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1 Matrices

1.1 Definition

A matrix is a rectangular array of numbers, arranged in rows and columns.

A =











a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

...
. . .

am1 . . . amn











We write the array in short as [aij ] with i and j denoting the indices for
the rows and columns respectively.

We say that a matrix with m rows and n columns is of size m × n. An
m × n matrix has mn elements.

If m = n the matrix is called a square matrix. A matrix with just one
column is called a vector while one with just one row is called a covector or
row vector. A 1 × 1 matrix is called a scalar and is simply a number.

Examples:

a 2 × 3 matrix,

(

1 2 3
4 5 6

)

; a 2 × 2 square matrix,

(

−1 1
2 4

)

;

a vector,





2
−1
0



 ; a row vector,
(

5 2
)

; a scalar, 9.

1.2 Equality of Matrices

Two matrices are equal when all their respective elements are equal.

A = B when aij = bij for all i, j.

Note that for this to make sense, the size of the matrices must be the
same.

Example:
(

1 2
3 4

)

6=

(

1 2
3 5

)

.
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1.3 Addition

The addition of two matrices is defined by

[aij ] + [bij ] = [aij + bij ]

Example:




1 2
3 5
4 3



 +





3 4
1 5
2 2



 =





1 + 3 2 + 4
3 + 1 5 + 5
4 + 2 3 + 2





=





4 6
4 10
6 5





Note that it is not possible to add matrices together if they are of different
sizes.

It does not matter which order the matrices are added i.e. A+B = B+A.

1.4 Multiplication by Scalars

A matrix can be multiplied by a number (scalar),

λ[aij ] = [λaij ].

Example:

2

(

1 2
−2 4

)

=

(

2 × 1 2 × 2
2 ×−2 2 × 4

)

=

(

2 4
−4 8

)

1.5 Multiplication of Matrices

Multiplication of matrices is defined by

AB = [aij ][bjk] = [
∑

j

aijbjk].

Example:

(

1 2 −1
3 −2 0

)





1
−1
2



 =

(

1 × 1 + 2 ×−1 + −1 × 2
3 × 1 + −2 ×−1 + 0 × 2

)

=

(

−3
5

)

,

(

1 2 3
4 5 6

)





0 −1
1 1
2 3



 =

(

8 10
17 19

)

.
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Note that matrices must be compatible for multiplication, i.e. the number
of columns of the first matrix must equal the number of rows of the second
matrix. In general, an l ×m matrix multiplied by an m× n matrix gives an
l × n matrix.

The usual dot product of vectors can also be expressed as matrix multi-
plication:

(

1 0 2
)





−1
2
3



 = 1 ×−1 + 0 × 2 + 2 × 3 = 5.

The following multiplication of vectors gives a very different result:




−1
2
3





(

1 0 2
)

=





−1 0 −2
2 0 4
3 0 6



 .

From this example it follows that the order in which we multiply matrices
is important. This may be true even for square matrices:

(

1 2
3 4

) (

2 1
4 3

)

=

(

10 7
22 15

)

,

(

2 1
4 3

) (

1 2
3 4

)

=

(

5 8
13 20

)

.

In general, AB 6= BA.

1.6 Zero Matrix

The zero matrix, 0, is defined as that matrix with zero elements, [0].
Example: The 2 × 3 zero matrix is

(

0 0 0
0 0 0

)

.

There are zero matrices of any size.
When the matrices are compatible, 0+A = A and 0A = 0; also 0A = 0.

What’s written symbolically here could be a reference to the following three
operations:





0 0
0 0
0 0



 +





1 2
−1 2
0 3



 =





1 2
−1 2
0 3



 ;

(

0 0 0
0 0 0

)





1 2
−1 2
0 3



 =

(

0 0
0 0

)

;

0





1 2
−1 2
0 3



 =





0 0
0 0
0 0



 .
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1.7 Identity Matrix

The identity matrix, I, is the square matrix,











1 0 0 . . .
0 1 0 . . .
0 0 1 . . .
...

. . .











.

It can be written in short as I = [δij ] where

δij =

{

1 when i = j

0 when i 6= j
,

is called the Kronecker delta.
It is easy to check that for compatible matrices IA = A; AI = A.

1.8 Transpose

The transpose of a matrix is that matrix, written A⊤, obtained by inter-
changing the rows and columns,

[aij ]
⊤ = [aji].

Example:
(

1 0 2
4 2 −1

)⊤

=





1 4
0 2
2 −1





An m × n matrix becomes an n × m matrix. In particular the transpose
of a vector is a covector and vice versa.

Some properties of the transpose:

(λA)⊤ = λA⊤, (A + B)⊤ = A⊤ + B⊤,

(A⊤)⊤ = A, (AB)⊤ = B⊤A⊤.

1.9 Simultaneous Linear Equations

If we multiply out the following two matrices, we get

(

2 3
)

(

x
y

)

= 2x + 3y.
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This means that we can write an equation such as 5x − 2y = 3 as

(

5 −2
)

(

x
y

)

= 3.

Moreover if we have two simultaneous equations of the same type we can
combine them in matrix notation:

5x − 2y = 3
2x + y = −1

becomes
(

5 −2
2 1

) (

x
y

)

=

(

3
−1

)

.

This idea of transforming simultaneous equations into matrix equations
can be generalized to any number of variables, not just two.

Example: The equations

2x − 5y + 3z = −1
3y + x − z = 3

3x − 4y + 3z = 1

become the matrix equation





2 −5 3
1 3 −1
3 −4 3









x
y
z



 =





−1
3
1



 .

As long as the equations are linear, that is, only terms like x and y occur
and not terms like x3, sin x, etc., then it will always be possible to write the
equations as a single matrix equation. The number of rows of the matrix
would equal the number of given equations, while the number of columns
equals the number of variables.

We can therefore write a general system of linear equations as

Ax = b,

where x refers to the vector of variables x, y, etc.
If at all possible, we would like to find the values for x, y, . . ., in other

words the vector x, to make the equation true.
In order to proceed, we must look at the simplest matrix equation, one

for which there is only one variable x and the matrix A is of size 1× 1, that
is it is just a scalar.



1.10 Inverses J MUSCAT 6

Example:
5x = 3

To solve this equation, we need to divide both sides of the equation by 5, or
rather multiply both sides by 1/5. Why not multiply with 1/3 or any other
such number? Obviously because doing so only gives us another equation
without telling us directly what x is. Only by multiplying with 1/5 are we
able to eliminate the 5 in front of the unknown x, because 1

5
× 5 = 1 and

1x = x, so that we get x = 3/5.
Repeating the same argument to the matrix A (compare with the 5), we

realize that what we need is another matrix B (compare with the 1/5) such
that BA = I. We call such a matrix the inverse of A and denote it by A−1.
(The notation 1

A
should be avoided, because it suggests 1

AB
= 1

A
1

B
which is

false.)

