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The morphisms on a relation (digraph) ~» between points are those maps
that preserve this relation:

zy = f(x)~ fy)
Two points z,y are indistinguishable by the relation when (for all z)
T~z =Y~z 2T & 2 Y.

Digraphs are connective spaces (graphs): {x,y } is connected when z,y are
comparable, i.e., z ~» y OR y ~> x.
The product relation on A x X is given by

(a,z) ~ (b,y) when a ~» b AND x ~> y

The sum X @Y is the disjoint union of X and Y, with elements of X and
Y unrelated with each other.
The exponential set YX of functions into a digraph has the relation

fg e veeX fz)~g(r)

A pre-order is a relation < which is transitive and reflexive

TL<YAND y<z = x <2z, r<x

The morphisms are those that preserve the order (monotone maps)

r<y = f(z)<fy)

the monomorphisms are the 1-1 monotonic maps, epimorphisms are the onto
monotonic maps; & is the initial object; { * } is the terminal object; (note that
bijective morphisms need not be isomorphisms, and X & Y AND Y & X is
possible without X 2 Y, e.g. Q and Q*). A pre-ordered set is itself a category
in which the morphisms are z < y.

Points x,y are indistinguishable when = < y < «.

Every digraph gives rise to a pre-order: let z < y mean that there exists a
directed path from z to y:  ~» --- ~» y; in this case, the equivalence classes of
indistinguishable points are called “strongly connected” components.
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If z,y are incomparable, then one can extend the < relation so that z <’ y
becomes true: Define a <’ b to mean a < b OR (a < x AND y < b).

An order is a pre-order without indistinguishable points,
TLYST = =Y

Any pre-order becomes an order by identifying its indistinguishable elements
and defining [z] < [y] when 2 < y. Subsets, X x Y, X @Y, X, are ordered
spaces,

(z,a) < (y,b) @ <y AND a < b

f<g e Ve f(x)<glx)

in particular the power set 2% has the order A C B on subsets.
Example:

1. Words with z < y when the letters of x are in y in the same order,
e.g. ab < caxb

2. Given any collection S of subsets of X (which distinguish points), let x < y
when VA€ S, z€ A = ye A

3. Given functions 7; : Y — X;, with X ordered, then Y is also ordered by

y<z e Vi,m(y) < mi(z)

4. Decision problems (i.e., capable of yes/no answers) with a < b when a
can be transformed to b in polynomial number of steps (a pre-order called
reduction).

A subset B is a refinement of another A when Vx € A,Jy € B, y < «x.
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Given a morphism f : X — X, one can form sequences x < f(z) <
f(f(x)) < ---, which may perhaps terminate at a fixed point f(y) = y. If
this happens for each z, then the morphism z + y is called a closure map: a
morphism x — Z such that

Kl

r<T=

(equivalently, x < § < Z < 7.) Elements with x = Z are called closed; then T is
that unique smallest closed element larger than x (since x <y = T < g =y).
An interior map z +— z is the dual: a morphism such that > z =2z

f: X =Y has a (right or upper) adjoint f*:Y — X when
f@) <y & 2< f(y)

1. z < f*o f(x) and fo f*(y) <y (so f* is unique)

2. f, f* are morphisms (since x <y < f* o f(y))

3. foffof=fand ffofof*=f*
Proof. « < f* o f(x), s0 f(z) < F(/*(F(x))) < ()
4. f*o fis a closure map (z is closed iff z = f*(y)), and fo f* is an interior

map. (Every closure map arises this way.) So f and f* are inverses on
the closed elements.



JOSEPH MUSCAT 2015 4

5. When y < f(z) & x < f*(y), then the same identities hold except
y<fof'y),z<y = flz)=f(y).

For example, given any relation ~» C X x Y, the maps f : 2¥ — 2Y and
f*:2Y — 2% (here A~ y means Va € A, a ~ y),

fA)={yeY:A~y}, [f(B)={zeX:z~ B}
satisfy B C f(A) & AC f*(B).
A set is bounded below when it has a lowerbound, namely an element

x < A. An infimum of a set is a greatest lowerbound, denoted A A or inf A
(necessarily unique if it exists),

<A s zg/\A,
in particular, z Ay :== A{z,y },
2L T,y & 2K TANY

When the infima exist, x A (yAz) = (@ Ay) Az, cAy=yAx, x Az ==z
A minimal element a € A is one for which

VeeA, x<a = z=a

A minimum is a lowerbound which is an element of the set (hence the infimum
and minimal). The dual concepts are: bounded above, upperbound, supremum
(denoted sup A or \/ A and x Vy), mazimal element, and mazimum. The supre-
mum and infimum certainly exist when the elements are comparable,

rLyES rchNy=z S xVy=y

The set of elements lower than « is denoted Ja := {z € X : z < a} and
called the principal lower-set of a. More generally, the lowerset generated by A
consists of its elements’ lowerbounds,

JA={zxeX:3a€ A z<a}

The dual concepts are Ta and 1 A. The maps A— 1T A and A — | A are closure
operations; a set is lower-closed when | A = A; similarly for upper-closed.

A (closed) interval is [a,b] := {x € X :a < < b} = Tanlb; also
[a,b] := [a,b]{b}, etc. If a £ b, then [a,b] = &. More generally, a set A is
conver when z,y € A = [z,y] C A, equivalently A = ANT A (e.g. intervals).

1. The intersection and union of lower-closed sets are lower-closed,

J(AuB)=]AUlB, (ANB)ClAN|B
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2. The complement of a lower-closed set is upper-closed.

3. The map = — |z is an embedding of X in 2¥X. So every ordered space
can be represented by a space of subsets.

4. Lowerbounds(A) C | A is lower-closed, e.g. Lowerbounds(z) = | z.

5. Lowerbounds(4) = {z € X : & < A}, Upperbounds(4) = {z € X : A <
z }, so Lowerbounds and Upperbounds are adjoints on 2%

A C Lowerbounds(B) < B C Upperbounds(A4)

A ‘closed’ subset induces a cut: a pair of subsets A, B such that A =
Lowerbounds(B) and B = Upperbounds(A).

6. The intersection of convex sets is convex, so every set A generates its
convez hull Convex(A) := ({ B C X : convex, A C B}.

