Rings and Modules

joseph.muscat@um.edu.mt 1 October 2013

1 Semi-Rings

The morphisms on a commutative monoid have two operations: addition and composition, $(\phi + \psi)(x) = \phi(x) + \psi(x)$, $(\phi \circ \psi)(x) = \phi(\psi(x))$. They form the defining template for algebras having two operations:

Definition A semi-ring is a set R with two associative operations $+, \cdot,$ where + is commutative with identity 0, and \cdot has identity 1, related together by the *distributive laws*

$$a(b+c) = ab + ac,$$
 $(a+b)c = ac + bc,$

and 0a = 0 = a0 (0 is a zero for \cdot).

A **semi-module** is a semi-ring R acting (left) on a commutative monoid X as endomorphisms, i.e., for all $a, b \in R, x, y \in X$,

a(x+y) = ax + ay,	a0 = 0,
(a+b)x := ax + bx,	0x := 0,
(ab)x := a(bx),	1x := x

Thus a semi-ring is a semi-module by acting on itself (either left or right).

Repeated addition and multiplication are denoted by $nx = x + \cdots + x$ and $a^n = a \cdots a$. Then N acts on X, forming a (trivial) semi-module,

$$(m+n)x = mx + nx,$$
 $m(nx) = (mn)x,$
 $n(x+y) = nx + ny,$ $n0 = 0,$ $n(ab) = (na)b = a(nb)$

(the last follows by induction: $n^+(ab) = n(ab) + (ab) = (na)b + (ab) = (na + a)b = (n^+a)b$.) Thus multiplication is a generalization of repeated addition. (Exponentiation a^b is not usually well-defined e.g. in $\mathbb{Z}_3, 2^1 \neq 2^4$.)

$$(a+b)^2 = a^2 + ab + ba + b^2,$$

 $(a+b)^n = a^n + a^{n-1}b + a^{n-2}ba + \dots + ba^{n-1} + \dots + b^n$

Only for the trivial semi-ring $\{0\}$ is 1 = 0. If R doesn't have a 0 or 1, they can be inserted: define 0 + a := a, a + 0 := a, 0 + 0 := 0, 0a := 0, a0 := 0, 00 := 0, and extend to $\mathbb{N} \times R$ with (n, a) written as n + a and

$$(n+a) + (m+b) := (n+m) + (a+b),$$

 $(n+a)(m+b) := (nm) + (na+mb+ab).$

Then the associative, commutative, and distributive laws remain valid, with new zero (0,0) and identity (1,0), and with R embedded as $0 \times R$.

Monoid terminology, such as zero, nilpotent, regular, invertible, etc. are reserved for the multiplication. If they exist, a 'zero' for + is denoted ∞ ; a +-inverse of x is denoted by -x ('negative'), and (-n)x := n(-x).

$+,\cdot$	Finite	Artinian	Noetherian	
Semi-Rings			\mathbb{N}	$\mathbb{N}^{\mathbb{N}}$
(x+y)z = xz + yz				
Rings	$\mathbb{Z}_m[G], M_n(\mathbb{Z}_n)$	$\mathbb{Q}[G]$	$U_n(\mathbb{Z})$	$\mathbb{Z}\langle x, y, \dots \rangle / \langle x^2, y^3, \dots \rangle$
-x				
Semi-	////	////	$M_n(\mathbb{Z})$	$\mathbb{Q}\langle x,y angle$
Primitive				
Semi-Simple	$\mathbb{Z}_p[G], M_n(\mathbb{F}_{p^n})$	$M_n(\mathbb{Q}), \mathbb{H}$	////	/////
Commutative rings	$\mathbb{Z}_m, \mathbb{F}_{p^n} \times \mathbb{F}_{q^m}$	$\mathbb{F}[x]/\langle x^n \rangle$	$\mathbb{Z}_n[x]$	$\mathbb{Z}^{\mathbb{Z}}, \mathbb{Z}_n[x, y, \ldots]$
xy = yx				
Integral Domains	////	/////	$\mathbb{Z}[x]$	$\mathbb{A}_{\mathbb{Z}}$
$xy = 0 \Rightarrow$				
x = 0 or $y = 0$				
Principal Ideal Do-	////	////	$\mathbb{Z}, \mathbb{Q}[x]$	/////
mains				
Fields	\mathbb{F}_{p^n}	Q	/////	////
x^{-1}				

(G finite group)

1.0.1 Examples

• Some small examples of semi-rings (subscripts are ab, with a0 = 0, a1 = a suppressed)

() 1	0 1 2	(JI	. <i>L</i>	3
1 X V	<u> </u>	0 1 2	_ 7	1 1	1	1
0 0) 1	$1 \ 2 \ 1$	-			-
1 1	. 1	0 1 0		2 1	2_{0}	3_2
	LI	$2 1 0_0$)	2 1	2	9
		•	و	דן כ	- J 0	J 3

- \mathbb{N} with $+, \times$. More generally, sets with disjoint union and direct product.
- Subsets with \triangle and \cap .
- Hom(X) is a semi-ring acting on the commutative monoid X.
- Distributive lattices, e.g. \mathbb{N} with max, min, \mathbb{N} with lcm, gcd.
- \mathbb{N} with max, + (and $-\infty$ as a zero).
- Subsets of a Monoid, with \cup and product $AB := \{ab : a \in A, b \in B\}$.
- Every commutative monoid is trivially a semi-ring with $xy := 0 \ (x, y \neq 1)$.

