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1 Differentiable Manifolds

A differentiable manifold is a topological space M which is locally diffeomor-
phic to a real Banach space X, i.e., for any a € M, there is a homeomorphism
(called a chart) from a neighborhood, v : U — X, u(a) = 0, which is differen-
tiable, i.e., for any two charts u,v centered at a, the maps f:=vu™': X = X
and f~! are locally close to affine maps,

fle+h)=f(@)+ f(x)h+o(h),  f(x)eBX),

where |lo(h)||/||k|| — 0 as h — 0.

These charts generate the unique atlas of all differentiable charts that are
compatible with the generating charts.

A single chart u suffices as a chart for all points b € U, using up := u — u(b);
so a set of charts that cover M is all that is needed. The charts need only
map to an open subset u : U — V C X since V O W = X. The linear map
f' shall also be denoted symbolically by g—;’. If a point is ‘doubled’ with the
same neighborhoods each, then the space remains a manifold; so manifolds are
usually assumed to be Hausdorff.

FEzxzamples

« Banach spaces, with the identity map as chart. More generally, any open
subset of a Banach space.

« Spheres S” := {x € R"™! : ||z|| = 1}, with the two charts u(ay, ..., ant1) :=
(a1, ..y an)/(£] — ant1).

+ Graphs of differentiable functions, { (z,y) € X xY :y = f(z) }.

» Grassmann manifolds: The set of k-dimensional subspaces of X, including
projective spaces (k= 1).

+ Open subspaces and products are again differentiable manifolds (by (¢, ¢) :
UxV — X xY) with the same X. For example, Tori

T":=Sx--- xS
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X can be generalized to a complete locally convex vector space. One can
allow X to vary with the neighborhoods, but then it has to be constant on each
connected component.

A manifold with boundary is a subset of a manifold, which has a non-empty
interior and which contains its boundary that is itself a manifold. (Unless spec-
ified otherwise, manifolds do not have a boundary.)

The boundary of a manifold of dimension N, has dimension N — 1. Points
on the boundary are locally diffeomorphic to Rt x RN~1,

1.

Manifolds have all the local topological properties of Banach spaces, e.g. lo-
cally connected, locally metrizable, locally T5 (hence T1).

The set of points which are linked via intersecting open charts form a
path-connected component.

A sub-manifold need not be a topological subspace, e.g. a bijective curve
in the torus.

For manifolds, paracompact 75 < metrizable (by Smirnov’s theorem).
Hence, their charts have a locally finite refinement.

For metrizable manifolds, 2nd countable < separable < Lindelof. In
this case, there is a countable cover of charts.

Locally compact T, manifolds are finite dimensional. The dimension is
constant on components.
They are metrizable < second countable < o—compact.

By taking v ! B; for each chart v, one can form a countable cover of totally
bounded open sets, which has a locally finite refinement. These have a
countable, locally finite, partition of unity of differentiable functions. A
partition of unity can be used to patch local structures into a global one.

(Whitney) For a finite dimensional manifold, the differentiable charts give
rise to unique smooth charts, so the manifold is smooth.

Smooth metrizable manifolds of dimension N can be embedded in R?V,
(For paracompact manifolds, take smooth non-zero functions f; : U; — R,
extended by zero to M, and let f: p — (fi(p)).)

A finite-dimensional manifold is orientable when there is an atlas such that
for any two intersecting charts, (vu~1)’ is orientation-preserving (i.e., have
positive determinant). Products and open sub-manifolds of orientable
manifolds remain orientable; as is the boundary of a manifold with bound-
ary.

Manifolds of dimension 1, 2, or 3, have a ‘unique’ differentiable structure.
But in higher dimensions, the same manifold may have several differen-
tiable structures.
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9. Manifolds of the same dimension have a connected sum M# N by removing
Bi(p) in M, N and gluing the boundaries; it is associative, commutative,
has identity S™. Every compact manifold can be decomposed into a sum
of prime manifolds.

For example, P#T = PHP#HP.

For compact connected manifolds without boundary, x(M#N) = x(M)+
X(N) = x(8");

also, x(M UN) = x(M)+ x(N), x(M x N) = x(M)x(N), if M covers N
m times, then x(N) = x(M)/m.

10. The 1-dimensional metrizable second countable connected manifolds are
diffeomorphic to R or S.

The 2-dimensional compact manifolds are diffeomorphic to simplicial com-
plexes and so the prime surfaces are P and T.

The 3-D compact prime manifolds can be built up from 8 types.

The 4-D manifolds cannot be distinguished by any algorithm; each has
uncountably many diffeomorphism classes.

Simply-connected 5-D manifolds (or higher) can be classified up to h-
cobordism; (it is not known if compact 5-D manifolds are diffeomorphic
to simplicial complexes); in particular, manifolds homotopic to S™ or R™
have a unique differentiable atlas.

11. (Jordan-Brouwer-Mazur) If M is a connected finite-dimensional manifold
and A C M is homeomorphic to a compact connected manifold of dimen-
sion one less than M, then the exterior of A has two connected compo-
nents.

12. The global properties of a finite-dimensional manifold can be studied as
CW-complexes, i.e., a T space X = ) . E; (cell decomposition — non-
unique), where E; = B, (B, = Bi(0) € R"), each E C X, 0F is
covered by a finite number of cells, AN E is closed for each A C X. Then
its m-skeleton is Sk (X) = >4 g, <m Bis 50 Ski(X) € -+ - Sk, (X) = X,

e.g. the 1-skeleton is a graph with loops.
Examples: §" = By + By, T" = By +nBy + - () By + -+ By,

13. (Henderson) Every infinite-dimensional, separable, metrizable Banach man-
ifold is embedded as an open subset of £2.

14. A knot is an embedding M — N.
In particular, S™ — S™: when n > %(m—!—l), or n = m+1, the embedding
is unknotted; e.g. S' is only knotted in S?; S? in S*. Knots are the
connected sums of prime knots. Jones/Kauffman polynomial (invariant
under Radeimeister moves).
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Tangent Vectors

The morphisms are the differentiable maps, f : M — N such that g :=
vfu~l: X =Y satisfy

g(z+h) =g(x) + A(x)h + o(h)

with A(z) € B(X,Y) (well-defined since if A and B are both candidates, then
(A = Be|| := (A= B)h||/||h]l < (0a(h) +op(h))/|[h]| — 0 as h — 0 for all e).
In local coordinates, a map f : M — N can be thought of as mapping X — Y
(that depends on p); the morphisms are the ones for which this is approximately
linear locally.

A local diffeomorphism is a map f such that for any p € M, there is an open
neighborhood p € U C M with f: U — fU a diffeomorphism.

Morphisms f : M — N with f(p) = ¢, where M, N are locally X,Y give rise
to linear maps A € B(X,Y) based at p; A depends on the charts (modulo o)

8’02 8u1
B = vgfu71 = vgvflvlfuflulufl = ——A—
2 1 1 2 avl 8’[,&2

But the following is an equivalence relation: f ~ g < vfu~! —vgu=! = o for
some charts u : M — X, u(p) =0, and v : N = Y, v(q) = 0; transitivity: if
f ~ g ~ h via charts uy,v; and usg, v, then vlhufl = vlvglvghuglugufl =
V105 Moaguy Tuguyt 0 = viguy 4o = vy ful ' +o0. Thus A (at p) is associated
with the equivalence class [f]. Each point in M and N has a vector space of
operators B(X,Y) associated with it.

In particular, the tangent Banach space X = B(R, X) at p is denoted T, M.
In coordinates, the vector z may be denoted by X? in the chart u, and Y7 in

the chart v, with Y7 = gTnyi. The cotangent dual space B(X,R) = X* at p is

denoted Ty M; in coordinates, Y; = g—;;Xi.

Hence a differentiable function induces a map f’ : TM — TN, also denoted
Df, and also called push-forward, defined by f" : [z], — [f o x]f, that is,
the operator A; in local coordinates, ()¢ = 0;f®. It also acts on co-vectors
[P TEN = TrM, [o]y = [ao f], (a pull-back), ie., by (f"a)z = a(f'z);
(f")* is the dual operator of f/ and is often written as f* for short. For example,
v:S—= M, acT"M, give (v'a); = ) - v = a;v* in coordinates.

f is called an immersion when f’ is 1-1 at any point, and a submersion when
it is onto.

The tangent space T M := UpE u IpM is given that topology generated from
all TU, which makes it locally like U x X in the sense that for each p € M with
chart u : U — X, there is a bijection ¢y : TU — U x X, z, — (a, z), which is a
homeomorphism in ¢ and a Banach isomorphism in x, and such that ¢y o gbL_,l
is differentiable in @ and a Banach isomorphism in . Then

« TM is a manifold locally isomorphic to X x X, via the homeomorphism
(b : mp = (U(p),x),

« T(M x N)=TM x TN.
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Similarly for the cotangent space T*M := Upe m Iy M. More generally, tensors
form a manifold T/*M := |J,,, T (T, M); each tensor has coordinates of the

form T;lljll’“ They act on vector and covector fields pointwise, independently

of their neighborhoods,
T(xy...,0,..)p i=Tp(Xp, ..., 0p,...).

The pull-back of covariant tensors is f*T(z1,...,2,) = T(f'21,..., [ zy); the
push-forward of contra-variant tensors is f'T'(a1,...,a,) = T(f*aq, ..., fray).
In finite dimensions, T}* M has dimension dim(M)*+L.

A tensor field is a continuously differentiable choice of tensors: p — X,
M — TFM (i.e., 7o X = I). They are not only multi-linear on their arguments,
but tensorial, T,(Apzp,...) = ApTp(ap,...) (X is a scalar field). Tensor fields
form an algebra over the differentiable scalar functions.

A k-form is a field of totally anti-symmetric tensors of type T}.

1. The composition of differentiable maps is differentiable,
(fog)(z)=f(g9(z))g (x)

Proof: Locally, f(g(z + h)) = f(g(x) + ¢'(x)h + o(h)) = f(g(x)) +
f'(9(@))(g'(x)h + o(h)) + o(g' (x)h + o(h)).

2. Differentiable maps are locally Lipschitz, hence continuous:
If(@+h) = f@) < (1 @) + DIl

3. f'(p) is an operator T,M — Ty, N,

f'()(+y) = F () @)+ ) (), fPOz)=X'(p)(x), I'(p)=I =0

When the manifolds are Banach spaces themselves, and A € B(X,Y),
then A’(p) = A.

In local coordinates f’ is the Jacobian f' = d;f7, i.e., the derivative along
the ith coordinate, keeping the others fixed.

For example, the derivative of a curve is its tangent vector .

4. For functions M — Y,
(f+9) =Ff+g. AN =X\

5. f’ preserves tensor products (including wedge products); in general given
a bilinear map -, then (f - ¢)'(p) = f'(p) - 9(p) + f(p) - ¢’ (p) (for example
(@f) =d'f+of).

frA®B) = (f*A)a(f*B), [fAi=(f"A) [(AX)=(f4)(fX)
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10.

For the reciprocal of a function to a Banach algebra, fi"V :x s f(x)~1,
(finv)/ — 7fin'uf/finv

(where only f’ acts on tangent vectors.)

Proof: f(z+h)"" = (1+ f(&) " f/(2)h + f(z) o(h)) " f(w) .

f/=0iff fis constant on components of M.

Proof: Let g := ¢povo fou toq), where p € Y*, (t) = tv; g = 0. If
the difference between ¢(t) and tg(a)/a has a max/min at ¢y € |0, a[ then
g(to+h) = (to+h)g(a)/a < g(to) —tog(a)/a (say), so o(h) < hg(a)/a, ie.,
g(a) = 0. Thus g, and f, are locally constant.

The derivative of products is (f,g) = (gﬁg gZ§)

Proof: (f,g)(x+h) = (f(z+h),g9(xz+h)) = (f(z) + f(x)h+...,g(x) +
g'@h+...) = (f(x),g(x) + (f'(x),g'(@)h+ ...

If f: M — N is differentiable, then f is locally invertible at x < f/(z)
is invertible. Then (f~1)'(y) = f/(z)~! when y = f(x), and f’ can act as
both a push-forward and a pull-back on tensors: f*Y = (f~1)'Y.

Proof: o'(h) = f'(z + h) — f'(z), so |lo(h1) — o(hs)|| < c||h1 — hz|| with
¢ < 1 for h small enough. So F(h) := f'(x)~(v — o(h)) is a contraction
map; its fixed point solves f(x+h) = y+v. Then f~!(y+v) = f~1(y)+h =
) + (@) o+ o(v).

Hence an invertible morphism is an isomorphism.

Iff:M— P CNandtof: M — N is differentiable do not imply
f: M — P differentiable (e.g. curves).

For a differentiable map f, the push-forward of a vector field need not be
a vector field, but pull-backs of 1-forms remain so.

For example, f : S — R%, 0 — (cosf, 3 sin26) takes the tangent vectors
to (£1,—-1) at (0,0).

If f: M — N is a submersion at y € N (ie., f' is onto TyN), then
the ‘level surface’ f~1(y) = {z € M : f(z) = y} is a differentiable sub-
manifold of M. Its tangent space is T,,f~'(y) = ker f'(x). (Proof: For
wy(t) = Xt+o(t), 0 = v(g) = vfu~tuy(t) = f/(p) Xt-+0,50 X € ket f'(p).)
A point y € N at which f is not a submersion is called a critical point.
For example, f : R? — R, f(x,y) := (2% — 1)? + y? has a critical point at
f=1

For example, for f : M — R, the covector f’(p) annihilates tangents to
the level surface f~!(a).
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11.

12.

13.

14.

15.

16.

17.

18.

If f: M — N is an immersion at x € M (i.e., f' is 1-1 Ty N), then
[ is a local diffeomorphism. Its tangent space is T, fU = im f'(z). A
topological embedding which is an immersion is an embedding, i.e., M is
diffeomorphic to fM, which is thus a differentiable sub-manifold of N.

