Ordered Sets

joseph.muscat@um.edu.mt 1 September 2012

The *morphisms* on a **relation** (digraph) \rightsquigarrow between points are those maps that preserve this relation:

$$x \rightsquigarrow y \Rightarrow f(x) \rightsquigarrow f(y)$$

Two points x, y are *indistinguishable* by the relation when (for all z)

 $x \rightsquigarrow z \Leftrightarrow y \rightsquigarrow z, \qquad z \rightsquigarrow x \Leftrightarrow z \rightsquigarrow y.$

Digraphs are connective spaces (graphs): $\{x, y\}$ is connected when x, y are comparable, i.e., $x \rightsquigarrow y$ OR $y \rightsquigarrow x$.

The *product* relation on $A \times X$ is given by

$$(a, x) \rightsquigarrow (b, y)$$
 when $a \rightsquigarrow b$ AND $x \rightsquigarrow y$

The sum $X \oplus Y$ is the disjoint union of X and Y, with elements of X and Y unrelated with each other.

The exponential set Y^X of functions into a digraph has the relation

$$f \rightsquigarrow g \Leftrightarrow \forall x \in X, f(x) \rightsquigarrow g(x)$$

A **pre-order** is a relation \leq which is transitive and reflexive

$$x \leqslant y \text{ AND } y \leqslant z \Rightarrow x \leqslant z, \qquad x \leqslant x$$

The morphisms are those that preserve the order (monotone maps)

$$x \leqslant y \; \Rightarrow \; f(x) \leqslant f(y)$$

the monomorphisms are the 1-1 monotonic maps, epimorphisms are the onto monotonic maps; \emptyset is the initial object; {*} is the terminal object; (note that bijective morphisms need not be isomorphisms, and $X \subseteq Y$ AND $Y \subseteq X$ is possible without $X \cong Y$, e.g. \mathbb{Q} and \mathbb{Q}^*). A pre-ordered set is itself a category in which the morphisms are $x \leq y$.

Points x, y are indistinguishable when $x \leq y \leq x$.

Every digraph gives rise to a pre-order: let $x \leq y$ mean that there exists a directed path from x to y: $x \rightsquigarrow \cdots \rightsquigarrow y$; in this case, the equivalence classes of indistinguishable points are called "strongly connected" components.

If x, y are incomparable, then one can extend the \leq relation so that $x \leq ' y$ becomes true: Define $a \leq ' b$ to mean $a \leq b$ OR ($a \leq x$ AND $y \leq b$).

An order is a pre-order without indistinguishable points,

 $x \leqslant y \leqslant x \; \Rightarrow \; x = y$

Any pre-order becomes an order by identifying its indistinguishable elements and defining $[x] \leq [y]$ when $x \leq y$. Subsets, $X \times Y$, $X \oplus Y$, X^A , are ordered spaces,

$$(x,a) \leq (y,b) \Leftrightarrow x \leq y \text{ AND } a \leq b$$
$$f \leq g \Leftrightarrow \forall x \in A, f(x) \leq g(x)$$

in particular the power set 2^X has the order $A\subseteq B$ on subsets. Example:

- 1. Words with $x \leq y$ when the letters of x are in y in the same order, e.g. $ab \leq caxb$
- 2. Given any collection S of subsets of X (which distinguish points), let $x \leq y$ when $\forall A \in S, x \in A \Rightarrow y \in A$.
- 3. Given functions $\pi_i: Y \to X_i$, with X_i ordered, then Y is also ordered by

$$y \leq z \Leftrightarrow \forall i, \pi_i(y) \leq \pi_i(z)$$

4. Decision problems (i.e., capable of yes/no answers) with $a \leq b$ when a can be transformed to b in polynomial number of steps (a pre-order called *reduction*).

A subset B is a *refinement* of another A when $\forall x \in A, \exists y \in B, y \leq x$.

Joseph Muscat 2015

	Finite	Finitely-Generated	
Ordered Spaces \leq			Words
Lattices \lor , \land			Subgroups
Modular Lattices $x \leq y \Leftrightarrow x \lor (z \land y) = (x \lor z) \land y$			normal subgroups, submodules
Distributive Lattices $x \land (y \lor z) = (x \land y) \lor (x \land z)$			\mathbb{N} with closed subintervals of $[0, 1]$
Heyting algebras $x \to y$	$\begin{array}{c} \cdot & \bullet & \bullet \\ \uparrow & \uparrow & \uparrow \\ \cdot & \bullet & \bullet \\ \end{array}$ eg divisors of n		bounded linear or- ders, open subsets
Boolean algebras $\neg \neg x = x$	2^n		2^A , clopen subsets eventually periodic 0, 1-sequences

Given a morphism $f : X \to X$, one can form sequences $x \leq f(x) \leq f(f(x)) \leq \cdots$, which may perhaps terminate at a fixed point f(y) = y. If this happens for each x, then the morphism $x \mapsto y$ is called a **closure** map: a morphism $x \mapsto \bar{x}$ such that

$$x \leqslant \bar{x} = \bar{\bar{x}}$$

(equivalently, $x \leq \bar{y} \Leftrightarrow \bar{x} \leq \bar{y}$.) Elements with $x = \bar{x}$ are called *closed*; then \bar{x} is that unique smallest closed element larger than x (since $x \leq y \Rightarrow \bar{x} \leq \bar{y} = y$).

An *interior* map $x \mapsto \underline{x}$ is the dual: a morphism such that $x \ge \underline{x} = \underline{x}$.

 $f: X \to Y$ has a (right or upper) **adjoint** $f^*: Y \to X$ when

$$f(x) \leqslant y \Leftrightarrow x \leqslant f^*(y)$$

- 1. $x \leq f^* \circ f(x)$ and $f \circ f^*(y) \leq y$ (so f^* is unique)
- 2. f, f^* are morphisms (since $x \leq y \leq f^* \circ f(y)$)
- 3. $f \circ f^* \circ f = f$ and $f^* \circ f \circ f^* = f^*$ Proof. $x \leq f^* \circ f(x)$, so $f(x) \leq f(f^*(f(x))) \leq f(x)$
- 4. $f^* \circ f$ is a closure map (x is closed iff $x = f^*(y)$), and $f \circ f^*$ is an interior map. (Every closure map arises this way.) So f and f^* are inverses on the closed elements.

5. When $y \leq f(x) \Leftrightarrow x \leq f^*(y)$, then the same identities hold except $y \leq f \circ f^*(y), x \leq y \Rightarrow f(x) \geq f(y)$.

For example, given any relation $\rightsquigarrow \subseteq X \times Y$, the maps $f : 2^X \to 2^Y$ and $f^* : 2^Y \to 2^X$, (here $A \rightsquigarrow y$ means $\forall a \in A, a \rightsquigarrow y$),

$$f(A) := \{ y \in Y : A \rightsquigarrow y \}, \quad f^*(B) := \{ x \in X : x \rightsquigarrow B \}$$

satisfy $B \subseteq f(A) \Leftrightarrow A \subseteq f^*(B)$.

A set is *bounded below* when it has a **lowerbound**, namely an element $x \leq A$. An *infimum* of a set is a greatest lowerbound, denoted $\bigwedge A$ or $\inf A$ (necessarily unique *if* it exists),

$$z \leqslant A \Leftrightarrow z \leqslant \bigwedge A,$$

in particular, $x \wedge y := \bigwedge \{x, y\},\$

$$z \leqslant x, y \Leftrightarrow z \leqslant x \land y$$

When the infima exist, $x \land (y \land z) = (x \land y) \land z$, $x \land y = y \land x$, $x \land x = x$.

A minimal element $a \in A$ is one for which

$$\forall x \in A, \quad x \leqslant a \; \Rightarrow \; x = a$$

A minimum is a lowerbound which is an element of the set (hence the infimum and minimal). The dual concepts are: bounded above, upperbound, supremum (denoted sup A or $\bigvee A$ and $x \lor y$), maximal element, and maximum. The supremum and infimum certainly exist when the elements are comparable,

$$x \leqslant y \Leftrightarrow x \land y = x \Leftrightarrow x \lor y = y$$

The set of elements lower than a is denoted $\downarrow a := \{x \in X : x \leq a\}$ and called the *principal lower-set* of a. More generally, the *lowerset* generated by A consists of its elements' lowerbounds,

$$\downarrow A := \{ x \in X : \exists a \in A, x \leq a \}$$

The dual concepts are $\uparrow a$ and $\uparrow A$. The maps $A \mapsto \uparrow A$ and $A \mapsto \downarrow A$ are closure operations; a set is *lower-closed* when $\downarrow A = A$; similarly for *upper-closed*.