• Every semi-ring has a mirror-image *opposite* semi-ring with the same + but a * b := ba. R^{op} acts on an *R*-semi-module X by x * a := ax.

Morphisms of semi-modules are *linear* maps $T: X \to Y$,

$$T(x+y) = T(x) + T(y), \quad T(ax) = aT(x).$$

Morphisms of semi-rings are maps $\phi : R \to S$,

$$\phi(a+b) = \phi(a) + \phi(b),$$
 $\phi(ab) = \phi(a)\phi(b),$
 $\phi(0) = 0,$ $\phi(1) = 1$

The spaces of such morphisms are denoted $\operatorname{Hom}_R(X, Y)$ and $\operatorname{Hom}(R, S)$ respectively.

- 1. For semi-modules, isomorphisms are invertible morphisms; the trivial module $\{0\}$ is an initial and zero object (i.e., unique $0 \to X \to 0$).
- 2. $\operatorname{Hom}_R(X, Y)$ is itself an *R*-semi-module with

$$(S+T)(x) := S(x) + T(x), \quad (aT)(x) := aT(x)$$

- 3. For semi-rings, \mathbb{N} is an initial object (i.e., unique $\mathbb{N} \to R$). Ring morphisms preserve invertibility, $\phi(a)^{-1} = \phi(a^{-1})$.
- 4. If a is invertible, then conjugation $\tau_a(x) := a^{-1}xa$ is a semi-ring automorphism. If a is invertible and central (ax = xa) then its action on X is a semi-module automorphism. $a^{-1} + b^{-1} = a^{-1}(b+a)b^{-1}$
- 5. The module-endomorphisms of a semi-ring are $x \mapsto xa$, hence $\operatorname{Hom}_R(R)$ is isomorphic to R (as a module). Similarly, $\operatorname{Hom}_R(R, X) \cong X$ (via $T \mapsto T(1)$).
- 6. Every semi-ring is embedded in some Hom(X) for some commutative monoid X (take $X := R_+$).

Products: The product of *R*-semi-modules $X \times Y$ and functions X^S are also semi-modules, acted upon by *R*, with

$$(x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2), \quad a(x, y) := (ax, ay),$$

 $(f + g)(t) := f(t) + g(t), \quad (af)(t) := af(t).$

For semi-rings, (fg)(t) := f(t)g(t). A free semi-module is given by R acting on R^S . Note the module morphisms $\iota_i : X \to X^n, x \mapsto (\ldots, 0, x, 0, \ldots)$ and $\pi_i : X^n \to X, (x_1, \ldots, x_n) \mapsto x_i$. Hom_R $(X \times Y, Z) \cong \text{Hom}_R(X, Z) \times \text{Hom}_R(Y, Z)$ (let $T \mapsto (T_X, T_Y)$ where $T_X(x) := T(x, 0)$).

Matrices: The module morphisms $\mathbb{R}^n \to \mathbb{R}^m$ can be written as *matrices* of ring elements,

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots & \vdots \\ a_{m1} \cdots a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \coloneqq \begin{pmatrix} x_1 a_{11} + \cdots + x_n a_{1n} \\ \vdots \\ x_1 a_{m1} + \cdots + x_n a_{mn} \end{pmatrix},$$

forming a semi-module $M_{m \times n}(R)$ with addition and scalar multiplication

$$(a_{ij}) + (b_{ij}) := (a_{ij} + b_{ij}), \qquad r(a_{ij}) := (ra_{ij}).$$

When n = m, the matrices form a semi-ring $M_n(R)$ on $+, \circ$. More generally,

$$\operatorname{Hom}_R(X^m, Y^n) = M_{n \times m}(\operatorname{Hom}_R(X, Y))$$

(the matrix of T has coefficients $T_{ij} := \pi_i \circ T \circ \iota_j : X \to X^n \to Y^m \to Y$).

Polynomials: A *polynomial* is a finite sequence $(a_0, \ldots, a_n, 0, \ldots)$, written as a formal sum $a_0 + a_1x + \cdots + a_nx^n$, $n \in \mathbb{N}$, $a_i \in R$ with addition and multiplication defined by

$$\sum_{i} a_i x^i + \sum_{i} b_i x^i := \sum_{i} (a_i + b_i) x^i, \quad \left(\sum_{i} a_i x^i\right) \left(\sum_{j} b_j x^j\right) := \sum_{k} \left(\sum_{i+j=k} a_i b_j\right) x^k$$

Much more generally, given a semi-ring R and a category C, R can be extended to the semi-ring

$$R[\mathcal{C}] := \{ a : \mathcal{C} \to R, \operatorname{supp}(a) \text{ is finite } \}$$

 $(\operatorname{supp}(a) := \{ \phi_i \in \mathcal{C} : a(\phi_i) \neq 0 \})$ with 'free' operations of addition and convolution

$$(a+b)(\phi_i) := a(\phi_i) + b(\phi_i), \quad (a*b)(\phi_i) := \sum_{\phi_j \phi_k = \phi_i} a(\phi_j) b(\phi_k)$$