A point z € M at which f’ is not 1-1 is called a singular point. f’ need
not be 1-1 even if f is. For example, the curve t — (¢2,¢%), R — R?
does not map to a sub-manifold (at (0,0)). A 1-1 immersion need not
be an embedding, e.g. 6 — (sin 26, sin 36), —%T <0< %; or R — T2,
(627rit’ eZTriat) (OZ c Qc)

z .
sin 0

> cos 0 cos ¢
Example: Let f : S? — R (6,¢) — (u) = | cos@sing |. Then f' =

8 —sinfcos¢ — cos @ sin ¢

(‘g?éydj) = | —sinfsing cosfcos¢ | maps tangent 2-vectors of S? to tan-
’ cos 0 0

gent 3-vectors in R3. The covector field (—y,,0) is pulled back to the

covector field on S?, (— cos 6 sin ¢, cos 6 cos ¢, 0) 86(?9"”(;;‘)2) = (0, cos? 0).

A local maximum /minimum point of f : M — R occurs at a critical point
of f, f'(p) =0.

Proof: Take g := fou tow : R — R, 9(t) := tv; then g(0 + h) =
9(0) + ¢'(0)h + o(h) = g(0), so ¢'(0) = 0 and f'(p) = 0.

Lagrange multiplier: A local maximum/minimum point of f : M — R
constrained on the sub-manifold g(z) = ¢, satisfies f'(p) = Ag’(p).

Proof: c=gou t(x+h)=c+g (p)h+o(h) = f(p)< fout(z+h)=
f(p) + f'(p)h + o(h), so ker ¢'(p) C ker f'(p).

More generally, for g; constraints, f'(p) = > . \igi(p) (using N; ker ¢; C
kery) = 9 € [¢:]).

If f: M — N is differentiable, and L € N and Vo € f~'L,Im f'(z) +
Ty L = Ty N, then f~'L is an embedded manifold in M; in particular
if f: R"xR™ — R is differentiable, then f(x,y) = 0 gives a local mapping
y=g(z).

If f: M xN — X is continuously differentiable, f(ag,by) = ¢, and
f'(ap,bo)|n, N — X is an isomorphism, then there is a local diffeomor-
phism g : U — V with ag € U, by € V such that forz € U, y € V,

y=g(r) & f(z,y)=c

Locally, TU 2 U x X, so a vector field can be given coordinates (z, X).

TM = M x X globally iff there is a basis field (i.e., vector fields that are
a basis at each point).

The scalar differentiable fields form a commutative C*-algebra C'(M).
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19. Since TM and TN are themselves manifolds, can take f”(p) which is a
tensor from X2 to Y (more generally f(")(z)).

20. Vectors at the boundary of a manifold are of three types: tangent (in
T,0M), inward, or outward.

21. (Poincaré-Hopf) For a vector field on a compact manifold,

Z index; (v) = x(M).

For example, a vector field on S?" must vanish somewhere (hairy ball
problem); so any two vector fields are linearly dependent somewhere.

22. The automorphisms of a smooth compact manifold form a Frechet-Lie
group.

23. Orientable metrizable finite-dimensional manifolds admit a volume form,
i.e., nowhere-degenerate n-form (by patching the signed Lebesgue volume
form on charts). All volume forms then partition into two orientation
types by the equivalence relation p ~ v < 3f > 0,v = f*pu.

Conversely, if 0 < pu(Xy,...,X,) = u(%Y,...) = det %M(Y,...), then
det % > 0.

= det(f)u

(since (f*p)(v1,...,vn) = p(f'v1,..., flon) = det(f)p(vr, ..., vn)).

24. For an orientable manifold with volume form g, there is a dual correspon-
dence * : A"M — An_,M, A — p- A; in local coordinates, (xA); ; =
Wijoa A% Then a A A = (a- A)u, *(X NY) = (xX) - Y =X - (xY).

p has an inverse, such that fi;...je...ep’ "9'** = m!det[6F'] where m is the
number of summed variables.

Vector Field Derivatives

Flow of a vector field: the equation £ = X, has a unique local solution for
X € 0% called the local flow of X, here denoted by z(t) = ®;(x(0)). ®, is a
diffeomorphism, with

d

&, P =X, Pppy=0P5, Po=1

Morphisms preserve the flow: F(®Xz) = ®F'XF(z). More generally, for
“time”-dependent vector fields, & = X (¢, ) defines a flow &, s2(s) = z(t) with
(I)t,s © (bs,r = (I)t,T7 (I)t,t =1

Lie derivative of a tensor field along the flow of a vector field:
d

. OX)* Ay — Ay
ExA= | (@) A= fim (2" A0 = As)

dt =0 t—0 t
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(ie., & (Aog;) = ¢} £x A). It is a tensor of the same type as A, measuring how A

changes relative to X. For a t-dependent tensor, % |t:0 (Aody) = LA+ L x Ay
The Lie derivative of a function on a Banach space simplifies to the direc-

tional derivative

The Lie derivative along a coordinate direction is denoted 0.
1. The Lie derivative is a derivation on tensor fields, characterized by
JSX(A‘FB)foA—F.fXB, £xAA = AE£xA,
£x(A®B)=(£xA)® B+ A® (£xB),
fx(A(Y7 OZ)) = .,E)(AO/7 Ol) + A(£X}/, a) + A(Y, £Xa),
£Xf = f/X7
In particular, it is preserved by differential maps F":
Lx(fA) = (£Ex)A+ [L£xA,
£x Al = (£xA):
Lx(Alv) = LxAlv
FlExA=£LpxF' A

2. £X1+X2YZ£X1Y+£X2K £ixxY = ALxY.

But it is not tensorial, £yxY = f£xY — XLy f # fLxY. Hence £xA
does not depend only on the direction of X at a point p, but also on the
rate of change of X; thus X, =Y}, does not imply £xA4 = £y A at p.

3. In local coordinates,
£xf=X'0,f,
£xY = X109, YT — Y9, X7,
£xa=X'"0a; + a;0;X",
£xA=X'0;A% — ALo; X" + AjO; X"
Proof: V; = Yo +tX'9;Y + o(t), so 7Yy = (I +t0; X7 + o(t))”'Y; =
Yo + t(X10;Y7 — 0, XY + o(t).
4. £xY =[X,Y] is a Lie product,
£y X = —£xY, £xX =0,
ExEyZ+LzELxY + £y £zX =0
Then [£x, £y] = £x,y]. So vector fields form a Lie algebra.

The product generalizes to totally skew-symmetric contravariant tensors
(Schouten product).
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5. [X,Y] = 0 iff the flows commute, i.e., ®;X®Y = dY ;X

6. (Frobenius) A sub-bundle of the tangent space (i.e., a smooth choice of
vector subspaces of T, M) is the tangent space of some local sub-manifold
(called ‘integrable’) < it is a Lie subalgebra.

7. Example: Let X := (37) on B2 Then its flow is @ (32) = (Son o) (32)

sint cost
(2 " [ cost sint (o cost — yo sint)? -
Let Y := (afy) q)tY(‘I)t(mO)) - (— sint cost) \(xocost —ygsint)(yocost + zosint)) —

t— int . .
wo(z0cost = yosint)) g 1o derivative of Y wrt X
yo(zo cost — yo sint) ’
o DIV (De(0))—Y () _ 1 1 (xo(—x0 +wocost —yosint)) _
£xY =lim;_yg p = lim;o t \—yo(xo —zocost +yosint)) —

(‘f;é’o) (more easily obtained from X?9;Y7 — Y9, X7).
0

Differential of an anti-symmetric tensor field (‘form’), d : Qp — Qg1
defined by

dOé(Xl, . ,Xk+1) = OZ(XQ, . ,Xk+1)/X1 - Oé(Xl,Xg, .. .)IXQ —+ ...

da+8) = da+ d3, d(Aa)=Xdq,
Q
d(an B) = daNpB+aAndB, o€ even
daNp—andB, odd
d*a=0, df=f, dAy=d(4y)
2. In local coordinates da = Opay;... dzf A daP A dad A -
df = 0:f, (grad)
da = 0,05 — 0, (curl)
dA = 0; A1, + 0; Ak + Ok Ayj

3. For example, in R™, the 1-form dz; is (z1,...) — 7.
Change of coordinates: e.g. from Cartesian to polar, then dx A dy A dz =
d(rcosf cos ¢) A d(rcosfsing) A d(rsinf) = —r2cosfdr A df A de.
4. £x = dex +ixd (ie., £xa=d(X -a)+ X - da.)
Proof: by induction £xA = Lx(df AB)=£x(df)ANB+ df N £xB =
d(df AB)(X)+ d(df A B(X)) = dA(X) + d(A(X))).
Hence d, £x commute, and for A €
da(X,Y) = £x(a(Y)) — £y (a(X)) — o([X, Y]),
da(X,Y,Z) = £x(a(Y, 2)) + £y (a(Z, X)) + £2(a(X,Y))
— a([X,Y],2) - a(1Z, X],Y) - a([Y, 2], X),
£x(ANB)=(£xA)ANB+ AN (£xB),
LixA=f€xA+ df NixA,
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10.

(since £yxA = dA(fX)+ d(A(fX))=---=fxA+ df NA(X));
Morphisms preserve d, that is, F*da = d(F*«).

Forms that are ‘closed’, da = 0, form a subspace Z¥(M) := ker(d) N
AF(M).

Forms that are ‘exact’, @ = df3, form a subspace B¥(M) := im(d) N
AR (M) C ZF(M).

Closed < locally exact.

Proof: Transfer the closed form to the simply connected Banach space; let
Xy(z) := z/t, generates a flow ¢y(z) = tz, so £x,o = dix, o, s0 Ldfa =
drdix, o = dofix,a, 50 a — ¢fa = dftl diix. ads, so a = dfol drix.ads.
Morphisms f : M — N map f* : Z¥(N) — Z¥(M) and B*¥(N) — B*(M).

The quotient spaces H* := Z¥/B* form a co-homology.

Morphisms f : M — N map f* : H*(N) — H¥(M), invariant under
homotopies (i.e., f, g homotopic implies f* = g*), i.e., H*(M) depends
only on the homotopy class of M.

The dimensions of H* are called the manifold’s Betti numbers (when
finite): dim HC is equal to the number of connected components. For
k > dim M, dim H* = 0. (Proof: Z° consists of locally constant functions;
BY=0.)

In oriented finite-dimensional manifolds, the volume form g is closed, du =
0. There is a co-differential, or divergence, acting on n-vectors:

§:=%ds: A" M — A" M.

Then 6% = 0.
Lxp=d(X - p)=d=X) = (0X)u,
Lxfu=(Lxf+ f6X)u=0(fX)pu.

There is a canonical 1-form 6 : M — T*T* M defined by
O(p,a) (v, w) = (") (v,w) = aw,

where m : T"M — M is the canonical projection; in local coordinates
(2, &), 0 = & da’. For any 1-form a, o*0 = «.

(Poincare-Hopf) For any vector field with isolated zeros, on a compact
manifold without boundary, ). index,, (X) = x(M). For example, if
there exists a non-degenerate vector field, then (M) = 0.
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Integration

The line integral of a 1-form on a curve is defined by

A a [ra= [a-r = [a6unoa

Similarly for the integral of an n-form on an n-dimensional patch

/w: @wduz/wi“,jdxi...dx]‘.
Q dU U

The integral of an n-form on an orientable paracompact T n-submanifold M
with a given partition of unity Ay subordinate to the charts ¢y is

/M v ; /¢U Aueo di

(Well-defined, independent of partition of unity and charts: >, fu = > yny fugv
and ¢, = (Yo~ (v~ 1) = 4.)

Cartan’s theorem:

If w is an (n — 1)-form in an n-dim orientable
(sub)manifold M, with OM having compatible orienta-

tion, then
/ dw:/ wlom
M oM

(wlopm = t*w where ¢ : OM — M is the embedding of the boundary.)

Proof: On a small interval, f;HL ofdz = 1 f;+h(f(w+h)—f(x)) dz+o(h) =
[f]&+". Hence, by subdividing a patch U into small cuboids, ff;”h Oiw;  dxtdad ...
[[wj. dzd .. ]J%T" so cancelling and extending to the boundary. Therefore
fM do = 3>y fU Avdw = >y fU d(Avw) = >y fL—lU)\UW‘BU = faM wWoMm
(since Y, d(Avw) = d(X; Av) Aw + Do Av dw.)

1. Change of variables: If f: M — N is an isomorphism, then

/ w = few.
M M

(Proof: fo faow = fwa Yufsp Puw = quU pow = [y w.)

2. Integration by parts: [y, fdw = [, fu— [,, df Aw.

3. For a compact manifold without boundary, f y dw = 0. In particular, a
volume form p cannot be exact.
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4. Special cases:

(a) Fund. Th. Calculus: For a scalar C! function f, fv fl = fv df =
[f}?yg(l)g For exact 1-forms, can define f; f'; in particular, ¢ f' = 0.
(b) Stokes: For a surface in R?,

Oz’ O ji

Green: For a closed curve in R?,

/(8@_8P> dxdy:/ Pdz+ Qdy.
A\ 0z dy HA

Cauchy: For a complex analytic function, ¢ f(z)dz = 0 (since ¢(u+
iv)(dz +idy) = [, —(52 + §4) +i(5% — %) dA = 0). So the path
in fv f(2)dz can be deformed as long as f remains analytic.

Also [, 0;f(%e 92 9292 ) qy dv = [, f(a?) dt. (Take F; = fa;.)
(c) Gauss: For a volume V CR?, [, 9;F*dV = [, €, F; da? da*.

Also, [, 0, f AV = [, feijn 22 22 qu do.

5. Mean Value Theorem: For a curve v : [a,b] — M, ﬁ f; ~" belongs to the
convex hull of v/[a, b].
(Proof: Split the curve into small pieces so (Vv (tnt1) — 7 (t2))0tn < €,
hence integral becomes finite convex sum of +'(¢,).)