A (closed) interval is $[a,b] := \{x \in X : a \leq x \leq b\} = \uparrow a \cap \downarrow b$; also $[a,b] := [a,b] \setminus \{b\}$, etc. If $a \leq b$, then $[a,b] = \emptyset$. More generally, a set A is convex when $x, y \in A \Rightarrow [x,y] \subseteq A$, equivalently $A = \downarrow A \cap \uparrow A$ (e.g. intervals).

1. The intersection and union of lower-closed sets are lower-closed,

$$\downarrow (A \cup B) = \downarrow A \cup \downarrow B, \quad \downarrow (A \cap B) \subseteq \downarrow A \cap \downarrow B$$

- 2. The complement of a lower-closed set is upper-closed.
- 3. The map $x \mapsto \downarrow x$ is an embedding of X in 2^X . So every ordered space can be represented by a space of subsets.
- 4. Lowerbounds $(A) \subseteq \downarrow A$ is lower-closed, e.g. Lowerbounds $(x) = \downarrow x$.
- 5. Lowerbounds $(A) = \{x \in X : x \leq A\}$, Upperbounds $(A) = \{x \in X : A \leq x\}$, so Lowerbounds and Upperbounds are adjoints on 2^X ,

 $A \subseteq \text{Lowerbounds}(B) \Leftrightarrow B \subseteq \text{Upperbounds}(A)$

- A 'closed' subset induces a *cut*: a pair of subsets A, B such that A =Lowerbounds(B) and B =Upperbounds(A).
- 6. The intersection of convex sets is convex, so every set A generates its convex hull $Convex(A) := \bigcap \{ B \subset X : convex, A \subseteq B \}.$
- 7. The kernel of a morphism consists of convex equivalence classes.

A set is **cofinal** when every element has a larger element $\forall x, \exists a \in A, x \leq a$; any cofinal subset contains the maximal elements of X. The dual concept is *co-initial*. The smallest cardinality of the cofinal subsets is called the *cofinality* of the ordered space; the space is called *regular* when the cofinality equals the cardinality of the space.

A set is (up) **directed** when every pair has an upperbound in the set

$$\forall x, y \in A, \exists z \in A, \quad x, y \leqslant z$$

(For example, an increasing sequence, $x_1 \leq x_2 \leq x_3 \cdots$.) Its lower-closure is another directed set, called an **ideal**, e.g. the *principal* ideal $\downarrow a$. Every proper ideal can be extended to a maximal proper ideal (using Zorn's lemma, since the union of a chain of ideals is an ideal). For example, uncomparable elements can be separated by a maximal ideal (that extends $\downarrow x$),

 $x \leq y \Rightarrow \exists I \text{ maximal ideal}, x \in I, y \notin I.$

In a finite space, every ideal is principal $(\downarrow \max I)$.

A filter is the dual of an ideal, i.e., an upper-closed set such that every pair has a lowerbound $\forall x, y \in F, \exists z \in F, z \leq x, y$; e.g. the principal filter $\uparrow a$. If an ideal and a filter are set-complements, they are called *prime*.

A **net** is a map from a directed set. A net $(x_i)_{i \in I}$ is said to be *eventually* in A, here denoted by $x_i \rightarrow A$, when

$$\exists j \in I, \ i \ge j \implies x_i \in A.$$

The following properties hold:

$$\begin{aligned} x_i &\rightarrowtail A \subseteq B \implies x_i \not\leadsto B, \\ x_i &\rightarrowtail A \cap B \Leftrightarrow x_i \not\leadsto A \text{ and } x_i \not\leadsto B \\ x_i &\twoheadleftarrow A \text{ or } x_i \not\twoheadleftarrow B \implies x_i \not\twoheadleftarrow A \cup B, \\ x_i &\twoheadleftarrow A^{\mathsf{c}} \implies \text{ NOT } (x_i \not\twoheadleftarrow A). \end{aligned}$$

A subnet is a composition $J \to I \to X$ such that $J \to I$ is increasing and $\forall a \in I, \exists j \in J, i_j \ge a$.

A net $(x_i)_{i \in I}$ converges up in order $x_i \nearrow x$ when x_i is increasing with supremum x. Similarly, $x_i \searrow x$ when x_i is decreasing with infimum x.

An element c is compact when for any ideal $I, c \leq \text{Upperbounds}(I) \Rightarrow c \in I$.

An order is **dense** when $\forall x < y, \exists z, x < z < y$. Otherwise, if x < y have no other elements in between, then we say there is a *gap* between x and y (or that y covers x). An order is *locally finite* when every interval is finite.

0.0.1 Hausdorff Maximality Principle

Zorn's Lemma: In a non-empty ordered space, if every chain has an upperbound, then there is a maximal element.

Proof: Using the axiom of choice, map every chain C to an upperbound of it g(C). Suppose there is no maximal element, so can map every element to f(x) > x. Let F: Ordinals $\to X$ be defined by $F(0) := x_0 \in X$, $F(n^+) :=$ $f \circ F(n)$, $F(\lim n) := f \circ g\{F(n)\}$. F is strictly increasing, hence 1-1; so there is an onto map $H: X \to$ Ordinals, contradicting that Ordinals is not a set.

Hausdorff's Maximality Principle: Every chain can be extended to a maximal chain.

Proof: Order the chains that contain c_0 by inclusion; every chain C of such chains has an upperbound, namely $\bigcup C$, which is a chain; hence there is a maximal chain.

0.0.2 DCC Orders

A **DCC** order is one in which every non-empty subset has a minimal element. (An *ACC* order is the dual: every non-empty subset has a maximal element.)

Equivalently, every descending sequence is finite (since if A has no minimal element, then it has an infinite descending sequence a_n by letting $a_{n+1} < a_n$ (using axiom of choice); conversely, suppose $x_1 \ge x_2 \ge x_3 \dots$ with minimal element x_n ; then $x_i = x_n$ for all $i \ge n$).

Transfinite Induction for DCC: If $(\forall y < x, y \in A) \Rightarrow x \in A$, then A = X (since the set $X \setminus A$ has no minimal element).

0.1 Bounded Orders

An ordered set is **bounded** when $\exists 0, 1, 0 \leq X \leq 1$; equivalently $0 := \bigvee \emptyset$, $1 := \bigwedge \emptyset$ exist; or when the map $X \to \{*\}$ has an upper and lower adjoint. (Morphisms are now required to preserve 0, 1.)

$$\begin{aligned} x \wedge 0 &= 0, \qquad x \wedge 1 = x, \\ x \vee 0 &= x, \qquad x \vee 1 = 1 \end{aligned}$$

An element a is an **atom** when it is minimal among the non-zero elements $x \leq a \Rightarrow x = a$ XOR x = 0 (i.e., 0 < a is a gap). The ordered space is called *atomic* when every non-zero element is greater than some atom. It is *atomistic* when every element is generated by atoms, $x = \bigvee_i a_i$ for some atoms a_i . An atom a is *independent* of a set A when $a \leq \bigvee A$; a set A of atoms is *independent* when each atom a is independent of $A \setminus \{a\}$.

Two elements x, y are said to be **complementary** when they satisfy "excluded middle":

$$x \wedge y = 0, \quad x \vee y = 1$$

e.g. 0 and 1. A space is *complemented* when every element has a complement. In a complemented space, morphisms are required to preserve complements.

1. The only elements that compare with a non-0, 1 complementary pair are 0 and 1; so $[x, y] = \emptyset, \downarrow x \cap \downarrow y = 0$ and $\uparrow x \cup \uparrow y = 1$.

Proof: If $z \leq x, y$, then $z \leq x \land y = 0$; if $x \leq z \leq y$ then $0 = x \land y = x$.

2. In a complemented space, prime ideals are maximal.

3

Proof: If $P \subset Q$, then there is an $a \in Q \setminus P$; its complement $b \in P$ since $a \wedge b = 0$; so $1 = a \vee b \in Q$ and Q = X.

An *implication* \rightarrow is an operation such that $x \leq y \Leftrightarrow (x \rightarrow y) = 1$.

1 Lattices

A semi-lattice is an ordered space in which any finite subset has a least upperbound, or supremum, in particular $0 = \bigvee \emptyset$ and $x \lor y = \bigvee \{x, y\}$.

Equivalently, a set with an idempotent, commutative, associative operation \lor (then $x \leq y \Leftrightarrow y = x \lor y$).

Equivalently, when the map $x \mapsto (x, x), X \to X^2$, has an upper adjoint $(x, y) \mapsto x \lor y$.

A semi-lattice morphism is one which preserves \vee (hence monotonic)

$$f(x \lor y) = f(x) \lor f(y)$$

The map $x \mapsto x \lor y$ is a closure morphism and is the only such which is idempotent; more generally $\lor : X^2 \to X$ is a \lor -morphism. A map is a \lor isomorphism \Leftrightarrow it is a bijective \lor -morphism \Leftrightarrow it is an order-isomorphism (since $f(z) = f(x) \lor f(y) \leqslant f(x \lor y)$, so $z \leqslant x \lor y$ and $x, y \leqslant z$, so $z = x \lor y$).