(i.e., set $\phi_i \phi_j = 0$ when not compatible) with identity δ given by $\delta(\phi) = 0$ except $\delta(\iota) = 1$ (for any identity morphism ι). (It is the adjoint of the forgetful functor from *R*-modules to the category.) Elements $a \in R[\mathcal{C}]$ are often denoted as formal (finite) sums $\sum_i a_i \phi_i$ (where $a_i = a(\phi_i)$) with the requirement $(a\phi + b\psi)(c\eta) := (ac)(\phi\eta) + (bc)(\psi\eta)$, etc.; then

$$\left(\sum_{i} a_{i}\phi_{i}\right)\left(\sum_{j} b_{j}\phi_{j}\right) = \sum_{k} \left(\sum_{\phi_{k}=\phi_{i}\phi_{j}} a_{i}b_{j}\right)\phi_{k} = \sum_{k} (a*b)_{k}\phi_{k}$$

An element $a \in R[\mathcal{C}]$ is invertible $\Leftrightarrow \forall i, a(\phi_i) \neq 0$.

The map $\sum_{i} a_i \phi_i \to \sum_{i} a_i$ is a morphism onto R. The zeta function is the constant function $\zeta(\phi_i) := 1$; its inverse is called the *Möbius* function μ . If the category is bounded, then the Euler characteristic is $\chi := \mu(0 \to 1)$.

Special cases are the following:

1. Monoid/Group Algebras R[G]

$$a * b(g) := \sum_{h} a(h)b(h^{-1}g), \quad \delta(g) = \begin{cases} 1 & g = 1\\ 0 & o/w \end{cases}$$

Every element of finite order gives a zero divisor because $0 = 1 - g^n = (1 - g)(1 + g + \dots + g^{n-1})$ (conjecture: these are the only zero divisors).

• The Polynomials R[x] are the finite sequences that arise when $G = \mathbb{N}$. The sequence (0, 1, 0, ...) is often denoted by 'x', so

$$p = a_0 + a_1 x + \dots + a_n x^n, \quad \exists n \in \mathbb{N}$$

They are generated by x^n with $x^n x^m = x^{n+m}$, ax = xa for $a \in R$. The *degree* of p is defined by max{ $n \in \mathbb{N} : a_n \neq 0$ }; then

 $\deg(p+q) \leq \max(\deg(p), \deg(q)), \quad \deg(pq) \leq \deg(p) + \deg(q).$

- $R[\mathbb{Z}]$ is the ring of rational polynomials,
- $R[x_1, \ldots, x_n]$ is obtained from $G = \mathbb{N}^n$; e.g. R[x, y] = R[x][y]; contains the sub-ring of symmetric polynomials S[x, y] (generated by the elementary symmetric polynomials $1, x + y, xy, \sum_{i < \cdots < j} x_i \cdots x_j$)
- The "free algebra" $R\langle A \rangle := R[A^*]$ where A^* is the free monoid on A,
- The power series R[[x]] consists of infinite sequences with the same addition and multiplication as for R[x].
- 2. The Incidence Algebras $R[\leq]$, let $a(x, y) := a(x \leq y)$;

$$a * b(x, y) := \sum_{x \leqslant z \leqslant y} a(x, z)b(z, b), \quad \delta(x, y) = \begin{cases} 1 & x = y \\ 0 & o/w \end{cases},$$
$$\mu(x, y) = \begin{cases} -\sum_{x \leqslant z < y} \mu(x, z) & x < y \\ 1 & x = y \end{cases}$$

• $R[2^X], \mu(A \subseteq B) = (-1)^{|B \setminus A|}.$

Polynomials $\mathbb{N}[x, y, \ldots]$ are sufficiently complex that they can encode many logical statements about the naturals. That is, any computable subset of \mathbb{N} can be encoded as $\{x \in \mathbb{N} : \exists y, \ldots, p(x, y, \ldots) = 0\}$ for some polynomial p; so polynomials are in general unsolvable (Hilbert's 10th problem).

A **sub-module** is a subset $Y \subseteq X$ that is closed under +, 0 and the action of R, i.e., $0 \in Y$, $Y + Y \subseteq Y$, $RY \subseteq Y$,

$$a \in R, \ x, y \in Y \ \Rightarrow \ 0, x + y, ay \in Y.$$

Any combination of variables gives a polynomial in them: x((y+zx)+y) =2xy + xzx A sub-module induces a congruence relation

 $x_1 = x_2 \pmod{Y} \Leftrightarrow \exists y_1, y_2 \in Y, \quad x_1 + y_1 = x_2 + y_2,$

with $x + Y \subseteq [x]$ and $[0] = Y^{\text{sub}} := \{ x \in X : x + y \in Y, \exists y \in Y \} \supseteq Y$, so can form the **quotient** space X/Y^{sub} of equivalence classes

 $[x_1] + [x_2] := [x_1 + x_2], \qquad a[x] := [ax].$

A sub-module of a semi-ring R acting on itself is called a **left ideal** $I \leq R$, i.e., I + I, $RI \subseteq I$. A is a **sub-semi-ring** of R when it is closed under $+, \cdot, 0, 1$.