7. The kernel of a morphism consists of convex equivalence classes.

A set is cofinal when every element has a larger element Vx,3a € A, = < a;
any cofinal subset contains the maximal elements of X. The dual concept is
co-initial. The smallest cardinality of the cofinal subsets is called the cofinality
of the ordered space; the space is called regular when the cofinality equals the
cardinality of the space.

A set is (up) directed when every pair has an upperbound in the set

Ve,y€ A,(dz€ A, z,y<z

(For example, an increasing sequence, x1 < x2 < x3---.) Its lower-closure is
another directed set, called an ideal, e.g. the principal ideal | a. Every proper
ideal can be extended to a maximal proper ideal (using Zorn’s lemma, since the
union of a chain of ideals is an ideal). For example, uncomparable elements can
be separated by a maximal ideal (that extends | z),

Ly = 3l maximal ideal,z € I,y & I.

In a finite space, every ideal is principal (| maxT).

A filter is the dual of an ideal, i.e., an upper-closed set such that every pair
has a lowerbound Vz,y € F,3z € F, z < x,y; e.g. the principal filter Ta. If an
ideal and a filter are set-complements, they are called prime.

A net is a map from a directed set. A net (x;);es is said to be eventually in
A, here denoted by x; —e A, when

djel,iz>j = x; € A
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The following properties hold:

zi v ACB = x; =€ B,
;i v ANB & x; € A AND z; —¢ B,
r; < AORz; % B = x; e AUB,
x; € A = NOT (x; =< A).

A subnet is a composition J — I — X such that J — I is increasing and
VaeclI,35€ J,i; > a.

A net (z;)ier converges up in order x; ,/ x when x; is increasing with
supremum z. Similarly, z; \,  when z; is decreasing with infimum .

An element ¢ is compact when for any ideal I, ¢ < Upperbounds(I) = c € I.

An order is dense when Vz < y,3z, = < z < y. Otherwise, if < y have no
other elements in between, then we say there is a gap between x and y (or that
y covers x). An order is locally finite when every interval is finite.

0.0.1 Hausdorff Maximality Principle

Zorn’s Lemma: In a non-empty ordered space, if every chain has an upperbound,
then there is a maximal element.

Proof: Using the axiom of choice, map every chain C' to an upperbound of
it g(C). Suppose there is no maximal element, so can map every element to
f(x) > z. Let F : Ordinals — X be defined by F(0) := zp € X, F(n") :=
foF(n), F(imn) := fog{ F(n)}. F is strictly increasing, hence 1-1; so there
is an onto map H : X — Ordinals, contradicting that Ordinals is not a set.

Hausdorff’s Maximality Principle: Every chain can be extended to a maxi-
mal chain.

Proof: Order the chains that contain ¢y by inclusion; every chain C' of such
chains has an upperbound, namely | JC, which is a chain; hence there is a
maximal chain.

0.0.2 DCC Orders

A DCC order is one in which every non-empty subset has a minimal element.
(An ACC order is the dual: every non-empty subset has a maximal element.)

Equivalently, every descending sequence is finite (since if A has no minimal
element, then it has an infinite descending sequence a, by letting a,+1 < an,
(using axiom of choice); conversely, suppose 21 > 3 > x3... with minimal
element z,,; then x; = x,, for all i > n).

Transfinite Induction for DCC: If (Vy <z, y€ A) = z€ A, then A= X
(since the set X\ A has no minimal element).
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0.1 Bounded Orders

An ordered set is bounded when 30,1, 0 < X < 1; equivalently 0 := \/ &,
1 := A\ @ exist; or when the map X — {*} has an upper and lower adjoint.
(Morphisms are now required to preserve 0, 1.)

A0 =0, A1l =ux,
xV0=ux, xVvl1i=1

An element ¢ is an atom when it is minimal among the non-zero elements
r<a = z=aX0R 2z =0 (le., 0 < aisagap). The ordered space is called
atomic when every non-zero element is greater than some atom. It is atomistic
when every element is generated by atoms, z = \/, a; for some atoms a;. An
atom a is independent of a set A when a € \/ A; a set A of atoms is independent
when each atom a is independent of AN{a}.

Two elements x,y are said to be complementary when they satisfy “ex-
cluded middle”:
zANy=0, zVvy=1

e.g. 0 and 1. A space is complemented when every element has a complement.
In a complemented space, morphisms are required to preserve complements.
1. The only elements that compare with a non-0,1 complementary pair are
0and 1580 [z,y] =9, lzNly=0and fzUTy = 1.
Proof: If z < z,y,then z <z Ay=0;ifr <z<ythen0 =z Ay ==x.
2. In a complemented space, prime ideals are maximal.
Proof: If P C @, then there is an a € @\ P; its complement b € P since
aANb=0;s01=aVbe@ and Q = X.

An implication — is an operation such that z <y < (x = y) = 1.
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1 Lattices

A semi-lattice is an ordered space in which any finite subset has a least upper-
bound, or supremum, in particular 0 =\/ @ and zVy = \/{z,y }.

Equivalently, a set with an idempotent, commutative, associative operation
V (then x <y & y=zVy).

Equivalently, when the map  ~ (z,7), X — X2, has an upper adjoint
(x,y) =~z Vy.

A semi-lattice morphism is one which preserves V (hence monotonic)

flxVvy) = f(x)V fy)

The map  — x V y is a closure morphism and is the only such which is
idempotent; more generally V : X? — X is a V-morphism. A map is a V-
isomorphism <« it is a bijective V-morphism < it is an order-isomorphism
(since f(z) = f(x) Vfly) < f(xVy),so z<zVyand 2,y < 2,80 2=z Vy).

Images, Products are semi-lattices, (z,a) V (y,b) := (z Vy,a Vb); also Func-
tions YX when Y is a semi-lattice: (fV g)(z) := f(z) V g(z).

An element a is said to be V-irreducible when
a=xVYy = r=aORy=a
(e.g. atoms); in particular the V-primes:
a<zVy = a<TORa<y
(since if a = ' V y > x then a < z, say, so a = x).
1. A set A is upper-closed iff z vV A C A for any .

2. MzVvy)=tzNty.

3. For any closure map, z Vy < xVy. The set of closed elements form a
V-semi-lattice (and also a A-semi-lattice: x Ay < T Ay < T, 7).

