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The morphisms on a relation (digraph)  between points are those maps
that preserve this relation:

x y ⇒ f(x) f(y)

Two points x, y are indistinguishable by the relation when (for all z)

x z ⇔ y  z, z  x ⇔ z  y.

Digraphs are connective spaces (graphs): { x, y } is connected when x, y are
comparable, i.e., x y or y  x.

The product relation on A×X is given by

(a, x) (b, y) when a b and x y

The sum X ⊕ Y is the disjoint union of X and Y , with elements of X and
Y unrelated with each other.

The exponential set Y X of functions into a digraph has the relation

f  g ⇔ ∀x ∈ X, f(x) g(x)

A pre-order is a relation 6 which is transitive and reflexive

x 6 y and y 6 z ⇒ x 6 z, x 6 x

The morphisms are those that preserve the order (monotone maps)

x 6 y ⇒ f(x) 6 f(y)

the monomorphisms are the 1-1 monotonic maps, epimorphisms are the onto
monotonic maps; ∅ is the initial object; { ∗ } is the terminal object; (note that
bijective morphisms need not be isomorphisms, and X ⊂

∼ Y and Y ⊂
∼ X is

possible without X ∼= Y , e.g. Q and Q∗). A pre-ordered set is itself a category
in which the morphisms are x 6 y.

Points x, y are indistinguishable when x 6 y 6 x.

Every digraph gives rise to a pre-order: let x 6 y mean that there exists a
directed path from x to y: x · · · y; in this case, the equivalence classes of
indistinguishable points are called “strongly connected” components.
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If x, y are incomparable, then one can extend the 6 relation so that x 6′ y
becomes true: Define a 6′ b to mean a 6 b or (a 6 x and y 6 b).

An order is a pre-order without indistinguishable points,

x 6 y 6 x ⇒ x = y

Any pre-order becomes an order by identifying its indistinguishable elements
and defining [x] 6 [y] when x 6 y. Subsets, X × Y , X ⊕ Y , XA, are ordered
spaces,

(x, a) 6 (y, b) ⇔ x 6 y and a 6 b

f 6 g ⇔ ∀x ∈ A, f(x) 6 g(x)

in particular the power set 2X has the order A ⊆ B on subsets.
Example:

1. Words with x 6 y when the letters of x are in y in the same order,
e.g. ab 6 caxb

2. Given any collection S of subsets ofX (which distinguish points), let x 6 y
when ∀A ∈ S, x ∈ A ⇒ y ∈ A.

3. Given functions πi : Y → Xi, with Xi ordered, then Y is also ordered by

y 6 z ⇔ ∀i, πi(y) 6 πi(z)

4. Decision problems (i.e., capable of yes/no answers) with a 6 b when a
can be transformed to b in polynomial number of steps (a pre-order called
reduction).

A subset B is a refinement of another A when ∀x ∈ A, ∃y ∈ B, y 6 x.
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Given a morphism f : X → X , one can form sequences x 6 f(x) 6
f(f(x)) 6 · · · , which may perhaps terminate at a fixed point f(y) = y. If
this happens for each x, then the morphism x 7→ y is called a closure map: a
morphism x 7→ x̄ such that

x 6 x̄ = ¯̄x

(equivalently, x 6 ȳ ⇔ x̄ 6 ȳ.) Elements with x = x̄ are called closed ; then x̄ is
that unique smallest closed element larger than x (since x 6 y ⇒ x̄ 6 ȳ = y).

An interior map x 7→ x is the dual: a morphism such that x > x = x.

f : X → Y has a (right or upper) adjoint f∗ : Y → X when

f(x) 6 y ⇔ x 6 f∗(y)

1. x 6 f∗ ◦ f(x) and f ◦ f∗(y) 6 y (so f∗ is unique)

2. f, f∗ are morphisms (since x 6 y 6 f∗

◦ f(y))

3. f ◦ f∗ ◦ f = f and f∗ ◦ f ◦ f∗ = f∗

Proof. x 6 f∗

◦ f(x), so f(x) 6 f(f∗(f(x))) 6 f(x)

4. f∗ ◦ f is a closure map (x is closed iff x = f∗(y)), and f ◦ f∗ is an interior
map. (Every closure map arises this way.) So f and f∗ are inverses on
the closed elements.
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5. When y 6 f(x) ⇔ x 6 f∗(y), then the same identities hold except
y 6 f ◦ f∗(y), x 6 y ⇒ f(x) > f(y).

For example, given any relation  ⊆ X × Y , the maps f : 2X → 2Y and
f∗ : 2Y → 2X , (here A y means ∀a ∈ A, a y),

f(A) := { y ∈ Y : A y }, f∗(B) := { x ∈ X : x B }

satisfy B ⊆ f(A) ⇔ A ⊆ f∗(B).

A set is bounded below when it has a lowerbound, namely an element
x 6 A. An infimum of a set is a greatest lowerbound, denoted

∧

A or inf A
(necessarily unique if it exists),

z 6 A ⇔ z 6
∧

A,

in particular, x ∧ y :=
∧

{ x, y },

z 6 x, y ⇔ z 6 x ∧ y

When the infima exist, x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∧ y = y ∧ x, x ∧ x = x.
A minimal element a ∈ A is one for which

∀x ∈ A, x 6 a ⇒ x = a

A minimum is a lowerbound which is an element of the set (hence the infimum
and minimal). The dual concepts are: bounded above, upperbound, supremum

(denoted supA or
∨

A and x∨y), maximal element, and maximum. The supre-
mum and infimum certainly exist when the elements are comparable,

x 6 y ⇔ x ∧ y = x ⇔ x ∨ y = y

The set of elements lower than a is denoted ↓ a := { x ∈ X : x 6 a } and
called the principal lower-set of a. More generally, the lowerset generated by A
consists of its elements’ lowerbounds,

↓A := { x ∈ X : ∃a ∈ A, x 6 a }

The dual concepts are ↑ a and ↑A. The maps A 7→ ↑A and A 7→ ↓A are closure
operations; a set is lower-closed when ↓A = A; similarly for upper-closed.

A (closed) interval is [a, b] := { x ∈ X : a 6 x 6 b } = ↑ a ∩ ↓ b; also
[a, b[ := [a, b]r{ b }, etc. If a 66 b, then [a, b] = ∅. More generally, a set A is
convex when x, y ∈ A ⇒ [x, y] ⊆ A, equivalently A = ↓A∩↑A (e.g. intervals).

1. The intersection and union of lower-closed sets are lower-closed,

↓(A ∪B) = ↓A ∪ ↓B, ↓(A ∩B) ⊆ ↓A ∩ ↓B
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2. The complement of a lower-closed set is upper-closed.

3. The map x 7→ ↓x is an embedding of X in 2X . So every ordered space
can be represented by a space of subsets.

4. Lowerbounds(A) ⊆ ↓A is lower-closed, e.g. Lowerbounds(x) = ↓x.

5. Lowerbounds(A) = { x ∈ X : x 6 A }, Upperbounds(A) = { x ∈ X : A 6
x }, so Lowerbounds and Upperbounds are adjoints on 2X ,

A ⊆ Lowerbounds(B) ⇔ B ⊆ Upperbounds(A)

A ‘closed’ subset induces a cut : a pair of subsets A,B such that A =
Lowerbounds(B) and B = Upperbounds(A).

6. The intersection of convex sets is convex, so every set A generates its
convex hull Convex(A) :=

⋂

{B ⊂ X : convex, A ⊆ B }.