1. If M, N are sub-modules, then so are $M + N \ (= M \lor N)$ and $M \cap N$, thus making sub-modules into a complete modular lattice (for \subseteq)

 $N \subseteq L \implies (L \cap M) + N = L \cap (M + N).$

A sub-module M is complemented by N when M + N = X, $M \cap N = 0$, denoted $X = M \oplus N$.

2. Generated sub-modules: the smallest sub-module containing $B \subseteq X$ is

 $[B] = R \cdot B := \{ a_1 x_1 + \dots + a_n x_n : a_i \in R, x_i \in B, n \in \mathbb{N} \}$

 $\llbracket x \rrbracket = Rx$ is called *cyclic* (or principal left ideal for rings). $\llbracket A \cup B \rrbracket = \llbracket A \rrbracket + \llbracket B \rrbracket, \sum_i M_i := \llbracket \bigcup_i M_i \rrbracket$. A *basis* is a subset *B* which generates *X*, and for each *x*, the coefficients a_i are unique (but a basis need not exist).

3. More generally, if I is a left ideal then

$$I \cdot B := \{a_1x_1 + \dots + a_nx_n : a_i \in I, x_i \in B, n \in \mathbb{N}\}$$

is a sub-module (but need not contain B).

- 4. Module morphisms preserve the sub-module structure: If $M \leq N$ then $\phi M \leq \phi N$ and $\psi^{-1}M \leq \psi^{-1}N$. Ring morphisms also preserve sub-semirings.
- 5. The only left ideal that contains 1 or invertible elements is R (since $x = (xa^{-1})a \in I$).
- 6. Left ideals of $R \times S$ are of the type $I \times J$, where I, J are left ideals of R, S.
- 7. A sub-module Y is subtractive when $x, x + y \in Y \Rightarrow y \in Y$. The intersection of subtractive sub-modules is again subtractive, so the smallest subtractive sub-module containing A is A^{sub} a closure operation on sub-modules. If Y is subtractive, so is $\phi^{-1}Y$.

Example: $k\mathbb{N}$ are the subtractive (left) ideals of \mathbb{N} , but $2\mathbb{N} + 3\mathbb{N} = \{0, 2, 3, ...\}$ is not.

- 8. The set of elements that have a negative is a subtractive sub-module N, since $-(x + y) = (-x) + (-y), -(ax) = a(-x), x + y \in N \Leftrightarrow x, y \in N.$
- 9. A left *semi-unit* of a ring is u such that $(Ru)^{sub} = R$, i.e., 1 + au = bu for some a, b; e.g. any left invertible element. A subtractive left ideal, except R, cannot contain a semi-unit.
- 10. The **annihilator** of a subset $B \subseteq X$ is the subtractive left ideal

Annih
$$(B) := \{ a \in R : aB = 0 \}.$$

For a sub-module, $\operatorname{Annih}(M)$ is an ideal, $\operatorname{Annih}(M + N) = \operatorname{Annih}(M) \cap \operatorname{Annih}(N)$. For semi-rings, $\operatorname{Annih}(B) := \{ a \in R : aB = 0 = Ba \}$; then $B \subseteq \operatorname{Annih}(\operatorname{Annih}(B))$.

The adjoint of the annihilator is the zero set

$$Zeros(I) := \{ x \in X : Ix = 0 \},\$$

$$I \leq Annih(Y) \Leftrightarrow Y \leq Zeros(I)$$

More generally, for a sub-module Y,

$$[Y:B] := \{ a \in R : aB \subseteq Y \},$$

$$[Y:I]^* := \{ x \in X : Ix \subseteq Y \}$$

[Y:B] is a left ideal (a sub-ring if Y is just a sub-monoid); [Y:X] is an ideal. $[Y:I]^*$ is a sub-module when I is a right ideal; $[Y:R]^* = Y$. Annih $(X/Y) = [Y^{\text{sub}}:X]$.

The torsion radical is the sub-module $\tau(X) := \{ x \in X : \exists n \ge 1, nx = 0 \}.$

- 11. $R \to \text{Hom}(X)$ is a ring-morphism, with kernel being the congruence relation $ax = bx, \forall x \in X$.
- 12. $X \to X/Y^{\text{sub}}, x \mapsto [x]$ is a module-morphism, and the usual Isomorphism theorems hold (see Universal Algebras), e.g. $R/\ker \phi \cong \phi R$, sub-modules that contain M correspond to sub-modules of X/\approx_M .
- 13. If $\phi : R \to S$ is a ring-morphism, and S acts on X, then R acts on X as a semi-module by $a \cdot x := \phi(a)x$.
- 14. A sub-module Y is maximal when $Y \neq X$ and there are no other submodules $Y \subset Z \subset X$ (i.e., a coatom in the lattice of sub-modules). For example, $3\mathbb{N}$ in the semi-module \mathbb{N} .

 $Y \subset Z \subseteq X$ is maximal in Z iff $Y = M \cap Z$ for some maximal M in X.

Every (left) ideal of a ring (with $I^{sub} \neq R$) can be enlarged to a maximal (subtractive left) ideal (by Zorn's lemma).