4. 1 is an ideal iff it is a lower-closed semi-lattice,

xVyel & xel AND y € I.

5. A filter is prime iff e Vye FF < x€ FORy € F.

e.g. Tz is a prime filter < z is V-prime.
6. If f : X = Y is a V-morphism, then its kernel f~10 is an ideal.

0 1
Conversely, when [ is an ideal, the map x — {1 * ; I is a V-morphism
x

(with kernel 7).
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10.

The intersection of ideals is an ideal. So every set generates a unique ideal,
namely the smallest ideal containing it,

(Al:=={a1V---Va,:a, € A,neN}
The map A — (A] is a closure map in 2%.
An element c is compact when for any subset A,
¢ < Upperbounds(4) = IneN, a; € A, ¢< a1 V-V ay.
The set of compact elements of a semi-lattice is a semi-lattice.

If a semi-lattice is generated by a set A, then the compact V-irreducibles
are in A (for example, in an atomistic semi-lattice, the compact irre-
ducibles are the atoms).

Proof. If x = \/, a;, then x < ay V---Va, < \,a; =z (z compact); so
x = a; (x irreducible).

In an atomic semi-lattice, an essential element b is an upperbound of the
set of atoms, equivalently

bAz=0 = x=0.

Proof: For any = # 0, there is an atom a, 0 < a < z,b,s00<a=aAb<
x A'b. Conversely, for any atom a # 0,0 < aAb, so aANb=a.

The dual notions are a superfluous element b, which is a lowerbound of
the coatoms, equivalent tobvVz =1 = z=1.

Examples of ideals: the set of finite subsets of a set; the set of bounded subsets
of a topological space; the compact elements of any lattice.

A lattice has both suprema x V y and infima x A y.

Equivalently, a set with two operations that are associative, commutative,
idempotent, and absorptive c A (x Vy) =z =2z V (x Ay); in this case z < y <
xAy =2 < xVy=y. Equivalently the map = — (z,z) has both an upper
and lower adjoint.

The morphisms are now those maps that preserve V, A. Images, products,
and exponentials are lattices; so are ideals, filters, and intervals [a, b].

All properties for semi-lattices apply for both V and A (in dual form).

1.

Ay V(@A) <zA@yVz),zV(yAz)<(@Vy) A(zVz) (but strict
distributivity need not hold). In particular, z V (z Ay) < (zV2) Ay &
T < y.

More generally, the minimax principle states that maxmin<minmax,

(1 Na)) V- V(@1 Aap) V- V(@mAay) < (@1 V- zpm)Alar V- -ap)
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2. Complements are preserved by morphisms: f(z)V f(y) = f(z Vy) =1,
f@) A fly) = flzAy)=0.

3. A congruent partition of X is one such that [z] A [y] := [z Ay], [2] V[y] ==
[z V y] are well-defined. Then X/~ is a lattice, and f : X — X/~
f(z) := [z] is an onto morphism.

Conversely, every morphism gives rise to a congruent partition ker f of
equivalence classes f~!(y), with f~'0 an ideal and f~!1 a filter. The first
isomorphism theorem holds: X/ker f = fX.

4. Adjoints f, f* are semi-lattice morphisms:
f preserves V and f* preserves A
Proof. f(x), fly) <z & x2Vy< f*(2) & f(zVy) < 2.
5. A sublattice A is convex iff for all z € X, a,b € A, aV (z A b) € A.

A complete lattice is an order in which every subset has a supremum and
an infimum (it is enough for all sets to have suprema since A A = \/ Lowerbounds(A)).
Scott-morphisms are those that preserve suprema and infima f(\/ A) =\/ fA.
An order-isomorphism between complete lattices is Scott-continuous. Proof:
f(x) =V fA > f(a) for all a € A implies a < x, hence f(\/ A) <V fA. Also
a <\ Aimplies f(a) < f(V A), s0 \/ FA < F(V A).

Examples: 2% N* := NU {co}; finite V-semi-lattices; the upper-closed
subsets of an order.

Proposition 1

Let X be a complete lattice.
If Y is a complete lattice in X, then

xHj::/\{yEY:xgy}

is a closure map, with Y as its closed elements.
Given a closure map on X, the set of closed elements
is a complete lattice.

PrROOF: z <y = Z < y and z < T are obvious. Moreover, for y € Y,
<y < T<y,s0Z=22. SinceY is complete, Z € Y.

Let A consist of closed elements. Its least upper bound is W since it is an
upperbound for A and any other closed upperbound is larger A < z =z =
W <.

O

Every order can be embedded in a complete lattice; the smallest such lattice
is called its completion:
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Proposition 2

(Dedekind-MacNeille)

Every ordered space has a completion.

PRrROOF: The maps L := Lowerbounds and U := Upperbounds are adjoints
on 2% with closure LU. So their ‘closed’ sets (cuts) form a complete subspace
of 2X. The map z + L{x} = | 2 embeds X into this complete lattice.

O

Proposition 3

(Tarski)

Every monotonic function on a complete
lattice has a fixed point.

PROOF: The non-empty set A = {z € X : f(z) < z} has an infimum a; thus
r€A = a<z = f(a) < f(z) <z sothat f(a) <a;alsor € A = f(z) €
A; but then a, f(a) € A and f(a) < a < f(a).

(]

The set of fixed points of an order-morphism on a complete lattice is itself a
complete lattice.

In a complete atomic lattice, the socle is \/{a : atom } = A{b : essential }.
Dually, the radical is A{ a : coatom } = \/{ b : superfluous }.

1.0.1 Algebraic Lattices
An algebraic lattice is a complete lattice that is generated by compact elements.
1. Atoms are compact.

2. In an algebraic lattice, any two elements a < b contain a gap.
Proof: If a < b then there is a compact element ¢ such that ¢ < b, ¢ € a.
Let A:={x € [a,b] : ¢ £ 2}, contains a. Any chain in A has sup in A, so
A contains a maximal element d, by Zorn’s lemma; thus a < d < c¢vVd < b.

Examples:

+ Given a closure operation on 2%, if

A:U{B:BQA,B finite }
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then the set of closed subsets is an algebraic lattice, and the compact
elements are the closures of finite subsets.