1.10 Inverses

The inverse of a matrix A is another matrix, denoted by A−1 with the
property that

A−1A = I, AA−1 = I.

(It is not apparent, but true for matrices, that if A−1A = I, then automati-
cally AA−1 = I)

If we are able to find a method which will give us the inverse of a matrix
we would then be able to solve simultaneous equations, even if they had
a thousand variables. (In fact, there are many applications ranging from
predicting the weather to modeling the economy to simulating the shape of
an airplane wing, that require this many variables.)

Ax = b

A−1Ax = A−1b

Ix = A−1b

x = A−1b

Example: By a method that will be done later on, the inverse of the
matrix A shown previously is





2 −5 3
1 3 −1
3 −4 3





−1

=





5 3 −4
−6 −3 5
−13 −7 11



 .

Let us check this.




5 3 −4
−6 −3 5
−13 −7 11









2 −5 3
1 3 −1
3 −4 3



 =





1 0 0
0 1 0
0 0 1
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Therefore the solution of the simultaneous equations shown above is

x = A−1b =





5 3 −4
−6 −3 5
−13 −7 11









−1
3
1



 =





0
2
3



 .

For which matrices is it possible to find an inverse? Non-square ma-

trices do not have an inverse. How do we know this? Suppose we have
an m × n matrix A. From the requirement that A−1A = I we see that the
number of columns of A, which is n, is the same as that of I. We also have
the requirement that AA−1 = I. This means that the number of rows of A,
which is m, must equal that of the identity matrix. But the identity matrix
is square, therefore m = n.

Even if a matrix is square, it does not necessarily mean that it has an in-
verse. Some matrices are analogous to the number 0, for which the reciprocal
1/0 does not make sense. In the next section we will find ways of determining
which matrices are invertible and if they are, how to find the inverse.

The inverses of matrices obey certain laws:

• (A−1)−1 = A How do we know this? Let B = A−1. We want to show
that B−1 = A, that is, that the inverse of the matrix B is nothing else
but the original matrix A. To show this, all we need is to show that
BA = I which is true.

• (AB)−1 = B−1A−1. We can show this by multiplying out

B−1A−1AB = B−1IB = I

Hence the inverse of AB is B−1A−1.
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1.11 Exercises

1. Let

A =

(

1 −2 3
0 −2 5

)

; B =

(

−2 0 −1
4 −6 −3

)

.

If possible find the following: 3A, A + B, 3A− 2B, AB.

2. If A is a matrix of size 3 × 5, which of the following may be true?

(a) AB has 3 rows and B has 5 columns;

(b) B has 5 rows and AB has 3 rows;

(c) BA has 5 columns and B has 3 rows;

(d) B has 3 columns and BA has 5 columns.

3. Find a matrix C such that the following sum is the zero matrix:

3





1 2 0
−2 3 4
6 −2 1



 − 4





0 2 1
0 1 −1
3 1 0



 + 2C

4. Perform the following matrix multiplications if possible,





−5 6
1 0
1 3





(

7 1 4
3 2 1

)

,

(

2 −3 5
5 1 9

) (

3
1

)

.

5. Without doing any calculations, find the inverse of the matrix





2 0 0
0 −1 0
0 0 4



 .

6. If we want to define A2 by AA, on what type of matrices would such
a definition make sense?

Let

A =

(

3 2
−1 0

)

.

Find A2 and A3.
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7. Suppose we take some functions of x and apply their McLaurin series
to matrices:

eA = I + A +
1

2!
A2 +

1

3!
A3 + . . . ,

(I + A)−1 = I −A + A2 − A3 + . . . .

By considering the matrix A =

(

0.1 0.2
−0.1 0.3

)

, find approximations for

eA, e−A and (I + A)−1 by calculating the first few terms in the series.
Check whether

(a) (I + A)−1 is indeed the inverse of I + A;

(b) e−A is the inverse of eA.

2 Gaussian Elimination

Our aim in this chapter is to describe a method for solving simultaneous
equations of the type Ax = b for any number of variables, and also to find
a method for calculating the inverse of a matrix A when possible.

Before we learn how to run, let us consider how we normally solve simul-
taneous equations with two or three variables.

2.0.1 Example

Consider the simultaneous equations

2x + 3y = 4
5x − y = −7.

Our usual method is to multiply both equations by different multiples in such
a way that one of the variables can be eliminated by subtraction. In other
words, multiplying the first equation by 5 and the second by 2, we get

10x + 15y = 20
10x − 2y = −14.

Subtracting the first equation from the second we get

10x + 15y = 20
− 17y = −34.

Once the variable x has been eliminated from the second equation we can
solve it directly to get y = 2. Substituting into the first equation we then
get 10x + 30 = 20 which implies that x = −1.
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Let us rewrite this example using matrix notation so that the procedure
becomes clearer.

(

2 3
5 −1

) (

x
y

)

=

(

4
−7

)

(

10 15
10 −2

) (

x
y

)

=

(

20
−14

)

(

10 15
0 −17

) (

x
y

)

=

(

20
−34

)

The steps that we have taken in solving the equations become simple
operations on the rows of the matrix. In particular, we have multiplied
whole rows by scalars, and we have subtracted away a whole row from a
whole row, including the vector b.

Let us take another example, this time involving three variables. We will
write the equations in matrix form on the right hand side for comparison.

2x + 3y − 4z = −4
x − y + 3z = 8
3x + y − 2z = −1

,





2 3 −4
1 −1 3
3 1 −2









x
y
z



 =





−4
8
−1



 .

To simplify things slightly, we will switch round the first and second rows.
Obviously this does not make the slightest difference to the solution.

x − y + 3z = 8
2x + 3y − 4z = −4
3x + y − 2z = −1

,





1 −1 3
2 3 −4
3 1 −2









x
y
z



 =





8
−4
−1



 .

We can eliminate the x variable from the second and third equation by sub-
tracting 2 times the first row and 3 times the first row respectively.

x − y + 3z = 8
5y − 10z = −20
4y − 11z = −25

,





1 −1 3
0 5 −10
0 4 −11









x
y
z



 =





8
−20
−25



 .

The second equation simplifies to

x − y + 3z = 8
y − 2z = −4

4y − 11z = −25
,





1 −1 3
0 1 −2
0 4 −11









x
y
z



 =





8
−4
−25



 ,

and now we can eliminate the y variable from the third equation by subtract-
ing away 4 times the second equation,

x − y + 3z = 8
y − 2z = −4
−3z = −9

,





1 −1 3
0 1 −2
0 0 −3









x
y
z



 =





8
−4
−9



 .
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This gives us that z = 3 and we can therefore substitute back into the second
equation to get y − 2× 3 = −4 which gives y = 2. Substituting into the first
equation gives x − 2 + 3 × 3 = 8 i.e. x = 1.