7. The kernel of a morphism consists of convex equivalence classes.

A set is cofinal when every element has a larger element ∀x, ∃a ∈ A, x 6 a;
any cofinal subset contains the maximal elements of X . The dual concept is
co-initial. The smallest cardinality of the cofinal subsets is called the cofinality

of the ordered space; the space is called regular when the cofinality equals the
cardinality of the space.

A set is (up) directed when every pair has an upperbound in the set

∀x, y ∈ A, ∃z ∈ A, x, y 6 z

(For example, an increasing sequence, x1 6 x2 6 x3 · · · .) Its lower-closure is
another directed set, called an ideal, e.g. the principal ideal ↓ a. Every proper
ideal can be extended to a maximal proper ideal (using Zorn’s lemma, since the
union of a chain of ideals is an ideal). For example, uncomparable elements can
be separated by a maximal ideal (that extends ↓x),

x 66 y ⇒ ∃I maximal ideal, x ∈ I, y 6∈ I.

In a finite space, every ideal is principal (↓max I).
A filter is the dual of an ideal, i.e., an upper-closed set such that every pair

has a lowerbound ∀x, y ∈ F, ∃z ∈ F, z 6 x, y; e.g. the principal filter ↑ a. If an
ideal and a filter are set-complements, they are called prime.

A net is a map from a directed set. A net (xi)i∈I is said to be eventually in
A, here denoted by xi →� A, when

∃j ∈ I, i > j ⇒ xi ∈ A.
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The following properties hold:

xi →� A ⊆ B ⇒ xi →� B,

xi →� A ∩B ⇔ xi →� A and xi →� B,

xi →� A or xi →� B ⇒ xi →� A ∪B,

xi →� Ac ⇒ not (xi →� A).

A subnet is a composition J → I → X such that J → I is increasing and
∀a ∈ I, ∃j ∈ J, ij > a.

A net (xi)i∈I converges up in order xi ր x when xi is increasing with
supremum x. Similarly, xi ց x when xi is decreasing with infimum x.

An element c is compact when for any ideal I, c 6 Upperbounds(I) ⇒ c ∈ I.

An order is dense when ∀x < y, ∃z, x < z < y. Otherwise, if x < y have no
other elements in between, then we say there is a gap between x and y (or that
y covers x). An order is locally finite when every interval is finite.

0.0.1 Hausdorff Maximality Principle

Zorn’s Lemma: In a non-empty ordered space, if every chain has an upperbound,
then there is a maximal element.

Proof: Using the axiom of choice, map every chain C to an upperbound of
it g(C). Suppose there is no maximal element, so can map every element to
f(x) > x. Let F : Ordinals → X be defined by F (0) := x0 ∈ X , F (n+) :=
f ◦ F (n), F (limn) := f ◦ g{F (n) }. F is strictly increasing, hence 1-1; so there
is an onto map H : X → Ordinals, contradicting that Ordinals is not a set.

Hausdorff’s Maximality Principle: Every chain can be extended to a maxi-
mal chain.

Proof: Order the chains that contain c0 by inclusion; every chain C of such
chains has an upperbound, namely

⋃

C, which is a chain; hence there is a
maximal chain.

0.0.2 DCC Orders

A DCC order is one in which every non-empty subset has a minimal element.
(An ACC order is the dual: every non-empty subset has a maximal element.)

Equivalently, every descending sequence is finite (since if A has no minimal
element, then it has an infinite descending sequence an by letting an+1 < an
(using axiom of choice); conversely, suppose x1 > x2 > x3 . . . with minimal
element xn; then xi = xn for all i > n).

Transfinite Induction for DCC: If (∀y < x, y ∈ A) ⇒ x ∈ A, then A = X
(since the set XrA has no minimal element).
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0.1 Bounded Orders

An ordered set is bounded when ∃0, 1, 0 6 X 6 1; equivalently 0 :=
∨

∅,
1 :=

∧

∅ exist; or when the map X → {∗ } has an upper and lower adjoint.
(Morphisms are now required to preserve 0, 1.)

x ∧ 0 = 0, x ∧ 1 = x,

x ∨ 0 = x, x ∨ 1 = 1

An element a is an atom when it is minimal among the non-zero elements
x 6 a ⇒ x = a xor x = 0 (i.e., 0 < a is a gap). The ordered space is called
atomic when every non-zero element is greater than some atom. It is atomistic

when every element is generated by atoms, x =
∨

i ai for some atoms ai. An
atom a is independent of a set A when a 66

∨

A; a set A of atoms is independent
when each atom a is independent of Ar{ a }.

Two elements x, y are said to be complementary when they satisfy “ex-
cluded middle”:

x ∧ y = 0, x ∨ y = 1

e.g. 0 and 1. A space is complemented when every element has a complement.
In a complemented space, morphisms are required to preserve complements.

1. The only elements that compare with a non-0, 1 complementary pair are
0 and 1; so [x, y] = ∅, ↓ x ∩ ↓ y = 0 and ↑x ∪ ↑ y = 1.

Proof: If z 6 x, y, then z 6 x ∧ y = 0; if x 6 z 6 y then 0 = x ∧ y = x.

2. In a complemented space, prime ideals are maximal.

Proof: If P ⊂ Q, then there is an a ∈ QrP ; its complement b ∈ P since
a ∧ b = 0; so 1 = a ∨ b ∈ Q and Q = X .

An implication → is an operation such that x 6 y ⇔ (x → y) = 1.
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1 Lattices

A semi-lattice is an ordered space in which any finite subset has a least upper-
bound, or supremum, in particular 0 =

∨

∅ and x ∨ y =
∨

{ x, y }.
Equivalently, a set with an idempotent, commutative, associative operation

∨ (then x 6 y ⇔ y = x ∨ y).
Equivalently, when the map x 7→ (x, x), X → X2, has an upper adjoint

(x, y) 7→ x ∨ y.
A semi-lattice morphism is one which preserves ∨ (hence monotonic)

f(x ∨ y) = f(x) ∨ f(y)

The map x 7→ x ∨ y is a closure morphism and is the only such which is
idempotent; more generally ∨ : X2 → X is a ∨-morphism. A map is a ∨-
isomorphism ⇔ it is a bijective ∨-morphism ⇔ it is an order-isomorphism
(since f(z) = f(x) ∨ f(y) 6 f(x ∨ y), so z 6 x ∨ y and x, y 6 z, so z = x ∨ y).

Images, Products are semi-lattices, (x, a)∨ (y, b) := (x∨ y, a∨ b); also Func-
tions Y X when Y is a semi-lattice: (f ∨ g)(x) := f(x) ∨ g(x).

An element a is said to be ∨-irreducible when

a = x ∨ y ⇒ x = a or y = a

(e.g. atoms); in particular the ∨-primes :

a 6 x ∨ y ⇒ a 6 x or a 6 y

(since if a = x ∨ y > x then a 6 x, say, so a = x).

1. A set A is upper-closed iff x ∨ A ⊆ A for any x.

2. ↑(x ∨ y) = ↑ x ∩ ↑ y.

3. For any closure map, x̄ ∨ ȳ 6 x ∨ y. The set of closed elements form a
∨-semi-lattice (and also a ∧-semi-lattice: x ∧ y 6 x ∧ y 6 x̄, ȳ).

4. I is an ideal iff it is a lower-closed semi-lattice,

x ∨ y ∈ I ⇔ x ∈ I and y ∈ I.

5. A filter is prime iff x ∨ y ∈ F ⇔ x ∈ F or y ∈ F .

e.g. ↑ x is a prime filter ⇔ x is ∨-prime.