For Banach spaces, fovy:[0,1] = X = R, v(t) = (1 —t)a+tb, Ic € [a, ],
1
10~ @ = [ (Forydt= o -a).

1.1 Poisson Manifolds

have an anti-symmetric bivector field 7%/ such that
T 0gmIF 4 19yt 4 TR et = 0.

Equivalently, it has a Poisson product on scalar fields, {f, g} := %( df Adg)m =
719, f0;g, which is a Lie product (bilinear, anti-commutative, Jacobi) that
satisfies

{f,gh} ={f,g}h +{f, h}g.

The morphisms preserve m: F.m =7, i.e., {f, 9} p@) = {f o F,go F}a..
Products M x N are again Poisson.

Examples: T*M with 7 = w™!, w := d#; in local coordinates, w = d&; A dz’.
Diffeomorphisms preserve this w.
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Every covector field is associated to a vector field: 7% qy;.
In particular, every scalar field is associated to its Hamiltonian vector field
Hf = 7Tdf = 7r”8if.

1. The Lie product generalizes to covectors as [, 3] = £raf — £apa —
d(waf). Then

(a) 7la, B] = [ra, 7h
(b) [df, dg] = d{f, g}
(¢) [, fB] = [a, BIf + (£raf)B

2. Hamiltonian vector fields satisfy

[Hf7Hg}=H{fvg}, £Hfg={f,g}, £Hf7T:0, F*HfZHF*f

Proof: £y,9 = (dg)(ndf) = {f,g}; Hpy = nd(F.f) = F.(ndf) =
F.Hy.

Thus, the flow is a Poisson morphism; a function ¢ is conserved along
the flow of a Hamiltonian vector field Hy if {f, g} = 0 (in particular f is
conserved).

3. At each point, the image of 7%/, generated by the Hamiltonian vectors, is
a subspace that integrate into foliated immersed connected sub-manifolds,
called leaves.

Complementary to them, Casimir functions satisfy Hy = 0, so they are
constant on the leaves.

4. Each leaf has a symplectic 2-form w;; = (7~1);;; it is nowhere-degenerate,
anti-symmetric, and closed dw = 0 (from [r, 7] = 0). If finite-dimensional,
the dimension is even, and the leaf is orientable with w™ :=w A --- Aw as
a volume form (called Liouville volume form).

(Darboux) Symplectic leaves (of same dimension) are locally isomorphic

. I .
since w;; = (BI 0) in a local chart.

5. A Hamiltonian vector field Hy on a symplectic leaf satisfies wX; = df
and {f, g} := w(Hy, Hy). A vector field is called locally Hamiltonian when
d(wX) =0.

6. For the cotangent manifold, a Hamiltonian vector field Hy = w=tdf, is
associated with its Lagrangian scalar function L := 6(X) + f, and its flow
is a symplectic morphism,

£X9: dL, £Xw:0

Thus the volume form is preserved, £xw™ = 0. When a curve is moved
along the flow of X, then A [0 = [, L — [, L.
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Proof: £x0 = dixf+1xdf = d(0(X)) +wX = d(0(X) + E) = dL.
fxw: fxdﬁ: d£X9: dZL:O.

For the function f(x,&), the flow of Hy is & = f%, = g—f.

Proof: w((Hy,€), (X)) = df(X,¢), ie., vHy —€X = 51X + gL, so

12} 9
Hy =gt and ¢ = —3f.

2 Complex Manifolds

An almost-complex manifold is a differentiable manifold with a (1, 1)-tensor
field J such that J2 = —1. If finite, the dimension is even (since det(—1) > 0)
and the manifold is oriented. The tangent space splits locally into T;r MeT, M
(also TFM), where Jvy =v_, Ju_ = —v,.

A complex manifold is a differentiable manifold which is locally analytically
diffeomorphic to a complex Banach space, i.e., for local charts f = v ou™1,
z=x+ 1y,

F(z+h) = f(2)+(A+iB)(hutihy) to(h) = (:E;’Zi%(g ‘AB) (Zz>+o(h)

Ou _ v du_ Ov
o Oy Oy Oz’
ie, ffJ=Jf".
Equivalently (Newlander-Nirenberg), an almost complex manifold in which

J ~ (? _OI) throughout; equivalently, [X, Y]+ J[JX,Y]|+J[X, JY]-[JX,JY] =

0. Morphisms are required to be analytic, i.e., f'J = Jf’, hence smooth.
Ezamples:

« C" and its quotients, the complex tori C"/Z2".
« Complex projective space (C"*1~\{0})/C*.

« Any 2-D orientable metrizable manifold admits a complex manifold struc-
ture (by checking condition N;(X,Y) = 0).

» Hopf manifolds, Stein manifolds.

1. Locally, an analytic function f(z) = u(z, y)+iv(z, y) satisfies 9y, v = Os, u,
Oy, u = —0y,.

2. Not every almost-complex manifold is complex, but the only known ex-
amples are of (real) dimension 4.

3. In C, an analytic (iff conformal) 1-1 map f : A — B, A,B C C, is au-
tomatically invertible with f~! analytic; therefore there is an equivalence
relation of regions A with f acting as morphisms.
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4. Most finite-dimensional complex manifolds cannot be embedded in any
C™ (e.g. the compact ones).

5. Any two complex surfaces are locally conformal.

A compact complex surface is a variety, i.e., the zero set of some polyno-
mial; it can be embedded in CP3.

6. For a complex manifold, the co-homology groups are of type HP*¢ (Chern
classes), with dim H* = > prg—r dim HP? (note a k-form in complex Ba-
nach spaces is of type dz1 A...dz, AdZ1 A ... ANdZy);

7. For compact complex manifolds: (Riemann-Roch, special case of Atiyah-
Singer) arithmetic genus := hg—hi+. ..£thy is an invariant (h; :=dimension
of abelian forms of degree 7).

Every compact complex surface corresponds to an irreducible polynomial
p(z,w) and can be obtained by gluing the sides of a polygon in C, S? or
H2.

3 Geometry

Up to this point the manifold can only have global invariants (dimension, genus,
orientability, etc.) as locally it is a Banach space; to allow for local invariants
a connection of nearby tangent spaces is needed. Locally, a curve in T'M takes
the form of a roving vector, u(t) = (p(t),z(t)) € U x X (U C M); it can
be approximated in a chart by u(t) = (p(t),z(t)) = (p,z) + (v,w)t + o(t), so
TTM = TU x X? locally. Those roving vectors which remain at one point p, i.e.,
v = 0, form a vector space called the vertical space at p, which is properly defined
invariant of the charts as V,, := kerw,,. A connection between tangent spaces
is a choice of a subspace of vectors (p,x) — w along which roving vectors are
considered to move in M but not in X, to form a horizontal space complementary
to the vertical space.

A geometry is a differentiable manifold with a differentiable selection u +—
H,, (v € TTM), where H, is a linear subspace of T,,TM complementary to V,,,
ie, H, @V, =T, TM.

Parallel Transport

For any path p : [-1,1] — M with p(0) = p, and any vector = € T,,M, there is
a unique differentiable path u : [-1,1] — T'M, called its ‘horizontal lift’, whose
tangent vectors are in H, (by projection of the tangents to H,):

(1) € Hywy,  moult)=p(t),  u(0) = (p.).

It extends to tensors, e.g. A,)x(t) = (Az)(t) for any A € B(X); so x or A move
in a unique way along the path. This parallel transport of vectors and tensors is
denoted 7 : T,M — T),;)M, a linear isomorphism ‘connecting’ tangent spaces
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at different points. Thus B(X) acts on T'M locally in a covariant manner,
making the manifold a local geometry in the Klein sense. For a Banach space,
Tt = 1.

The covariant derivative Vx of a tensor field A in the direction of a vector
X is defined by

—1
T Tt Ap(t) — Ap
Vx A(p) := lim .

where 7; is parallel transport along a path p(t), p = p(0), p’(0) = X,,.
Ap+tXp_Ap

For M a Banach space, Vx A(p) = lim;_,o :

1. The mapping VA : X — Vx A is tensorial:

Vx+yA = VXA + VYA, foA = fVXA

2. V acts linearly on tensor fields as:

V(A+ B) =VA+ VB, V(A) = \VA,
V(A® B) = (VA) @ B+ A® (VB),
VA; = (VA);, Vf=/f

In particular V(fA) = (Vf)A + fVA.

3. For a local basis, Ve; = I'fep, : U € M — B(X), called the Christoffel
symbol. It contains the information about how the manifold curves; e.g. a
Banach space is flat, I' = 0 (in standard basis). In local coordinates,

VxA=X'"V;A
Vf=0oif
VX = 9; X7 + T, X",
Vo = 0ja5 — Ffjozk,
VA = 0; A} + T}, A3 — T3 AL

Proof: If X = XJej, then VX = (8;X7)e; + X*T e;. V(a-X) =

(VOZ)JZXZ =+ al(anz =+ F;ka) = (8J041)XZ + Oél(a]XZ)

4. A tensor A is parallel transported along the curve x(t) when V,y A = 0. In
general, the derivative of a tensor along a path is ‘;—‘? =Vp A= %VZA.
In coordinates, a parallel transported vector X (¢) satisfies

d 7 i nNj vk
EX = I (a") X7, X(0) = Xu(0)

5. A diffeomorphism f : M — N induces a connection on the manifold N,
VxA = VpxfrA.



JOSEPH MUSCAT 2021 18

6. A Poisson manifold has also a contravariant derivative, V, := Vio. It
satisfies

Via = fVa, ValfA) = [V A+ (£raf)A
7. Higher derivatives, e.g. V*f = 0;0; f — Ffjakf in local coordinates.

8. Parallel transport around a knot gives an element of the connection that
depends only on the knot-type (i.e., a knot-invariant); the Loop transform
is a mapping from connections to the knot-invariants, it generalizes the
Fourier transform.

Torsion and Curvature

The torsion and the curvature tensor fields are defined by
G(Xa Y) =VxY -WX — [X’Y]a
R(X, Y) =VxVy — VWWwVyx — V[X’y]

1. The torsion and curvature are both tensorial and anti-symmetric in X, Y.
Proof:

O(fX,Y) = fVxY — W (fX) - [fX,Y]
= f(VxY = WX - [X,Y]) = fO(X,Y)
R(fX,Y) = fVx(Vy) = W(fVx) = Vi[x Y]+fYVx—XVy f
= f(VxW — WVx — Vixy]) = fR(X,Y)

2. In coordinates,

k _ 1k k
ok =Tk -1

3o

Ry = 61'F§‘k~ +T4, Tk O,y — Fé‘.rfk
Proof: RijleinZk = (XiVi)(YjVj)Zk—(YjVj)(XiVi)Z’f—[X, Y|V, ZF.
3. The skew-symmetric part of VA is
(Vivj - VjVi)Alm = RijoA:n - @ZjV-Ain - R;ijl. - @;jV-Ain
4. Bianchi identities

(a) dO = R/
ViOjx = Vi) + ©f;Oury = Riju»

(b) dR=0
Vi Rk + Ofi; 94k
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5. In finite dimensions, the Ricci curvature is Ric;; = Rje;°; in harmonic
coordinates, Ric;; = %Agij + .-
Scalar curvature R := R§
2
T4 = Ry VoV
6. For Poisson manifolds, there is a torsion T'(«, 8) = Va8 — Vaa — [a, S].
7. On a loop, a frame is parallel transported to Ax + b, where b is related to
the torsion.
Geodesics

are curves z(t) which keep the same direction, V;& = 0.

4

1.
2.

In local coordinates, #* + I‘fj;‘giij =0.

The parametrization of a geodesic is unique up to affine changes.

Proof: For z(s(t)), 0 = Vi = §Vw($2') = 82’ + §*°Vp2! & §=0 &
s(t) = at + b.

The geodesic curve is determined only by the symmetric part of I’
the torsion.

iy not

Given a vector X at a point zg, there is a unique geodesic z(t) with
2(0) = xo, ©(0) = X. Two such geodesics starting from the same point
meet only at isolated points.

The exponential of a vector field is the flow along the geodesic in the
direction of the vectors, exp(tX)(p) = yx (t).

exp((t+ s)X) = exp(tX)exp(sX), exp(0)=1
exp(X) exp(Y) = exp((X—i—Y)—i—%[X, Y]+T12([X’ [X’ YH'HK [Y’ X”)"i' o )a
in particular, exp(—=Y) exp(X) exp(Y) = exp(X + [X, Y]+ ).
exp(=X)exp(=Y )"z — exp(X +Y)z.

1 1
n n

U-Riemannian Manifolds

have a smooth nowhere-degenerate symmetric bilinear form g;;.
Morphisms are the locally isometric differentiable maps, i.e., F.g = g.
Ezxamples:

« Minkowski space-time, R"*! with ¢(X,Y) = —X°Y0 4+ Y" | XY"

« Any metrizable smooth manifold can be given a 1-metric.
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. The bilinear form extends to tensors of the same type, g(A, B); in coordi-
nates, A;...; B,

. Any immersion M — N pulls back g from N to M via gy (X,Y) =
g(f"(X), f'(Y)).

. When two curves meet, the vertically opposite angles are equal.

. There is a duality between X and X* via g, manifested in coordinates
as raising/lowering of indices, i.e., X; = ginj, denoted by f, b; the dual
of a transformation A%, = gjeA7; the exterior derivative now applies to
k-vector fields as well by #db.

. Connections which preserve g, i.e., Vg = 0, have a unique symmetric part,
namely
Liji = 2(0igjk + 059ik — Okgij)
Proof: expand Vzg(X,Y) — Wwg(Z, X) + Vxg(Y, Z).
For this unique torsionless connection,
(a) Rijwi = —Rijik = Riiij = K (4,7)(9ikgj1 — 9ijGrt)
(K is called the sectional curvature);
(b) £x9 =V, X; +V;X;, VX, — V; X, = (dX);; — 9,0 X°.
(¢) gij = 0ij — =7 Riejor*z° + O(3), T = 0+ O(1).
(d) Videt(g) = (det(g))g*°digeo = 2det(g)I's,
(e) V- X = \/%tgai(\/dethl).
(f) ViV; X' = R, ,X* + 59" (Vifx gje FVidxgie = Ve £ x9ij)
(ViVj = ViVi) Ap = Rijo“ Ay — Rijp® A
For a submanifold, the connection associated with the inherited g is the
same as the restriction of V.