Images, Products are semi-lattices, $(x, a) \lor (y, b) := (x \lor y, a \lor b)$; also Functions Y^X when Y is a semi-lattice: $(f \lor g)(x) := f(x) \lor g(x)$.

An element *a* is said to be \lor -*irreducible* when

$$a = x \lor y \implies x = a \text{ OR } y = a$$

(e.g. atoms); in particular the \lor -primes:

$$a \leqslant x \lor y \Rightarrow a \leqslant x \text{ OR } a \leqslant y$$

(since if $a = x \lor y \ge x$ then $a \le x$, say, so a = x).

- 1. A set A is upper-closed iff $x \lor A \subseteq A$ for any x.
- 2. $\uparrow (x \lor y) = \uparrow x \cap \uparrow y$.
- 3. For any closure map, $\bar{x} \vee \bar{y} \leq \overline{x \vee y}$. The set of closed elements form a \vee -semi-lattice (and also a \wedge -semi-lattice: $x \wedge y \leq \overline{x \wedge y} \leq \bar{x}, \bar{y}$).
- 4. *I* is an ideal iff it is a lower-closed semi-lattice,

 $x \lor y \in I \Leftrightarrow x \in I \text{ and } y \in I.$

- 5. A filter is prime iff $x \lor y \in F \Leftrightarrow x \in F$ OR $y \in F$. e.g. $\uparrow x$ is a prime filter $\Leftrightarrow x$ is \lor -prime.
- 6. If $f: X \to Y$ is a \lor -morphism, then its kernel $f^{-1}0$ is an ideal.

Conversely, when I is an ideal, the map $x \mapsto \begin{cases} 0 & x \in I \\ 1 & x \notin I \end{cases}$ is a \lor -morphism (with kernel I).

7. The intersection of ideals is an ideal. So every set generates a unique ideal, namely the smallest ideal containing it,

$$(A] := \downarrow \{ a_1 \lor \cdots \lor a_n : a_i \in A, n \in \mathbb{N} \}$$

The map $A \mapsto (A]$ is a closure map in 2^X .

8. An element c is compact when for any subset A,

 $c \leq \text{Upperbounds}(A) \Rightarrow \exists n \in \mathbb{N}, a_i \in A, c \leq a_1 \lor \cdots \lor a_n.$

The set of compact elements of a semi-lattice is a semi-lattice.

9. If a semi-lattice is generated by a set A, then the compact \lor -irreducibles are in A (for example, in an atomistic semi-lattice, the compact irreducibles are the atoms).

Proof. If $x = \bigvee_i a_i$, then $x \leq a_1 \vee \cdots \vee a_n \leq \bigvee_i a_i = x$ (x compact); so $x = a_i$ (x irreducible).

10. In an atomic semi-lattice, an *essential* element b is an upperbound of the set of atoms, equivalently

$$b \wedge x = 0 \Rightarrow x = 0.$$

Proof: For any $x \neq 0$, there is an atom $a, 0 < a \leq x, b$, so $0 < a = a \land b \leq x \land b$. Conversely, for any atom $a \neq 0, 0 < a \land b$, so $a \land b = a$.

The dual notions are a *superfluous* element b, which is a lowerbound of the coatoms, equivalent to $b \lor x = 1 \implies x = 1$.

Examples of ideals: the set of finite subsets of a set; the set of bounded subsets of a topological space; the compact elements of any lattice.

A **lattice** has both suprema $x \lor y$ and infima $x \land y$.

Equivalently, a set with two operations that are associative, commutative, idempotent, and absorptive $x \land (x \lor y) = x = x \lor (x \land y)$; in this case $x \leqslant y \Leftrightarrow x \land y = x \Leftrightarrow x \lor y = y$. Equivalently the map $x \mapsto (x, x)$ has both an upper and lower adjoint.

The morphisms are now those maps that preserve \lor , \land . Images, products, and exponentials are lattices; so are ideals, filters, and intervals [a, b].

All properties for semi-lattices apply for both \vee and \wedge (in dual form).

1. $(x \land y) \lor (x \land z) \leq x \land (y \lor z), x \lor (y \land z) \leq (x \lor y) \land (x \lor z)$ (but strict distributivity need not hold). In particular, $x \lor (z \land y) \leq (x \lor z) \land y \Leftrightarrow x \leq y$.

More generally, the *minimax* principle states that maxmin \leq minmax,

$$(x_1 \wedge a_1) \vee \cdots \vee (x_1 \wedge a_n) \vee \cdots \vee (x_m \wedge a_n) \leqslant (x_1 \vee \cdots \times x_m) \wedge (a_1 \vee \cdots \wedge a_n)$$

- 2. Complements are preserved by morphisms: $f(x) \lor f(y) = f(x \lor y) = 1$, $f(x) \land f(y) = f(x \land y) = 0$.
- 3. A congruent partition of X is one such that $[x] \land [y] := [x \land y], [x] \lor [y] := [x \lor y]$ are well-defined. Then X/\sim is a lattice, and $f : X \to X/\sim$, f(x) := [x] is an onto morphism.

Conversely, every morphism gives rise to a congruent partition ker f of equivalence classes $f^{-1}(y)$, with $f^{-1}0$ an ideal and $f^{-1}1$ a filter. The first isomorphism theorem holds: $X/\ker f \cong fX$.

4. Adjoints f, f^* are semi-lattice morphisms:

```
f preserves \lor and f^* preserves \land
```

Proof.
$$f(x), f(y) \leq z \Leftrightarrow x \lor y \leq f^*(z) \Leftrightarrow f(x \lor y) \leq z$$
.

5. A sublattice A is convex iff for all $x \in X$, $a, b \in A$, $a \lor (x \land b) \in A$.

A complete lattice is an order in which every subset has a supremum and an infimum (it is enough for all sets to have suprema since $\bigwedge A = \bigvee \text{Lowerbounds}(A)$). Scott-morphisms are those that preserve suprema and infima $f(\bigvee A) = \bigvee fA$.

An order-isomorphism between complete lattices is Scott-continuous. Proof: $f(x) = \bigvee fA \ge f(a)$ for all $a \in A$ implies $a \le x$, hence $f(\bigvee A) \le \bigvee fA$. Also $a \le \bigvee A$ implies $f(a) \le f(\bigvee A)$, so $\bigvee fA \le f(\bigvee A)$.

Examples: 2^X , $\mathbb{N}^* := \mathbb{N} \cup \{\infty\}$; finite \vee -semi-lattices; the upper-closed subsets of an order.

Proposition 1

Let X be a complete lattice. If Y is a complete lattice in X, then

$$x \mapsto \bar{x} := \bigwedge \{ \, y \in Y : x \leqslant y \, \}$$

is a closure map, with Y as its closed elements. Given a closure map on X, the set of closed elements is a complete lattice.

PROOF: $x \leq y \Rightarrow \bar{x} \leq \bar{y}$ and $x \leq \bar{x}$ are obvious. Moreover, for $y \in Y$, $x \leq y \Leftrightarrow \bar{x} \leq y$, so $\bar{\bar{x}} = \bar{x}$. Since Y is complete, $\bar{x} \in Y$.

Let A consist of closed elements. Its least upper bound is $\overline{\bigvee A}$ since it is an upper bound for A and any other closed upper bound is larger $A \leq x = \bar{x} \Rightarrow \overline{\bigvee A} \leq x$.

Every order can be embedded in a complete lattice; the smallest such lattice is called its *completion*:

 $Proposition \ 2$

(Dedekind-MacNeille) Every ordered space has a completion.

PROOF: The maps L := Lowerbounds and U := Upperbounds are adjoints on 2^X , with closure LU. So their 'closed' sets (cuts) form a complete subspace of 2^X . The map $x \mapsto L\{x\} = \downarrow x$ embeds X into this complete lattice.

Proposition 3

(Tarski)

Every monotonic function on a complete lattice has a fixed point.

PROOF: The non-empty set $A = \{x \in X : f(x) \leq x\}$ has an infimum a; thus $x \in A \Rightarrow a \leq x \Rightarrow f(a) \leq f(x) \leq x$, so that $f(a) \leq a$; also $x \in A \Rightarrow f(x) \in A$; but then $a, f(a) \in A$ and $f(a) \leq a \leq f(a)$.

The set of fixed points of an order-morphism on a complete lattice is itself a complete lattice.

In a complete atomic lattice, the *socle* is $\bigvee \{a : \text{atom}\} = \bigwedge \{b : \text{essential}\}$. Dually, the *radical* is $\bigwedge \{a : \text{coatom}\} = \bigvee \{b : \text{superfluous}\}$.