Proof: Let X be the lattice of closed subsets. For any subset B C A,
if B <\, A; with A; closed, then B C \/; A, = ;4 = U{F : F C
\U; Ai, F' finite }. If B is finite then B C A;U---UA,, and B C A U---UAy,;
thus B is compact.

« A universal algebra X has a closure map A — [A] in 2% with the above
property. Hence the subalgebras (‘closed’ subsets) form an algebraic lat-
tice, with MAN = M NN, MV N = [M U N]J; the compact elements are
the finitely generated subalgebras. (And every algebraic lattice is induced
from some universal algebra.)

« The lattice of ideals of a semi-lattice, with A, I; = (", I, V, L = (U, L]-
Its compact elements are | x. X is embedded in it via z — | x.

1.0.2 ACC Lattices

1. An ACC semi-lattice is a complete lattice.
Proof. The set {a1V---Vay, :a; € A;n € N} DO A has a maximal element
b,so \/ A=b.

2. Every element of an ACC lattice is compact.

Proof. f e <\VA=\{a1V---Va,:a, € A;n € N}, then x is less than
a maximal element; conversely, if 1 < zo < --- is an ascending chain,
then \/,z; <x1 V-V, =,

3. Every non-zero element of an ACC lattice can be written as x = aA---Ab
for some A-irreducibles.

Proof. Let x be a maximal element without such a decomposition; then x
is not irreducible, i.e., x = a A b with & < a, b, so a, b have such decompo-
sitions.

1.1 Complements
A dual is a self-adjoint map x: X — X,
r<y" & y<Lar

a < b* can be denoted by a L b. Then Products have duals (x,y)* := (z*, y*);
as do functions f*(z) := f(z)*.

1. « satisfies all the properties of adjoints: uniqueness of x, r <y = y* < z*,
T <™, " =, x> ¥ is a ‘closure’ map, 0* = 1.

2. 2" Vy* < (x Ay)*and (z Vy)* <zt Ayt
Proof. Apply % to reverse the inequalities in z Ay < z,y <z V y.
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A quasi-complement of z is a ‘closed’ dual, z** = x. Products are quasi-
complemented.
Example: Fuzzy logic [0, 1] with max, min, 2* ;=1 — z.

lLor=0sr=1L2"=y & =y~
2. de Morgan’s laws: (x ANy)* =x* Vy*, (zVy)" =z* Ay~
Proof. Since xis a dual, x Ay < (a* Vy*)* <™ Ay*™* =z Ay.

3. When the lattice is complete, (\/, z;)* = A, 2} and (A, z;)* =V, =} (by
the same reasoning).

4. If A is lower-closed then the set of its quasi-complements A* is upper-
closed.

An ortho-complement of z is a complement quasi-complement =+,

11 €L

a:VxJ‘zl, xAxJ‘:O, T =1, xéyéyj‘gx
Define x =y := (x Ay) V (z+ Ayt), and let # COMM y to mean = = (z Ay) V
(xAyt) (or (zVyt)Ay=xAy).
One dual is a pseudo-complement of z: an element -z such that
y<z & zNy=0

i.e., the largest element such that x A =x = 0. Products and Functions have
pseudo-complements.

1. A-isomorphisms preserve pseudo-complements f(—z) = = f(z).

Proof. f(x) A f(—x) = f(x A—z) =0. If 0 = f(z) A f(y) = f(x Ay) then
xAy=0,s0y <z and f(y) < f(—x).

2. For any atom a, either a < x or a < —x (since aANzx=aor0).

3. A quasi-pseudo-complement is a complement (in fact the lattice must be
Boolean). So the ‘closure’ of a pseudo-complemented lattice is Boolean.

The dual pseudo-complement is an element z, such that z, <y < zVy = 1.

Proposition 4

Ultrafilters

A filter is maximal & Vz, x € F XOR —x € F

PROOF: Let F' be maximal. If ¢ F, then the filter generated by F and z
equals X, so forsomey € F, 0 =yAx, hencey < ~zand ~x € F. lf x,~x € F
then 0 = x A -~z € F, so ' = X. For the converse, suppose G is a filter that

contains F and x € GNF; then ~x € F, so0 =z A~z € G.
O

./'\.

.\./.
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1.1.1 Ortho-modular Lattices

An ortho-modular lattice is an ortho-complemented lattice such that
r=y=1& =y
Equivalently, any of the following statements hold:

r<y & V@t Ay =y,

rly e st A@Vvy) =y,

zVy=aV(xVy) Azt),
r<y e z<(zt Vy),

€L 1

x,y are complements such that y <z— = y=2z",

T COMM ¥y < y COMM z(<&  COMM yT)

Example: Quantum Logic, the (atomistic) lattice of the closed linear sub-
spaces of a Hilbert space.

1. There are various “quantum implications” = — y: any of z+ V y, a2t Vv
(xAy), zV (zt Ay, (2 Ay)V (2t Ay) V (zt Ayt). For any of these,

eVy=(r=y) = ((z=y) =Y —=2) =)

2. A state is a function f : X — [0,1] such that z L y = f(zVy) =
f(z)+ f(y) and f(1) = 1. Hence f is an order-morphism and f(0) = 0.

3. Let C(A) :={x € X :Va € A, x cOMM a}. Then C is self-adjoint:
A C C(B) & B C C(A); hence, A C C(C(A)), C(C(C(A))) = C(A).
(Foulis-Holland) If z,y,2 commute with each other, then distributivity
holds for z,y, z.

4. An atomic orthomodular lattice is atomistic.

Proof. Let y := \/{a <z :a atom }; if y < z, then & Ay # 0, is greater
than some atom a, i.e., a < z, a € y, a contradiction; hence y = x.

1.2 Semi-Modular Lattices

A lattice is semi-modular when z Ay < z isagap = y < zVy is a gap.

Example:
O —>20

VAN N

o O —>20

N T A

O —>o0

1. For any atoms a,b,c,c<aVb = aVbVe=bVe=aVc (for any two
atoms, a < aVbisagap,sob<bVe<aVb).
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2. f0<a; <+ <ap<land 0<b <+ < by <1 are chains of gaps,
then n = m (called the height of X) and there is a permutation which
maps one chain to the other such that [a;, ait1] = [b;, bjt1].