. The “energy” density of a morphism F' : M — N (with metrics g, h) is
Hf*h||2 = hapg" 0;F*0; F?; in particular the energy density of a curve is
h(s, &) = &,

For any geodesic, g(&, Z) is constant. A vector is parallel transported along
it when X’ =0 so g(X,2) and g(X, X) are constant.

If X is a family of geodesic curves (so X¢X® = 1, X*V,X? = 0) and
£xY =0, then L (X,Y*) =0, Lyl = R, X°*Y°X*.

Proof: ;—S(XiYi) = X, X'V;Y' = YI(X;V,XY) = 1YIV;(X;X%) = 0.
Expand szl(X]VJYZ)

- R= Ei,j Kﬂ(imj);

Ric;; = %Rgij + Si; (S traceless);

Riji = ﬁR(QikQﬂ — Gij k) — =3 (Sagik + Sikgi — Singii — Sjgik) +
Cijii (C traceless, called Wey! tensor).



JOSEPH MUSCAT 2021 21

10.

A manifold has constant curvature when VR = 0.

An isotropic manifold is one with Cjji; = 0 = S;;. If the index is not 2,
then the manifold is of constant curvature. When S;; = 0 and the index
is not 2, then R is constant. When the index is 0, M is locally conformal
to a constant R manifold.

A manifold is mazimally symmetric when K (i, j) = k constant, so R;;x =
k(9ikgj1 — gugjk), Ricij = (n — )kgij, R=mn(n — 1)k (Sij = 0= Cijk).
A manifold is flat when k = 0.

A vector field is called Killing when its flow preserves the bilinear form,
£Xg =0.
(a) £x commutes with lowering/raising of indices,
(b) For any geodesic, X%%; is constant;
(C) VZVJXk = R?lel;
(d) Their flow are isometries: so group of isometries of manifold have the
Lie algebra of Killing vector fields.

. Two metrics are conformally equivalent when § = ¢%¢g,s0 §(X,Y) =0 &

g(X,Y)=0.
The angle between two vectors is invariant under local conformal map-
pings.
A vector field which gives rise to a conformal flow satisfies £xg = e%g.
Under a conformal mapping, g — g =€%g,

T = T + 5(050i0 + 67050 — gijg"' Do),

oF; — O
Rl = Rl + 365V Vo — 61V, Vo + g V;Vio — g ViVio)

+ i(éﬁVjaVka — 6§ViUVkU + gjkViUVlU — giijUVlU + ((Sé'gik — 5ﬁgjk)V°aV.a)

—2 1 —2
Ricij — RiCij + nTViVja + igijAa + nT(gijV‘ch.a - ViUVjU)
n—2 n—2 n—2 o n—2
SZ‘]‘ — Sij + 72 ViVjJ — 72n gijAO'-i- 7471 gijV oVeo — 74 ViO'VjU
—1 -2
R—e (R+ (n—1)A Ao+ WV%TV.G)

4
C—C

An embedded sub-manifold M C M inherits the bilinear form of M. Tt
gives rise to a decomposition of the tangent space: T,M = T, M x T, M +,
with projections X + (X% X@). Then

(a) The inherited bilinear form is g;; = gklaﬁkﬁjrl, where r : M — M
is the embedding; called the first fundamental form.
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(b)

The covariant derivative induces derivatives on tangent and normal
vectors:

ViX7 = (V; X7, 1% X7) (Gauss)
VX = (-1, X°, D; X %) (Weingarten)
where

i. II7; = I'{; is called the second fundamental form of M;
I35 X X7 gives the normal curvature (for X unit); the eigenvalues
of I* are the principal curvatures. A local isometry preserves
both g and II (Theorema Egregium). The mean curvature tensor
: a _ Tria.
is H* = 1}%;

il. D; X% =0, X%+ F;‘bXb is called the normal form of M.

Example: For a surface in R3, r; := O;r,

E F
9ij = [ri-7jl = (F G) ;» Vdetg = \/l?‘ll2 [r2f? — |1 72)|? = [Py x 72

T1 X T2 L M
|’r1><r2|’ 1] [1J ] M N/
& .
8,»73 = Fijrk + Hijn, on = —Hngj,

; ; L M\ (E F\ !

so k = detIl/detg = %]é’_]‘lfj kn = 7" -n = L)?+ 2Muv' +
N2,

r(u,v) = a+ ur, +ovr, + %(ruuu2 + 270UV + ’I'UU’UQ) +0(2),

so y(u,v) = (r — a,n) = 11(u,v) + o(2).

Rijkl = Réjk + H?kIIé'a - H?kﬂéav

(Gauss)

Rij" = VilI%, — VI, = V;II%, — VI, + 208,109, — 205 119, (Codazzi-Mainardi)

]%ijba =Rt + IE, 103, — 107,103,
= 81'1—‘?1) - 6jl_‘?b =+ quo ;b - ;o ;b

£ng = —21°N,,
£2,9 = 2R;q;, N*N? — 211 1% N, N,

ia g
Expy = Ly

Proof. £yg(X,Y) = Vng(X)Y) = g(VNX,Y) + g(X,VyY) =
g(VxN,Y)+g(X,Vy N) = =2[I(X,Y)), £§I(X,Y) = WWI(X,Y) =

I(X,Y). £yv/detg = §I5L gV (—211;)

(Ricci)
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11.

12.

13.

Given g, II, and I'§;, that satisfy the Gauss, Codazzi-Mainardi and Ricci
equations, then there is a (simply-connected) manifold locally embedded
in R™ with those metrics and forms.

A point on a hypersurface M is elliptical when II is positive self-adjoint;
parabolic when 0 € o(I) (in particular planar I = 0); hyperbolic other-
wise; umbilical when II = k.

A curve on a submanifold is called asymptotic when I(&,2) = 0; it is a
line of curvature when II;-jcj(t) = )@ (t).
A line of curvature is one whose tangent is along eigenvectors of curvature.
(1}/)2 —u'v (u/)2
For surfaces, det | FE F G =0.
L M N

Manifolds with zero mean curvature are called minimal.

For finite-dimensional manifolds, the signature of g is well-defined (con-
stant on components).

For a complete finite-dimensional manifold, the set of isometries (preserv-

ing g) form a Lie group; the stabiliser subgroup that fixes a point p is a
compact subgroup.

For an oriented finite-dimensional manifold, there is a natural volume form

pi-j = /det(g)ei...

(because in R™, the unit volume of a subspace im A is y/det ATgA.)
detlg] =1 — :R;;z'a? + O(3).

The Hodge dual then becomes a map A¥M — AN=FM defined by BAxA =

g(A, B)u; in coordinates (xA);...; = mui...j""A...,.. It is its own

inverse up to a sign *x = sgn(g) (but —sgn(g) when n is even, k odd); in

particular, xpu =1, x1 = p.

It gives rise to the following operations:

Cross product Ax B := (A A B), in coordinates %%

Grad Vf =tdf.

Curl % db: A" M — AN—=1)[.

Divergence § = ¥dx : A"M — A"~ 'M;

Laplacian A := (d+6)?> = d§ +dd = dxd* + xd*d. It commutes with

d, 9, *.

Example: In R?,

A®®RBoo.

®---00-:-0

(a) X XY = €4 XY Vf =8V, f; VxX = €9,V X*; V. X = V, X°.
(b) The identities of d(a A 3) become
V-(fF)=Vf-F+fV-F, V- (FxG)=(VxF)-G—F-(VxQG),
VX (fF)=Vfx F+ fVxF,
VX(FxG)=(V-G+G-V)F —(V-F+ F-V)G.
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() VxVf=0,V-Vx F =0 (since d> =0).
(d) VX F=0<« F=Vflocally; V-F =0 & F =Vx A locally.
14. On a submanifold of dimension k, the volume form induces a local form

par(vi, - v8) = prgp(vs -, Uk, Ngya, .., Ny ), where Nj are orthonor-
mal vectors, normal to M.

In particular, for k = 1,bX = (X-T)pu(-, Noy ..., Ny) = (X T)py =: X-ds.
Fork=n—-1,#X=(X -N)u(...,N)=: X . dS(=ndS.).

Cartan’ theorem becomes:
(a) Stokes’ theorem: For a surface S C R?,

/VxF~dS: F . ds
s a8

JsVfxdA=—[,s fds
(b) Gauss: For a compact submanifold V' C R",

/ V.- FdV = F.dS
v ov
(F can be any tensor V; A¥* s AUFN,.)

Also, [, VfdV = [, fdS, [, Vx FdV = — [, F x dS.
Proof: [¢#+xdbFdA = [, dbF = f,y bF = fﬂ/F- ds.
Jy*dxFu= [, d(F-pu)= [,, F-Nps. For corollaries, dot with a.

For a measure concentrated on a hypersurface, V- F = AF - n.

15. The integral of f on a piecewise smooth curveis [ fds, where ds = 7dt =
t||7|| dt.
The ‘interval’ of a curve is f v 9(¥,%) dt; invariant under reparametriza-

tions (with ||| # 0). A geodesic is a stationary curve for energy and
intervals locally.

4.1 Riemannian Manifolds

have a positive-definite g;;, i.e., a real inner product.
FEzxzamples:

« R™, S”, T, (2.
+ Immersed submanifolds, inheriting g.

1. The length of a curve, L[y] := fv I’ ()|| dt is positive.
The curve can be reparametrised using arclength, so /() is of unit length,
called the unit tangent at r(s).
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2.

For points on a curve-connected subset, there is a distance function
d(z,y) = inf{ L[r(t)] : r(t) connects r(0) =z tor(1) =y }

If there is a minimum distance between points, then it is achieved by a
geodesic. For a Hilbert space, ||[r]%] = || f;r’H < [, Il = L(v), so
straight lines are shortest.

(Hopf-Rinow) For manifolds without boundary, the metric is complete <
it is geodesically complete; then the distance is achieved (by a geodesic).
(Nomizu-Ozeki) Every Riemannian manifold is conformal to a geodesically
complete manifold, and conformal to a bounded manifold (if both, then
the manifold is compact).

(Serret-Frenet) For any curve r(t), can orthogonalise 7, ¥, ..., to get
vectors T', Ny, No, ..., where

T'=k1N1, N;=—riNi_1+Kiz1Nig1,
ie., %N = KN with K skew-symmetric. k; are called the curvatures of
the curve.
Proof: By construction, N/—>"
: d
since §;9(Nj, N;) = 0.

For a manifold embedded in another, the curvatures can be decomposed
into tangential and normal.

j<i Y(Nj, N))N;j = Ni+£iN;—1 =: Ki41Nia

Finite-Dimensional Riemannian manifolds

1.

(Crofton) The length of a rectifiable curve is 1 [n(y)dy where n(y) is
the number of times that a geodesic 7y intersects the curve and dvy is the
natural measure of geodesics.

Any paramcompact T5 finite-dimensional manifold can be given a Rieman-
nian metric (since it can be immersed in some RY inheriting its g). Any
Riemannian manifold can be embedded in R2V*1, almost always uniquely,
up to translations/isometries for N > 3 (Nash); even with negative Ricci
curvature.

The Lie group of isometries at a point is O(n); for an oriented manifold,
it is SO(n); and H® = R.

The shortest curve between two submanifolds is a geodesic perpendicular
to both.

Manifolds of constant curvature are locally conformally flat.

The only simply connected complete manifolds of constant curvature are
SN, RN, HV. Isotropic hyper-surfaces must be cylindrical (only one non-
zero principal curvature) or umbilic; have constant mean curvature | H?||.
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Every orientable complete 2-manifold can be given a metric with constant
curvature.

Each prime compact 3-manifold without boundary can be decomposed

along tori into components that are either S3, H3, R?, S2 x R, H? x R,
1 % %

SLy(R), Nil (= (0 1 *)), or Sol (= (S I)) (each has a unique differen-
001

tiable atlas).

6. Complete manifolds with Ric > 0 have volume of balls less than those of
same radius in R™ (Bishop).

Complete non-compact manifolds with K, > 0 are diffeomorphic to RY.
(Cheeger-Gromoll)

Complete simply-connected manifolds with K, < 0 are diffeomorphic to
RYN. (Cartan-Hadamard)

7. Liouville surfaces have a first fundamental form of the type E = G =
f(u) + g(v), F =0. Geodesics satisfy f(u)sin®6 — g(v) cos? § = ¢, where
0 is the angle it makes with a parallel.

Compact Riemannian manifolds

1. All distances are equivalent (since a < Z;gg < b). Manifold is complete,

hence geodesically complete.

2. Orientable manifolds are conformal to a constant-curvature manifold.

Proof: let §;; = ¢™gij, with m = 4/(N — 2), then R = ¢~ 2(R¢? +
m(N — 1)pAp + m(N — 1)(mN/4 —m/2 — 1)Vp - Wp); let B(p, 1) ==
J Rpyp+m(N —1)Vp- Vap, then Hgb||L(%,%>71 < ¢B(¢, 1) where c is called
the Yamabe constant; hence can solve m(N —1)A¢+Rep = +1,0, —1¢™ 1.

3. (Chern) For even dimensions,

1
W/Mpf(Q)MZX(M) +/8M(I)'Nun71

where Pf(Q) = vdetQ, Q = d® is the curvature form. For odd dimen-
sions, both sides of the equation reduce to 0. (Special case of Atiyah-Singer
theorem with D = d + dx.)