1.0.1 Algebraic Lattices

An *algebraic lattice* is a complete lattice that is generated by compact elements.

- 1. Atoms are compact.
- 2. In an algebraic lattice, any two elements a < b contain a gap.

Proof: If a < b then there is a compact element c such that $c \leq b$, $c \leq a$. Let $A := \{x \in [a,b] : c \leq x\}$, contains a. Any chain in A has sup in A, so A contains a maximal element d, by Zorn's lemma; thus $a \leq d < c \lor d \leq b$.

Examples:

• Given a closure operation on 2^X , if

$$\bar{A} = \bigcup \{ \bar{B} : B \subseteq A, B \text{ finite} \}$$

then the set of closed subsets is an algebraic lattice, and the compact elements are the closures of finite subsets.

Proof: Let X be the lattice of closed subsets. For any subset $B \subseteq A$, if $\overline{B} \leq \bigvee_i A_i$ with A_i closed, then $B \subseteq \bigvee_i A_i = \bigcup_i A_i = \bigcup_i \overline{F} : F \subseteq \bigcup_i A_i, F$ finite }. If B is finite then $B \subseteq A_1 \cup \cdots \cup A_n$ and $\overline{B} \subseteq A_1 \cup \cdots \cup A_n$; thus \overline{B} is compact.

- A universal algebra X has a closure map $A \mapsto \llbracket A \rrbracket$ in 2^X with the above property. Hence the subalgebras ('closed' subsets) form an algebraic lattice, with $M \wedge N = M \cap N$, $M \vee N = \llbracket M \cup N \rrbracket$; the compact elements are the finitely generated subalgebras. (And every algebraic lattice is induced from some universal algebra.)
- The lattice of ideals of a semi-lattice, with $\bigwedge_i I_i = \bigcap_i I_i, \bigvee_i I_i = (\bigcup_i I_i]$. Its compact elements are $\downarrow x$. X is embedded in it via $x \mapsto \downarrow x$.

1.0.2 ACC Lattices

1. An ACC semi-lattice is a complete lattice.

Proof. The set $\{a_1 \lor \cdots \lor a_n : a_i \in A, n \in \mathbb{N}\} \supseteq A$ has a maximal element b, so $\bigvee A = b$.

2. Every element of an ACC lattice is compact.

Proof. If $x \leq \bigvee A = \bigvee \{a_1 \lor \cdots \lor a_n : a_i \in A, n \in \mathbb{N}\}$, then x is less than a maximal element; conversely, if $x_1 < x_2 < \cdots$ is an ascending chain, then $\bigvee_i x_i \leq x_1 \lor \cdots \lor x_n = x_n$.

3. Every non-zero element of an ACC lattice can be written as $x = a \land \dots \land b$ for some \land -irreducibles.

Proof. Let x be a maximal element without such a decomposition; then x is not irreducible, i.e., $x = a \wedge b$ with x < a, b, so a, b have such decompositions.

1.1 Complements

A dual is a self-adjoint map $\star : X \to X$,

$$x \leqslant y^{\star} \Leftrightarrow y \leqslant x^{\star}$$

 $a \leq b^*$ can be denoted by $a \perp b$. Then Products have duals $(x, y)^* := (x^*, y^*)$; as do functions $f^*(x) := f(x)^*$.

- 1. \star satisfies all the properties of adjoints: uniqueness of $\star, x \leq y \Rightarrow y^* \leq x^*$, $x \leq x^{\star\star}, x^{\star\star\star} = x^*, x \mapsto x^{\star\star}$ is a 'closure' map, $0^* = 1$.
- 2. $x^* \lor y^* \leqslant (x \land y)^*$ and $(x \lor y)^* \leqslant x^* \land y^*$.

Proof. Apply \star to reverse the inequalities in $x \wedge y \leq x, y \leq x \vee y$.

A quasi-complement of x is a 'closed' dual, $x^{\star\star} = x$. Products are quasi-complemented.

Example: Fuzzy logic [0, 1] with max, min, $x^* := 1 - x$.

- 1. $x^{\star} = 0 \Leftrightarrow x = 1, x^{\star} = y \Leftrightarrow x = y^{\star}$.
- 2. de Morgan's laws: $(x \wedge y)^* = x^* \vee y^*$, $(x \vee y)^* = x^* \wedge y^*$. Proof. Since \star is a dual, $x \wedge y \leq (x^* \vee y^*)^* \leq x^{\star\star} \wedge y^{\star\star} = x \wedge y$.
- 3. When the lattice is complete, $(\bigvee_i x_i)^* = \bigwedge_i x_i^*$ and $(\bigwedge_i x_i)^* = \bigvee_i x_i^*$ (by the same reasoning).
- 4. If A is lower-closed then the set of its quasi-complements A^* is upper-closed.

An **ortho-complement** of x is a complement quasi-complement x^{\perp} ,

$$x \lor x^{\perp} = 1, \quad x \land x^{\perp} = 0, \quad x^{\perp \perp} = x, \quad x \leqslant y \; \Rightarrow \; y^{\perp} \leqslant x^{\perp}$$

Define $x \equiv y := (x \land y) \lor (x^{\perp} \land y^{\perp})$, and let x COMM y to mean $x = (x \land y) \lor (x \land y^{\perp})$ (or $(x \lor y^{\perp}) \land y = x \land y$).

One dual is a **pseudo-complement** of x: an element $\neg x$ such that

$$y \leqslant \neg x \Leftrightarrow x \land y = 0$$

i.e., the largest element such that $x \wedge \neg x = 0$. Products and Functions have pseudo-complements.

- 1. \wedge -isomorphisms preserve pseudo-complements $f(\neg x) = \neg f(x)$.
 - Proof. $f(x) \wedge f(\neg x) = f(x \wedge \neg x) = 0$. If $0 = f(x) \wedge f(y) = f(x \wedge y)$ then $x \wedge y = 0$, so $y \leq \neg x$ and $f(y) \leq f(\neg x)$.
- 2. For any atom a, either $a \leq x$ or $a \leq \neg x$ (since $a \land x = a$ or 0).
- 3. A quasi-pseudo-complement is a complement (in fact the lattice must be Boolean). So the 'closure' of a pseudo-complemented lattice is Boolean.

The dual pseudo-complement is an element x_{\star} such that $x_{\star} \leq y \Leftrightarrow x \lor y = 1$.

Proposition 4

Ultrafilters

A filter is maximal $\Leftrightarrow \forall x, x \in F \text{ XOR } \neg x \in F$

PROOF: Let F be maximal. If $x \notin F$, then the filter generated by F and x equals X, so for some $y \in F$, $0 = y \wedge x$, hence $y \leq \neg x$ and $\neg x \in F$. If $x, \neg x \in F$ then $0 = x \wedge \neg x \in F$, so F = X. For the converse, suppose G is a filter that contains F and $x \in G \setminus F$; then $\neg x \in F$, so $0 = x \wedge \neg x \in G$.

1.1.1 Ortho-modular Lattices

An ortho-modular lattice is an ortho-complemented lattice such that

 $x \equiv y = 1 \Leftrightarrow x = y$

Equivalently, any of the following statements hold:

$$\begin{split} x \leqslant y \, \Leftrightarrow \, x \lor (x^{\perp} \land y) &= y, \\ x \perp y \, \Leftrightarrow \, x^{\perp} \land (x \lor y) &= y, \\ x \lor y &= x \lor ((x \lor y) \land x^{\perp}), \\ x \leqslant y \, \Leftrightarrow \, x \leqslant (x^{\perp} \lor y), \\ x, y \text{ are complements such that } y \leqslant x^{\perp} \; \Rightarrow \; y = x^{\perp}, \\ x \text{ COMM } y \, \Leftrightarrow \, y \text{ COMM } x(\Leftrightarrow x \text{ COMM } y^{\perp}) \end{split}$$

Example: *Quantum Logic*, the (atomistic) lattice of the closed linear subspaces of a Hilbert space.

1. There are various "quantum implications" $x \to y$: any of $x^{\perp} \lor y, x^{\perp} \lor (x \land y), x \lor (x^{\perp} \land y^{\perp}), (x \land y) \lor (x^{\perp} \land y) \lor (x^{\perp} \land y^{\perp})$. For any of these,

 $x \lor y = (x \to y) \to (((x \to y) \to (y \to x)) \to x))$

- 2. A state is a function $f : X \to [0,1]$ such that $x \perp y \Rightarrow f(x \lor y) = f(x) + f(y)$ and f(1) = 1. Hence f is an order-morphism and f(0) = 0.
- 3. Let $C(A) := \{x \in X : \forall a \in A, x \text{ COMM } a\}$. Then C is self-adjoint: $A \subseteq C(B) \Leftrightarrow B \subseteq C(A)$; hence, $A \subseteq C(C(A)), C(C(C(A))) = C(A)$.