6. If f : X → Y is a ∨-morphism, then its kernel f−10 is an ideal.

Conversely, when I is an ideal, the map x 7→

{

0 x ∈ I

1 x 6∈ I
is a ∨-morphism

(with kernel I).
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7. The intersection of ideals is an ideal. So every set generates a unique ideal,
namely the smallest ideal containing it,

(A] := ↓{ a1 ∨ · · · ∨ an : ai ∈ A, n ∈ N }

The map A 7→ (A] is a closure map in 2X .

8. An element c is compact when for any subset A,

c 6 Upperbounds(A) ⇒ ∃n ∈ N, ai ∈ A, c 6 a1 ∨ · · · ∨ an.

The set of compact elements of a semi-lattice is a semi-lattice.

9. If a semi-lattice is generated by a set A, then the compact ∨-irreducibles
are in A (for example, in an atomistic semi-lattice, the compact irre-
ducibles are the atoms).

Proof. If x =
∨

i ai, then x 6 a1 ∨ · · · ∨ an 6
∨

i ai = x (x compact); so
x = ai (x irreducible).

10. In an atomic semi-lattice, an essential element b is an upperbound of the
set of atoms, equivalently

b ∧ x = 0 ⇒ x = 0.

Proof: For any x 6= 0, there is an atom a, 0 < a 6 x, b, so 0 < a = a∧ b 6
x ∧ b. Conversely, for any atom a 6= 0, 0 < a ∧ b, so a ∧ b = a.

The dual notions are a superfluous element b, which is a lowerbound of
the coatoms, equivalent to b ∨ x = 1 ⇒ x = 1.

Examples of ideals: the set of finite subsets of a set; the set of bounded subsets
of a topological space; the compact elements of any lattice.

A lattice has both suprema x ∨ y and infima x ∧ y.
Equivalently, a set with two operations that are associative, commutative,

idempotent, and absorptive x ∧ (x ∨ y) = x = x ∨ (x ∧ y); in this case x 6 y ⇔
x ∧ y = x ⇔ x ∨ y = y. Equivalently the map x 7→ (x, x) has both an upper
and lower adjoint.

The morphisms are now those maps that preserve ∨, ∧. Images, products,
and exponentials are lattices; so are ideals, filters, and intervals [a, b].

All properties for semi-lattices apply for both ∨ and ∧ (in dual form).

1. (x ∧ y) ∨ (x ∧ z) 6 x ∧ (y ∨ z), x ∨ (y ∧ z) 6 (x ∨ y) ∧ (x ∨ z) (but strict
distributivity need not hold). In particular, x ∨ (z ∧ y) 6 (x ∨ z) ∧ y ⇔
x 6 y.

More generally, the minimax principle states that maxmin6minmax,

(x1 ∧ a1) ∨ · · · ∨ (x1 ∧ an) ∨ · · · ∨ (xm ∧ an) 6 (x1 ∨ · · ·xm) ∧ (a1 ∨ · · · an)
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2. Complements are preserved by morphisms: f(x) ∨ f(y) = f(x ∨ y) = 1,
f(x) ∧ f(y) = f(x ∧ y) = 0.

3. A congruent partition of X is one such that [x]∧ [y] := [x∧ y], [x]∨ [y] :=
[x ∨ y] are well-defined. Then X/∼ is a lattice, and f : X → X/∼,
f(x) := [x] is an onto morphism.

Conversely, every morphism gives rise to a congruent partition ker f of
equivalence classes f−1(y), with f−10 an ideal and f−11 a filter. The first
isomorphism theorem holds: X/ ker f ∼= fX .

4. Adjoints f, f∗ are semi-lattice morphisms:

f preserves ∨ and f∗ preserves ∧

Proof. f(x), f(y) 6 z ⇔ x ∨ y 6 f∗(z) ⇔ f(x ∨ y) 6 z.

5. A sublattice A is convex iff for all x ∈ X , a, b ∈ A, a ∨ (x ∧ b) ∈ A.

A complete lattice is an order in which every subset has a supremum and
an infimum (it is enough for all sets to have suprema since

∧

A =
∨

Lowerbounds(A)).
Scott -morphisms are those that preserve suprema and infima f(

∨

A) =
∨

fA.
An order-isomorphism between complete lattices is Scott-continuous. Proof:

f(x) =
∨

fA > f(a) for all a ∈ A implies a 6 x, hence f(
∨

A) 6
∨

fA. Also
a 6

∨

A implies f(a) 6 f(
∨

A), so
∨

fA 6 f(
∨

A).

Examples: 2X , N∗ := N ∪ {∞}; finite ∨-semi-lattices; the upper-closed
subsets of an order.

Proposition 1

Let X be a complete lattice.
If Y is a complete lattice in X, then

x 7→ x̄ :=
∧

{ y ∈ Y : x 6 y }

is a closure map, with Y as its closed elements.
Given a closure map on X, the set of closed elements
is a complete lattice.

Proof: x 6 y ⇒ x̄ 6 ȳ and x 6 x̄ are obvious. Moreover, for y ∈ Y ,
x 6 y ⇔ x̄ 6 y, so ¯̄x = x̄. Since Y is complete, x̄ ∈ Y .

Let A consist of closed elements. Its least upper bound is
∨

A since it is an
upperbound for A and any other closed upperbound is larger A 6 x = x̄ ⇒
∨

A 6 x.
�

Every order can be embedded in a complete lattice; the smallest such lattice
is called its completion:
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Proposition 2

(Dedekind-MacNeille)

Every ordered space has a completion.

Proof: The maps L := Lowerbounds and U := Upperbounds are adjoints
on 2X , with closure LU . So their ‘closed’ sets (cuts) form a complete subspace
of 2X . The map x 7→ L{ x } = ↓x embeds X into this complete lattice.

�

Proposition 3

(Tarski)

Every monotonic function on a complete
lattice has a fixed point.

Proof: The non-empty set A = { x ∈ X : f(x) 6 x } has an infimum a; thus
x ∈ A ⇒ a 6 x ⇒ f(a) 6 f(x) 6 x, so that f(a) 6 a; also x ∈ A ⇒ f(x) ∈
A; but then a, f(a) ∈ A and f(a) 6 a 6 f(a).

�

The set of fixed points of an order-morphism on a complete lattice is itself a
complete lattice.

In a complete atomic lattice, the socle is
∨

{ a : atom } =
∧

{ b : essential}.
Dually, the radical is

∧

{ a : coatom} =
∨

{ b : superfluous }.

1.0.1 Algebraic Lattices

An algebraic lattice is a complete lattice that is generated by compact elements.

1. Atoms are compact.

2. In an algebraic lattice, any two elements a < b contain a gap.

Proof: If a < b then there is a compact element c such that c 6 b, c 66 a.
Let A := { x ∈ [a, b] : c 66 x }, contains a. Any chain in A has sup in A, so
A contains a maximal element d, by Zorn’s lemma; thus a 6 d < c∨d 6 b.

Examples:

• Given a closure operation on 2X , if

Ā =
⋃

{ B̄ : B ⊆ A,B finite }
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then the set of closed subsets is an algebraic lattice, and the compact
elements are the closures of finite subsets.

Proof: Let X be the lattice of closed subsets. For any subset B ⊆ A,
if B̄ 6

∨

iAi with Ai closed, then B ⊆
∨

iAi =
⋃

i Ai =
⋃

{ F̄ : F ⊆
⋃

i Ai, F finite }. If B is finite then B ⊆ A1∪· · ·∪An and B̄ ⊆ A1∪· · ·∪An;
thus B̄ is compact.