We will try to use these two examples to find a general method of solving
any number of simultaneous linear equations. We notice that we have used
three rules throughout:

1. We can multiply an equation by any number (except 0 of course!);
2. We can add/subtract an equation to another equation;
3. We can switch any two equations.
We have used these three rules to eliminate x from all the subsequent

equations, then to eliminate y from the rest of the equations, and so on until
we reach the last equation in which only one variable remains i.e. a value for
it is found. Substituting back into the previous equation solves for the other
variables.

It is clearer to work with matrices when a large number of variables are
involved, and we will adapt our rules and method for this case.

2.1 Preliminary Method

Rules Given a matrix equation, we can apply the following row operations

to the rows without changing the solution:

1. Multiply a row with a non-zero scalar;

2. Add/subtract a row to another row;

3. Switch two rows.

Method Using the three operations listed above, we will try to bring the
lower left corner of the matrix into zeros.

In what follows, we will simplify the notation slightly by not writing the
vector x and replacing it with a vertical line.

2.1.1 Example





2 −2 6 2
4 −3 14 −22
−9 6 −32 50





First simplify the first row by dividing by 2,

⇒





1 −1 3 1
4 −3 14 −22
−9 6 −32 50



 ,
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then eliminate the 4 in the second row, by subtracting 4 times the first row
from the second, and eliminate the −9 in the third row by adding 9 times
the first row to the third,

⇒





1 −1 3 1
0 1 2 −26
0 −3 −5 59



 .

Next we use the second row to eliminate the −3 of the third row by adding
3 times the second row to the third,

⇒





1 −1 3 1
0 1 2 −26
0 0 1 −19



 .

At this stage we have achieved our aim of reducing the left-bottom corner of
the matrix to zeros (i.e. we have done the necessary eliminations), and we
can therefore write out the equations in their normal form and solve for x, y
and z. However we can keep on applying the same rules to eliminate the −1
and 3 in the first row and the 2 in the second.

Adding the second row to the first eliminates the −1 of the first row:

⇒





1 0 5 −25
0 1 2 −26
0 0 1 −19



 .

Similarly subtracting 5 times the third row from the first and subtracting 2
times the third row from the second gives,

⇒





1 0 0 70
0 1 0 12
0 0 1 −19



 ,

which can be expanded to x = 70, y = 12 and z = −19.

2.1.2 Example

Let us take another example, writing out the working with a minimum of
words,

x + y − 3z = 10
x − 3y = 7

−9x + 28z = −65
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which, when written in matrix form, become





1 1 −3 10
1 0 −3 7
−9 0 28 −65



 ,

⇒ row2 − row1

row3 + 9row1





1 1 −3 10
0 −1 0 −3
0 9 1 25



 ,

⇒
row3 + 9row2





1 1 −3 10
0 −1 0 −3
0 0 1 −2



 ,

⇒ −row2





1 1 −3 10
0 1 0 3
0 0 1 −2



 ,

⇒
row1 − row2





1 0 −3 7
0 1 0 3
0 0 1 −2



 ,

⇒
row1 + 3row3





1 0 0 1
0 1 0 3
0 0 1 −2



 .

That is, x = 1, y = 3 and z = −2.

2.2 What can go wrong

Let us do a few examples where the outcome is not exactly as above:

2.2.1 Example





0 −1 1 10
3 6 2 −23
−7 2 −6 11



 .

For this example, we cannot even start the elimination process because there
is a zero in the key position. However we can apply the rule of switching the
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first and the second row to bring a non-zero number at the beginning of the
first row.





3 6 2 −23
0 −1 1 10
−7 2 −6 11





⇒ −row2

3row3





3 6 2 −23
0 1 −1 −10

−21 6 −18 33



 ,

⇒
row3 + 7row1





3 6 2 −23
0 1 −1 −10
0 48 −4 −128



 ,

⇒
1

4
row3





3 6 2 −23
0 1 −1 −10
0 12 −1 −32



 ,

⇒
row3 − 12row2





3 6 2 −23
0 1 −1 −10
0 0 11 88



 ,

⇒
row1 − 6row2

1

11
row3





3 0 8 37
0 1 −1 −10
0 0 1 8



 ,

⇒
row1 − 8row3

row2 + row3





3 0 0 −27
0 1 0 −2
0 0 1 8



 ,

which yields the solution x = −3, y = −2 and z = 8.

2.2.2 Example

In this example we end up with a final row of zeros.





3 −12 −18 21
7 −27 −41 48
9 −45 −63 72





⇒

1

3
row1

1

9
row3





1 −4 −6 7
7 −27 −41 48
1 −5 −7 8



 ,

⇒ row2 − 7row1

row3 − row1





1 −4 −6 7
0 1 1 −1
0 −1 −1 1





⇒
row3 + row2





1 −4 −6 7
0 1 1 −1
0 0 0 0



 .
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The last equation has simply evaporated away and we have ended up with
just two equations. This does not matter, and we can at least eliminate the
−4 in the first row by adding 4 times the second row to it:

⇒
row1 + 4row2





1 0 −2 3
0 1 1 −1
0 0 0 0



 .

We cannot do any other row operation to these equations without destroying
some of the zeros. If we translate these equations back into long form we get,

x −2z = 3
y +z = −1

0 = 0
.

which gives the “solution” x = 3 +2z, y = −1− z and there is no restriction
on z. That is, putting any number instead of z gives a valid solution. We
can write these solutions as





x
y
z



 =





3 + 2α
−1 − α

α



 ,

where we have assigned the arbitrary value α to z.

Apply row operations to the following equations





3 −12 −18 21
7 −27 −41 48
9 −45 −63 81



 ,

and show that they reduce to the equations





1 0 −2 3
0 1 1 −1
0 0 0 1



 .

In this case the last equation is impossible to achieve — there are no values
for x, y and z which can possibly make 0 = 1, and so there are no solutions.
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2.2.3 Example





1 5 −3 −1
2 10 −4 2
−1 −5 6 7





⇒ row2 − 2row1

row3 + row1





1 5 −3 −1
0 0 2 4
0 0 3 6



 ,

⇒ 1

2
row2

1

3
row3





1 5 −3 −1
0 0 1 2
0 0 1 2



 ,

⇒
row1 + 3row2

row3 − row2





1 5 0 5
0 0 1 2
0 0 0 0



 .

In this example there are two zeros on the diagonal, and we cannot reduce
the matrix any further. The equations written in full are

x + 5y = 5
z = 2
0 = 0

.