(Foulis-Holland) If x, y, z commute with each other, then distributivity holds for x, y, z.

4. An atomic orthomodular lattice is atomistic.

Proof. Let $y := \bigvee \{ a \leq x : a \text{ atom } \}$; if y < x, then $x \wedge y^{\perp} \neq 0$, is greater than some atom a, i.e., $a \leq x$, $a \leq y$, a contradiction; hence y = x.

1.2 Semi-Modular Lattices

A lattice is semi-modular when $x \wedge y < x$ is a gap $\Rightarrow y < x \lor y$ is a gap. Example:

$$\circ \longrightarrow \circ$$

$$\circ \longrightarrow \circ$$

$$\circ \longrightarrow \circ$$

$$\circ \longrightarrow \circ$$

1. For any atoms $a, b, c, c \leq a \lor b \Rightarrow a \lor b \lor c = b \lor c = a \lor c$ (for any two atoms, $a < a \lor b$ is a gap, so $b < b \lor c \leq a \lor b$).

2. If $0 < a_1 < \cdots < a_n < 1$ and $0 < b_1 < \cdots < b_m < 1$ are chains of gaps, then n = m (called the height of X) and there is a permutation which maps one chain to the other such that $[a_i, a_{i+1}] \cong [b_i, b_{i+1}]$.

Proof. For n = 1, follows by definition of semi-modularity. If $a_1 = b_1$, then follows by induction on the rest of the chains. Otherwise let k be the largest integer such that $a_1 \leq b_k$, so $a_1 \leq b_{k+1}$. Then $a_1 < a_1 \lor b_1 < \cdots < a_1 \lor b_k = a_1 \lor b_{k+1} = b_{k+1} < b_{k+2} < \cdots < b_n < 1$. By induction, $[a_i, a_{i+1}] \cong [a_1 \lor b_j, a_1 \lor b_{j+1}] \cong [b_j, b_{j+1}].$

3. A lattice with a morphism $\delta : X \to \mathbb{N}$ such that $\delta(0) = 0, x < y$ gap $\Rightarrow \delta(y) = \delta(x) + 1$, and $\delta(x \lor y) + \delta(x \land y) \leq \delta(x) + \delta(y)$ must be semi-modular.

Proof. Let $x \wedge y < x$ be a gap; then $\delta(x \vee y) > \delta(y)$ else $x \leq y$. So $\delta(x \wedge y) + \delta(x \vee y) \leq \delta(x \wedge y) + \delta(y) + 1$, hence $\delta(y) < \delta(x \vee y) = \delta(y) + 1$, and $y < x \vee y$ is a gap.

A **geometric** lattice is an algebraic semi-modular atomistic lattice such that every chain is finite.

Subintervals are again geometric lattices; so there is a rank function $\delta : X \to \mathbb{N}$ which gives the length of any maximal chain from 0 to x.

- 1. Every basis of a geometric lattice have the same number of atoms (since $0 < a_1 < a_1 \lor a_2 < \cdots < a_1 \lor \cdots \lor a_n = 1$).
- 2. Geometric lattices are complemented.

Proof. For any x, if $x \wedge a = 0$ but $x \vee a < 1$, then there is an atom $b \notin x \vee a$; so $x \vee a < x \vee a \vee b$; there can be no atom $c \notin x \wedge (a \vee b)$, otherwise $x \vee a \vee b = x \vee a \vee c = x \vee a$; so $x \wedge (a \vee b) = 0$; hence one can pick a sequence of atoms a_i such that $x \wedge (a_1 \vee \cdots \vee a_i) = 0$ and $x \vee a_1 \vee \cdots \vee a_{i+1} > x \vee a_1 \vee \cdots \vee a_i$; as this chain is finite we find $x \wedge y = 0$, $x \vee y = 1$.

Examples:

- The set of equivalence relations on a set, with $\rho \leq \sigma$ when ρ is finer than σ (i.e., $x\rho y \Rightarrow x\sigma y$). $(x(\rho \lor \sigma)y)$ holds when there is a path of relations $x\tau_1 \cdots \tau_k y$ where $\tau_i = \rho$ or σ .) Every lattice can be embedded in some lattice of equivalence relations (hence embedded in the lattice of subgroups: $a \mapsto \{g \in S(X) : \forall x \in X, g.x\rho_a x\}$).
- Projective Geometry: subspaces of a vector space.
- Incidence Geometry: elements are points and lines.

1.3 Modular Lattices

A lattice is **modular** when $x \leq y \Leftrightarrow x \lor (z \land y) = (x \lor z) \land y$, or equivalently,

$$(x \lor y) \land (x \lor z) = x \lor (y \land (x \lor z))$$

Equivalently, any lattice which does not contain this embedded lattice (otherwise $y \land z < x < y < x \lor z$ and $y \land z < z < x \lor z$):

For example, subspaces of a vector space. Images, sublattices and products are again modular.

Proposition 5

Diamond Isomorphism theorem

The intervals $[a, a \lor b]$ and $[a \land b, b]$ are order-isomorphic, via the maps $x \mapsto x \lor a$ and $x \mapsto x \land b$.

PROOF: If $a \leq x \leq a \lor b$ then $(x \land b) \lor a = x \land (b \lor a) = x$. If $a \land b \leq x \leq b$ then $(x \lor a) \land b = x \lor (a \land b) = x$. Hence the monotonic maps $x \mapsto x \lor a$ and $x \mapsto x \land b$ are isomorphisms.

- 1. Modular lattices are thus semi-modular. By duality, its rank function satisfies $\delta(x \wedge y) + \delta(x \vee y) = \delta(x) + \delta(y)$.
- 2. Minimal (irredundant) decompositions into \wedge -irreducibles $a = r_1 \wedge \cdots \wedge r_n$ have unique lengths.

Proof. Suppose $a = r_1 \wedge r = s_1 \wedge s$ with r_1 , s_1 irreducibles. Then $[a,r] = [r_1 \wedge r,r] \cong [r_1,r_1 \vee r]$. But $a = r \wedge s_1 \wedge s = (r \wedge s_1) \wedge (r \wedge s)$, with $a \leq r \wedge s_1 \leq r$. Hence $r_1 = J(r \wedge s_1) \wedge J(r \wedge s)$, so $r_1 = J(r \wedge s_1)$ say, i.e., $a = r \wedge s_1$. Repeating for the other irreducibles gives $a = s_1 \wedge \cdots \wedge s_m \wedge r_{m+1} \wedge r_n = a \wedge \tilde{r}$ (if n > m) which implies $a \leq \tilde{r}$ impossible; similarly n < m can't hold.

3. The lattice generated by $\downarrow \{x, y\}$ is isomorphic to $\downarrow x \times \downarrow y$.

1.4 Distributive Lattices

A lattice is distributive when the map $x \mapsto a \wedge x$ (or $x \mapsto a \vee x$) is a lattice morphism (onto $\downarrow a$, resp. $\uparrow a$), that is,

$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$

 $(\Leftrightarrow x \lor (y \land z) = (x \lor y) \land (x \lor z))$ so modular. Equivalently, any of these identities holds:

$$\begin{aligned} (x \wedge y) \lor (y \wedge z) \lor (z \wedge x) &= (x \lor y) \land (y \lor z) \land (z \lor x), \\ x \lor (z \land y) &\leqslant (x \lor z) \land y, \\ \text{cancelation} \ (x \lor z = y \lor z \text{ AND } x \land z = y \land z) \Leftrightarrow x = y. \end{aligned}$$

Equivalently, a modular lattice which does not contain the diamond sublattice (since suppose a, b, c do not obey distributivity; let $p := (a \wedge b) \vee (b \wedge c) \vee (c \wedge a)$, $q := (a \vee b) \wedge (b \vee c) \wedge (c \vee a)$, $x := (a \wedge q) \vee p$, $y := (b \wedge q) \vee p$, $z := (c \wedge q) \vee p$, then p < x < q, p < y < q, p < z < q form a diamond):

Equivalently,

Equivalently, when the lattice is embedded in some (Boolean) lattice 2^A . Images, sublattices, and products are distributive.

- 1. If $a \leq x \lor b$ and $a \land x \leq b$ then $a \leq b$ (since $a = a \land (x \lor b) \leq b$).
- 2. $\{x : a \lor x = 1\}$ is a filter, and $\{x : a \land x = 0\}$ is an ideal.
- 3. Complements are pseudo-complements and quasi-complements, hence unique and denoted x':

$$x'' = x, \qquad x \leqslant y \Leftrightarrow x' \lor y = 1 \Leftrightarrow x \land y' = 0$$

Proof. If x, y and x, z are complementary, then $y = y \land (x \lor z) = y \land z$, so $y \leq z$; similarly $z \leq y$. So x'' = x since both are complementary to x'. If $x' \land y = 0$ then $y = (x \lor x') \land y = x \land y$, so $y \leq x$.