• A universal algebra X has a closure map A 7→ [[A]] in 2X with the above
property. Hence the subalgebras (‘closed’ subsets) form an algebraic lat-
tice, with M ∧N = M ∩N , M ∨N = [[M ∪N ]]; the compact elements are
the finitely generated subalgebras. (And every algebraic lattice is induced
from some universal algebra.)

• The lattice of ideals of a semi-lattice, with
∧

i Ii =
⋂

i Ii,
∨

i Ii = (
⋃

i Ii].
Its compact elements are ↓x. X is embedded in it via x 7→ ↓x.

1.0.2 ACC Lattices

1. An ACC semi-lattice is a complete lattice.

Proof. The set { a1∨· · ·∨an : ai ∈ A, n ∈ N } ⊇ A has a maximal element
b, so

∨

A = b.

2. Every element of an ACC lattice is compact.

Proof. If x 6
∨

A =
∨

{ a1 ∨ · · · ∨ an : ai ∈ A, n ∈ N }, then x is less than
a maximal element; conversely, if x1 < x2 < · · · is an ascending chain,
then

∨

i xi 6 x1 ∨ · · · ∨ xn = xn.

3. Every non-zero element of an ACC lattice can be written as x = a∧· · ·∧ b
for some ∧-irreducibles.

Proof. Let x be a maximal element without such a decomposition; then x
is not irreducible, i.e., x = a ∧ b with x < a, b, so a, b have such decompo-
sitions.

1.1 Complements

A dual is a self-adjoint map ⋆ : X → X ,

x 6 y⋆ ⇔ y 6 x⋆

a 6 b⋆ can be denoted by a ⊥ b. Then Products have duals (x, y)⋆ := (x⋆, y⋆);
as do functions f⋆(x) := f(x)⋆.

1. ⋆ satisfies all the properties of adjoints: uniqueness of ⋆, x 6 y ⇒ y⋆ 6 x⋆,
x 6 x⋆⋆, x⋆⋆⋆ = x⋆, x 7→ x⋆⋆ is a ‘closure’ map, 0⋆ = 1.

2. x⋆ ∨ y⋆ 6 (x ∧ y)⋆ and (x ∨ y)⋆ 6 x⋆ ∧ y⋆.

Proof. Apply ⋆ to reverse the inequalities in x ∧ y 6 x, y 6 x ∨ y.
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A quasi-complement of x is a ‘closed’ dual, x⋆⋆ = x. Products are quasi-
complemented.

Example: Fuzzy logic [0, 1] with max, min, x⋆ := 1− x.

1. x⋆ = 0 ⇔ x = 1, x⋆ = y ⇔ x = y⋆.

2. de Morgan’s laws : (x ∧ y)⋆ = x⋆ ∨ y⋆, (x ∨ y)⋆ = x⋆ ∧ y⋆.

Proof. Since ⋆ is a dual, x ∧ y 6 (x⋆ ∨ y⋆)⋆ 6 x⋆⋆ ∧ y⋆⋆ = x ∧ y.

3. When the lattice is complete, (
∨

i xi)
⋆ =

∧

i x
⋆
i and (

∧

i xi)
⋆ =

∨

i x
⋆
i (by

the same reasoning).

4. If A is lower-closed then the set of its quasi-complements A⋆ is upper-
closed.

.

.

.

.

.

.

??���

��?
??

//

//

��?
??

??���

An ortho-complement of x is a complement quasi-complement x⊥,

x ∨ x⊥ = 1, x ∧ x⊥ = 0, x⊥⊥ = x, x 6 y ⇒ y⊥ 6 x⊥

Define x ≡ y := (x ∧ y) ∨ (x⊥ ∧ y⊥), and let x comm y to mean x = (x ∧ y) ∨
(x ∧ y⊥) (or (x ∨ y⊥) ∧ y = x ∧ y).

One dual is a pseudo-complement of x: an element ¬x such that

y 6 ¬x ⇔ x ∧ y = 0

i.e., the largest element such that x ∧ ¬x = 0. Products and Functions have
pseudo-complements.

1. ∧-isomorphisms preserve pseudo-complements f(¬x) = ¬f(x).

Proof. f(x) ∧ f(¬x) = f(x ∧ ¬x) = 0. If 0 = f(x) ∧ f(y) = f(x ∧ y) then
x ∧ y = 0, so y 6 ¬x and f(y) 6 f(¬x).

2. For any atom a, either a 6 x or a 6 ¬x (since a ∧ x = a or 0).

3. A quasi-pseudo-complement is a complement (in fact the lattice must be
Boolean). So the ‘closure’ of a pseudo-complemented lattice is Boolean.

The dual pseudo-complement is an element x⋆ such that x⋆ 6 y ⇔ x∨y = 1.

Proposition 4

Ultrafilters

A filter is maximal ⇔ ∀x, x ∈ F xor ¬x ∈ F

Proof: Let F be maximal. If x /∈ F , then the filter generated by F and x
equals X , so for some y ∈ F , 0 = y∧x, hence y 6 ¬x and ¬x ∈ F . If x,¬x ∈ F
then 0 = x ∧ ¬x ∈ F , so F = X . For the converse, suppose G is a filter that
contains F and x ∈ GrF ; then ¬x ∈ F , so 0 = x ∧ ¬x ∈ G.

�
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1.1.1 Ortho-modular Lattices

An ortho-modular lattice is an ortho-complemented lattice such that

x ≡ y = 1 ⇔ x = y

Equivalently, any of the following statements hold:

x 6 y ⇔ x ∨ (x⊥ ∧ y) = y,

x ⊥ y ⇔ x⊥ ∧ (x ∨ y) = y,

x ∨ y = x ∨ ((x ∨ y) ∧ x⊥),

x 6 y ⇔ x 6 (x⊥ ∨ y),

x, y are complements such that y 6 x⊥ ⇒ y = x⊥,

x comm y ⇔ y comm x(⇔ x comm y⊥)

Example: Quantum Logic, the (atomistic) lattice of the closed linear sub-
spaces of a Hilbert space.

1. There are various “quantum implications” x → y: any of x⊥ ∨ y, x⊥ ∨
(x ∧ y), x ∨ (x⊥ ∧ y⊥), (x ∧ y) ∨ (x⊥ ∧ y) ∨ (x⊥ ∧ y⊥). For any of these,

x ∨ y = (x → y) → (((x → y) → (y → x)) → x))

2. A state is a function f : X → [0, 1] such that x ⊥ y ⇒ f(x ∨ y) =
f(x) + f(y) and f(1) = 1. Hence f is an order-morphism and f(0) = 0.

3. Let C(A) := { x ∈ X : ∀a ∈ A, x comm a }. Then C is self-adjoint:
A ⊆ C(B) ⇔ B ⊆ C(A); hence, A ⊆ C(C(A)), C(C(C(A))) = C(A).

(Foulis-Holland) If x, y, z commute with each other, then distributivity
holds for x, y, z.

4. An atomic orthomodular lattice is atomistic.

Proof. Let y :=
∨

{ a 6 x : a atom }; if y < x, then x ∧ y⊥ 6= 0, is greater
than some atom a, i.e., a 6 x, a 66 y, a contradiction; hence y = x.

1.2 Semi-Modular Lattices

A lattice is semi-modular when x ∧ y < x is a gap ⇒ y < x ∨ y is a gap.
Example:

◦

◦

◦

◦

◦

◦

◦

??��

��?
?