Therefore we have to take z = 2 but we can assign any value to y say y = α
and then x = 5 − 5α. The solution is therefore,





x
y
z



 =





5 − 5α
α
2



 .

Notice that had the last element of b turned out to be non-zero, then it
would have been impossible to satisfy the third equation, and therefore there
would have been no solutions.

2.2.4 Example





3 −5 5 7
18 −30 30 42
−9 15 −15 −39





⇒ 1

6
row2

1

3
row3





3 −5 5 7
3 −5 5 7
−3 5 −5 −13



 ,

⇒ row2 − row1

row3 + row1





3 −5 5 7
0 0 0 0
0 0 0 −6



 .
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The last equation is impossible to solve, and hence there are no solutions.

2.2.5 Example





3 −5 5 | 7
18 −30 30 | 42
−9 15 −15 | −21



 ⇒ row2 − 6row1

row3 + 3row1





3 −5 5 | 7
0 0 0 | 0
0 0 0 | 0



 .

In this case the last two equations are trivial, and we end up with just one
equation 3x − 5y + 5z = 7. This means that we can choose any value for y,
say y = α, and any value for z, say z = β, but then the value for x has to be
x = (7 + 5α − 5β)/3. The solutions are therefore of the type





x
y
z



 =





7

3
+ 5

3
(α − β)
α
β



 .

2.3 Gauss-Jordan Elimination Method

Summarizing the steps taken in the examples above, we deduce the following
method:

For each column, starting from the first,

1. if necessary and if possible, bring a non-zero number to pivot position
by switching rows; this number will be called the pivot of the column;
although not necessary, it is convenient to reduce the pivot to 1 by
dividing its row by the value of the pivot;

2. eliminate each non-zero element in the column above and below the
pivot, by adding or subtracting multiples of the pivot row;

3. repeat for the next column.

It is easy to realize that the end product of such operations will be a
matrix of the following type, called the Gauss echelon form.:











0 · · · 0 1 ∗ · · · 0 ∗ | ∗
0 · · · 0 0 · · · 0 1 ∗ | ∗

0 · · · 0 0 ∗ | ∗
...

...
... | ∗











.

The resulting number of non-zero equations is called the rank of the ma-
trix equation. For most matrices the rank will equal the number of variables
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and the Gauss echelon form will be exactly the same as the identity matrix.
In this case there will be a unique solution to x.

If the rank is less than the number of variables, the difference between
the number of variables and the rank must be made up by a number of rows
of zeros at the bottom. In such a case, there can be

• either many solutions, when the bottom equations are consistent i.e.
of the type 0 = 0;

• or no solutions, when one of the bottom equations is of the inconsis-

tent type 0 = ∗ 6= 0.

2.4 Exercises

Apply the Gauss-Jordan elimination method to solve the following systems
of equations,

1.
2x + 4y = 10
3x + 5y = 13

,

2.
2x + 4y + 6z = 4
4x + 5y + 6z = 5
3x + y − 2z = 0

,

3.
x − 3y + 4z = −5
2x − 5y + 7z = −8

z − y = −2
,

4.
3x + y = 5

x − y + 2z = 5
x + y + z = 6

,

5.
x + 2y + z − w = 4

2x + 3y + 2z − 4w = −2
x + y − 2w = −3

2x + 3y + 5z − 7w = −11

.
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6. Find the value of k for which the following equations do not have a
solution

2x − y + 4z = 3
5z − x = −1

19x − 7y + kz = 26

2.4.1 Simultaneous matrix equations

It is sometimes required to solve several matrix equations simultaneously,
Ax1 = b1, . . .Axn = bn. This system of equations is equivalent to AX = B
where X = [x1x2 . . .xn], and B = [b1 . . .bn]. So one can solve them all at
one go by applying Gaussian elimination to the matrices [A|B].

For example, to solve the three sets of equations

x + 2y = 3
3x + 4y = 1

x + 2y = −1
3x + 4y = 5

x + 2y = 1
3x + 4y = −2

we can put them in compact form
(

1 2 3 −1 1
3 4 1 5 −2

)

and apply row operations to reduce the left-hand matrix to the identity if
possible:

⇒

(

1 2 3 −1 1
0 −2 −8 8 −5

)

⇒

(

1 0 −5 7 −4
0 1 4 −4 5/2

)

The three solutions can then be read off the columns of the right-hand matrix.

2.5 Finding the Inverse

Consider the following matrix multiplication:




1 0 0
0 λ 0
0 0 1









a11 a12 a13

a21 a22 a23

a31 a32 a33



 =





a11 a12 a13

λa21 λa22 λa23

a31 a32 a33



 .

We notice that multiplying a matrix A by the first matrix is the same as
multiplying the second row of A by λ i.e. applying a row operation of the
first type. In fact this is true also of the other row operations, they are all
equivalent to multiplication by particular matrices called elementary row

matrices.



2.5 Finding the Inverse J MUSCAT 20

We have just found that
1. Multiplying a row by a scalar λ is equivalent to multiplying on the left

by the matrix

EI =























1
. . .

1
λ

1
. . .

1























, e.g.





1 0 0
0 1 0
0 0 4





4row3

2. Adding two rows is equivalent to multiplying on the left by the matrix

EII =















1
. . .

1 1
. . .

1















, e.g.





1 0 0
1 1 0
0 0 1



 row1 + row2

3. Switching two rows is equivalent to multiplying on the left by the
matrix

EIII =





































1
. . .

1
0 1

1
. . .

1
1 0

1
. . .





































, e.g.





1 0 0
0 0 1
0 1 0





row2 ↔ row3

Notice that the three matrices can be obtained by applying the respective
row operations to the identity matrix.

Now let us review what the Gauss-Jordan elimination method does using
these matrices for notation. The method applies various row operations to
the equation

Ax = b
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to get
Er . . . E1Ax = Er . . . E1b

until the matrix is reduced to the identity matrix (if possible)

Ix = En . . . E1Ax = En . . . E1b,

which is the same as x = En . . . E1b. But we have already seen in chapter 1
that the solution is x = A−1b when the inverse exists. Combining the two
results we get that

A−1 = En . . . E1.

This means that if we keep track of what row operations we perform on
A, convert them to row matrices and multiply these out in order, we get
precisely the inverse A−1. To avoid having to convert the row operations
into matrices and multiplying, we can simplify things by applying the row
operations directly to the identity matrix, since this would be equivalent
to En . . . E1I. We can compactify the method even further by placing the
matrices A and I side by side and performing row operations to both until
A is reduced to the identity matrix.

We start with
[A|I],

apply row operations to both

[Er . . . E1A|Er . . . E1I],

until we get
[I|A−1].