15. Generated sub-semi-ring of $A \subseteq R$ is the smallest sub-semi-ring containing A:

$$\llbracket A \rrbracket = \{ \sum a_1 \cdots a_k : a_i \in A \cup \{1\}, k \in \mathbb{N}, \text{finite sums} \}$$

e.g. $\llbracket x \rrbracket = \{ k_0 + k_1 x + \dots + k_n x^n : k_i, n \in \mathbb{N} \}, \llbracket 1 \rrbracket = \mathbb{N} \text{ or } \mathbb{Z}_m \text{ (in which case } R \text{ is a ring).}$

- 16. Sub-semi-rings can be intersected $A \cap B$, and joined $A \vee B := [\![A \cup B]\!]$, thus forming a complete lattice.
- 17. The *centralizer* (or commutant) of a subset $A \subseteq R$ is the sub-semi-ring

$$Z(A) := \{ x \in R : \forall a \in A, ax = xa \},\$$

in particular the center Z(R). $Z(R \times S) = Z(R) \times Z(S)$. $A \subseteq B \Rightarrow Z(B) \subseteq Z(A)$, so if $A \subseteq Z(A)$ then Z(Z(A)) is a commutative sub-semiring.

18. Given an automorphism σ of R, $Fix(\sigma) := \{x : \sigma(x) = x\}$ is a sub-semiring. For example, $Fix(\tau_a) = Z(a)$.

An **ideal** $I \leq R$ is a subset that is stable under $+, \cdot,$ i.e.,

$$(a+I) + (b+I) \subseteq a+b+I, \quad (a+I)(b+I) \subseteq ab+I,$$

equivalently a left ideal I that is also a right ideal, $IR \subseteq I$. The quotient by the induced congruence R/I^{sub} is a semiring with zero I^{sub} and identity [1].

1. Generated ideal: the smallest ideal containing $A \subseteq R$ is

$$\langle A \rangle = R \cdot A \cdot R = \{ x_1 a_1 y_1 + \dots + x_n a_n y_n : a_i \in A, x_i, y_i \in R, n \in \mathbb{N} \},\$$

in particular $\langle a \rangle$ is called a *principal ideal*. In general, Ra is not an ideal; but for "invariant" elements Ra = aR, it is.

- 2. If $I \leq J$ then $\phi I \leq \phi J$ and $\phi^{-1}I \leq \phi^{-1}J$.
- 3. $I \lor J = \langle I \cup J \rangle = I + J$, $I \land J = I \cap J$, so the set of ideals form a modular lattice (wrt \subseteq).
- 4. If I is a left ideal and J a right ideal, then $I \cdot J$ is an ideal, and $J \cdot I \subseteq I \cap J$. This product is distributive over +, $(I + J) \cdot K = I \cdot K + J \cdot K$, and is preserved by ring-morphisms, $\phi(I \cdot J) = \phi I \cdot \phi J$. Thus the set of ideals is a semi-ring with +, \cdot and identities 0, R.

$$(I+J) \cdot (I \cap J) \subseteq I \cdot J + J \cdot I \subseteq I \cap J \subseteq I \subseteq I + J$$

Let $I \to J = \{x \in R : Ix \subseteq J\}$ and $I \leftarrow J = \{x \in R : xI \subseteq J\}$; then $I \cdot (I \to J) \subseteq J$, so the set of ideals is residuated (see Ordered Sets:2.0.1).

- 5. The largest ideal inside a left ideal I is its core [I : R]. It equals $\operatorname{Annih}(R/I)$ since $a(R/I) \subseteq I \Leftrightarrow aR \subseteq I$.
- 6. The ideals of $R \times S$ are of the form $I \times J$, both ideals.
- 7. An ideal of a semi-ring $M_n(R)$ consists of matrices (a_{ij}) where $a_{ij} \in I$, an ideal of R. $[M_n(I): M_n(J)] = M_n[I:J]$.

Proof: Given an ideal J of matrices, let I be the set of coefficients of the matrices in J; let $E_{rs} := (\delta_{ir} \delta_{sj})$, then $E_{1r} A E_{s1} \in J$ is essentially a_{rs} ; so I is an ideal.

2 Rings

Definition A **ring** is a semi-ring in which all elements have negatives. A **module** is the action of a ring on a commutative monoid.

Equivalently, if an element of a semi-ring has a negative and an inverse: $1 + (-a)a^{-1} = (a - a)a^{-1} = 0$, so -1 exists; then -b = (-1)b. The Monoid of the module must be a Group since -x = (-1)x; it must be commutative since -x - y = -(x + y) = -y - x.

When a +-cancellative semi-ring R is extended to a group (see Groups), it retains distributivity and becomes a ring: take R^2 and write (a, b) as a - b; identify a - b = c - d whenever a + d = b + c (a congruence), and define (a - b) + (c - d) := (a + c) - (b + d), (a - b)(c - d) := (ac + bd) - (bc + ad); R is embedded in this ring via $a \mapsto a - 0$ and the negative of a is 0 - a; a cancellative element in R remains so; a congruence \approx on R can be extended to the ring by letting $(a - b) \approx (c - d) := (a + d) \approx (b + c)$.