//
��?

?

??�� //

��?
?
// ??��

1. For any atoms a, b, c, c 6 a ∨ b ⇒ a ∨ b ∨ c = b ∨ c = a ∨ c (for any two
atoms, a < a ∨ b is a gap, so b < b ∨ c 6 a ∨ b).
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2. If 0 < a1 < · · · < an < 1 and 0 < b1 < · · · < bm < 1 are chains of gaps,
then n = m (called the height of X) and there is a permutation which
maps one chain to the other such that [ai, ai+1] ∼= [bj , bj+1].

Proof. For n = 1, follows by definition of semi-modularity. If a1 = b1,
then follows by induction on the rest of the chains. Otherwise let k be
the largest integer such that a1 66 bk, so a1 6 bk+1. Then a1 < a1 ∨ b1 <
· · · < a1 ∨ bk = a1 ∨ bk+1 = bk+1 < bk+2 < · · · < bn < 1. By induction,
[ai, ai+1] ∼= [a1 ∨ bj, a1 ∨ bj+1] ∼= [bj , bj+1].

3. A lattice with a morphism δ : X → N such that δ(0) = 0, x < y gap
⇒ δ(y) = δ(x) + 1, and δ(x ∨ y) + δ(x ∧ y) 6 δ(x) + δ(y) must be
semi-modular.

Proof. Let x ∧ y < x be a gap; then δ(x ∨ y) > δ(y) else x 6 y. So
δ(x∧ y)+ δ(x∨ y) 6 δ(x∧ y) + δ(y) + 1, hence δ(y) < δ(x∨ y) = δ(y) + 1,
and y < x ∨ y is a gap.

A geometric lattice is an algebraic semi-modular atomistic lattice such that
every chain is finite.

Subintervals are again geometric lattices; so there is a rank function δ : X →
N which gives the length of any maximal chain from 0 to x.

1. Every basis of a geometric lattice have the same number of atoms (since
0 < a1 < a1 ∨ a2 < · · · < a1 ∨ · · · ∨ an = 1).

2. Geometric lattices are complemented.

Proof. For any x, if x ∧ a = 0 but x ∨ a < 1, then there is an atom
b 66 x ∨ a; so x ∨ a < x ∨ a ∨ b; there can be no atom c 6 x ∧ (a ∨ b),
otherwise x ∨ a ∨ b = x ∨ a ∨ c = x ∨ a; so x ∧ (a ∨ b) = 0; hence one
can pick a sequence of atoms ai such that x ∧ (a1 ∨ · · · ∨ ai) = 0 and
x∨a1∨· · ·∨ai+1 > x∨a1∨· · ·∨ai; as this chain is finite we find x∧y = 0,
x ∨ y = 1.

Examples:

• The set of equivalence relations on a set, with ρ 6 σ when ρ is finer
than σ (i.e., xρy ⇒ xσy). (x(ρ ∨ σ)y holds when there is a path of
relations xτ1 · · · τky where τi = ρ or σ.) Every lattice can be embedded
in some lattice of equivalence relations (hence embedded in the lattice of
subgroups: a 7→ { g ∈ S(X) : ∀x ∈ X, g.xρax }).

• Projective Geometry: subspaces of a vector space.

• Incidence Geometry: elements are points and lines.
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1.3 Modular Lattices

A lattice is modular when x 6 y ⇔ x ∨ (z ∧ y) = (x ∨ z) ∧ y, or equivalently,

(x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ (x ∨ z))

Equivalently, any lattice which does not contain this embedded lattice (oth-
erwise y ∧ z < x < y < x ∨ z and y ∧ z < z < x ∨ z):

◦

◦ ◦

◦

◦

��2
22
22

//

EE�����

??������ ��?
??

??
?

For example, subspaces of a vector space.
Images, sublattices and products are again modular.

Proposition 5

Diamond Isomorphism theorem

The intervals [a, a ∨ b] and [a ∧ b, b] are order-isomorphic,
via the maps x 7→ x ∨ a and x 7→ x ∧ b.

Proof: If a 6 x 6 a ∨ b then (x ∧ b) ∨ a = x ∧ (b ∨ a) = x.
If a ∧ b 6 x 6 b then (x ∨ a) ∧ b = x ∨ (a ∧ b) = x.
Hence the monotonic maps x 7→ x ∨ a and x 7→ x ∧ b are isomorphisms.

�

1. Modular lattices are thus semi-modular. By duality, its rank function
satisfies δ(x ∧ y) + δ(x ∨ y) = δ(x) + δ(y).

2. Minimal (irredundant) decompositions into ∧-irreducibles a = r1∧· · ·∧rn
have unique lengths.

Proof. Suppose a = r1 ∧ r = s1 ∧ s with r1, s1 irreducibles. Then
[a, r] = [r1 ∧ r, r] ∼= [r1, r1 ∨ r]. But a = r∧ s1 ∧ s = (r∧ s1)∧ (r ∧ s), with
a 6 r ∧ s1 6 r. Hence r1 = J(r ∧ s1)∧ J(r ∧ s), so r1 = J(r ∧ s1) say, i.e.,
a = r ∧ s1. Repeating for the other irreducibles gives a = s1 ∧ · · · ∧ sm ∧
rm+1 ∧ rn = a ∧ r̃ (if n > m) which implies a 6 r̃ impossible; similarly
n < m can’t hold.

3. The lattice generated by ↓{ x, y } is isomorphic to ↓x× ↓ y.
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1.4 Distributive Lattices

A lattice is distributive when the map x 7→ a ∧ x (or x 7→ a ∨ x) is a lattice
morphism (onto ↓ a, resp. ↑ a), that is,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

(⇔ x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)) so modular.
Equivalently, any of these identities holds:

(x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x) = (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x),

x ∨ (z ∧ y) 6 (x ∨ z) ∧ y,

cancelation (x ∨ z = y ∨ z and x ∧ z = y ∧ z) ⇔ x = y.

Equivalently, a modular lattice which does not contain the diamond sublat-
tice (since suppose a, b, c do not obey distributivity; let p := (a∧b)∨(b∧c)∨(c∧a),
q := (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a), x := (a ∧ q) ∨ p, y := (b ∧ q) ∨ p, z := (c ∧ q) ∨ p,
then p < x < q, p < y < q, p < z < q form a diamond):

◦

◦

◦

◦

◦

��?
??

??
?

//

??������
??������

// ��
??

??
??

Equivalently,

a > x ∧ y ⇒ ∃u > x, v > y, a = u ∧ v

a 6 x ∨ y ⇒ ∃u 6 x, v 6 y, x = u ∨ v

x ∧ y

y

x

a

v

u

x ∨ y

y

x

a

v

u

��?
??

??

??�����
//

//

//

??������

��?
??

??
? ??�����

��?
??

??

//

//

//

��?
??

??
?

??������

Equivalently, when the lattice is embedded in some (Boolean) lattice 2A.
Images, sublattices, and products are distributive.

1. If a 6 x ∨ b and a ∧ x 6 b then a 6 b (since a = a ∧ (x ∨ b) 6 b).

2. { x : a ∨ x = 1 } is a filter, and { x : a ∧ x = 0 } is an ideal.