In particular, for no boundary, W JPE(Q) = x(M).
For 4k-dimensions, (special case of Atiyah-Singer) Vo, 8 € H?, [a A =

index(M), in particular 5 [ QI A Q! = index(M).
(Gauss-Bonnet) For polygons in a surface,

/MH:QWfZ(Win)f/aMng

K2
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In particular for the whole oriented compact surface % / v k= x(M). For
example, geodesic polygons, [,, k=>,0; — (n —2)7.

Proof: first show for small local triangles [,k = 2w —3, 0] — [, Kg; then
add up for a triangulation; thus ), 0, = 2wE; + TEeq — Y, (1 — 0;);
Eewt = Veur; Zz 21 = 2nF.

Corollaries:

(a) Compact surfaces of positive curvature are homeomorphic to sphere
(since x > 0).

(b) If k < 0 then any two geodesics that meet at two points must contain
a ‘hole’.

(¢) If K > 0, then any two closed simple geodesics intersect (else they
enclose a sub-surface of y = 0)

4. For negatively curved compact manifolds, geodesics are ergodic.

5. For compact Riemannian manifolds without boundary,

There are a countable number of diffeomorphic classes of compact Rie-
mannian manifolds, increasing in |K,|, diameter, decreasing in volume.

(Cheeger)

Ric < 0 = isometry group is discrete (so no Killing vector fields);
Ric £ 0 = every Killing vector field is parallel;

Ric > 0 = first Betti number < n (Bochner);

Ric > 0 = every Killing vector field must have a 0.

Ric > ¢ > 0, complete, connected = compact. (Bonnet-Myers)
Ric > %5lg = diam(M) < 77 (e.g. K, > 1/r?)

r

Complete simply connected with 1/4 + ¢ < K,/K < 1 is homeomorphic
to S™.

If K, > 0 then each Betti number of its components is less than some C,,
(Gromov).

4.1.1 Hermitian Manifolds

An almost-Hermitian manifold is a Riemannian manifold with a compati-
ble almost complex structure J, g(Ju, Jv) = g(u,v). (At least the symmetric
part §(u,v) := £ (g(u,v) + g(Ju, Jv)) preserves J.) A paracompact Tb almost-
complex manifold can be given an almost-Hermitian structure.

Equivalently, a Riemannian manifold with a skew-symmetric 2-form J;;; then
I} = Jieg%, gij = Jie 7, Jij = J7 ej.

A Hermitian manifold is a differentiable manifold with a complex inner

product h; equivalently, a complex manifold with a Riemannian metric, g =
Re(h), J = Im(h).

« Complex Hilbert spaces.
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+ Grassmannians of C™ (acted upon by GL(n)).

There is a unique connection, called the Chern connection, satisfying Vi = 0,
so Vxh(A, B) = h(Vx A, B) + h(A, Vx B).

Every 2-D Hermitian manifold is conformal to one with constant curvature.

4.1.2 Kahler Manifolds

An almost-K&hler manifold is a Riemannian manifold with a symplectic form
w, ie., dw = 0 (hence skew-symmetric); equivalently, an almost-Hermitian
manifold with VJ = 0.

A Kahler manifold is a Hermitian manifold with a symplectic w.

FEzxzample:

L] Sﬁ
 Algebraic varieties embedded in a projective space.

« CP" with Fubini-Study metric.

1. The connection as a Riemannian manifold coincides with the Hermitian
one.

2. The Lie group of isometries is U(n/2).

3. Calabi- Yau manifolds are compact Kahler manifolds which are Ricci flat;
their Lie group is a subgroup of SU(n/2).
They are for real dimension n = 2 the tori, for n = 4 the torus T* or the
K3 surfaces; (for n = 6 unknown).

4.1.3 Hyper-Kahler manifolds

are differentiable manifolds with a quaternionic inner-product.
Their Lie group is USp(n/4); they are Ricci-flat.
The only compact ones of dimension 4 are T* and the K surfaces.

4.2 Lorentzian Manifolds

are pseudo-Riemannian manifolds whose g has signature (—1,1,...,1).
Vectors classify as (i) time-like if (X, X) < 0, (i) null if g(X, X) = 0, (iii)
space-like if g(X, X) > 0.
Ezamples: Every non-compact metrizable manifold can be given a Lorentz
metric.

1. Lorentzian manifolds with a non-degenerate time-like vector field have
x(M) = 0; e.g. compact Lorentzian manifolds.
A manifold may be complete for time-like geodesics but not for space-like
geodesics, and vice-versa. A compact Lorentzian manifold with a timelike
Killing vector field is geodesically complete (Romero-Sanchez).
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2. Causal manifolds have no closed time-like/null curves; they have a nowhere-
degenerate time-like vector field; they are non-compact.
Strongly causal manifolds do not have time-like/null curves do return ar-
bitrarily close to itself; they have distinct past/futures for distinct points
(so are causal). They are conformal to a time-like/null geodesically com-
plete manifold.
Globally hyperbolic manifolds have Cauchy surfaces with a time-like vector
field, < strongly causal with the intersection of past and future of distinct
points being compact. In the future and past closed sets, any two points
are joined by a maximal geodesic of finite length, and is homeomorphic to
N x R.

5 Riemannian Manifolds of Constant Curvature

The simply connected smooth Riemannian manifolds of constant sectional cur-
vature are unique and of three types, according to curvature. Hence smooth
manifolds of the same constant curvature are locally isometric.

5.1 Flat, Euclidean Space R"

1. The metric is ¢;; in Cartesian coordinates; in spherical-polar coordinates,

10
0 r2

r2 cos? 01

r2cos? 6y ---cos?6,,_o

2. The group of isometries (dim = W) is generated by translations R"™,
rotations SO(n), and a reflection; and similarity (scalar multiplication) is
a conformal mapping.

Translations are generated by V;, rotations by z;V; — x;V;, scaling by
xlvl

3. T' =0, parallel transport preserves the coordinates of vectors.

4. Similar shapes of dimension k have ‘volume’ proportional to sides”.

k+1__k

=T forn =

The volume of a ball of radius r is V,,(r) = %r” (= =

2k +1); its surface area is A, (r) = LV, (r) = n%r”_l

5. Compact convex sets: (Helley) if every N + 1 members of a family of
compact convex sets have non-empty intersection, then the whole family
has non-empty intersection; implies
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6.

(a) if A and B are two compact sets, and if every N + 2 points in AU B
can be separated by hyperplane (into A and B points), then the two
sets can be separated by a hyperplane;

(b) every compact convex set has a point such that chords through it are
divided in a ratio < 2N;

(c) every open set V of dimension N has a point z such that every

hyperplane through = contains at least ﬁvol(V);

(d) if I, ..., I, are intervals in R such that any N + 2 have a polynomial
of degree N passing through them, then there is a polynomial of
degree N passing through all the I,;

(Cauchy) The average projected ‘area’ of a convex body (in all directions)
is a constant k,_1 of the surface area, where k,, is the ratio of the volume
to surface area of the unit ball in R"; e.g. in R3, ky = i.

For line segments, kg = %, and extends to any curve (by summing); hence
for a closed curve, rdiam(y) < L[]

Curves

1.

Geodesics are the straight lines a + te.

There is a unique line passing through a point and parallel to a given line;
any two points can be joined by a straight line; two straight lines meet in
at most one point; parallel lines never meet.

Angles: when a line meets two parallel lines (or subspaces), the alternate
angles are equal and the interior angles sum to 7.

. A point on a hyper-plane has one perpendicular (normal); three parallel

hyper-planes cut any (non-parallel) line in the same ratio.

T1,...,T, are collinear iff det A = 0 where A;; = d(x;,z;)? for i,j < n,
Ainy1 =Appri=1fori<n, Apy1n41 =0.

The external angles of a planar polygon sum to 2m; hence the internal
angles sum to (n — 2)7; in particular, the angles of a triangle is 7.

The points equidistant from two points form a perpendicular hyper-plane;
the points equidistant from two hyper-planes form an angle bisector hyper-
plane; points equidistant from an r-plane and an s-plane form a second
order “quadric”, in general.

Triangles with SAS, ASA or SSS (or RHS) equal are congruent; triangles
with AAA (or SAS, ASA, SSS with sides proportional) are similar; AA
equal iff SS equal (isosceles).

The area of a triangle is half base times height £la x b||
(=3/(a+b+c)atb—c)(a+c—Db)(b+c—a));
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10.

AB? = BC? + AC? —2AC.BC cos C (in particular Pythagoras’ theorem).

Medians meet at one point (of trisection).Let X be on BC, cutting it in
ratio a : B (a + B = 1); then AX? = aAB? + BAC? — a3BC?; AX
is the bisector of A < % = % & AB.AC = aAB? + BAC? =
AX? 4+ BX.XC.

The perpendiculars from the vertices meet at a point (the orthocenter) and
form the pedal triangle, bisecting its angles; removing the pedal triangle
gives triangles that are similar to the original (in particular for right-angled
triangles).

Isosceles triangles: median iff perpendicular.

Quadrilaterals: Area equals half diagonal times altitude.
Trapezium area is mean of parallel sides times altitude.

Parallelogram (pairs of parallel lines) < opposite angles are equal <
opposite sides equal < diagonals bisect; diagonal bisects parallelogram
into congruent triangles; sum of squares on sides equals sum of squares on
diagonals.

Envelope curves: The curve which is tangent to a family of curves r(t)
satisfies %—f(:c) =0, Fi(z) =0, i.e., det[0;7?] = 0 (since it is the limit of
the intersection of two curves as t — ty).

Evolute/Involute: the evolute is the envelope of the normal lines to a
curve, 1 + n/k (its tangent is n); the involute is the unwinding of a curve

along its tangent, r(s) — st(s); they are inverses of each other in 2-D.

The pedal curve of a curve is the projection of a fixed point to its tangent
liner+t-(a—r7r)t.

Tangent of a planar curve is of form (cosf,sinf), so kn =t' = 6'n, hence
k = 0'. A planar curve with constant curvature is a circle.

For a closed planar curve: fy kds = [0] = 2mm (m called the ‘winding
number’). If k < ko then diam> 2/kq (else enclosed in circle touching at
a point), so length> 27/ max k.

A closed planar curve is convex iff it is simple and has x > 0; has
winding number 1; it has at least four ‘vertices’ (i.e., max/min of k);
area< .- (length)?.

(Fenchel) For a simple closed curve, [k > 2m; equality holds iff convex
planar. (Fary-Milnor) For a knot, [« > 4.

A spiral is a planar curve with positive (or negative) curvature. The
evolute of a curve with increasing/decreasing curvature has non-vanishing
curvature; so (Kneser) |e(t) — e(to)| < ftto [r'n| = r(tg) — r(t); so the curve
cannot self-intersect and is a spiral.
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Hypersurfaces

1. (Hartman-Nirenberg) A complete hyper-surface with K = 0 is a cylinder
OVer some curve.

2. (Alexandrov-Hadamard) A connected compact hyper-surface with con-
stant mean curvature is diffeomorphic to a sphere.

3. A connected umbilical hypersurface in R? (all points umbilical) is part of
a sphere or plane.
Proof: I = k, so for any two indices, N,, = kg,,, N, = Kg,,, 50 0 = Ny, —
Nyw = Kpg,, — Kuby, 50 Ky = 0 = Kk, by independence of tangent vectors.
So k is locally constant, hence globally. If k = 0 then N, = N, = 0 so
N is constlant, so r - N =const. If Kk # 0 then r — %N is constant c, so
lr—c| = .

4. The only complete, embedded, simply-connected minimal surfaces in R3
are the plane and helicoid.

For an embedded minimal surface in R3, each end is asymptotic to the
end of a plane or catenoid.

Projective Spaces

PR" is the space of 1-dimensional subspaces of R**!. The morphisms are the
maps in PGL(n + 1).

1. Any two subspaces generate a higher plane u A v (the join) and intersect
in a lower plane (u V v) := (u* A v*)* (meet) where * is the Hodge dual,
(souVuv=u"-v.

TuATv = (det T)u Av; T(uVv) =det T 1T (u) vV T(v).

2. A straight line is given by the equation u Av Az = 0; 3 lines are coincident
when (u V v) A w = 0; Desargues’ theorem.

3. PR is homeomorphic to S', PC to S?, PH to S*, and PO to S8. PQ? has
a metric, and is compact.

1 neven

4. Projective space RP"; y = .
! P X {0 n odd

Varieties

A variety is the complex manifold with singularities that arises from simultane-
ous polynomial equations.

The morphisms are polynomial functions p : C* — C™, & +— (p1(x), - , pm(@));
or rational functions. Finite unions, intersections, and products of varieties are
again varieties.
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. Polynomials of degree > 2 can be reduced to quadratic by introducing
2

variables, e.g. 22yz* = uv where u = 22, v = yt, t =72, r = 22
. In projective space, the polynomials are homogeneous. The tangent plane
is 0 = (z—a)-Vp(a) = z- Vp(a) since a-Vp(a) = Lp(ta) = k1¥~1p(a) = 0.
Points with [V;p;(a)] of less than full rank are singular, e.g. Vp(a) = 0 for
one polynomial.

A point at “infinity” is a solution of the homogeneous equation p(x,z) = 0
with z = 0, i.e., the highest-degree part of p is zero; its “asymptote” is
the direction x.

. Varieties in C" can be represented by ideals of C[x], since every such ideal
is finitely generated (see Rings); so the intersection and union of varieties
is another variety. They are not compact.

WCV(J) e JIIW),soU CW = IW)QIU). I(V(J)) is the
radical of J; so radical ideals are the ‘closed’ ones, in 1-1 correspondence
with varieties. Maximal ideals correspond to points.

The ideal I(V') decomposes into prime ideals (so that p € I(V) < p =
Zle a;(z)p;(x) for some p;(x) € I(V)); a prime ideal corresponds to an
irreducible variety, i.e., , not the union of two varieties; irreducible varieties
are preserved by regular maps.