Proof. For n = 1, follows by definition of semi-modularity. If a; = by,
then follows by induction on the rest of the chains. Otherwise let k£ be
the largest integer such that a3 € bg, so a1 < bg41. Then a1 < a3 Vb <
o< a1 Vb = aq \/bk+1 = bk+1 < bk+2 << by, < 1. By induction,
@i, ait1] = (a1 V by, a1 V bjia] = [bj, bjya].

3. A lattice with a morphism ¢ : X — N such that 6(0) = 0, x < y gap
= 0(y) = 0(x)+1, and 6(z Vy)+dx Ay) < §x)+ d(y) must be
semi-modular.

Proof. Let z Ay < x be a gap; then §(z Vy) > d(y) else z < y. So
SaxAy)+d(xVy) <o(xAy)+06(y)+1, hence §(y) < d(zVy) =4d(y)+1,
and y < x Vyis a gap.

A geometric lattice is an algebraic semi-modular atomistic lattice such that
every chain is finite.

Subintervals are again geometric lattices; so there is a rank function 6 : X —
N which gives the length of any maximal chain from 0 to x.

1. Every basis of a geometric lattice have the same number of atoms (since
O<a<arVar<---<ayV--Va,=1).

2. Geometric lattices are complemented.

Proof. For any z, if t Aa = 0 but z V a < 1, then there is an atom
b€ xVa;soxVa<xVaVb; there can be no atom ¢ < = A (a V b),
otherwise tVaVb=xzVaVcec=uxzVa; soxzA(aVb) =0; hence one
can pick a sequence of atoms a; such that z A (a1 V ---V a;) = 0 and
xVayV---Vai+1 > xVayV---Vag; as this chain is finite we find x Ay = 0,
rzVy=1.

Examples:

« The set of equivalence relations on a set, with p < ¢ when p is finer
than o (i.e., zpy = xoy). (x(p V o)y holds when there is a path of
relations a7 - - - 7,y where 7; = p or o.) Every lattice can be embedded
in some lattice of equivalence relations (hence embedded in the lattice of
subgroups: a — {g € S(X) :Vx € X, g.xpar}).

« Projective Geometry: subspaces of a vector space.

+ Incidence Geometry: elements are points and lines.
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1.3 Modular Lattices

A lattice is modular when ¢ <y < zV (2 Ay) = (x V 2) Ay, or equivalently,
(@Vy)A(@Vz)=zV (YA (zVz)

Equivalently, any lattice which does not contain this embedded lattice (oth-
erwise yAz <z <y<zVz andy/\z<z<:v\/z):

O/O\o
\_/

For example, subspaces of a vector space.
Images, sublattices and products are again modular.

Proposition 5

Diamond Isomorphism theorem

The intervals [a,a V b] and [a A b,b] are order-isomorphic,
via the maps r+— xVa and x +— xz A D.

PrOOF: If a < x <aVbthen (xAbD)Va=xA(bVa)=uz.
Ifanb<z<bthen (zxVa)ANb=zV(aAD)=uzx.
Hence the monotonic maps x — x V a and z — x A b are isomorphisms.

O

1. Modular lattices are thus semi-modular. By duality, its rank function
satisfies d(z A y) + d(x V y) = d(x) + 6(y).

2. Minimal (irredundant) decompositions into A-irreducibles a = ri A---Ary,
have unique lengths.

Proof. Suppose a = r1 Ar = s1 A s with r;, s; irreducibles. Then
[a,7] = [ri Aryr] 2 [r,mVr]. Buta=rAs1 As=(rAsi)A(rAs), with
a<rAsy <r. Hencery =J(rAsi)AJ(rAs),sory = J(rAsy) say, ie.,
a = r A s1. Repeating for the other irreducibles gives a = s; A -+ A s, A
Tmt1 AT = a AT (if n > m) which implies a < 7 impossible; similarly
n < m can’t hold.

3. The lattice generated by |{ z,y } is isomorphic to |z x | y.
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1.4 Distributive Lattices
A lattice is distributive when the map z — a Az (or z — a V z) is a lattice
morphism (onto | a, resp. Ta), that is,
xA(yVz)=(xAy)V(zAz)
(& xzV(yAnz)=(zVy)A(zVz2)) somodular.
Equivalently, any of these identities holds:
(AY)VyAz)V(zAz)=(@Vy) AlyVz)A(zVa),
zV(zAy) < (zV2)Ay,
cancelation (xVz=yVz AND s Az=yAz) & z=y.
Equivalently, a modular lattice which does not contain the diamond sublat-
tice (since suppose a, b, ¢ do not obey distributivity; let p := (aAb)V(bAc)V(cAa),
g:=(aVbAbVec)A(eVa),z:=(anqg)Vp,y:=0bAqg VD, z:=(cNq) VD,
then p <z <gq, p<y<gq,p<z<qform a diamond):

Equivalently,
azx ANy = Juzx, vy, a=uAv
a<zVy = Ju<Lz, vy, Tx=uVv
r——>u U— > 7
TNYy —>a a——>aVYy
_s vV——>Y

Equivalently, when the lattice is embedded in some (Boolean) lattice 24.
Images, sublattices, and products are distributive.

1. Ifa<zVband a Az < bthen a < b (since a=a A (xVb) <D).
2. {z:aVz=1}isafilter, and {z:a Az =0} is an ideal.

3. Complements are pseudo-complements and quasi-complements, hence unique
and denoted z':

2 =, r<y e r’Vy=1s 2Ny =0
Proof. If x,y and z, z are complementary, then y =y A (x V z) =y Az, so

y < z; similarly z < y. So z” = z since both are complementary to x’. If
2 ANy=0theny=(zVa')ANy=xzANy,soy <z
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10.

11.

12.

13.

14.

15.

ANy = (xVy A@' Vy)=(xAy)V (2 Ny),
z=y=(xAy) V@ Ay)=(xVy)A (@' Vy)
Pseudo-complements satisfy a de Morgan law: —(x V y) = =z A —y.
Proof. (x Vy) A (—z A—-y) =0,s0 "z Ay < (zVy).
Also, 7(zV—-z)=0but -z =04z = 1.