3. Complements are pseudo-complements and quasi-complements, hence unique
and denoted x′:

x′′ = x, x 6 y ⇔ x′ ∨ y = 1 ⇔ x ∧ y′ = 0

Proof. If x, y and x, z are complementary, then y = y ∧ (x∨ z) = y ∧ z, so
y 6 z; similarly z 6 y. So x′′ = x since both are complementary to x′. If
x′ ∧ y = 0 then y = (x ∨ x′) ∧ y = x ∧ y, so y 6 x.
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4.
x△y = (x ∨ y) ∧ (x′ ∨ y′) = (x ∧ y′) ∨ (x′ ∧ y),

x ≡ y = (x ∧ y) ∨ (x′ ∧ y′) = (x ∨ y′) ∧ (x′ ∨ y)

5. Pseudo-complements satisfy a de Morgan law: ¬(x ∨ y) = ¬x ∧ ¬y.

Proof. (x ∨ y) ∧ (¬x ∧ ¬y) = 0, so ¬x ∧ ¬y 6 ¬(x ∨ y).

Also, ¬(x ∨ ¬x) = 0 but ¬x = 0 6⇒ x = 1.

6. The boundary of an element is ∂x := x ∨ ¬x; so

∂∂x = ∂x, ∂(x ∨ y) = (∂x ∨ y) ∧ (x ∨ ∂y)

¬x is the complement of x when ∂x = 1.

7. Irreducibles are primes. (Proof. If x is irreducible and x 6 a ∨ b, then
x = x ∧ (a ∨ b) = (x ∧ a) ∨ (x ∧ b) so x = x ∧ a 6 a or x = x ∧ b 6 b.)

8. The spectrum of an element a is σ(a) := { x 6 a : x is ∨-irreducible }.
Then σ(a ∨ b) = σ(a) ∪ σ(b) and σ(a ∧ b) = σ(a) ∩ σ(b); σ(a′) = Srσ(a).

9. The set of lower-closed sets of an ordered space form a complete dis-
tributive lattice (with ∪, ∩). For a complete lattice, a lower-closed set is
∨-irreducible ⇔ it is principal.

10. The set of ideals form a complete distributive pseudo-complemented lat-
tice, with ¬I := { x : x ∧ I = 0 }, I ∨ J = { x ∨ y : x ∈ I, y ∈ J }
(since if a ∈ I ∨ J then there are x ∈ I, y ∈ J such that a 6 x ∨ y, so
a = a ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y)).

11. Maximal ideals (and filters) are prime.

Proof. Suppose I is a maximal ideal and a ∧ b ∈ I, a /∈ I. The ideal
generated by I and a must be X , so that b 6 x ∨ a for some x ∈ I. Then
b 6 (x ∨ a) ∧ b = (x ∧ b) ∨ (a ∧ b) ∈ I, hence b ∈ I.

12. If I ∨ J , I ∧ J are principal ideals, then so are I, J .

Proof. If I ∨ J = ↓ a, I ∩ J = ↓ b, then a = x ∨ y, and b∨ x ∈ I, b∨ y ∈ J ,
so if there is z ∈ I with z > b ∨ x, then a, b, b ∨ x, b ∨ y, z would form a
pentagon. Similarly, J = ↓ b ∨ y.

13. Distributive lattices can be embedded into 2S , where S = Spec(X) is the
set of prime ideals, via the map x 7→ { I ∈ Spec(X) : x 6∈ I } (or via the
map x 7→ σ(x)).

14. A result is true for all distributive lattices iff it is true for 2 := { 0, 1 }.
(Proof. If a result is true for 2, then it is true for 2S , hence for its sublat-
tices.)

15. In a finite distributive lattice, every element has a unique irredundant
decomposition into ∨-irreducibles, x = a1 ∨ · · · ∨ an.

Proof. The irreducibles are the maximal elements of σ(x).
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2 Heyting Algebras

are bounded lattices in which ∧ residuates ∨, i.e.,

x ∧ w 6 y ⇔ w 6 (x → y)

That is, x → y is the largest element satisfying x ∧ (x → y) 6 y.
Equivalently, a lattice with an operation → satisfying

x → x = 1, x ∧ (x → y) = x ∧ y, (x → y) ∧ y = y

x → (y ∧ z) = (x → y) ∧ (x → z)

Heyting-morphisms must preserve 0, 1,∨,∧ and →. Products are Heyting,
with (x1, y1) → (x2, y2) := (x1 → x2, y1 → y2); for functions, (f → g)(x) =
f(x) → g(x).

Complete distributive lattices

x ∧
∨

A =
∨

{ x ∧ a : a ∈ A }

are (complete) Heyting (also called frames), with x → y :=
∨

{w : x ∧ w 6 y }.
In particular a completely distributive lattice, which satisfies

∧∨

A =
∨∧

A.
Example: open subsets in a topological space, with A → B = (Ac ∪ B)◦,

¬A = Āc = ext(A).

1. Must be a distributive lattice with a pseudo-complement ¬x := x → 0, →
is an implication.

Proof: If x∧y 6 (x∧y)∨(x∧z) =: w then y, z 6 x → w, so y∨z 6 x → w
and x ∧ (y ∨ z) 6 x ∧ (x → w) 6 w.

2. x 6 y ⇔ (x → y) = 1,
x → (y → z) = (x ∧ y) → z 6 (x → y) → (x → z),
x 6 (y → x),
x 6 (y → x ∧ y),
(x → z) 6 ((y → z) → (x ∨ y → z)).

3. A filter induces a quotient Heyting algebraX/F defined by the equivalence
relation x → y ∈ F and y → x ∈ F . First isomorphism theorem holds.

4. If x ∨ ¬x = 1 then x is regular, ¬¬x = x.

(since ¬¬x = ¬¬x ∧ (x ∨ ¬x) = ¬¬x ∧ x)

5. The set of complemented elements form a Boolean subalgebra of X , while
the regular elements form a Boolean algebra (but its ∨ may be different:
x ∨ y := ¬(¬x ∧ ¬y)), and x 7→ ¬¬x is a morphism from the Heyting
algebra to this Boolean algebra.

Note: the dual notion is an adjoint for ∨,

w ∨ y > x ⇔ w > x− y

It has its own pseudo-complement, namely x∗ := 1 − x; so x ∨ x∗ = 1, 0∗ = 1,
1∗ = 0; and its “boundary” map x 7→ x ∧ x∗.
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2.1 Boolean Algebras

are Heyting algebras with x′′ = x.
Equivalently

- a complemented distributive lattice; or an orthomodular lattice in which all
elements commute.

- a complete and completely distributive lattice (with x → y :=
∨

{ z : z ∧ x 6
y }).

- a ring with 0, 1 such that x2 = x (‘Proof’. Let x∨y := x+y+xy, x∧y := xy;
conversely x+y = x△y := (x∧y′)∨(x′∧y), xy := x∧y; its characteristic is
2 i.e., −x = x; note + is not preserved by6; x′ = 1−x; x → y = 1−x+xy.)

- a set with an associative commutative operation x∨y and x′ and 0, such that

x′′ = x, x ∨ 0 = x, x ∨ x = x, x ∨ x′ = 1 := 0′,

(x ∨ (y ∧ z))′ = (x ∨ y)′ ∨ (x ∨ z)′

(Then x ∧ y := (x′ ∨ y′)′.)

- a set with an operation x− y and 1, such that

x− 0 = x, x− (y − x) = x, ¬¬x = x, (x− y)− z = (x− z)− y,

(x − (y − z))′ = (x− y)′ − (z − x′)

where x′ := 1− x, 0 := ¬1, x ∧ y := x− y′, x ∨ y := (x′ ∧ y′)′.