Each irreducible variety V gives rise to a unique reduced integral domain
R(V) = C[x]/I(V) (called the coordinate ring of V'); morphisms V' — W
correspond to algebra-morphisms R(W) — R(V); J/I is a prime ideal in
R(V) & J is prime in C[z]; the subvarieties of V' correspond to the ideals
in R(V).

. Every irreducible subvariety W in V gives rise to an integral domain called
the local ring Ry (V), i.e., , the ring of fractions generated from R(V),
a/B where a, 5 € R(V), but g & I(W)/I(V); if Wy C Wa then Ry, (V) C
Ry, (V); Ry (V) is in fact a field (of fractions); ()yim wo Bw (V) = R(V).

The free group generated by the irreducible subvarieties of V', each of
dimension m, is called G,,(V); each element is of the type >, n;W;
(called an m-cycle); any two irreducible varieties P,Q gives P N Q =
> Wi with dimW; = dim P + dim Q — dim V; so G, (V) N G, (V) =
Gmin—dimv (V); two m-cycles are “homotopic” when there is an m + 1-
cycle whose boundaries are the two m-cycles; the m-cycles that are homo-
topic to 0 is called g(V) < G(V), and so Ay, (V) := G (V) /gm(V), and
so A(V) = Zi]\io A;(V), which is a ring (Chow ring) but not necessarily
preserved by regular maps.

. Algebraic curves are varieties in R?, satisfying some polynomial p(z,y) =
0. They cross any line in a finite number of points (at most degp).

Over C, the ‘curve’ is a surface. They can be represented by rational
functions in one variable. The genus of a non-singular algebraic curve is
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(7n2— 1) — s where m is the degree of the polynomial and s the number of

ordinary singularities (immersion overlaps).

(a) genus 0 - have 0 or co number of rational points (a ‘conic’);

(b) genus 1 - are either ‘elliptic’ curves (with finitely-generated abelian
group of rational points) or have no rational points;

(¢) genus > 2 - have a finite number of rational points.

6. (Chow) Every compact projective complex manifold is a projective variety
(there is algebraic structure), i.e., every compact submanifold of CP" is of

the type Z(p1,...,pn)-
7. Generalized Riemann-Roch theorem - x(V) = dim H® — dim H! +

Lattices
1. Lattices in R™ (discrete subgroups) are isomorphic to Z™ via a basis
>~; Zv;. Products of lattices are themselves lattices.

Every finite spanning set with (u;,u;) € Q generates a lattice. (Proof:
Reduce to a basis; the rest are rational linear combinations by inverting
Gram matrix; there is a largest denominator.)

In particular, the root lattices

(a) A, generated by e; — ;11 in R"™!; {(a;) € Z"1 : 3. a; =0},

a1+---+ai—iaiq41 n . n+1 ”+1 R
or {( oD ) ER™ : (a;) € 2", Y7 a; =0}

(b) B, generated by e;; Z™.
D,, generated by 2e; and e; —e;11; {(a;) € Z" : Y, a; € 27 }.

D, {(a;) € Z"U(Z+ )" : X", a; € 2Z}, two copies of D,,; only for
n even; e.g. diamond lattice.

_~
A/ o
=

2. The densest lattices in n-dimensions for n = 1,2,..., are Z = Ay, trian-
gular AQ, Dg, D4, D5, EG, .E77 Eg (Z Dgr),

3. The only lattice in R is Z; there are two types of ‘frieze patterns’, with/out
reflections.

4. R? has 5 types of lattices, by symmetry, generated by:

parallelograms (pl, p2),
rectangles (pg, pm, pmg, pmm, pgg),
rhombi (cm, cmm),
squares (p4, pdm, pdg),
(

equilateral triangles  (p3, p3ml, p31lm, p6, p6m)
(17 wall-paper patterns in brackets). The one-dimensional lattice can
have 7 frieze patterns. The regular tessellations are square and triangu-
lar /hexagonal.



JOSEPH MUSCAT 2021 35

5.2

If the lattice points are treated as complex numbers w, then the lattice
is determined by the numbers g := Zw#] ﬁ and g3 = Zw;é() % By
removing the degenerate lattices (A := (60g2)® — 27(140g3)? = 0) and
fixing the fundamental area (to factor out scaling), the space of lattices
is isomorphic to S®\A (a sphere minus a trefoil knot). The curve t
(etga,e7tgs) is called modular flow: it contains periodic orbits which are
geodesic knots; horocyclic flow is (e?, se! +ie™?), with complicated knots.

R3 has 14 lattices in 7 ‘systems’:

name types faces

triclinic P 3parallelograms

monoclinic P C 2 rectangles, 1 parallelogram
orthorhombic | PIFC 3 rectangles

tetragonal PI 1 square, 2 rectangles
rhombohedral | P 3 rhombi60°

hexagonal P 2 rectangles, 1 rhombus60°
cubic PIF 3squares, D3 = A3 =cF

P=primitive, I=body-centered, F=face-centered, C=base-centered; P has
points at vertices of repeating cuboid, IFC have extra points at center of
body, all faces, pair of opposite faces; e.g. FCC is cF, BCC is cl. There are
219 space groups (plus 11 chiral copies). The one-dimensional lattice can
have 13 patterns; the 2-D lattices can have 80 patterns. The only regular
tessellation is cubic.

R* has 64 lattices of three tessellation types: cubic, 16-cell, and its dual
24-cell; has 4783 space groups.

R® has 189 lattices (all of hypercubes) and 222018 space groups. Every
tessellation of R™, n > 5, is of hypercubes.
Positive, Spheres S"

cos by ---cosb,
cos by ---sinf,

. Spherical-polar coordinates r(61,...,60,) = R . ;

sin 0 1
First fundamental form

1 0
0 cos? 6,

cos? 6y ---cos? 0,1

Stereographic projection r — x = %,Sn\{ +a} — R"; inversely,
2z+(|z|>—1)a

’I“(IL') == 1+|:c|2
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5.3

. Geodesics are great circles.
. The group of isometries is O(n + 1); the conformal group is O(n + 1,1).

. Orientable (since its stereographic atlas of two charts has a connected
overlap). S? is a complex manifold, but in addition only S has an almost
hermitian structure.

. In S?, geodesic triangles satisfy the sine rule

sinA sinB sin C

sina sinb sine¢

. The Betti numbers of S™ are 1,0,...,0,1,
2 neven

sox(S") =14+ (-1)"= 0 nodd

Hence the area of a polygon in §? is (3=, 6; — (n — 2)).

. Lattices:
St has lattices with any number of points (polygons), with symmetry I,,,.

S? has cylindrical lattices of any n (with cyclical symmetry nn, *nn, nx,
nx, or dihedral 2+n, 22n, *22n), and three proper lattices: tetrahedron,
cube/octahedron, dodecahedron/icosahedron (Hz D As), (each with sym-
metries that are chiral or full (with reflection); the tetrahedron can also
have symmetry 3+2 with inversion); space groups: 332, *332, 432, *432,
3%2, 532, *532.

S? has 6 proper lattices: simplex, hypercube/orthoplex (tesseract), 24-cell
(Fy), 120-cell/600-cell (Hy).

S™ (n > 4) has 3 proper lattices: simplex (A,, = S,+1), hypercube/orthoplex
(BC,, D Sp).
Negative, Hyperbolic spaces H"
. ) s coom © . . 5iz
. Poincaré model: Unit ball in R™, p = 71+\/W’ with metric ((SrERER
Upper-half region R™* with % (nth component of p).

Hyperboloid model r = (/1 + |x|?, x).

1 0
First fundamental form for surfaces: (O sinh? 1/Jx] >

|

H™ is diffeomorphic to R™. The isometries are O"(1,n) (no similarity).
For n = 2, SO*(1,2) = PSL*(R?).
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3.

6

Geodesics are arcs of circles in the Poincaré model, intersecting the bound-
ary at right angles.

There are many geodesics through a point that do not intersect another
geodesic.

The area of a geodesic polygon is Area+ >, 6; = (n — 2)7. So rectangles
do not exist. Triangles are congruent iff they have the same angles.

. Every complete manifold of constant curvature is the quotient of H™ by a

lattice, e.g. H?/Z2.
(Hilbert) No H2/T" can be isometrically immersed in R3.

. Lattices:

H? has tessellations of any type (p, ¢) with p-faces and g-vertices such that
%f+ % < %, symmetry *pq2; including apeirogons with an infinite number
of sides.

H3 has 4 regular tessellations (‘honeycombs’): cubic, icosahedral, dodeca-
hedral of orders 4 or 5; and 11 regular ones touching the boundary.

H* has 5 regular tessellations and 2 touching the boundary.

H™, n > 5, has no regular tessellations, except H® has 5 touching the
boundary.

Lie Groups

A Lie group is a manifold that is also a topological group, such that the group
operations are differentiable.
Lie subgroup iff subgroup submanifold. Products are again Lie groups.
Morphisms are the differentiable group morphisms.

Ezamples:

Banach spaces with translation.
The unit circle S', the unit quaternions S?, with multiplication.

The Heisenberg group, R? with (z1,91,21) * (2,92, 22) = (21 + 22,y1 +
Y2, 21 + 22 + T1Y2).

GL(R™), the invertible n x n matrices; since it is the open submanifold
det "' R* of R"". Tt is disconnected into GL(R™)* and GL(R™)~. More
generally, the group of invertibles of B(X) for X a Banach space.

More generally, GL(g) for any Lie algebra g.

The isometries of a ¥-Riemannian manifold (with compact-open topol-
ogy).

A complex Lie group is a complex manifold with group operations that are
analytic.
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. A vector field is left-invariant when L, X, = Xgp for all g € G. The
tangent vectors at 1 extend to all of G by X, = L4, X it is left-invariant.

. So tangent spaces are all isomorphic to a Lie algebra Lie(G) (with dimen-
sion dim G), via left-invariance;

Lgu[X,Y] = [Lgu X, Ly Y] = [X,Y].

Hence the tangent manifold is trivial TG = X x G hence orientable, with
left-invariant measure obtained by translating a volume form at one point.

. The exponential map exp : Lie(G) — G is
eXp(X) = x(l)’ I/(t) = Xa?(t)7 LL‘(O) =1

The morphism expy : R — G maps to a one-parameter subgroup, e.g.,
exp(X) ! = exp(—X). The solution of 2/(t) = X, ), (0) = g, for a left-
invariant vector field is z(t) = gexp(tX); for right-invariant vector field,
it is exp(tX)g.

. As locally connected topological groups, any connected neighborhood of 1
generates (G1, a normal clopen subgroup, via the exponentials; so G/Gj is
discrete. (If abelian, G/G = Z* x H with H finite.) Any discrete normal
subgroup of (G; is in the center.

First countable Lie groups have a norm and translation invariant metric,
with d(g, h) = lg~1h].

Hilbert’s 5th problem: every locally Euclidean group is a Lie group.

. If f: G — H is a morphism, then le> is a Lie algebra morphism; exp(X)
is mapped to exp(f’'X).

. The Killing form is the symmetric quadratic form B(X,Y) = tr[X, [Y, -]].
Its kernel { X : B(X,Y) =0,VY } is an ideal.

For an automorphism, B(AX, AY) = B(X,Y),
for an inner automorphism, B(AX,Y) + B(X, AY) = 0.

Proof: Differentiate [e!4 X, Y] = [X,Y].
Example: The Killing form of gl(n) is 2(ntr(X?) — (tr X)?).

. For any ¢, VxY = ¢[X,Y] is a connection.
O(X,Y) = (2c - 1[X,Y], R(X,Y) =c(c— 1)Vix,y]

(a) ¢ =1 gives positive torsion, no curvature.
(b) ¢= % gives zero torsion, negative curvature.
(¢) ¢ =0 gives negative torsion, no curvature.
. Lie groups act on homogeneous topological spaces (e.g. G/H where H

is a subgroup of G); they are parallelizable, so orientable, Riemannian
manifolds, with a (left)-translation-invariant volume form w.
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Structure of Lie Groups

1. There is a correspondence between the connected immersed Lie subgroups
and the Lie subalgebras; H < Gy < Lie(H) < Lie(G) (as ideals).

Proof: h = TrH C T;G = g. Conversely, (L;)'h is an integrable vector
field.

For example, Lie(Z(G)) = Z(Lie(G)), an abelian ideal of Lie(G). Simple
connected Lie groups correspond to simple Lie algebras.

2. A Lie subgroup is embedded iff it is closed.

3. H covers G & G; = H/N a discrete subgroup of the center Z(H).
(They all have the same Lie algebra.)

If H is simply connected and ¢ : h — g is a Lie algebra morphism, then
there is an associated Lie group morphism f : H — G with f/ = ¢.

Hence Lie algebras are in 1-1 correspondence with simply connected Lie
groups, up to isomorphism; all connected Lie groups with this Lie algebra
are discrete subgroups of this group’s center.

4. The map G — GL(Lie(G)), g — Ay, where Ay(X) = (LyR,~1)' X, is a
morphism; for Gy, the kernel is Z(G).

For GL(X) with X a Banach algebra, the Lie algebra product is xy — yx.
(Let Lyh := gh, then Ly [X,Y] = [Lg X, Ly Y] = [X,Y] if XY are left-
invariant; so the left-invariant vector fields form a lie subalgebra of the
algebra of vector fields - it is the Lie algebra of G. Right-multiplication
gives Ryh = hg, [RyX,R,Y] = —[LyX, L,Y])

The component of 1 is an open normal subgroup generated by eX. If X
is commutative, then the component of 1 is e (since e®e¥ = erty).

If X = B(H) (complex), then GL(B(H)) is connected and generated by

eX. det : GL(X) — R* is a morphism with det’ = tr. exp(X) = X =

>4 X" ad(9)X = gXg '

InU(H), ||[S,T) - 1|| < 2||S = 1|||T — 1|| (since [S,T] -1 = S~1T-1ST —

1= ST HTS=ST); o [|[S,T] = 1| = |ST = TS| = (S = 1)(T = 1) = (T = 1)(S = D).
The affine transformations (T'z + a,T € GL(X)) form a lie group. Simi-

larly, the isometries Uz + a,U € U(X).