2.6 Examples

1. Let us find the inverse of




−3 −1 2
1 0 −1
1 4 2



 .

We first put the identity matrix adjacent to it, and continue performing row
operations to both until the given matrix is reduced to the identity matrix,
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as follows:




−3 −1 2 1 0 0
1 0 −1 0 1 0
1 4 2 0 0 1





⇒ 3row2 + row1

3row3 + row1





−3 −1 2 1 0 0
0 −1 −1 1 3 0
0 11 8 1 0 3





⇒
(row1 − row2)/3

(row3 + 11row2)/3





−1 0 1 0 −1 0
0 −1 −1 1 3 0
0 0 −1 4 11 1





⇒
row1 + row3

row2 − row3





−1 0 0 4 10 1
0 −1 0 −3 −8 −1
0 0 −1 4 11 1





⇒
−row1

−row2

−row3





1 0 0 −1 −10 −1
0 1 0 3 8 1
0 0 1 −4 −11 −1





.

The right-hand matrix is therefore the required inverse.

2. Find the inverse of





2 2 1
5 −4 5
4 0 3



.





2 2 1 1 0 0
5 −4 5 0 1 0
4 0 3 0 0 1





⇒ 2row2 − 5row1

row3 − 2row1





2 2 1 1 0 0
0 −18 5 −5 2 0
0 −4 1 −2 0 1





⇒
9row1 + row2

9row3 − 2row2





18 0 14 4 2 0
0 −18 5 −5 2 0
0 0 −1 −8 −4 9





⇒
(row1 + 14row3)/18
(row2 + 5row3)/9





1 0 0 −6 −3 7
0 −2 0 −5 −2 5
0 0 −1 −8 −4 9





⇒ −row2/2
−row3





1 0 0 −6 −3 7
0 1 0 5/2 1 −5/2
0 0 1 8 4 −9



 .

3. Find the inverse of





−2 −2 1
5 5 −2
2 2 5



 .
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−2 −2 1 1 0 0
5 5 −2 0 1 0
2 2 5 0 0 1





⇒ 2row2 + 5row1

row3 + row1





−2 −2 1 1 0 0
0 0 1 5 2 0
0 0 6 1 0 1





⇒
(row1 − row2)/ − 2

row3 − 6row2





1 1 0 2 1 0
0 0 1 5 2 0
0 0 0 −29 −12 1



 .

We cannot reduce the left-hand matrix any further — it is in Gaussian echelon
form. As this is not the identity matrix, it implies that the matrix is not

invertible.

4. Find the inverse of





0 1 4
−1 1 1
−4 2 −3



.





0 1 4 1 0 0
−1 1 1 0 1 0
−4 2 −3 0 0 1





We have to bring a non-zero number in the first pivot, so we switch the first
with the second row.

⇒
row1 ↔ row2





−1 1 1 0 1 0
0 1 4 1 0 0
−4 2 −3 0 0 1





⇒
row3 − 4row1





−1 1 1 0 1 0
0 1 4 1 0 0
0 −2 −7 0 −4 1





⇒
row1 − row2

row3 + 2row2





−1 0 −3 −1 1 0
0 1 4 1 0 0
0 0 1 2 −4 1





⇒
(row1 + 3row3)/ − 1

row2 − 4row2





1 0 0 −5 11 −3
0 1 0 −7 16 −4
0 0 1 2 −4 1



 .

2.7 Exercises

1. Find the inverses of the following matrices

(

2 −3
1 3

)

,





−1 2 −3
2 1 0
4 −2 5



 ,





2 1 −1
0 2 1
5 2 −3







2.8 LU Decomposition J MUSCAT 24





1 3 4
3 −1 6
−1 5 1





2. Solve the following equations by first finding the inverse of a matrix,

3y + 2x − z − 1 = 0
3x + 2z + 5y − 8 = 0
3z − x + 2y − 1 = 0

3. A matrix A is such that A⊤ = −A and I + A is invertible. Show that
(I + A)−1⊤ = (I − A)−1.

2.8 LU Decomposition

Most of the time we do not need to reduce a matrix to its Gaussian form
in order to solve a matrix equation Ax = b. It is enough to perform row
operations that reduce A to an upper-triangular matrix U. To take example
2.1.1 again,





2 −2 6 2
4 −3 14 −22
−9 6 −32 50





⇒





1 −1 3 1
0 1 2 −26
0 0 1 −19



 .

The last equation tells us z = −19, the second is y + 2z = −26, so y =
−26 − 2(−19) = 12, and the first x − y + 3z = 1 so x = 1 + y − 3z =
1 + 12 − 3(−19) = 70. We did not need to perform Gaussian elimination
completely to solve the equation.

To summarize, starting from

Ax = b

we apply row operations

En . . . E1Ax = En . . . E1b

until the left-hand matrix is upper-triangular

Ux = Eb.

At this stage we solve for x by starting with the last row equation, and work
our way to the first row equation.
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If there are many equations of this sort to solve, it makes sense to work out
E once, and apply it to b whenever needed. Recalling that E = En . . . E1I,
and using the trick we used for the inverse, we can find E as follows:

[A|I]

apply row operations
[Er . . . E1A|Er . . . E1I]

until the left-hand side is upper-triangular,

[U|E].

Then, whenever we need to solve Ax = b, we can apply the matrix E on
both sides to get Ux = Eb, which can easily be solved.

For the above example,




2 −2 6 1 0 0
4 −3 14 0 1 0
−9 6 −32 0 0 1





⇒





1 −1 3 1/2 0 0
0 1 2 −2 1 0
0 0 1 −3/2 6 1





It is not a coincidence that E is lower-triangular. If the diagonal of A

has no zeros, there will not be any need to switch rows, so each of the row-
operation matrices Er that are used is lower-triangular. So their product E =
En . . . E1 must also be lower-triangular (convince yourself that the product
of two lower-triangular matrices is again lower-triangular.)

If a diagonal coefficient of U is 0, then there are no (unique) solutions; we
have already encountered such cases in the full Gaussian elimination method.

We can go one step further because it is quite straight-forward to find
the inverse of a lower-triangular matrix. Suppose we try to find a matrix L

such that LE = I for the above example. Let’s find first the top right corner
coefficient of L: since the last column of E is mostly zeros, we get L13E33 = 0,
so L13 = 0. Similarly going through the other coefficients in the upper half
of the matrix L we find that they are all zero – L must be lower-triangular
as well!





a 0 0
b c 0
d e f









1/2 0 0
−2 1 0
−3/2 6 1



 =





1 0 0
0 1 0
0 0 1





To find the other coefficients we can start with the diagonal ones,

a/2 + 0 + 0 = 1, 0 + c + 0 = 1, 0 + 0 + f = 1,
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then the sub-diagonal,

b/2 − 2c + 0 = 0, 0 + e + 6f = 0,

and finally
d/2 − 2e − 3f/2 = 0,

giving in sequence a = 2, c = 1, f = 1, b = 4, e = −6 and d = −21, so

L = E−1 =





2 0 0
4 1 0

−21 −6 1



 .