The boundary of an element is dx := x V —x; so
00x = Oz, Az Vy)=(0zVy) A(xVady)
-z is the complement of z when dx = 1.

Irreducibles are primes. (Proof. If z is irreducible and 2 < a V b, then
x=xA(aVb)=(xAa)V(xAb)sox=xzANa<aorz=xAb<b)

. The spectrum of an element a is o(a) := {z < a : z is V-irreducible }.

Then o(a Vb) = o(a) Uo(b) and a(a Ab) = o(a) Na(b); o(a’) = S>o(a).

The set of lower-closed sets of an ordered space form a complete dis-
tributive lattice (with U, N). For a complete lattice, a lower-closed set is
V-irreducible < it is principal.

The set of ideals form a complete distributive pseudo-complemented lat-
tice, with = :== {z : a ATl =0}, IVJ ={aVy:z € l,ye J}
(since if @ € IV J then there are x € I, y € J such that a < z V y, so
a=aAl(zVy) =(aAz)V(aAy)).

Maximal ideals (and filters) are prime.

Proof. Suppose I is a maximal ideal and a Ab € I, a ¢ I. The ideal
generated by I and a must be X, so that b < z V a for some = € I. Then
b<(zVa)Ab=(xAb)V(aAb)€eI, hencebe I.

If v J, INJ are principal ideals, then so are I, J.
Proof. If IVJ=la,INJ=]b,thena=xVy,andbVeel, bVyeJ,

so if there is z € I with z > bV z, then a,b,bV z,bV y, z would form a
pentagon. Similarly, J =,bV y.

Distributive lattices can be embedded into 2°, where S = Spec(X) is the
set of prime ideals, via the map = — {I € Spec(X) : x & I} (or via the
map x — o(x)).

A result is true for all distributive lattices iff it is true for 2 := {0,1}.

(Proof. If a result is true for 2, then it is true for 2°, hence for its sublat-
tices.)

In a finite distributive lattice, every element has a unique irredundant
decomposition into V-irreducibles, xt = a1 V -+ -V ay.

Proof. The irreducibles are the maximal elements of o(z).
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2 Heyting Algebras

are bounded lattices in which A residuates V, i.e.,
zAw<y & w<(x—y)

That is, z — y is the largest element satisfying z A (z — y) < .
Equivalently, a lattice with an operation — satisfying

r—=x=1 zAN(x—oy)=zAy, (—=y Ay=y
= (YAz)=(x—y)A(x = 2)
Heyting-morphisms must preserve 0,1,V, A and —. Products are Heyting,

with (z1,11) = (22,y2) := (#1 = 22,y1 — y2); for functions, (f — g)(z) =

f(x) = g(x).

Complete distributive lattices

x/\\/A:\/{:C/\a:aeA}

are (complete) Heyting (also called frames), with x — y:= \{w:zAw < y}.
In particular a completely distributive lattice, which satisfies AV A=V A A.
Example: open subsets in a topological space, with A — B = (AU B)°,
ﬁA = AC = eXt(A)
1. Must be a distributive lattice with a pseudo-complement -~z := x — 0, —
is an implication.
Proof: If Ay < (xAy)V(zAz) =twtheny,z <z — w,soyVz <z — w
and 2 A (yVz)<zA(x—w) < w.
2.2<y & (zr—y) =1,
r=(y—=z2)=(@Ay) = z<(z—>y) — (= 2),
x < (y = ),
r<(y—=>xAy),
3. A filter induces a quotient Heyting algebra X /F defined by the equivalence
relation x — y € F' AND y — x € F. First isomorphism theorem holds.

4. If x V -~z = 1 then x is reqular, ~—z = x.

(since ~—x = -~z A (z V —x) = =~z A )

5. The set of complemented elements form a Boolean subalgebra of X, while
the regular elements form a Boolean algebra (but its V may be different:
xVy:= (-2 A-y)), and z — ——z is a morphism from the Heyting
algebra to this Boolean algebra.

Note: the dual notion is an adjoint for V,
wVyz2r & w=2r—y

It has its own pseudo-complement, namely z, :=1—1z;s0 x Vx, =1, 0, = 1,
1, = 0; and its “boundary” map x +— = A .
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2.1 Boolean Algebras

are Heyting algebras with 2" = x.
Equivalently

- a complemented distributive lattice; or an orthomodular lattice in which all
elements commute.

- a complete and completely distributive lattice (with z = y:=V{z: 2 Az <

y}).

- aring with 0, 1 such that 2 = x (‘Proof’. Let 2 Vy = z+y+zy,x Ay = 2¥;
conversely x+y = xAy = (x Ay )V (2’ Ay), xy := xAy; its characteristic is
21i.e., —x = x; note + is not preserved by <; 2’ = 1—z; ¢ — y = 1—z+zy.)

a set with an associative commutative operation zVy and z’ and 0, such that

=2, xV0=x, aVr=x, aVa =1:=0,
(xV(ynz) =@@Vy) VizVvz)

(Then z Ay := (' Vy').)

a set with an operation x — y and 1, such that

x—0=z,c—(y—z)=z, =z, (r—y)—z=(x—2)—vy,
(@=(y—2) ==y - (-2

where ' :=1—2,0:==1, zAy:=xz—y,zVy:= (' Ay).

Products are Boolean. The completion is a Boolean algebra.
The subset | a (or Ta) is a Boolean algebra with the inherited operations
and 2’ := -z Aa (or -z Va). Then | a =1 —a via the map = — z V —a.

Examples include 24, ring ideals, the divisors of a square-free integer with
x < y meaning x|y, the finite/cofinite subsets of any set, the algebra generated
(as a ring) from any collection of points.

1. x — y =2’ V y. Lattice morphisms automatically preserve —,’.

2. For any atom a, either a < z or x < a’. Hence X X tax2. X <z x1Tx
for any .

3. A Boolean algebra either has atoms or is dense (since z < y is a gap
< 0 < zAyis a gap).

4. A finite distributive lattice is Boolean iff atomic iff geometric.

5. I is an ideal < —I is a filter; [ is a prime ideal < —I is maximal < T
is maximal (similarly for filters).
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6. The space of order-morphisms X — 2 from an ordered space form a
Boolean lattice X*. X* distinguishes points in X, i.e., z #y = 3f €

X*, f(@) # f(y) (e.g. take f(2) := {0 ise

). Any order X is order-
1 z«€z
embedded in X**.