4.

$$x \triangle y = (x \lor y) \land (x' \lor y') = (x \land y') \lor (x' \land y),$$
$$x \equiv y = (x \land y) \lor (x' \land y') = (x \lor y') \land (x' \lor y)$$

- 5. Pseudo-complements satisfy a de Morgan law: $\neg(x \lor y) = \neg x \land \neg y$. Proof. $(x \lor y) \land (\neg x \land \neg y) = 0$, so $\neg x \land \neg y \leq \neg(x \lor y)$. Also, $\neg(x \lor \neg x) = 0$ but $\neg x = 0 \neq x = 1$.
- 6. The boundary of an element is $\partial x := x \vee \neg x$; so

$$\partial \partial x = \partial x, \qquad \partial (x \lor y) = (\partial x \lor y) \land (x \lor \partial y)$$

 $\neg x$ is the complement of x when $\partial x = 1$.

- 7. Irreducibles are primes. (Proof. If x is irreducible and $x \leq a \lor b$, then $x = x \land (a \lor b) = (x \land a) \lor (x \land b)$ so $x = x \land a \leq a$ or $x = x \land b \leq b$.)
- 8. The spectrum of an element a is $\sigma(a) := \{x \leq a : x \text{ is } \lor \text{-irreducible}\}$. Then $\sigma(a \lor b) = \sigma(a) \cup \sigma(b)$ and $\sigma(a \land b) = \sigma(a) \cap \sigma(b); \sigma(a') = S \lor \sigma(a)$.
- The set of lower-closed sets of an ordered space form a complete distributive lattice (with ∪, ∩). For a complete lattice, a lower-closed set is ∨-irreducible ⇔ it is principal.
- 10. The set of ideals form a complete distributive pseudo-complemented lattice, with $\neg I := \{x : x \land I = 0\}, I \lor J = \{x \lor y : x \in I, y \in J\}$ (since if $a \in I \lor J$ then there are $x \in I, y \in J$ such that $a \leq x \lor y$, so $a = a \land (x \lor y) = (a \land x) \lor (a \land y)$).
- 11. Maximal ideals (and filters) are prime.

Proof. Suppose I is a maximal ideal and $a \wedge b \in I$, $a \notin I$. The ideal generated by I and a must be X, so that $b \leq x \vee a$ for some $x \in I$. Then $b \leq (x \vee a) \wedge b = (x \wedge b) \vee (a \wedge b) \in I$, hence $b \in I$.

12. If $I \vee J$, $I \wedge J$ are principal ideals, then so are I, J.

Proof. If $I \lor J = \downarrow a$, $I \cap J = \downarrow b$, then $a = x \lor y$, and $b \lor x \in I$, $b \lor y \in J$, so if there is $z \in I$ with $z > b \lor x$, then $a, b, b \lor x, b \lor y, z$ would form a pentagon. Similarly, $J = \downarrow b \lor y$.

- 13. Distributive lattices can be embedded into 2^S , where S = Spec(X) is the set of prime ideals, via the map $x \mapsto \{I \in \text{Spec}(X) : x \notin I\}$ (or via the map $x \mapsto \sigma(x)$).
- 14. A result is true for all distributive lattices iff it is true for $2 := \{0, 1\}$. (Proof. If a result is true for 2, then it is true for 2^S , hence for its sublattices.)
- 15. In a finite distributive lattice, every element has a unique irredundant decomposition into \lor -irreducibles, $x = a_1 \lor \cdots \lor a_n$.

Proof. The irreducibles are the maximal elements of $\sigma(x)$.

2 Heyting Algebras

are bounded lattices in which \wedge residuates \vee , i.e.,

 $x \land w \leqslant y \Leftrightarrow w \leqslant (x \to y)$

That is, $x \to y$ is the largest element satisfying $x \land (x \to y) \leqslant y$.

Equivalently, a lattice with an operation \rightarrow satisfying

$$\begin{aligned} x \to x = 1, \quad x \wedge (x \to y) = x \wedge y, \quad (x \to y) \wedge y = y \\ x \to (y \wedge z) = (x \to y) \wedge (x \to z) \end{aligned}$$

Heyting-morphisms must preserve $0, 1, \lor, \land$ and \rightarrow . Products are Heyting, with $(x_1, y_1) \rightarrow (x_2, y_2) := (x_1 \rightarrow x_2, y_1 \rightarrow y_2)$; for functions, $(f \rightarrow g)(x) = f(x) \rightarrow g(x)$.

Complete distributive lattices

$$x \land \bigvee A = \bigvee \{ x \land a : a \in A \}$$

are (complete) Heyting (also called *frames*), with $x \to y := \bigvee \{ w : x \land w \leq y \}$. In particular a *completely distributive lattice*, which satisfies $\bigwedge \bigvee A = \bigvee \bigwedge A$.

Example: open subsets in a topological space, with $A \to B = (A^{c} \cup B)^{\circ}$, $\neg A = \overline{A}^{c} = \text{ext}(A)$.

1. Must be a distributive lattice with a pseudo-complement $\neg x := x \to 0, \to$ is an implication.

Proof: If $x \land y \leq (x \land y) \lor (x \land z) =: w$ then $y, z \leq x \to w$, so $y \lor z \leq x \to w$ and $x \land (y \lor z) \leq x \land (x \to w) \leq w$.

- 2. $x \leq y \Leftrightarrow (x \to y) = 1,$ $x \to (y \to z) = (x \land y) \to z \leq (x \to y) \to (x \to z),$ $x \leq (y \to x),$ $x \leq (y \to x \land y),$ $(x \to z) \leq ((y \to z) \to (x \lor y \to z)).$
- 3. A filter induces a quotient Heyting algebra X/F defined by the equivalence relation $x \to y \in F$ and $y \to x \in F$. First isomorphism theorem holds.
- 4. If $x \lor \neg x = 1$ then x is regular, $\neg \neg x = x$. (since $\neg \neg x = \neg \neg x \land (x \lor \neg x) = \neg \neg x \land x$)
- 5. The set of complemented elements form a Boolean subalgebra of X, while the *regular* elements form a Boolean algebra (but its \lor may be different: $x \lor y := \neg(\neg x \land \neg y)$), and $x \mapsto \neg \neg x$ is a morphism from the Heyting algebra to this Boolean algebra.

Note: the dual notion is an adjoint for \lor ,

 $w \lor y \geqslant x \Leftrightarrow w \geqslant x - y$

It has its own pseudo-complement, namely $x_* := 1 - x$; so $x \vee x_* = 1$, $0_* = 1$, $1_* = 0$; and its "boundary" map $x \mapsto x \wedge x_*$.

2.1 Boolean Algebras

are Heyting algebras with x'' = x. Equivalently

- a complemented distributive lattice; or an orthomodular lattice in which all elements commute.
- a complete and completely distributive lattice (with $x \to y := \bigvee \{ z : z \land x \leq y \}$).
- a ring with 0, 1 such that $x^2 = x$ ('Proof'. Let $x \lor y := x + y + xy, x \land y := xy$; conversely $x + y = x \bigtriangleup y := (x \land y') \lor (x' \land y), xy := x \land y$; its characteristic is 2 i.e., -x = x; note + is not preserved by $\leq x' = 1 - x; x \to y = 1 - x + xy$.)
- a set with an associative commutative operation $x \lor y$ and x' and 0, such that

$$\begin{aligned} x'' &= x, \ x \lor 0 = x, \ x \lor x = x, \ x \lor x' = 1 := 0' \\ (x \lor (y \land z))' &= (x \lor y)' \lor (x \lor z)' \end{aligned}$$

(Then $x \wedge y := (x' \vee y')'$.)

- a set with an operation x - y and 1, such that

$$\begin{aligned} x-0 &= x, \ x-(y-x) = x, \ \neg \neg x = x, \ (x-y) - z = (x-z) - y, \\ (x-(y-z))' &= (x-y)' - (z-x') \end{aligned}$$
 where $x' := 1-x, \ 0 := \neg 1, \ x \wedge y := x-y', \ x \lor y := (x' \land y')'. \end{aligned}$

Products are Boolean. The completion is a Boolean algebra.

The subset $\downarrow a \text{ (or } \uparrow a)$ is a Boolean algebra with the inherited operations and $x' := \neg x \land a \text{ (or } \neg x \lor a)$. Then $\downarrow a \cong \uparrow \neg a$ via the map $x \mapsto x \lor \neg a$.