Products are Boolean. The completion is a Boolean algebra.
The subset ↓ a (or ↑ a) is a Boolean algebra with the inherited operations

and x′ := ¬x ∧ a (or ¬x ∨ a). Then ↓ a ∼= ↑¬a via the map x 7→ x ∨ ¬a.

Examples include 2A, ring ideals, the divisors of a square-free integer with
x 6 y meaning x|y, the finite/cofinite subsets of any set, the algebra generated
(as a ring) from any collection of points.

1. x → y = x′ ∨ y. Lattice morphisms automatically preserve →,′.

2. For any atom a, either a 6 x or x 6 a′. Hence X ∼= ↑ a× 2. X ∼= ↓x×↑ x
for any x.

3. A Boolean algebra either has atoms or is dense (since x < y is a gap
⇔ 0 < x△y is a gap).

4. A finite distributive lattice is Boolean iff atomic iff geometric.

5. I is an ideal ⇔ ¬I is a filter; I is a prime ideal ⇔ ¬I is maximal ⇔ I
is maximal (similarly for filters).
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6. The space of order-morphisms X → 2 from an ordered space form a
Boolean lattice X∗. X∗ distinguishes points in X , i.e., x 6= y ⇒ ∃f ∈

X∗, f(x) 6= f(y) (e.g. take f(z) :=

{

0 z 6 x

1 z 66 x
). Any order X is order-

embedded in X∗∗.

7. A state is a probability distribution.

Proposition 6

Birkhoff-Stone Embedding Theorem

Every Boolean algebra can be embedded in some 2K.

Proof: LetM := {φ : X → 2, morphism } (a totally disconnected compact
T2 space), and let J : x 7→ {φ ∈ M : φ(x) = 1 }, X → 2M .

Then

J(x ∨ y) = {φ ∈ M : 1 = φ(x ∨ y) = φ(x) ∨ φ(y) }

= {φ ∈ M : 1 = φ(x) or 1 = φ(y) } = J(x) ∪ J(y)

J(x ∧ y) = {φ ∈ M : 1 = φ(x ∧ y) = φ(x) ∧ φ(y) }

= {φ ∈ M : 1 = φ(x) and 1 = φ(y) } = J(x) ∪ J(y)

J(x′) = {φ ∈ M : 1 = φ(x′) = φ(x)′ } = J(x)′

J(0) = {φ ∈ M : 1 = φ(0) = 0 } = ∅

J is 1-1: If x 6= 0 then x′ is contained in some maximal ideal I, so x /∈ I, so
χI(x) = 1 and χI ∈ J(x). Thus J(x) = ∅ ⇒ x = 0.

J(x) = J(y) ⇒ ∅ = J(x) ∩ J(y)′ = J(x ∧ y′) ⇒ x ∧ y′ = 0

and similarly x′ ∧ y = 0, hence x′ = y′.
�

In particular, the free Boolean algebra with n generators is isomorphic to the
set of monotonic functions 2n → 2; each element is of the form (x1∧· · ·∧xn)∨· · ·
where xi = ai or a

′
i.

A finite Boolean algebra has 2n elements for some n and is unique (since an
atom splits X into two separate but isomorphic Boolean algebras ↑ a and ↓ a′;
by induction, such finite Boolean algebras are unique for each n). The Boolean
algebra generated by n elements has 2n atoms (xi ∧ · · · ∧ xj , i, j 6 n), so 22

n

elements.
There is only one countable dense Boolean algebra.
A σ-algebra is a Boolean algebra which is closed under countable suprema:

for any sequence,
∨

n xn exists. For example, the algebra generated by a collec-
tion of points. The intersection of σ-algebras is again a σ-algebra, so a σ-algebra
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can be generated from any collection of points (can be larger than the generated
Boolean algebra); e.g. the Borel σ-algebra generated by the basic open sets in
a topological space.

2.2 Linearly Ordered Spaces

x 6 y or y 6 x

Equivalently, a maximally ordered space, or a lattice such that x ∧ y and x ∨ y
are both one of x, y. (The monotone maps preserve ∧,∨.) A bijective morphism
is an isomorphism.

Linearly ordered spaces are Heyting algebras with x → y =

{

1 x 6 y

y x > y

and ¬x =

{

1 x = 0

0 x > 0
; satisfy both de Morgan’s laws (but only 0, 1 have quasi-

complements, so the only Boolean linearly ordered spaces are 0 and { 0, 1 }).
Can define the sum + and multiplication . of linearly ordered sets by

∑

i

Xi, x < y ⇔ ∃i < j, x ∈ Xi, y ∈ Xj or ∃i, x, y ∈ Xi, x < y

∏

i

Xi, x < y ⇔ J := { i : xi 6= yi } 6= ∅ and xi0 < yi0

where i0 is the least element of J (note that this is not the categorical order
product defined previously).

1. Any non-empty bounded set has four possible relations with its upper
bounds (and dually its lower bounds):

Set max
Y N

U
B

m
in Y

N

The diagonal possibilities are called a gap and a (two-sided) cut respec-
tively.

A linear order is complete iff it has no cuts.

2. A finite linear order is isomorphic to some n := (0 < 1 < · · · < n −
1), hence complete (and bounded). A morphism m → n is completely
described by the sub-intervals of m where it is not 1-1, and of n where it
is not onto.
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3. N∗ is the smallest infinite bounded linear order, in the sense that N or
−N is embedded in every infinite linear order. The smallest linear order
without upper/lowerbounds is Z.

4. The only linear orders in which every cut is given by a gap are n (n ∈ N),
N, −N, and Z (depending on existence of upper/lower bounds).

5. The countably infinite orders are sums of n, N, and −N, where of course,
n+N = N, −N+n = −N, and −N+N = Z. Their number is 2N: From a
binary sequence, say 00101 . . ., create the order Z+Z+Z+1+Z+Z+1+· · · ;
each such order is not isomorphic to any other.

6. The smallest dense bounded linear order is Q∗ (apart from 0). It is count-
ably infinite and incomplete. Every countable linear order is embedded in
it.

Proof. Let X = { x1, x2, . . . }. Define f : X → Q inductively by finding, at
each step n (take f(x1) := 0, say), the immediate neighbors xi < xn < xj

with i, j < n and letting f(xn) be any rational number with f(xi) <
f(xn) < f(xj). Then f : X → Q is an embedding. If X is dense bounded,
f can be modified to an isomorphism X → Q∗: let Q = { q1, q2, . . . } and
alternate in the same way between finding f(xn) and f−1(qn); start by
f(0) = −∞ and f(1) = +∞.

For example, Words with alphabetical order is a dense countably infinite
linear order.

7. For any countable linear order α, Qα ∼= Q (hence Qn ∼= Q).

8. The order-completion of Q is called R∗. It is the smallest complete dense
bounded linear order; and Q is dense in it.

Proof. Let C be a countable dense subset of X , hence isomorphic to
Q; extend the isomorphism f : Q → C to R → X by f(supn qn) :=
supn f(qn).

9. But (Suslin) whether R∗ is the only complete dense bounded linear order
such that every set of disjoint intervals is countable, is undecidable; it is
not, with the axiom of constructibility.

10. Hausdorff’s maximality principle: Every chain in an ordered set X has a
maximal chain. (If the maximal chain M has an upperbound x ∈ X , then
x ∈ M else M can be extended further by x; so x is a maximal element
in X .)

11. Every finite ordered space can be extended to a linear order.
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2.2.1 Well-ordered spaces

are ordered spaces for which every non-empty subset has a minimum. They
are linearly ordered (since { x, y } has a minimum), complete (since the set of
upperbounds has a minimum), and DCCs.