7. A state is a probability distribution.

Proposition 6

Birkhoff-Stone Embedding Theorem

Every Boolean algebra can be embedded in some 2%.

PROOF: Let M :={¢: X — 2, morphism } (a totally disconnected compact
Ty space), and let J:x— {p € M : ¢(x) =1}, X — 2M,

Then
Jvy) ={peM:1=¢(xVy)=ox)Voly)}
={peM:1=¢(x) orR 1=4¢(y) } = J(z) U J(y)
JxAy) ={peM:1=q¢(xNy)=9¢x)Aoy)}
={¢peM:1=¢(x) AND 1 = ¢(y) } = J(z) U J(y)
J@') ={peM:1=0¢()=d¢)}=J()
JO)={¢peM:1=¢0)=0}=0

Jis 1-1: If & # 0 then 2’ is contained in some maximal ideal I, so = ¢ I, so
x1(z) =1and x7 € J(z). Thus J(z) =& = z=0.

Jz)=Jy) = o=J@)nJy) =JxAy) = zAy =0

and similarly 2’ Ay = 0, hence 2’ = 7/.
([

In particular, the free Boolean algebra with n generators is isomorphic to the
set of monotonic functions 2" — 2; each element is of the form (x1 A---Azp)V- - -
where x; = a; or al.

A finite Boolean algebra has 2™ elements for some n and is unique (since an
atom splits X into two separate but isomorphic Boolean algebras ta and | a’;
by induction, such finite Boolean algebras are unique for each n). The Boolean
algebra generated by n elements has 2™ atoms (x; A --- A xj, 1,7 < n), so 22"
elements.

There is only one countable dense Boolean algebra.

A o-algebra is a Boolean algebra which is closed under countable suprema:
for any sequence, \/, x, exists. For example, the algebra generated by a collec-
tion of points. The intersection of o-algebras is again a o-algebra, so a o-algebra
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can be generated from any collection of points (can be larger than the generated
Boolean algebra); e.g. the Borel o-algebra generated by the basic open sets in
a topological space.

2.2 Linearly Ordered Spaces
T<YORY<T

Equivalently, a maximally ordered space, or a lattice such that x Ay and x V y
are both one of x,y. (The monotone maps preserve A,V.) A bijective morphism
is an isomorphism.

: : : I z<y
Linearly ordered spaces are Heyting algebras with * — y = N
y >y
1 z=0 . .
and —~z = N 0; satisfy both de Morgan’s laws (but only 0,1 have quasi-
xr >

complements, so the only Boolean linearly ordered spaces are 0 and { 0,1 }).
Can define the sum + and multiplication . of linearly ordered sets by

ZX“ <y & JI<jreX;,ye X; orR Ji,z,y € X;,x <y
i

HXZ" r<ye Ji={i:x;#y; } #2 AND x;, < yi,
i

where ig is the least element of J (note that this is not the categorical order
product defined previously).

1. Any non-empty bounded set has four possible relations with its upper
bounds (and dually its lower bounds):

Set max
Y N |
CQE Y —eo0— —oO0—
2 E N
—eo0— —o0O0—

The diagonal possibilities are called a gap and a (two-sided) cut respec-
tively.

A linear order is complete iff it has no cuts.

2. A finite linear order is isomorphic to some n = (0 < 1 < --- < n —
1), hence complete (and bounded). A morphism m — m is completely
described by the sub-intervals of m where it is not 1-1, and of n where it
is not onto.
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10.

11.

N* is the smallest infinite bounded linear order, in the sense that N or
—N is embedded in every infinite linear order. The smallest linear order
without upper/lowerbounds is Z.

. The only linear orders in which every cut is given by a gap are n (n € N),

N, —N, and Z (depending on existence of upper/lower bounds).

The countably infinite orders are sums of n, N, and —N, where of course,
n+N=N, -N+n = —N, and —N+ N = Z. Their number is 2": From a
binary sequence, say 00101 ..., create the order Z+Z+Z+1+Z+7Z+1+- - -;
each such order is not isomorphic to any other.

. The smallest dense bounded linear order is Q* (apart from 0). It is count-

ably infinite and incomplete. Every countable linear order is embedded in
it.

Proof. Let X = {x1,22,...}. Define f : X — Q inductively by finding, at
each step n (take f(z1) := 0, say), the immediate neighbors z; < x,, < x;
with ¢,7 < n and letting f(z,) be any rational number with f(z;) <
f(zn) < f(zj). Then f: X — Qis an embedding. If X is dense bounded,
f can be modified to an isomorphism X — Q*: let Q = { ¢1,¢o, ...} and
alternate in the same way between finding f(x,) and f~'(g,); start by
f(0) = —o0 and f(1) = 4o0.

For example, Words with alphabetical order is a dense countably infinite
linear order.

For any countable linear order a, Qav =2 Q (hence Q™ = Q).

. The order-completion of Q is called R*. It is the smallest complete dense

bounded linear order; and Q is dense in it.

Proof. Let C be a countable dense subset of X, hence isomorphic to
Q; extend the isomorphism f : Q — C to R — X by f(sup,, ¢n) :=

But (Suslin) whether R* is the only complete dense bounded linear order
such that every set of disjoint intervals is countable, is undecidable; it is
not, with the axiom of constructibility.

Hausdorff’s maximality principle: Every chain in an ordered set X has a
maximal chain. (If the maximal chain M has an upperbound z € X, then
x € M else M can be extended further by x; so x is a maximal element
in X.)

Every finite ordered space can be extended to a linear order.
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2.2.1 Well-ordered spaces

are ordered spaces for which every non-empty subset has a minimum. They
are linearly ordered (since {z,y } has a minimum), complete (since the set of
upperbounds has a minimum), and DCCs.

Subspaces, images, sums and products (as linear orders) are again well-
ordered.

1. Every element x has an immediate successor ™ except for the largest
element if there is one, x¥ = min X \[0,z]. The successor function is a
1-1 morphism with x < z*. [0,27[ = [0,z]. Each z < 2 is a gap, and
the only dense subsets of X are trivial.