Note that since EA = En . . . E1A = U, and multiplying by L, we have

A = LU

called appropriately the LU -decomposition of the matrix A into a lower-
triangular and an upper-triangular matrix.

Having reached this stage, it is a simple matter to find the inverse A−1,

A−1 = (LU)−1 = U−1L−1 = U−1E.

Although this is called LU -decomposition, in practice L need not be
computed: only E is needed to solve Ax = b; and to find A−1 we need
to calculate U−1 as well.

2.8.1 Example

Find the inverse of A =





1 0 −1
−3 −1 2
1 4 2



 and solve the equation Ax =





1
1
1



.

Performing row operations on the matrices [A|I] to get [U|E]




1 0 −1 1 0 0
−3 −1 2 0 1 0
1 4 2 0 0 1





⇒





1 0 −1 1 0 0
0 1 1 −3 −1 0
0 0 1 −11 −4 −1



 .

To find the inverse of U, we let




a b c
0 d e
0 0 f









1 0 −1
0 1 1
0 0 1



 =





1 0 0
0 1 0
0 0 1



 .
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Multiplying out the rows and columns, starting with the diagonal elements,
gives a = 1, d = 1 and f = 1; then b = 0 and d + e = 0 so e = −1; and
finally −a + b + c = 0, so c = 1, and

U−1 =





1 0 1
0 1 −1
0 0 1





⇒ A−1 = U−1E

=





1 0 1
0 1 −1
0 0 1









1 0 0
−3 −1 0
−11 −4 −1





=





−10 −4 −1
8 3 1

−11 −4 −1





To solve the equation (without using the inverse), is the same as solving
Ux = Eb, i.e.





1 0 −1
0 1 1
0 0 1



x =





1 0 0
−3 −1 0
−11 −4 −1









1
1
1



 =





1
−4
−16



 ,

which gives z = −16, y + z = −4 and x − z = 1, so that x = −15, y = 12,
z = −16.

3 Determinants

We sometimes need to determine when a matrix is invertible or not. We will
show in this chapter that the following definition of a determinant will do
this job for us.

3.1 Definition

The determinant of an n × n matrix is defined recursively by

det











a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

an1 an2 . . . ann











= a11 det







a22 . . . a2n

...
...

an2 . . . ann






− a21 det







a21 . . . a2n

...
...

an1 . . . ann







+ · · · ± a1n det







a21 . . . a2n−1

...
...

an1 . . . ann−1
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where the signs in front of each sub-determinant alternates between + and
−.

In particular, for a 2 × 2 matrix,

det

(

a b
c d

)

= ad − bc.

3.1.1 Example

The determinants of the following matrices are, using the definition,

det

(

1 2
3 4

)

= 1 × 4 − 2 × 3 = −2

det





1 2 3
4 5 6
7 8 9



 = 1 det

(

5 6
8 9

)

− 2 det

(

4 6
7 9

)

+ 3 det

(

4 5
7 8

)

= (5 × 9 − 6 × 8) − 2(4 × 9 − 6 × 7) + 3(4 × 8 − 5 × 7)
= 0

To simplify the working of a determinant, we can make use of a number
of properties:

3.2 Laplace’s theorem

One can calculate the determinant by expanding along any row or column
as long as we adopt the following signs for the sub-determinants.











+ − + · · ·
− + −
+ − +
...











So in the previous example, we could have expanded along, say, the second
column as follows

det





1 2 3
4 5 6
7 8 9



 = −2 det

(

4 6
7 9

)

+ 5 det

(

1 3
7 9

)

− 8 det

(

1 3
4 6

)

= −2(4 × 9 − 6 × 7) + 5(1 × 9 − 3 × 7) − 8(1 × 6 − 3 × 4)
= 0

One usually uses this property by expanding along a row/column that
has a number of zeros.
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3.3 Properties

The determinant of a triangular matrix is just the product of the diagonal
elements,

det











a11 · · ·
0 a22

...
. . .

. . .
...

0 · · · 0 ann











= a11a22 . . . ann

Example.

det





1 2 3
0 4 5
0 0 6



 = 1 × 4 × 6 = 24

Let us consider, in particular, the elementary row matrices, that is, those
matrices that are equivalent to the row operations of multiplying a row by a
scalar, switching two rows, and adding a row to another:

det EI = det





1 0 0
0 λ 0
0 0 1



 = λ

det EII = det





0 1 0
1 0 0
0 0 1



 = det

(

0 1
1 0

)

= −1

det EIII = det





1 1 0
0 1 0
0 0 1



 = 1

3.3.1 Transpose

det A⊤ = det A

When we transfer the columns of a matrix to rows, its determinant is
unchanged.

3.3.2 Products

detAB = detA detB

More generally, the determinant of a product of any number of matrices,
can be found by multiplying out the determinants of the matrices.

In particular, we can deduce the following sub-properties.
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•
det EIA = λ detA

If we find a common scalar in a whole row (or column), then that scalar
can be taken outside the determinant.

•
det EIIA = − detA

Switching two rows of a matrix changes the sign of its determinant.

•
det EIIIA = detA

Adding a row to another row does not change the determinant at all.

Note that the second property implies that if two rows of a matrix are
identical, then its determinant is zero, since switching the two identical rows
does not change the matrix, but reverses the sign of the determinant.

EIIA = A

− detA = detA

detA = 0

Any of these properties can be used to work out a determinant. We
illustrate this by working out a previous example, this time making full use
of these properties.

3.3.3 Example

det





1 2 3
4 5 6
7 8 9



 = 3 det





1 2 1
4 5 2
7 8 3



 taking 3 outside the 3rd column

= 3 det





1 2 1
0 −3 −2
0 −6 −4



 row2 − 4row1

row3 − 7row1

= 6 det





1 2 1
0 3 2
0 3 2



 taking out -1 and -2 from 2nd and 3rd rows

= 6 det





1 2 1
0 3 2
0 0 0





row3 − row2

= 1 × 3 × 0
= 0
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3.3.4 Example

Similarly,

det





2 4 6
4 5 6
3 1 −2



 = 2 det





1 2 3
4 5 6
3 1 −2





= 2 det





1 2 3
0 −3 −6
0 −5 −11



 row2 − 4row1

row3 − 3row1

= 6 det





1 2 3
0 1 2
0 5 11





= 6 det





1 2 3
0 1 2
0 0 1





row3 − 5row2

= 6

These properties are especially useful when some of the elements of the
matrix are variables.