5. The Lie algebra of GL(g) is g. So every Lie algebra is the tangent space
of some Lie group.

The subgroup of automorphisms has Lie subalgebra of derivations. It
contains the subgroup of inner automorphisms, generated by the inner
derivations, isomorphic to G/Z(G).

Proof: A[X,Y] =[AX, AY], so Aut(g) is a subgroup. If B is a derivation,
Llo[e’PX,e!PY] = [BX, Y]+ [X,BY] = B[X,Y] = &],_¢e'B[X,Y], s0
[P X,etBY] = e!B[X,Y], so P € Aut(g).
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6. A Lie group is called Lie-simple (semi-simple) when its Lie algebra is
simple (semi-simple); its only connected normal subroups are 1 and Gy,
but it may have other discrete normal subgroups.

The center of a semi-simple Lie group is discrete (since Lie(Z(G)) =
Z(g) = 0).

The Lie-simple abelian connected Lie groups are R and its quotient S; thus
the abelian connected Lie groups are R™ x T™, with trivial Lie algebra.
Then exp(X 4+ Y) = exp(X) exp(Y).

The Betti numbers of T" are (7).

(3

7. G1 contains maximal compact subgroups, all conjugates (Cartan-Iwasawa-
Malcev).

The maximal connected solvable normal subgroup of G is called its solv-
able radical Gso;. G1 is a product of Gy, simple groups, and a discrete
group. The derived subgroup [Gser, Gsor] is a nilpotent group.

8. (Iwasawa) If G is semi-simple, then G, is diffeomorphic to K x A x N —
G4, with K compact, A abelian, N nilpotent, i.e., every g € G; can be
written as g = kan (non-uniquely, not a group morphism; generalized QR
decomposition).

If G has nilpotent Lie algebra, then G; is diffeomorphic to R™ and is
generated by exp g; but the nilpotent Lie groups are not classified.

9. Connected semi-simple or nilpotent Lie groups are unimodular, i.e., u(Fz) =
n(E).
Proof: dA is a Lie algebra morphism Lie(G) — R; if G is semi-simple
then dA(Lie(G)) = dA[Lie(G),Lie(G)] = [dALie(G), dALie(G)] = 0, so
A = 1; if G is nilpotent, then exp is onto G, so A(z) = |det AdjG| =
|d€t eadX| — etradX = 1.

Compact Lie Groups

1. G1 = expg is clopen, so G has a finite number of components (cosets of
G1); for G connected, x(G) = 0.

2. G has a metric, invariant under both left /right translations, and inversion

grgh

On g, (X,Y) := fG (9-X,g Y)w, where w is an invariant volume form
and the dot product is any on g. On G, (X,Y) 1= (L} -1)4X, (L} -1)4Y).
Then VxY = L[X,Y], R(X,Y)Z = —1[[X,Y], Z].

3. The Lie algebra is the sum of the center and a semi-simple algebra [g, g].

The center of a compact semi-simple Lie group is finite (since compact
discrete).
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7.1

A Lie algebra with trivial center cannot be the Lie algebra of a compact
and a non-compact Lie group.

A maximal torus is the Lie subgroup generated by a maximal abelian
subalgebra. Any two maximal tori are conjugate; together they cover all
of the group. The integral lattice of G is { X : exp(2miX) =1} for X in
this subalgebra.

Every point of a Dynkin diagram of the Lie algebra corresponds to a

reflection. The subgroup they generate is called the Weyl group, equal to
N¢(T)/T, where Ng(T) is the normalizer of the maximal torus.

The compact abelian Lie groups are T™ x H where H is a finite (discrete)
group.

Every connected compact group is the discrete quotient of a product of
Lie-simple, simply connected, compact Lie groups and the maximal torus
T™. The Lie-simple connected compact Lie groups are

simple Lie algebra | compact Lie group
R S
A, SU(n+1)
B, SO(2n+1)
Cy Sp(n)
D, SO(2n)
GQ, vea GQ, 1‘7147 E@, E7, Eg

(but there may be other real compact, non-compact, or complex groups
with the same Lie algebra, e.g. Spin(n) is the simply connected (and com-
pact) cover of SO(n)).

. The finite-dimensional irreducible representations of a solvable Lie group

are one-dimensional. When a semi-simple Lie group acts on a finite-
dimensional vector space, the latter splits as a direct product into invariant-
subspaces.

Examples

Curves

. Circle: A diameter bisects the circle into congruent pieces. The tangent

at a point is perpendicular to the radius.

For an arc, length is 76, length of chord is [ = 2rsin g, distance of chord
from center is h = r cos g; the angle an arc makes with any point on the

circle outside the arc is equal to half the angle at the center; the points
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with the same angle from two points form an arc of a circle; the angle
between the tangent vector at an endpoint and the chord is 6/2.

There is a unique circle passing through three non-collinear points (the
circumscribed circle), with center the intersection of the perpendicular
bisectors and diameter AB.AC/h; the feet of the perpendiculars from the
circum-circle to the sides are collinear.

There is a unique circle passing through two points and tangent to a given
line, or through a point and tangent to two lines, or tangent to three lines
(e.g. the inscribed circle of a triangle, with center the intersection of the
angle bisectors ie the centroid; also the escribed circles).

A triangle has a 9-point circle passing through the side midpoints, the feet
of the perpendiculars from the vertices, and the midpoints of the vertices-
orthocenter (its center is the midpoint between the orthocenter and the
circum-center, its radius is half that of the circum-circle; the centroid,
the circum-center, the orthocenter and the center of the 9-point circle are
collinear).

Four points lie on a circle < the opposite angles sum to 7.

If two chords AB, C'D meet at M (inside or outside circle), then AM.M B =
CM.MD; in the limit, if CM is tangent, AM.M B = CM?; the tangents
from an external point to a circle are two and equal, and have the same
angles.

Two circles are bisected by the line joining their centers; two circles meet
at two points at most; the common chord of two circles and the line joining
their centers bisect each other orthogonally; if two circles touch, then the
centers and the point of contact are collinear.

. Conmics: quadratics in R?; r(1 + ecosf) = [, the points whose distance
from a point (the focus) is a constant multiple (eccentricity) to the distance
from a line (the directrix).

. . 2 2 . 2
Ellipse, e < 1 (circle e = 0); 23 + ¥ = 1; ($5)), 1-:t2 (“(12; )); has area
mab; focus is eccentric by ea, a® = b + (ae)?; sum of distances from foci

is constant 2a and reflect;

parabola e = 1; y = ax?; focus is (0,a/4); equidistant between focus and
directrix line; lines from focus reflect to parallel lines; the pedal line of the
focus is a straight line; the envelope of lines s(1 — t)a + (1 — s)b.
hyperbola e > 1 (right hyperbola e = /2); i—z — %—2 = 1; (ab gfjﬁltt),
1 (a(t2+1)

2t \p(t2—1)

foci is constant 2a; asymptotes are y = :l:gm; lines from one focus reflect
out of other focus.

); a® +b* = (ae)?; foci are at +ae; difference of distances to

2 2t?
1+¢2

. Cubics: cissoid 3% = ar (%) the pedal curve and inverse of parabola
in its vertex;

strophoid »2?(1 — x) = 2%(1 + z), folium of Descartes x® + y> = 3wy,



JOSEPH MUSCAT 2021 43

7.2

Tschirnhausen 2% = % — 3y? (1 —t?)(}),
witch of Agnesi y(2? + 1) = 1, serpentine 2%y = z — .

Quartics: cardioid r = cosf + 1, conchoid r = sec + d, limacon r =
cos 0 + d (the inverse of a conic in a focus),

lemniscate 2 = cos 20, the inverse of a hyperbola in the center, product
of distances from foci is constant,

Devil’s curve y2(y? — 1) = az?(2? — 1), kappa curve zr = y.

Fermat parabolas y” = z"; Lamé curves x™ + y™ = 1; pearls of Sluze
Yy = (1 —az)Fa™.

Helix: The curve with constant curvature _s{7> and torsion fibQ in R3

. . . acost
is the circular helix (asggl t).

Fourier Knots: ) a,cos(nt) + b, sin(nt), e.g. Lissajous knots: one
cost + cos(3t)
term each coordinate; figure-8 knot | (sint)/2 + sin(3t)
sin(3t)/2 — sin(6t)

cosntcost

Roses: r = cosnf, | cosntsint
sinmt

Astroids: (cos™t,sin" t)

. . mcosnt — acosmt
Hypo/Epitrochoids: (m sinnt T asinmt

. t cost
Cycloids (0> —a (sint)’

cosnt(2 + cos mt)
Torus knots: | sinnt(2 + cosmt) |, e.g. trefoil (n,m) = (2,3).
sinmt

), hypo/epicycloids a = n;

Polynomial curves: (p1(t),...,pn(t)).

33—t 35—t
Polynomial knots: trefoil | t*/4 —¢2 |, figure-8 | t°/7 — 4t
t5/10 — ¢ t7/32 — 3

Spirals: logarithmic r = e, r = 6° (Archimedes’ ¢ = 1, Fermat’s ¢ = %,
Cotes’ ¢ = —%, hyperbolic ¢ = —1)

Surfaces

. Sphere S: simply connected, compact, constant positive curvature. Latitude-

COS U COS U 10
longitude map | cosusinv |, g = <O cos? u>
sinw
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. Quadrics:
U+ v a COS U COS U
Hyperbolic paraboloid: | v — v |, Ellipsoid: | bcoswusinv
U csinu
tanwu coswv sec 1 cos v
Hyperboloid of two sheets: | tanwusinwv |, of one sheet: | secusinv | or
secu tanu
cosu —sinu
sinu | +v | cosu | (aruled surface).
0 1

Monkey saddle: (u,v,u?® — 3v%u).
Klein quartic 23y + 33z + 23z = 0.

. Graphs of functions: orientable (one chart).
Implicit graphs: {z € R™ : f(x) = 0}, the boundary of the manifold
{z eR™: f(z) > 0}. Its tangent hyper-plane is Vf(a) - (z —a) = 0.

cos T
cosy’

Example: Scherk surface: log the only graph that is a minimal sur-
face.
sin z = sinh z sinh y, a minimal surface.

Fermat surface " + y™ = 2™.

cosu(2 + cosv)

. Torus T: compact, flat; | sinu(2+cosv) |, thus S x S = T2. More
sinv

generally, nT of genus n, y = 2 — 2n.

cos(2u) cos(v)
. Projective space RP? : cos(2u) sin(v) ;
1(1+ 3sin(2u) — sin(2v) + sin(2u) sin(2v))
compact, non-orientable, x = 1, metric d(z,y) = arccos m, constant
positive curvature, geodesics are great circles; any two lines intersect in
one point; isotropic, homogeneous; acted upon by O(n + 1)/0(1).
cos(2u)(2 + vsinu)
Mébius Strip: | sin(2u)(2 +vsinu) |, -1 <v<1,0<u < 7.
VCOS U

More generally, nP, x =2 —n; RP", x =n + 1.

cos(2u)(cos usinv — sin usin(2v) + 2)
Klein bottle 2P: | sin(2u)(cosusinv — sinusin(2v) + 2)

sin u sinv + cos u sin(2v)

. Addition of curves: r1(u) + r2(v).

. Ruled surfaces: 71(u) + vrz(u); have negative curvature x < 0, flat iff
‘developable’, i.e., can be reparametrized so 745 € [r}, r2].

(a) Cylinders r(u) + va (flat);
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10.

(b) Cones vr(u) (flat);
) Tangent surface: r(u) + vt(u) (flat);

—~
(«]

(d) Normal surface: r(u) 4+ vn(u); if lengths of curve and perpendicular
line are a and b then area is ab.
VCOS U
Example: Helicoid [ vsinu |, only ruled surface that is minimal (ex-
u
cept plane); genus 0.

Tubular surface: r(u)+e(n(u) cosv+b(u)sinv). Area equals 2me x length.

r(u) cosv 'roND
Surfaces of Revolution: | r(u)sinv |; g = L4ri(? 0 5 ). Pap-
u 0 r(u)
pus: Area equals 21 fOL r(s)ds. So are Liouville surfaces. Geodesics satisfy
rcosf = c.

Example: Tractroid r(u) = e, has constant negative curvature.
Catenoid: (coshucosv, coshusinv,u), the only surface of revolution that
is a minimal surface; has total curvature —4x, genus 0; the only embedded
minimal surface in R? with finite topology and two ends.

f(u)cosv
More generally | g(u)sinv
u

u(l —u?/3 + v?)
Enneper’s surface: | v(1 —v?/3 +u?) |; a minimal surface; total curva-
2 2
u® — v
ture —47; genus 0, one end.
There are many more examples of minimal surfaces.

Lie Groups

1. R™, group of translations: abelian; exp(v) = v; the dual of R™ is R™.

A T o

R*™ group of scalings: exp(v) = (e¥); 2" connected components; 1-
component is R™. The dual of R* has measure dz/x.

S: exp(it) = cost + isint.
S3: exp(w) = cos |w| + sin |w|; center is { £1}.
Tori, T”, with pointwise multiplication; abelian; x = 0.

Unit Hyperbola: +(cosht,sinh¢) with product (y1) * (32) == (315274%2).

exp(jt) = cosht + jsinht, where j2 = 1.


http://www.math.umass.edu/~bill/papers/examples-print.pdf
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7.

Matrix Groups

(a)

GL(R™) General Linear group, the linear automorphisms of R™:
preserve linearity;
— dimension = n?;
~exp(Ad) =et =3 %A"; Lie algebra is M, (R);
— conjugacy classes are represented by real Jordan forms; — 2 con-
nected components; 1-component is GL™ (n) (det > 0);
+

6L = {GL+(n) x {£1}, nodd

GL™(n) x{I,P}, mn even
is not a matrix group.
— center is Z = R*, and GL(n)/Z =: PGL(n);
— not compact, maximal compact subgroups are Og(n), with ¢ pos-
itive definite (since it has a Haar measure and hence an invariant
inner product (z,y) = [, (9, gy) dg); polar decomposition.