Examples include 2^A , ring ideals, the divisors of a square-free integer with $x \leq y$ meaning x|y, the finite/cofinite subsets of any set, the algebra generated (as a ring) from any collection of points.

- 1. $x \to y = x' \lor y$. Lattice morphisms automatically preserve \to ,'.
- 2. For any atom a, either $a \leq x$ or $x \leq a'$. Hence $X \cong \uparrow a \times 2$. $X \cong \downarrow x \times \uparrow x$ for any x.
- 3. A Boolean algebra either has atoms or is dense (since x < y is a gap $\Leftrightarrow 0 < x \Delta y$ is a gap).
- 4. A finite distributive lattice is Boolean iff atomic iff geometric.
- 5. *I* is an ideal $\Leftrightarrow \neg I$ is a filter; *I* is a prime ideal $\Leftrightarrow \neg I$ is maximal $\Leftrightarrow I$ is maximal (similarly for filters).

- 6. The space of order-morphisms $X \rightarrow 2$ from an ordered space form a Boolean lattice X^{*}. X^{*} distinguishes points in X, i.e., $x \neq y \Rightarrow \exists f \in$ $X^*, f(x) \neq f(y)$ (e.g. take $f(z) := \begin{cases} 0 & z \leq x \\ 1 & z \leq x \end{cases}$). Any order X is orderembedded in X^{**} .
- 7. A state is a probability distribution.

Proposition 6

Birkhoff-Stone Embedding Theorem

Every Boolean algebra can be embedded in some 2^{K} .

PROOF: Let $M := \{ \phi : X \to 2, \text{ morphism} \}$ (a totally disconnected compact T_2 space), and let $J: x \mapsto \{\phi \in M : \phi(x) = 1\}, X \to 2^M$. Then

$$J(x \lor y) = \{ \phi \in M : 1 = \phi(x \lor y) = \phi(x) \lor \phi(y) \}$$

= $\{ \phi \in M : 1 = \phi(x) \text{ OR } 1 = \phi(y) \} = J(x) \cup J(y)$
$$J(x \land y) = \{ \phi \in M : 1 = \phi(x \land y) = \phi(x) \land \phi(y) \}$$

= $\{ \phi \in M : 1 = \phi(x) \text{ AND } 1 = \phi(y) \} = J(x) \cup J(y)$
$$J(x') = \{ \phi \in M : 1 = \phi(x') = \phi(x)' \} = J(x)'$$

$$J(0) = \{ \phi \in M : 1 = \phi(0) = 0 \} = \emptyset$$

J is 1-1: If $x \neq 0$ then x' is contained in some maximal ideal I, so $x \notin I$, so $\chi_I(x) = 1$ and $\chi_I \in J(x)$. Thus $J(x) = \emptyset \Rightarrow x = 0$.

$$J(x) = J(y) \implies \emptyset = J(x) \cap J(y)' = J(x \land y') \implies x \land y' = 0$$

and similarly $x' \wedge y = 0$, hence x' = y'.

In particular, the free Boolean algebra with n generators is isomorphic to the set of monotonic functions $2^n \to 2$; each element is of the form $(x_1 \wedge \cdots \wedge x_n) \vee \cdots$ where $x_i = a_i$ or a'_i .

A finite Boolean algebra has 2^n elements for some n and is unique (since an atom splits X into two separate but isomorphic Boolean algebras $\uparrow a$ and $\downarrow a'$; by induction, such finite Boolean algebras are unique for each n). The Boolean algebra generated by n elements has 2^n atoms $(x_i \wedge \cdots \wedge x_j, i, j \leq n)$, so 2^{2^n} elements.

There is only one countable dense Boolean algebra.

A σ -algebra is a Boolean algebra which is closed under countable suprema: for any sequence, $\bigvee_n x_n$ exists. For example, the algebra generated by a collection of points. The intersection of σ -algebras is again a σ -algebra, so a σ -algebra can be generated from any collection of points (can be larger than the generated Boolean algebra); e.g. the *Borel* σ -algebra generated by the basic open sets in a topological space.

2.2 Linearly Ordered Spaces

$$x \leqslant y \text{ OR } y \leqslant x$$

Equivalently, a maximally ordered space, or a lattice such that $x \wedge y$ and $x \vee y$ are both one of x, y. (The monotone maps preserve \wedge, \vee .) A bijective morphism is an isomorphism.

Linearly ordered spaces are Heyting algebras with $x \to y = \begin{cases} 1 & x \leq y \\ y & x > y \end{cases}$

and $\neg x = \begin{cases} 1 & x = 0 \\ 0 & x > 0 \end{cases}$; satisfy both de Morgan's laws (but only 0, 1 have quasi-

complements, so the only Boolean linearly ordered spaces are 0 and $\{\,0,1\,\}).$

Can define the sum + and multiplication. of linearly ordered sets by

$$\begin{split} \sum_{i} X_{i}, & x < y \, \Leftrightarrow \, \exists i < j, x \in X_{i}, y \in X_{j} \text{ or } \exists i, x, y \in X_{i}, x < y \\ & \prod_{i} X_{i}, & x < y \, \Leftrightarrow \, J := \{ \, i : x_{i} \neq y_{i} \, \} \neq \varnothing \text{ and } x_{i_{0}} < y_{i_{0}} \end{split}$$

where i_0 is the least element of J (note that this is not the categorical order product defined previously).

1. Any non-empty bounded set has four possible relations with its upper bounds (and dually its lower bounds):

The diagonal possibilities are called a gap and a (two-sided) cut respectively.

A linear order is complete iff it has no cuts.

2. A finite linear order is isomorphic to some $n := (0 < 1 < \cdots < n - 1)$, hence complete (and bounded). A morphism $m \to n$ is completely described by the sub-intervals of m where it is not 1-1, and of n where it is not onto.

- N* is the smallest infinite bounded linear order, in the sense that N or −N is embedded in every infinite linear order. The smallest linear order without upper/lowerbounds is Z.
- 4. The only linear orders in which every cut is given by a gap are $n \ (n \in \mathbb{N})$, $\mathbb{N}, -\mathbb{N}$, and \mathbb{Z} (depending on existence of upper/lower bounds).
- 5. The countably infinite orders are sums of \boldsymbol{n} , \mathbb{N} , and $-\mathbb{N}$, where of course, $\boldsymbol{n} + \mathbb{N} = \mathbb{N}$, $-\mathbb{N} + \boldsymbol{n} = -\mathbb{N}$, and $-\mathbb{N} + \mathbb{N} = \mathbb{Z}$. Their number is $2^{\mathbb{N}}$: From a binary sequence, say 00101..., create the order $\mathbb{Z} + \mathbb{Z} + \mathbb{Z} + 1 + \mathbb{Z} + \mathbb{Z} + 1 + \cdots$; each such order is not isomorphic to any other.
- 6. The smallest dense bounded linear order is \mathbb{Q}^* (apart from 0). It is countably infinite and incomplete. Every countable linear order is embedded in it.

Proof. Let $X = \{x_1, x_2, ...\}$. Define $f: X \to \mathbb{Q}$ inductively by finding, at each step n (take $f(x_1) := 0$, say), the immediate neighbors $x_i < x_n < x_j$ with i, j < n and letting $f(x_n)$ be any rational number with $f(x_i) < f(x_n) < f(x_j)$. Then $f: X \to \mathbb{Q}$ is an embedding. If X is dense bounded, f can be modified to an isomorphism $X \to \mathbb{Q}^*$: let $\mathbb{Q} = \{q_1, q_2, ...\}$ and alternate in the same way between finding $f(x_n)$ and $f^{-1}(q_n)$; start by $f(0) = -\infty$ and $f(1) = +\infty$.

For example, Words with alphabetical order is a dense countably infinite linear order.

- 7. For any countable linear order α , $\mathbb{Q}\alpha \cong \mathbb{Q}$ (hence $\mathbb{Q}^n \cong \mathbb{Q}$).
- 8. The order-completion of \mathbb{Q} is called \mathbb{R}^* . It is the smallest complete dense bounded linear order; and \mathbb{Q} is dense in it.

Proof. Let C be a countable dense subset of X, hence isomorphic to \mathbb{Q} ; extend the isomorphism $f : \mathbb{Q} \to C$ to $\mathbb{R} \to X$ by $f(\sup_n q_n) := \sup_n f(q_n)$.

- But (Suslin) whether ℝ* is the only complete dense bounded linear order such that every set of disjoint intervals is countable, is undecidable; it is not, with the axiom of constructibility.
- 10. Hausdorff's maximality principle: Every chain in an ordered set X has a maximal chain. (If the maximal chain M has an upperbound $x \in X$, then $x \in M$ else M can be extended further by x; so x is a maximal element in X.)
- 11. Every finite ordered space can be extended to a linear order.