Subspaces, images, sums and products (as linear orders) are again well-
ordered.

1. Every element x has an immediate successor x+ except for the largest
element if there is one, x+ = minXr[0, x]. The successor function is a
1-1 morphism with x < x+. [0, x+[ = [0, x]. Each x < x+ is a gap, and
the only dense subsets of X are trivial.

2. Every element is either a successor or a limit point:

∃y, x = y+ xor x = sup [0, x[ =
∨

y<x

y.

(Let z := sup [0, x[, then z < x or z = x.)

3. Every lower-closed set is an initial segment [0, x[ for some x ∈ X , or X
itself.

Proof. Either A = ∅ when x = 0, or A is unbounded when A = X , or
y := supA exists; then either y ∈ A when x = y+, or y /∈ A when x = y.

4. Transfinite induction: If (∀y < x, y ∈ A) ⇒ x ∈ A then ∀x, x ∈ A,
i.e., if ∀x, [0, x[ ⊆ A ⇒ x ∈ A then A = X . This is usually split into
cases (i) 0 ∈ A, (ii) successors x ∈ A ⇒ x+ ∈ A, and (iii) limit points
(∀y < x, y ∈ A) ⇒ x ∈ A). (Note: [0, 0[ = ∅ ⊆ A, so 0 ∈ A.)

5. A 1-1 morphism f : X → X satisfies x 6 f(x) (since { x ∈ X : f(x) < x }
has no minimum). So the only automorphism on X is the identity, and
any isomorphism X → Y is unique (take g−1f).

6. Either X ⊂
∼ Y or Y ⊂

∼ X .

Proof. The set A := { x ∈ X : ∃y ∈ Y, ∃fx : [0, x[ → [0, y[ ⊂ Y, isomorphism }
contains 0 and is lower-closed. Define f :=

⋃

x∈A fx, a 1-1 morphism. So
either A = X (in which case f : X → Y is an embedding); or A = [0, α[;
if fA is bounded, define f(α) :=

∨

x<α f(x) to make [0, α] ∼= [0, f(α)], so
α ∈ A, a contradiction. Hence fA = Y and f−1 : Y → X is an embedding.

7. Every set has a well-order (“well-ordering principle”, equivalent to the
axiom of choice). Conversely, a set with a well-order has min as a choice
function.

Proof: Let X 6= ∅ and consider the well-ordered subsets of X , ordered by
A 6 B iff A is initial in B. There is a maximal subset A; if x /∈ A, then
A 6 A ∪ { x }; so A = X .
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8. An ordered space in which every non-empty subset has a max and a min
must be finite: { 0, 0+, 0++, . . . } has a maximum in the set.

Classification: An ordinal number is a set X in which ∈
= is a well-order

and transitive, y ∈ x ∈ X ⇒ y ∈ X ; hence x ∈ X ⇒ x ⊂ X . For ordinals,

1. For every x ∈ X , x = [0, x[ ⊂ X and x+ = [0, x]. Hence

0 = ∅, 0+ = { 0 } = 1, 1+ = [0, 1] = { 0, 1 } = 2, . . . .

2. Elements of an ordinal number are themselves ordinal; conversely, any
proper transitive subset is an element.

Proof. a ∈ X ⇒ a ⊆ X , so ∈ is a well-order for a; moreover if x ∈ y ∈
z ∈ X then x, y ∈ X , so x ∈ z. Conversely, transitive subsets are lower
closed, so of the type [0, x[ = x if a proper subset.

3. Either X ⊆ Y or Y ⊆ X . Distinct ordinals are non-isomorphic.

Proof. Let X,Y be ordinals, then X ∩ Y ⊆ X,Y is transitive; this gives
the contradiction X ∩ Y ∈ X,Y unless X ∩ Y = X or X ∩ Y = Y . Note
that if X ⊂ Y then X = [0, X[. If X is isomorphic to Y , then X ⊆ Y ⊆ X .

4. The class of ordinal numbers is itself an ordinal (so not a set), with well-
order ⊆, X+ = X ∪ {X }, and

∨

A =
⋃

A.

Proof. If x ∈ X ∈ Ordinals then x is an ordinal. Any non-empty class of
ordinals has the minimum

⋂

A which is an ordinal because it is a transitive
subset of any X ∈ A.

5. Every well-ordered space is isomorphic to a unique ordinal. Hence every
set is numerically equivalent to some ordinal; the (least) ordinals can serve
as representative cardinal numbers.

Proof. Existence by transfinite induction: [0, 0[ = ∅ (the 0 ordinal);
if [0, x[ ∼= Ox (ordinal), then [0, x+[ = [0, x] ∼= Ox ∪ {Ox } = O+

x ; if
[0, y[ ∼= Oy for every y < x, then x = sup [0, x[ ∼=

⋃

y<xOy an ordinal.
Hence X = supx [0, x[

∼=
⋃

xOx.

6. Transfinite Induction: if A ⊆ Ordinals, and ∀a, a ⊂ A ⇒ a ∈ A then
A = Ordinals.

Proof. Suppose that A 6= Ordinals, and let a := min(OrdinalsrA). Then
a /∈ A ⇒ a 6⊂ A as well as A ∈ OrdinalsrA ⇒ a ⊆ A.

7. The sum (+) of ordinal numbers satisfies

A+ 0 = A, A+B+ = (A+B)+, A+B =
⋃

C∈B

(A+ C)

with zero 0, associative, preserves 6.
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(a) B is a limit ordinal ⇔ A+B is as well (unless B = 0);

(b) If n ∈ N and A an infinite ordinal then n+A = A;

(c) Ordinal numbers are of the type A + n where A is a limit ordinal
(perhaps 0) and n a natural number.

8. Multiplication satisfies

A0 = 0, AB+ = AB +A, AB =
⋃

C∈B

AC

with unity 1, associative, left-distributive, preserves6, allows left-cancelation;

(a) AB is a limit ordinal ⇔ A or B is also; in particular nB = B;

(b) ∀A,B 6= 0, A = BC +R with R ⊂ B.

(c) Multiplication is not right-distributive, e.g. (1 + 1)ω 6= ω + ω

9. Can define powers (not the same as set exponentiation) by

A0 := 1, AB+

:= ABA, AB :=
⋃

C∈B

AC(except 0B := 0)

Then AB+C = ABAC , ABC = (AB)C .

10. The class of ordinal numbers starts

0, 1, 2, . . .
ω := N, ω + 1, ω + 2, . . . ,
ω2 = ω + ω, ω2 + 1, . . . ,
ω3, . . . ,
. . .
ω2 = ωω, . . . ,
ω3, . . . ,
. . .
ωω, . . . ,
ωωω

, . . . ,
. . .

ǫ0 := ωω.
.
.

, . . . ,

ǫ1 := ǫ
ǫ.

.
.

0

0 , . . .
. . .

These are all countable ordinals; the first uncountable ordinal is ω1 :=
sup{ x : x is a countable ordinal } (it’s uncountable else ω+

1 ∈ ω1).



Joseph Muscat 2015 27

3 Finite Orders

Size Orders Lattices Distributive
Lattices

Boolean
Lattices

1 1 1 1 1
2 2 1 1 1
3 5 1 1 0
4 16 2 2 1
5 63 5 3 0
6 318 15 5 0
7 2045 53 8 0
8 16999 222 15 1
9 183231 1078 26 0
10 2567284 5994 47 0
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