Examples:

- The integers \mathbb{Z} (extended from \mathbb{N}), and \mathbb{Z}_n .
- The rational numbers with denominator not containing the prime p. The rational numbers with denominator being a power of p, $\mathbb{Z}[\frac{1}{p}]$.
- The Gaussian integers $\mathbb{Z} + i\mathbb{Z}$ and the quaternions $\mathbb{H} := \mathbb{R}[Q]$.
- The morphisms on an abelian group (called ring representations).
- The elements of a semi-ring having a negative.

Immediate consequences:

1. 0x = 0 = a0 and $\phi 0 = 0$ now follow from the other axioms.

Proof: ax = a(x+0) = ax+a0, ax = (0+a)x = 0x+ax, $\phi(x) = \phi(0+x) = \phi(0) + \phi(x)$.

2. $(-a)x = -(ax) = a(-x), (-a)(-x) = ax; \phi(-x) = -\phi(x)$. There is no ∞ .

Proof: ax + a(-x) = a(x-x) = 0 = (a-a)x = ax + (-a)x; $0 = \phi(x-x) = \phi(x) + \phi(-x)$. $\infty = \infty + 1$, so 0 = 1.

- 3. Every element of a ring is either left cancellative or a left divisor of zero. Proof: Either $ax = 0 \Rightarrow x = 0$ or a is a left divisor of zero. In the first case, $ax = ay \Rightarrow a(x - y) = 0 \Rightarrow x = y$.
- The invertible elements of a ring form a group (but not any group, e.g. not C₅, C₉, C₁₁, etc.).

- 5. Divisibility a|b (see Groups) induces a (pre-)order on R; there are no known criteria on general rings for when elements have factorizations into irreducibles, or when irreducibles exist.
- 6. If e is an idempotent, then so is f := 1 e, and ef = 0 = fe. So idempotents, except 1, are divisors of zero.
- 7. There is an associative operation defined by 1 x * y = (1 x)(1 y); *a* is said to be *quasi-regular* when 1 a is invertible, or equivalently there is a *b*, a * b = 0 = b * a.
 - (a) If a^n is quasi-regular, then so is a, since

$$1 - a^{n} = (1 - a)(1 + a + \dots + a^{n-1}).$$

In particular, nilpotents are quasi-regular.

(b) If ab is quasi-regular, then so is ba,

$$(1 - ba)^{-1} = 1 + b(1 - ab)^{-1}a.$$

- (c) Idempotents (except 0) cannot be left or right quasi-regular (since 0 = e * b = e + b eb, so e + eb = e(e + b) = eb).
- (d) A left ideal of left quasi-regulars is also right quasi-regular. Proof: $(1-b)(1-a) = 1 \Rightarrow b = ba - a \in I$, so (1-c)(1-b) = 1; therefore 1 - c = (1 - c)(1 - b)(1 - a) = 1 - a, and a = c is right quasi-nilpotent.
- 8. There are various grades of nilpotents:
 - (a) 'super nilpotents', any word containing n a's is 0 (for some n), e.g. central or invariant nilpotents.
 - (b) strong nilpotents, any sequence $a_{n+1} \in \langle a_n \rangle^2$, $a_0 = a$, is eventually 0 (the last non-zero term is a super nilpotent with n = 2).
 - (c) nilpotents, $a^n = 0$, $\exists n \in \mathbb{N}$.
 - (d) quasi-nilpotents, 1 xa is invertible for all $x \in R$. A left-ideal of nilpotents is quasi-nilpotent.
- 9. Sub-modules are subtractive $Y^{\text{sub}} = Y$, and are automatically stable for negatives, -Y = (-1)Y = Y. The congruence relation induced by a submodule Y, $x_1 = x_2 \pmod{Y}$ becomes $x_1 - x_2 \in Y$, so [x] = x + Y. For example, $R[x, y] \cong R\langle x, y \rangle / [xy - yx]$.
- 10. The kernel of a morphism is now the ideal ker $T = T^{-1}0$; thus a morphism is 1-1 \Leftrightarrow its kernel is trivial. The solutions of the equation Tx = y are $T^{-1}y = x_0 + \ker T$ (particular + homogeneous solutions).

- 11. $X \to X/Y, x \mapsto x+Y$ is a module morphism, and the usual Isomorphism theorems hold (see Universal Algebras), e.g. sub-modules that contain M correspond to sub-modules of X/M, $(M+N)/N \cong M/(M \cap N)$, $R/\ker \phi \cong \phi R$.
- 12. The module morphism $R \to X$, $a \mapsto ax$, has kernel Annih(x), so

 $R/\operatorname{Annih}(x) \cong \llbracket x \rrbracket.$

Let $T_a(x) := ax$, then $\operatorname{Hom}_R(X) = Z(\{T_a : a \in R\})$ since

$$S(ax) = aS(x) \Leftrightarrow ST_a = T_aS, \ \forall a \in R$$

If the ring action is faithful, then R is embedded in Hom(X).