2.2.1 Well-ordered spaces

are ordered spaces for which every non-empty subset has a minimum. They are linearly ordered (since $\{x, y\}$ has a minimum), complete (since the set of upperbounds has a minimum), and DCCs.

Subspaces, images, sums and products (as linear orders) are again well-ordered.

- 1. Every element x has an immediate successor x^+ except for the largest element if there is one, $x^+ = \min X \setminus [0, x]$. The successor function is a 1-1 morphism with $x < x^+$. $[0, x^+] = [0, x]$. Each $x < x^+$ is a gap, and the only dense subsets of X are trivial.
- 2. Every element is either a successor or a *limit* point:

$$\exists y, \ x = y^+ \text{ XOR } x = \sup \left[0, x\right] = \bigvee_{y < x} y.$$

(Let $z := \sup [0, x]$, then z < x or z = x.)

3. Every lower-closed set is an *initial segment* [0, x] for some $x \in X$, or X itself.

Proof. Either $A = \emptyset$ when x = 0, or A is unbounded when A = X, or $y := \sup A$ exists; then either $y \in A$ when $x = y^+$, or $y \notin A$ when x = y.

- 4. Transfinite induction: If $(\forall y < x, y \in A) \Rightarrow x \in A$ then $\forall x, x \in A$, i.e., if $\forall x, [0, x] \subseteq A \Rightarrow x \in A$ then A = X. This is usually split into cases (i) $0 \in A$, (ii) successors $x \in A \Rightarrow x^+ \in A$, and (iii) limit points $(\forall y < x, y \in A) \Rightarrow x \in A$). (Note: $[0, 0] = \emptyset \subseteq A$, so $0 \in A$.)
- 5. A 1-1 morphism $f: X \to X$ satisfies $x \leq f(x)$ (since $\{x \in X : f(x) < x\}$ has no minimum). So the only automorphism on X is the identity, and any isomorphism $X \to Y$ is unique (take $g^{-1}f$).
- 6. Either $X \subseteq Y$ or $Y \subseteq X$.

Proof. The set $A := \{ x \in X : \exists y \in Y, \exists f_x : [0, x[\to [0, y[\subset Y, \text{ isomorphism} \} \text{ contains 0 and is lower-closed. Define } f := \bigcup_{x \in A} f_x, \text{ a 1-1 morphism. So} either <math>A = X$ (in which case $f : X \to Y$ is an embedding); or $A = [0, \alpha[; \text{ if } fA \text{ is bounded, define } f(\alpha) := \bigvee_{x < \alpha} f(x) \text{ to make } [0, \alpha] \cong [0, f(\alpha)], \text{ so } \alpha \in A, \text{ a contradiction. Hence } fA = Y \text{ and } f^{-1} : Y \to X \text{ is an embedding.}$

7. Every set has a well-order ("well-ordering principle", equivalent to the axiom of choice). Conversely, a set with a well-order has min as a choice function.

Proof: Let $X \neq \emptyset$ and consider the well-ordered subsets of X, ordered by $A \leq B$ iff A is initial in B. There is a maximal subset A; if $x \notin A$, then $A \leq A \cup \{x\}$; so A = X.

8. An ordered space in which every non-empty subset has a max and a min must be finite: $\{0, 0^+, 0^{++}, ...\}$ has a maximum in the set.

Classification: An **ordinal number** is a set X in which $\stackrel{\leq}{=}$ is a well-order and *transitive*, $y \in x \in X \Rightarrow y \in X$; hence $x \in X \Rightarrow x \subset X$. For ordinals,

1. For every $x \in X$, $x = [0, x] \subset X$ and $x^+ = [0, x]$. Hence

$$0 = \emptyset, \quad 0^+ = \{0\} = 1, \quad 1^+ = [0,1] = \{0,1\} = 2, \dots$$

2. Elements of an ordinal number are themselves ordinal; conversely, any proper transitive subset is an element.

Proof. $a \in X \Rightarrow a \subseteq X$, so \in is a well-order for a; moreover if $x \in y \in z \in X$ then $x, y \in X$, so $x \in z$. Conversely, transitive subsets are lower closed, so of the type [0, x] = x if a proper subset.

3. Either $X \subseteq Y$ or $Y \subseteq X$. Distinct ordinals are non-isomorphic.

Proof. Let X, Y be ordinals, then $X \cap Y \subseteq X, Y$ is transitive; this gives the contradiction $X \cap Y \in X, Y$ unless $X \cap Y = X$ or $X \cap Y = Y$. Note that if $X \subset Y$ then X = [0, X]. If X is isomorphic to Y, then $X \subseteq Y \subseteq X$.

4. The class of ordinal numbers is itself an ordinal (so not a set), with wellorder \subseteq , $X^+ = X \cup \{X\}$, and $\bigvee A = \bigcup A$.

Proof. If $x \in X \in$ Ordinals then x is an ordinal. Any non-empty class of ordinals has the minimum $\bigcap A$ which is an ordinal because it is a transitive subset of any $X \in A$.

5. Every well-ordered space is isomorphic to a unique ordinal. Hence every set is numerically equivalent to some ordinal; the (least) ordinals can serve as representative cardinal numbers.

Proof. Existence by transfinite induction: $[0,0[= \emptyset \text{ (the 0 ordinal)};$ if $[0,x[\cong O_x \text{ (ordinal)}, \text{ then } [0,x^+[= [0,x] \cong O_x \cup \{O_x\} = O_x^+; \text{ if } [0,y[\cong O_y \text{ for every } y < x, \text{ then } x = \sup[0,x[\cong \bigcup_{y < x} O_y \text{ an ordinal}.$ Hence $X = \sup_x [0,x[\cong \bigcup_x O_x.$

6. Transfinite Induction: if $A \subseteq$ Ordinals, and $\forall a, a \subset A \Rightarrow a \in A$ then A = Ordinals.

Proof. Suppose that $A \neq \text{Ordinals}$, and let $a := \min(\text{Ordinals} \land A)$. Then $a \notin A \Rightarrow a \notin A$ as well as $A \in \text{Ordinals} \land A \Rightarrow a \subseteq A$.

7. The sum (+) of ordinal numbers satisfies

$$A + 0 = A$$
, $A + B^+ = (A + B)^+$, $A + B = \bigcup_{C \in B} (A + C)$

with zero 0, associative, preserves \leq .

- (a) B is a limit ordinal $\Leftrightarrow A + B$ is as well (unless B = 0);
- (b) If $n \in \mathbb{N}$ and A an infinite ordinal then n + A = A;
- (c) Ordinal numbers are of the type A + n where A is a limit ordinal (perhaps 0) and n a natural number.
- 8. Multiplication satisfies

$$A0 = 0$$
, $AB^+ = AB + A$, $AB = \bigcup_{C \in B} AC$

with unity 1, associative, left-distributive, preserves \leq , allows left-cancelation;

- (a) AB is a limit ordinal $\Leftrightarrow A$ or B is also; in particular nB = B;
- (b) $\forall A, B \neq 0, A = BC + R$ with $R \subset B$.
- (c) Multiplication is not right-distributive, e.g. $(1+1)\omega \neq \omega + \omega$
- 9. Can define powers (not the same as set exponentiation) by

$$A^{0} := 1, \quad A^{B^{+}} := A^{B}A, \quad A^{B} := \bigcup_{C \in B} A^{C} (\text{except } 0^{B} := 0)$$

Then $A^{B+C} = A^B A^C$, $A^{BC} = (A^B)^C$.

10. The class of ordinal numbers starts

$$0, \qquad 1, \qquad 2, \qquad \dots \\ \omega := \mathbb{N}, \qquad \omega + 1, \qquad \omega + 2, \qquad \dots, \\ \omega 2 = \omega + \omega, \qquad \omega 2 + 1, \qquad \dots, \\ \omega 3, \qquad \dots, \qquad \dots \\ \omega^2 = \omega \omega, \qquad \dots, \\ \omega^3, \qquad \dots, \\ \dots \\ \omega^{\omega}, \qquad \dots, \\ \dots \\ \epsilon_0 := \omega^{\omega^{-}}, \qquad \dots, \\ \epsilon_1 := \epsilon_0^{\epsilon_0^{-}}, \qquad \dots \\ \dots$$

These are all countable ordinals; the first uncountable ordinal is $\omega_1 := \sup\{x : x \text{ is a countable ordinal}\}$ (it's uncountable else $\omega_1^+ \in \omega_1$).

3 Finite Orders

Size	Orders	Lattices	Distributive	Boolean
			Lattices	Lattices
1	1	1	1	1
2	2	1	1	1
3	5	1	1	0
4	16	2	2	1
5	63	5	3	0
6	318	15	5	0
7	2045	53	8	0
8	16999	222	15	1
9	183231	1078	26	0
10	2567284	5994	47	0