: the universal cover of GL™ (n)

GL(C"™): preserve AJ = JA, J = (? _OI);

— dimension = 2n?; connected;
— conjugacy classes are represented by Jordan forms;

— embedded in GL(R?") via A +iB (A 73); contains GL(R™) as

B A
A0, S S AW
(0 0), center is C*, (M N ),
— not compact, maximal compact subgroups are Ug(n

).
GL(H"™): preserve J (where j(u+jv) = —v+ju, (u+jv)j = —v+ju =
j(u +j’U)); and AJ; = J;A (Wlth JoJ1 = —J1J2)
(Note: det(AB) # det Adet B, tr(AB) # tr(BA), but (AB)* =
B*A* is true);
— dimension 4n?;

~ embedded in GL(C?"), by A+ jB (5 ‘f) (since Ajv = jAv).

— A = Re® with R € USp(n), S = S*; so GL(H") is diffeomorphic to
USp(n) x R*(2n—1),

SL* (R™) Special Linear group, with det A = +1; shear matrices,
preserve volume;

— dimension n? — 1;

— Lie algebra is of traceless matrices (semi-simple);

— 2 connected components; 1-component is SL(R™) (= ker det, a level
surface)

— not compact; maximal compact subgroups are SOq(n);

— there is a semi-norm ||T| := In(||T||||T~!||) with zero set being
O(R™);

— it is the commutator subgroup [GL(R™), GL(R™)]; GL(R™)/SL(R™) =
R>;

— center is SZ(R™) = {I} or {£I}; SL(R™)/SZ(R™) =: PSL(R™);
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10.

11.

universal cover of SL(R") is not a matrix group; SL(R?") contains
Sp(R*");.

— For SL(R™), by polar decomposition A = efef with B, R anti/symmetric

traceless (dimensions ("7') — 1, (1)).

— SL(R?) of Mébius transformations consists of classes of rotation-
like, shear-like, and inversion-like matrices (depending on their trace);
the modular group PSL(2,Z) is generated by z — —1/z and z — z+1;
contains discrete subgroups (Fuchsian groups): the non-uniform lat-
tice SL(2,Z), other subgroups I'(N) with A = =1 mod N, e.g. I'(2) &
S3. More generally many groups (the semi-simple algebraic groups
over a local field) G(R) contain an arithmetic group G(Z); all lat-
tices in SL(n) are arithmetic (Margulis). SL(R?) is homeomorphic
to St x R? (Iwasawa).

(b) SL(C™):
— dimension 2n2 — 2;
— simply connected; not compact, maximal compact subgroups are
SUq(n);
— polar decomposition, A = e
(each dimension n? — 1);
— center is C,, = { e2™*¥/™}; SL(C*) covers SO(CY).
— PGL(C?) = PSL(C?) is the group of Mobius transformations (au-
tomorphisms of Riemann sphere); elements are either (i) parabolic,
i.e., translations with a + d = 2, have one fixed point, or (ii) elliptic
(rotations) with —2 < a +d < 2, two fixed points, or (iii) hyperbolic
(scaling) |a + d| > 2, or (iv) loxodromic (scaled rotation) with a + d
complex, two fixed points.

(c) SL(H") = SL(C?") N GL(H").

RetS with R, S self-adjoint, traceless

CO(n) Conformal group: O(n) with scalings, preserve angles;
O(n) x R*, n odd,

- CO(n) =

() O(n) x R*, n even

— CO(2) & S?%, CO(3) includes inversion as well.

. CSO(n) = SO(n) x R*.

Og(n)={A: A*QA = Q} for a quadratic form Q;

— Lie algebra is sog(n) = {A: A*Q+QA =0} (Proof: %(A(t)*QA(t)) =
A*Q + QA for A(t) = e'h);

— has subgroup SOg(n), and its 1-component sog(n).

— the subgroups Og(n) with @ positive definite, form one conjugacy class
in GL(V');

— The Clifford group {a € CI(V,Q) : aVa*~" C V}; it contains the
subgroup of rotors Ping(V) = {r: 7*r = 1}, which covers Og(V), and its
subgroup Sping (V) = {a € Ping(V) : det = 1}, which covers SOE(V).

O(n) Orthogonal group: preserves norm/inner-product, have orthonor-
mal columns/rows;
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12.

— dimension (g),

— Lie algebra is set of skew-adjoint matrices (semi-simple);

— 2 connected components, compact;

— universal cover is Pin(n) (for n > 2); the center is 1 for n odd, £1 for n
even;

— conjugacy classes consist of matrices with a number of 1s, —1s, and Rys
(0 < 6 < 7), hence a product of n reflections at most; every 2 x 2 rotation
is the product of two reflections Ry = (Ry/2P)(PRg/2);

—has O(n — 1) as subgroup, e.g. (‘3 (1)), O(n)/0O(n—1) = S™ as manifolds.

SO(n), the 1-component of O(n), path-connected via e‘4; consists of 2D-

rotations and possibly I; hence the maximal torus is T!"/2;

—for n odd, SO(n) is simple; for n even, SO(n) has largest normal subgroup
{+1} (except SO(4) which also has S? and S%);

— acts transitively on S*~! with stabilizer group at a point being SO(n—1),
so SO(n)/SO(n — 1) = S"~1;

— its universal cover is Spin(n) for n > 2, with center Zs if n is odd, Z4 if
n =2 (mod 4), Z3 if n =0 (mod 4) .

The lattices (discrete/finite subgroups) of O(n) generated by reflections
are the Coxeter groups. A rotation/reflection in such a subgroup can
be represented by an integer matrix such that A" = I; if r = [, pf,
the first dimension which allows such a rotation/reflection is >, ¥ (pF)
where ¢ (pF) = (pF — p¥™) (and ¥(2) = 0) (so the dimension is even). —
SO(2) = S! (via Ry ~ €%); contains all cyclic groups C,,; dual of St is Z.
SO(3); consists of rotations cos 81+ (1—cos #)aa*+sin fax, where a is the
axis vector; = RP? (solid ball with antipodes identified); the irreducible

representations of SO(3) are the n+1 symmetric spinors 14 - - - ¢py (A,..., B =

0,1). Spin(3) = S? = USp(1) acts on SO(3) (by unit non-real quaternion
x acting on vectors zvr~1).

Banach-Tarski: SO(3) contains the free subgroup generated by two rota-
tions P (through arccos(1/3) in zy plane), @ (through arccos(1/3) in yz
plane), acting on S?; the fixed points are countable, divide the rest into
orbits M, and let X, := {wbx : Ib,x € M }; then M = X, UaX,-1 =
Xy UbX,-1, even though all these sets are as large as M.

Spin(4) = S x $? (via v — quF, with ¢,7 non-real unit quaternions),

Spin(5) 22 USp(2), Spin(6) = SU(4).

O(p, q) := O(RPT%); O(p,q) = O(q, p); O(3,1) is called the Lorentz group;
— dimension (g),

— Lie algebra is semi-simple

— 4 connected components; 1-component is SO+(p, q);

— not compact; maximal compact subgroup is O(p) x O(q).

— universal cover is Pin(p,q); for n odd, Spin(n,1) = SL(C"*t1/2)  via
A = Aupolipiotnr, guw = €aceppr; hence Xa = eapX?B, VMXA =
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13.

14.

0, XA + T4, X5, Vyeap =0, Vyohp = 0.

(a) Sp(R?"), Symplectic group: preserve skew-symmetric form € =

(_OI é), ATQA = Q (so a subgroup of SL(2n)); generated by the

subgroup (‘g AQT) (A € GL(n)), the subgroup ((I] 1?) (A > 0), and

J. (A B 1 /D —o\".
> \C D “ \-B A ’
— dimension (2";'1); connected;
A B

— Lie algebra: AQ + QAT =0, (C —AT>’ BT =B,C" =C,
— not compact; the unique compact real group is USp(R?"); maximal
compact subgroup is U(n)
— center is +1I; — polar decomposition A = Re® with R € U(n),
S € sp(R™), S* = 5, diagonalization A = P; D P, where D is diagonal
(with A;, A\;') and P; orthogonal.

(b) Sp(C*"):
— simply connected;
— A = Re® with R € USp(n,C), S € sp(n,C), S*

=S5.
— maximal torus consists of diagonal matrices (’3 X*),
— not compact; maximal compact subgroup is USp(n).
(¢) Sp(p.q) :==Sp(C*"*) N U(p, q).
U(C") Unitary group: preserve the inner-product on C*, U*U =1, i.e.,

(é _01) and (_01 é) ldet A| = 1; U(n) = O(2n) N Sp(R2") = O(2n) N

GL(C"™) (by embedding of GL(C™));

— Lie algebra u(n) is not a complex Lie algebra,

— dimension n?; connected (via diagonal matrices (e*)), compact;

— diffeomorphic to SU(n) x St;

— center is e'®; maximal torus is T", consisting of the diagonal unitaries;
conjugacy classes are classified by the spectra, i.e., , n-subsets of e'¥;

— there is an outer automorphism A — A for n > 3;

— U(n) contains O(n); U(1) = O(2);

_ibF 7
— U(2) consists of matrices (Z ea b) = (Z ab) ((1) 699) = Rap) Fo;-

SU(C™): have det = 1,

— simply connected; Lie algebra is semi-simple;

— dimension n? — 1,

— maximal torus consists of diagonal elements;

— contains O(R™), USp(n), and SU(m) x SU(n —m) x U(1);

—SU(2) = S 2 USp(1) (for (z,w) € S? (ie., |2]* + |w]? = 1), (z,w) —
R(. ) (the latitudes ¢ = ¢ correspond to tr A = 2¢; longitudes to diagonal
matrices in SU(2)).
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15.

16.

17.

USp(n) = U(H"™): preserve inner-product of H", (q1u, g2v) = q1(u, v)go
(extends the ip of C?", so preserves complex inner-product and acts on
unit sphere in H");

— USp(n) = GL(H™) N U(C?") = Sp(C?"*) N U(C?") = GL(H") N SU(C?");
— dimension (2"2"r 1); Lie algebra is semi-simple;

— simply connected, compact;

— maximal torus of diagonal elements;

— contains O(n), USp(n — 1), and U(n); USp(1) = S?;

— USp(n) € SU(2n) C U(2n) N SO(4n) C O(4n)

Affine(n): GL(n) x R™ with (A, a) % (B,b) = (AB,a + Ab);
— dimension n(n + 1);

— embedded in GL(n+ 1) as (13 ‘11

version, e.g. Affine™ (n), CO(n) x R™, with scaling.
— Affine(1) is solvable but not nilpotent, not unimodular.

); every subgroup of GL(n) has an affine

— Euclidean group E(n) := O(n) x R", isometries of R": translations,
rotations, reflections/inversions, glides, screws;

— dimension (";1);
— 1-component of the orientation-preserving isometries E* (n) (= SO(n) x

R™, screws).

IUT(R™) of invertible upper triangular matrices.
— dimension ("JQFI)

— Lie algebra of upper triangular matrices;

— 2™ connected components, according to sign of diagonal elements; 1-
component is [lUT™ (n) with positive diagonal;

— solvable; (Lie) any simply connected solvable Lie group is embedded in
IUT(n).

— IUT1(R™) of unipotent matrices, with 1s on the main diagonal;

— dimension (})

— nilpotent; any simply connected nilpotent Lie group is embedded in it.
1u’ a

— contains the Heisenberg group H, of matrices (0 I_r v), of dimension
00' 1

2n — 3; simply connected.
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A non-exhaustive list of the first few connected Lie groups (bold = simple):

Dimension  Group

0 {I} =S0(1) = SU(1) = SL(1) = SL(C) = SO(C)
1 R ~ Rt == GL*(1) = CSO(1) = SOT(1,1) =
IUT1(2)
St =R/Z = U(1) = SO(2) = Spin(2)
2 R? T2, TxR = C* = GL(C) = R* xS! 2 SO(C?)
AFFE(1) =Rt xR
3 R3 T3, T2 x R, T x R?
E*(2)
S? =~ USp(1) = SU(2) = Spin(3)
SO(3) = PSU(2), covered by S3
SL(2) = Sp(R?) = SU(1,1) = Spin™(1,2)
SO7(1,2) in Spin™(1,2) covered by SL(2)
H, = IUT,(3)
IUT(2)
4 R4 T T3 xR, ...
GL™(2)
H* = GL(H)
U(2)
5 R® T3, T* x R,...
H,
6 RS TS, T5 x R, ...
AFF(2)
E*(3)
IUT(3)
IUT,(4)
SL(C?) =~ Sp(C?)
SO(C?) 2~ PSL(C?) 2 SOt (1, 3)
SO(4) covered by SU(2) x SU(2) = Spin(4)
SO(2,2)
7 R7 T7, T6 x R, ...
Hsy
8 R® TS, T7 x R, ...
GL(C?)
SL(3)
SU(3)
SU(1,2)
9 R? T, TS x R, ...
GL™(3)
U(3)
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Dimension

10

11

12

13

14

15

16

17

18

19

20

Group

T, T9 x R, ...

= Spin(5)

T TR, ...
T2, TH xR, ...

covered by SL(C?)?
T8, T2 X R, ...

T, T8 xR, ...

subgroup of O(7), contains O(3)
5, T4 X R, ...

= Spin(6)

TG, TS x R, ...

TY7, T6 x R, ...
T8, TV x R, ...
T, T8 x R, ...
T20, T x R, ...

covers SO(C?®)
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Exceptional Groups:
Gy contains O(3), SU(3), and USp(1)
F4 contains O(9) and USp(4)
E¢ contains O(10) and SU(6)
E~ contains O(12) and SU(8)
Es contains O(16)
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