2. Every element is either a successor or a limit point:

Jy, * =yT XOR z =sup[0,z[ = \/ 1.
y<x

(Let z :=sup [0, z[, then z < z or z = x.)

3. Every lower-closed set is an initial segment [0, x[ for some = € X, or X
itself.

Proof. FEither A = & when z = 0, or A is unbounded when A = X, or
y := sup A exists; then either y € A when z = y*, or y ¢ A when z = y.

4. Transfinite induction: If Yy <z, y € A) = x € A then Vz, z € A,
ie, if Vo, [0,2] C A = x € A then A = X. This is usually split into
cases (i) 0 € A, (ii) successors € A = at € A, and (iil) limit points
Vy<z,yecA) = ze€A). Note: [0,00=2C A,s00€ A.)

5. A 1-1 morphism f: X — X satisfies x < f(z) (since {z € X : f(z) <z}
has no minimum). So the only automorphism on X is the identity, and
any isomorphism X — Y is unique (take g1 f).

6. Either X GCY or Y & X.

Proof. Theset A:={x € X :3y €Y, 3f, : [0,z = [0,y[ C Y, isomorphism }
contains 0 and is lower-closed. Define f :={J,c 4 fz, a 1-1 morphism. So
either A = X (in which case f : X — Y is an embedding); or A = [0, af;
if fA is bounded, define f(a):=\/,_, f(z) to make [0,a] = [0, f(a)], so
a € A, a contradiction. Hence fA =Y and f~! : Y — X is an embedding.

7. Every set has a well-order (“well-ordering principle”, equivalent to the
axiom of choice). Conversely, a set with a well-order has min as a choice
function.

Proof: Let X # & and consider the well-ordered subsets of X, ordered by
A < B iff A is initial in B. There is a maximal subset 4; if x ¢ A, then
A< AU{x};80 A=X.
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8. An ordered space in which every non-empty subset has a max and a min
must be finite: {0,07,07F, ...} has a maximum in the set.

Classification: An ordinal number is a set X in which £ is a well-order
and transitive, y € x € X = y € X; hence x € X = x C X. For ordinals,

1. For every x € X, z = [0,z] C X and 1 = [0, z]. Hence

0=9, 0f={0}=1, 1T=[0,1]={0,1}=2,....

2. Elements of an ordinal number are themselves ordinal; conversely, any
proper transitive subset is an element.

Proof. a € X = a C X, so € is a well-order for a; moreover if x € y €
z € X then z,y € X, so x € z. Conversely, transitive subsets are lower
closed, so of the type [0, z[ = z if a proper subset.

3. Either X CY or Y C X. Distinct ordinals are non-isomorphic.

Proof. Let X,Y be ordinals, then X NY C X,Y is transitive; this gives
the contradiction X NY € X, Y unless X NY = X or X NY =Y. Note
that if X C Y then X = [0, X[. If X is isomorphic to Y, then X CY C X.

4. The class of ordinal numbers is itself an ordinal (so not a set), with well-
order C, Xt =X U{X},and VA =JA.

Proof. If z € X € Ordinals then z is an ordinal. Any non-empty class of
ordinals has the minimum () A which is an ordinal because it is a transitive
subset of any X € A.

5. Every well-ordered space is isomorphic to a unique ordinal. Hence every
set is numerically equivalent to some ordinal; the (least) ordinals can serve
as representative cardinal numbers.

Proof. Existence by transfinite induction: [0,0] = @ (the 0 ordinal);
if [0,z] & O, (ordinal), then [0,z%[ = [0,2] = O, U {0, } = OF; if
[0,y[ = Oy for every y < =, then x = sup[0,z[ = J,_, Oy an ordinal.
Hence X = sup, [0,z[ =, O,.

6. Transfinite Induction: if A C Ordinals, and Va,a C A = a € A then
A = Ordinals.
Proof. Suppose that A # Ordinals, and let a := min(Ordinals~A4). Then
a¢ A = ag Aaswellas A € OrdinalsN4 = a C A.

7. The sum (+) of ordinal numbers satisfies

A+0=4A, A+B*'=(A+B)*, A+B=J(A+0)
ceB

with zero 0, associative, preserves <.
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(a) B is a limit ordinal & A + B is as well (unless B = 0);
(b) If n € N and A an infinite ordinal then n + A = A4;

(¢) Ordinal numbers are of the type A + n where A is a limit ordinal
(perhaps 0) and n a natural number.

8. Multiplication satisfies

A0=0, ABT=AB+A, AB= ] AC
ceB

with unity 1, associative, left-distributive, preserves <, allows left-cancelation;

(a) AB is a limit ordinal < A or B is also; in particular nB = B;
(b) VA,B #0,A = BC + R with R C B.
(¢) Multiplication is not right-distributive, e.g. (1 + 1)w # w 4+ w

9. Can define powers (not the same as set exponentiation) by

A =1, ABT = ABA, AP .= U Ac(except 08 .= 0)

CceB
Then AB+C = ABAC ABC = (AB)C.
10. The class of ordinal numbers starts
0, 1, 2,
w:=N, w+1l, w+2, ...,
W2=w4w, w2+1, ...,
w3, ,
w? = ww, ,
w37 b)
ww? )
www7 b)
€0 = w“’:. , -
€1 := 680 ,

These are all countable ordinals; the first uncountable ordinal is w; :=
sup{ z : z is a countable ordinal } (it’s uncountable else w;" € wy).
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3 Finite Orders

Size Orders Lattices Distributive Boolean

Lattices Lattices
1 1 1 1 1
2 2 1 1 1
3 5 1 1 0
4 16 2 2 1
5 63 5 3 0
6 318 15 5 0
7 2045 53 8 0
8 16999 222 15 1
9 183231 1078 26 0
10 | 2567284 5994 47 0



	Hausdorff Maximality Principle
	DCC Orders
	Bounded Orders
	Lattices
	Algebraic Lattices
	ACC Lattices

	Complements
	Ortho-modular Lattices

	Semi-Modular Lattices
	Modular Lattices
	Distributive Lattices

	Heyting Algebras
	Boolean Algebras
	Linearly Ordered Spaces
	Well-ordered spaces


	Finite Orders