3.3.5 Example

det





b + c c + a a + b
a b c
1 1 1



 = det





a + b + c a + b + c a + b + c
a b c
1 1 1





row1 + row2

= (a + b + c) det





1 1 1
a b c
1 1 1





= 0

since there are two equal rows.
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3.3.6 Example

det





1 1 1
a b c
a2 b2 c2



 = det





1 a a2

1 b b2

1 c c2





= det





1 a a2

0 b − a (b + a)(b − a)
0 c − a (c + a)(c − a)





= (b − a)(c − a) det





1 a a2

0 1 a + b
0 1 a + c





= (b − a)(c − a) det





1 a a2

0 1 a + b
0 0 c − b





= (b − a)(c − a)(c − b)

since the last matrix is triangular.

3.4 Proposition

A matrix A is invertible exactly when detA 6= 0.

Proof. Suppose A is invertible. Then A−1A = I, and so taking the
determinant on both sides we get

detA−1 detA = det I = 1

Hence detA must be non-zero for the product to give 1.
Conversely suppose A is not invertible. From Chapter 2, we know that

this happens when, after performing row operations on it, we end up with a
row of zeros.

Ek . . . E1A =

(

. . .
0 . . . 0

)

which implies that

det Ek . . .det E1 detA = det

(

. . .
0 . . . 0

)

= 0

But all the row operation matrices Ei have non-zero determinant, which
implies that detA = 0.
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3.5 Exercises

1. Evaluate the determinants of the following matrices:




2 0 −1
3 0 5
1 8 2



 ,





3 2 −4
1 0 −2
−2 3 3



 ,





9 8 7
6 5 4
3 2 1





2. Prove the following identities:

(a)

det





a b c
b c a
c a b



 = (a + b + c)(ab + bc + ca − a2 − b2 − c2)

(b)

det





cos φ sin φ cos θ sin φ sin θ
− sin φ cos φ cos θ cos φ sin θ

0 − sin θ cos θ



 = 1

(c)

det





sin2 x sin 2x cos 2x
sin2 y sin 2y cos 2y
sin2 z sin 2z cos 2z



 = −2 sin(x − y) sin(y − z) sin(z − x)

3. Solve the equation

det





z z z
2 z2 + 2 2
z z + 1 z2 + z



 = 3i

4 Diagonalization

Suppose we are asked to calculate the following matrix
(

1 2
4 3

)100

The straightforward way is to multiply out a hundred copies of the matrix.
This section will introduce a way of doing such calculations much quicker. It
is based on the fact that it is easy to calculate

(

a 0
0 b

)100

=

(

a100 0
0 b100

)

.
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The idea is to decompose a matrix into three matrices, the inner one being
a diagonal matrix.

A = PDP−1

For example, we will learn how to decompose the above matrix into
(

1 2
4 3

)

=

(

1 1
−1 2

) (

−1 0
0 5

) (

2/3 −1/3
1/3 1/3

)

Why is this better than before? Let us see what happens when we calcu-
late A3 using the decomposition.

A3 = PDP−1 PDP−1 PDP−1

= PD3P−1

More generally,
An = PDnP−1

It is much easier to work with diagonal matrices than with matrices in
general. In fact, the addition and multiplication of diagonal matrices are
other diagonal matrices.







a1 0 · · ·
0 a2

...






+







b1 0 · · ·
0 b2

...






=







a1 + b1 0 · · ·
0 a2 + b2

...













a1 0 · · ·
0 a2

...






.







b1 0 · · ·
0 b2

...






=







a1b1 0 · · ·
0 a2b2

...







So, to turn back to the original problem,
(

1 2
4 3

)100

= PD100P−1

=

(

1 1
−1 2

) (

(−1)100 0
0 5100

) (

2/3 −1/3
1/3 1/3

)

which involves only three matrix multiplications.
This idea can be generalized even further to include any algebraic expres-

sion that involves A only.

A3 − 2A2 + 3A + I = PD3P−1 − 2PD2P−1 + 3PDP−1 + PIP−1

= P(D3 − 2D2 + 3D + I)P−1

Just as before, it is quite easy to calculate the inner expression which involves
a sum of diagonal matrices. We then need to multiply it with P in front and
P−1 at the back to get the required answer.
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4.1 Eigenvalues and Eigenvectors

Definition The numbers in the diagonal matrix D are called the eigen-

values of A. The columns of the matrix P are called the eigenvectors of
A.

An eigenvalue, λ, and its corresponding eigenvector, v, have the special
property that they satisfy the equation

Av = λv

Exercise: Check that this is true for the matrix in the example above.
Once we know what the eigenvalues and eigenvectors of a matrix are, we

can form the matrix D from the eigenvalues, and the matrix P from the
eigenvectors, and hence get the decomposition A = PDP−1.

4.1.1 Finding the Eigenvalues

The eigenvalues are the roots of the characteristic equation

det(A− λI) = 0

This follows from the equation Av = λv, which is equivalent to (A −
λI)v = 0. We require the vector v not to be the zero vector, so it must be the
case that A−λI is not invertible; if it were we would get v = (A−λI)−10 = 0.

So, let us show that the eigenvalues of

(

1 2
4 3

)

are −1 and 5. Substituting

the matrix into the characteristic equation det(A − λI) = 0, we get

det(

(

1 2
4 3

)

− λ

(

1 0
0 1

)

) = det

(

1 − λ 2
4 3 − λ

)

= 0.

⇒ (1 − λ)(3 − λ) − 8 = 0

⇒ λ2 − 4λ − 5 = (λ − 5)(λ + 1) = 0

That is, the eigenvalues are precisely −1 and 5.

4.1.2 Finding the Eigenvectors

We must use the equation (A−λI)v = 0 again, this time to find v. Given A

and λ, this reduces to the type of problem we tackled in the second chapter.
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Returning to our example, let us find the eigenvector corresponding to
−1. We need to solve

(

(

1 2
4 3

)

− (−1)

(

1 0
0 1

)

)

(

x
y

)

=

(

0
0

)

Using the method of chapter 2,
(

2 2 0
4 4 0

)

⇒

(

1 1 0
1 1 0

)

⇒

(

1 1 0
0 0 0

)

.

As expected there is a row of zeros at the bottom, since the determinant
of the matrix A − λI is zero. Therefore there is only one effective equation
x + y = 0. Picking x = 1 forces y = −1, so that we get the eigenvector
(

1
−1

)

. Of course, we could have picked any value for x, with y = −x, and

this would give an equally valid eigenvector (except x = 0 = y which would
give the zero vector).