13. Generated subrings are now

$$\llbracket A \rrbracket = \{ \sum \pm a_1 \cdots a_k : a_i \in A \cup \{1\}, k \in \mathbb{N}, \text{finite sums} \}.$$

- 14. (Jacobson) If R acts faithfully on a module X, then it is a 'dense' subring of its double centralizer in $\operatorname{Hom}_{\mathbb{Z}}(R)$, i.e., for any x_1, \ldots, x_n and any s in the double centralizer, then there is an $r \in R$, $rx_i = sx_i$. In a sense, R is indistinguishable from S for finite sets.
- 15. The ideals of R[x] are of the type $I_0 + I_1x + \cdots$ where $I_0 \subseteq I_1 \subseteq \cdots$; then $R[x]/I[x] \cong (R/I)[x]$ (via the morphism $R[x] \to (R/I)[x], x^k \mapsto (1+I)x^k$); I[x] is prime iff I is prime.

Since there is now a correspondence between sub-modules/ideals and congruence relations, the analysis of modules and rings becomes simpler. The quotient space X/Y simplifies:

$$(x + Y) + (y + Y) = (x + y) + Y,$$
 $a(x + Y) = ax + Y.$

3 Module Structure

To analyze a module, one typically splits X into a sub-module Y and an image X/Y; one can continue this process until perhaps all such modules are *simple* (or *irreducible*) when they have no non-trivial sub-modules.

For simple modules,

1. $X = Rx \cong R/\operatorname{Annih}(x)$ for any $x \neq 0$. So each $\operatorname{Annih}(x)$ is a maximal left ideal in R. The structure of a simple module thus mirrors that of the ring R itself, or rather of the left-simple ring $R/\operatorname{Annih}(x)$; such a ring whose only left ideals are trivial is called a *division ring*.

- 2. The image of any module morphism to a simple module X, and the kernel of any morphism from X, can only be the whole module or 0. So any linear map between simple modules is either 0 or an isomorphism. In particular, the ring $\operatorname{Hom}_R(X)$ consists of 0 and invertible maps (automorphisms), thus a division ring.
- 3. The simple \mathbb{Z} -modules are the simple abelian groups, i.e., \mathbb{Z}_p .

Decomposition of a module as $X \cong Y \times Z$ is a special case of finding quotients.

1. $X = M + N \cong M \times N \Leftrightarrow M \cap N = [0]$, since the map $(x, y) \mapsto x + y$ is an onto module morphism with kernel $\{(x, -x) : x \in M\}$, so 1-1 when $M \cap N = 0$. M and N are complements in the lattice of sub-modules.

To any decomposition there correspond projections $e: x+y \mapsto x, X \to M$, and $f: X \to N$, which are idempotents in $\operatorname{Hom}_R(X)$ such that e+f=1, ef=0=fe, ker $e=N=\operatorname{im} f, X=eX \oplus fX$.

In general, $X \cong \bigoplus_i M_i$ iff $X = \sum_i M_i$, $M_i \cap \sum_{j \neq i} M_j = 0$.

2. Every module can be decomposed into sub-modules $X = Y \oplus Z$ until indecomposable sub-modules are reached. A module is indecomposable iff $\operatorname{Hom}_R(X)$ has only trivial idempotents iff R has trivial idempotents.

Indecomposable need not be simple because a sub-module need not necessarily be complemented (e.g. \mathbb{Z}_4 is indecomposable but contains the ideal $\langle 2 \rangle$).

3. X is a *free* module $\bigoplus_{e \in E} R$ iff it has a (Hamel) **basis** E, i.e., $\llbracket E \rrbracket = X$ and E independent $(e \in E \Rightarrow e \notin \llbracket E \searrow e \rrbracket$, equivalently $\sum_i a_i e_i = 0 \Rightarrow a_i = 0$). Thus every module element is a unique (finite) linear combination of e_i 's,

$$x = \sum_{i} a_i e_i, \quad \exists ! a_i \in R$$

Proof: Each $e \in E$ corresponds to $u_e \in R^E$, $t \mapsto \begin{cases} 1 & t = e \\ 0 & t \neq e \end{cases}$. So 1 =

 $\sum_{e \in E} u_e, \ x(t) = \sum_e x(e)u_e(t); \text{ if } \sum_e a_e u_e = 0 \text{ then } 0 = a_e u_e(e) = a_e.$ Conversely, the map $(a_i) \mapsto \sum_i a_i e_i$ is an isomorphism.

Every module is the quotient of some free module (with the generators of X). Every ring has the basis $\{1\}$.

The number of basis elements need not be well-defined (when it is, it is called the *rank* of X). For example, the ring of 2×2 matrices has the basis $\{I\}$ as well as the basis $E_1 := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_2 := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ (any AE_1 has a zero second column; $I = E_1^{\top}E_1 + E_2^{\top}E_2$.)

(Note that a linearly independent set need not be part of a basis, e.g. { 2 } in \mathbb{Z} .)

- 4. Matrices $M_{m \times n}(R)$ form a free module with basis $E_{rs} = [\delta_{ir} \delta_{js}]$. Polynomials R[x] form a free module with basis $1, x, x^2, \ldots$
- 5. The map $x \mapsto (x + Y_1, \dots, x + Y_n)$ is a morphism $X \to \prod_i (X/Y_i)$ with kernel $Y_1 \cap \dots \cap Y_n$.

