and SU(6)
E7 contains O(12) and SU(8)
E8 contains O(16)
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