Similarly, to find an eigenvector for λ = 5, we use the same procedure.
We have to solve the equation

(

(

1 2
4 3

)

− 5

(

1 0
0 1

)

)v = 0

⇒

(

−4 2 0
4 −2 0

)

⇒

(

−2 1 0
0 0 0

)

.

Once again, the bottom row of zeros is a sign that the working was correct.
There is only one equation −2x+y = 0, as it should be. Picking x = 1 forces

y = 2, so that we get the eigenvector

(

2
2

)

.

4.2 Example

Let us work out in full an example of a 3 × 3 matrix,




10 −2 −10
3 1 −3
5 −1 −5





First we find its eigenvalues, according to the characteristic equation
det(A − λI) = 0.

det





10 − λ −2 −10
3 1 − λ −3
5 −1 −5 − λ



 = 0
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⇒ (10−λ) ((1 − λ)(−5 − λ) − 3)+2 (3(−5 − λ) + 15)−10 (−3 − 5(1 − λ)) = 0

⇒ −λ3 + 6λ2 − 8λ = 0

⇒ −λ(λ − 2)(λ − 4) = 0

Its eigenvalues turn out to be 0, 2 and 4.
Next we find an eigenvector for each of the three eigenvalues.
For λ = 0, we have to solve (A− 0I)v = 0, i.e.,





10 −2 −10 0
3 1 −3 0
5 −1 −5 0



 ⇒





5 −1 −5 0
3 1 −3 0
5 −1 −5 0



 ⇒





5 −1 5 0
0 1 0 0
0 0 0 0





⇒





1 0 1 0
0 1 0 0
0 0 0 0





This yields two equations x + z = 0 and y = 0. Therefore one possible
eigenvector has components x = 1, y = 0 and z = −x = −1, i.e.

v =





1
0
−1





For λ = 2, we solve (A− 2I)v = 0,





8 −2 −10 0
3 −1 −3 0
5 −1 −7 0



 ⇒





4 −1 −5 0
3 −1 −1 0
5 −1 −7 0





⇒





4 −1 5 0
0 −1 3 0
0 1 −3 0



 ⇒





2 0 1 0
0 −1 3 0
0 0 0 0





With the final equations being 2x + z = 0 and −y + 3z = 0, we get a
solution x = 1, z = −2x = −2 and y = 3z = −6, so that one eigenvector is

v =





1
−2
−6



.

Finally for λ = 4, we have to solve (A − 4I)v = 0,





6 −2 −10 0
3 −3 −3 0
5 −1 −9 0



 ⇒





3 −1 −5 0
1 −1 −1 0
5 −1 −9 0
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⇒





3 −1 −5 0
0 −1 1 0
0 1 −1 0



 ⇒





1 0 −2 0
0 −1 1 0
0 0 0 0





which gives the equations x − 2z = 0 and −y + z = 0. Picking z = 1 gives
x = 2z = 2 and y = z = 1 to get the eigenvector

v =





2
1
1





Combining these results we can form the matrices D and P,

D =





0 0 0
0 2 0
0 0 4



 P =





1 1 2
0 −2 1
−1 −6 1





Care must be taken to place the eigenvalues in the diagonal of D in the same
order as the corresponding eigenvectors are placed in the columns of P.

In fact, we can also calculate the inverse of P as in chapter 2 to get (after
some working),

P−1 =





−4 13 −5
1 −3 1
2 −5 2





We can now firmly state that A = PDP−1,





10 −2 −10
3 1 −3
5 −1 −5



 =





1 1 2
0 −2 1
−1 −6 1









0 0 0
0 2 0
0 0 4









−4 13 −5
1 −3 1
2 −5 2





4.3 What can go wrong

There are two reasons why things may go awry in this diagonalization process.

• The characteristic equation may have complex roots, and not just real
roots. In actual fact, this is not exactly a problem. We can continue
in the same way, except we have to allow for complex eigenvalues and
complex eigenvectors. That is, the presence of complex roots compli-
cates the actual calculation but the method remains valid. But to avoid
these complications we will not have examples like this.

• An eigenvalue may be repeated. In this case there may or may not
be a problem. When we try to find the eigenvector for the repeated
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eigenvalue, we may find fewer eigenvectors than are needed to make
the matrix P. Let us illustrate this by an example of a 2 × 2 matrix,

(

3 −1
1 1

)

.

We first find its eigenvalues, using the characteristic equation.

det

(

3 − λ −1
1 1 − λ

)

= 0

⇒ (3 − λ)(1 − λ) + 1 = λ2 − 4λ + 4 = (λ − 2)2 = 0

The eigenvalues are therefore λ = 2 repeated twice.

To find its corresponding eigenvector(s), we solve (A − 2I)v = 0,

(

1 −1 0
1 −1 0

)

⇒

(

1 −1 0
0 0 0

)

.

As expected, there is a row of zeros, with only one remaining equation
x − y = 0, so that we can pick as eigenvector, say,

v =

(

1
1

)

But this way we end up with just a single eigenvector, which is not
enough to fill the 2 × 2 matrix P. We cannot do anything about this
situation and must conclude that the original matrix is not diagonal-
izable.

We should not get the impression that this always happens; in many
cases a repeated eigenvalue gives enough eigenvectors to fill out the
matrix P. The following example is one such,





2 1 0
0 1 0
0 1 2





The eigenvalues are found from the characteristic equation, which yields
the roots λ = 1, 2, 2 (check!).

The eigenvalue λ = 1 yields an eigenvector v =





1
−1
1



 (again check

this out!) The eigenvalue λ = 2 has corresponding eigenvectors that
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satisfy the equation (A − 2I)v = 0.





0 1 0 0
0 −1 0 0
0 1 0 0



 ⇒





0 1 0 0
0 0 0 0
0 0 0 0



 .

This gives just one equation y = 0, with both x and z that can vary
independently of each other. So we can pick two eigenvectors for λ = 2,

v1 =





1
0
0



 , v2 =





0
0
1



 .

In total we now have three eigenvectors, with the matrices D and P

given by

D =





1 0 0
0 2 0
0 0 2



 , P =





1 1 0
−1 0 0
1 0 1





Note that in this case, when an eigenvalue λ has more than one eigen-
vector, it does not matter which order the eigenvectors of λ are placed
as columns of P, as long as they are not placed under the column
“belonging” to the other eigenvalues.

4.4 Exercises

1. Find the eigenvalues and eigenvectors of the following matrices,





−4 2 14
6 0 −14
−3 1 9



 ,





11 8 4
−12 −9 −4
4 4 1



 ,





−7 6 −3
0 −1 1
12 −12 7



 .

2. For the matrix

A =





5 7 −2
−4 −6 2
0 −1 1



 ,

find A10 − 5A.
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