Proposition 1

If
$$Y_i$$
 are sub-modules such that
 $X = Y_i + \bigcap_{j \neq i} Y_j$, then
 $\frac{X}{Y_1 \cap \cdots \cap Y_n} \cong \frac{X}{Y_1} \times \cdots \times \frac{X}{Y_n}$.

That is, $x = x_i \pmod{Y_i}$ can be solved modulo $\bigcap_i Y_i$.

Proof: To show surjectivity: Given x_i , by induction $\exists y = x_i \pmod{Y_i}$ for all $i = 1, \ldots, n-1$. But $x_n - y = a + b \in Y_n + \bigcap_{j \neq n} Y_j$; let $x := x_n - a = y + b$. Then $x - y = b \in \bigcap_{j < n} Y_j$, $x - x_n = -a \in Y_n$, so $x = y = x_i \pmod{Y_i}$ and $x = x_n \pmod{Y_n}$.

For rings, it is enough to have mutually co-prime ideals $I_i + I_j = R$, $i \neq j$ (since by induction $R = I_1 + \bigcap_{i=2}^{n-1} I_i$, so 1 = a + b and $I_n \subseteq I_n \cdot I_1 + \bigcap_{i=2}^n I_i$, hence $R = I_1 + I_n \subseteq I_1 + \bigcap_{i=2}^n I_i$). This gives a method for solving $x = x_i$ (mod I_i); $1 = a_{ij} + a_{ji}$ with $a_{ij} \in I_i$, so $1 = a_{i1} + a_{1i}(a_{i2} + a_{2i}) = \cdots = a_i + b_i$ ($b_i = \prod_{j \neq i} a_{ji} \in \bigcap_{j \neq i} I_j$); so $x = \sum_i b_i x_i$.

6. If Y_i are sub-modules of X_i , then using the map $(x_1, \ldots, x_n) \mapsto (x_1 + Y_1, \ldots, x_n + Y_n)$,

$$\frac{X_1 \times \dots \times X_n}{Y_1 \times \dots \times Y_n} \cong \frac{X_1}{Y_1} \times \dots \times \frac{X_n}{Y_n}$$

7. X^n is not isomorphic to X^m unless n = m (by Jordan-Hölder).

3.0.2 Composition Series

The most refined version of decomposition is a *composition* series

$$0 \leq \cdots < Y_i < Y_{i^+} < \cdots \leq X$$

with Y_{i^+}/Y_i (unique) simple modules. The (maximum) number of terms is called the *length* of X. For example, $\cdots < 2^3\mathbb{Z} < 2^2\mathbb{Z} < 2\mathbb{Z} < \mathbb{Z}$. There are two standard ways of starting this out:

• Top approach: Maximal sub-modules (if there are any), so X/M is simple. If M_1, M_2, \ldots are maximal sub-modules, then

$$\dots < M_2 \cap M_1 < M_1 < X$$

is part of a composition series since $M_1/(M_2 \cap M_1) \cong (M_1 + M_2)/M_2$ simple. Their intersection is the (Jacobson) radical

$$\operatorname{Jac}(X) := \bigcap \{ M : \operatorname{maximal sub-module} \}$$

More generally, the *radical* of a sub-module Y is the intersection of all maximal sub-modules containing Y,

$$\operatorname{rad}(Y) := \bigcap \{ Y \leqslant M : M \text{ maximal sub-module} \}.$$

If Y is a sub-module then $\operatorname{Jac}(Y) = Y \cap \operatorname{Jac}(X)$. If $T : X \to Y$ is a modulemorphism then $T\operatorname{Jac}(X) \subseteq \operatorname{Jac}(Y)$. For $Y \leq \operatorname{Jac}(X)$, $\operatorname{Jac}(X/Y) = \operatorname{Jac}(X)/Y$, so $X/\operatorname{Jac}(X)$ has no radical.

Note: if Rx + Y = X, but $x \notin Y$, there is a maximal sub-module Z with the property $x \notin Z$; so $x \notin \text{Jac}(X) \subseteq Z$.

• Bottom approach: Minimal sub-modules (if there are any) are simple. If Y_1, Y_2, \ldots are minimal sub-modules, then

$$0 < Y_1 < Y_1 \oplus Y_2 < \cdots$$

is part of a composition series since $Y_1 \cap Y_2 = 0$ as a sub-module of Y_1 ; thus $(Y_1 \oplus Y_2)/Y_1 \cong Y_2$. Their sum is the *socle*

$$\operatorname{Soc}(X) := \sum \{ Y : \text{minimal sub-module} \}$$

Such considerations can also be used for a linear map T on X, as it induces an ascending and descending chain of sub-modules:

$$0 \leqslant \ker T \leqslant \ker T^2 \leqslant \ker T^3 \leqslant \dots \leqslant \bigcup_n \ker T^n$$
$$\bigcap_n \operatorname{im} T^n \leqslant \dots \leqslant \operatorname{im} T^3 \leqslant \operatorname{im} T^2 \leqslant \operatorname{im} T \leqslant X$$

3.1 Semi-primitive Modules

are modules whose radical is zero. So, by $x \mapsto (x+M_i)$, the module is embedded in a product of simple modules,

$$X \subseteq \prod_{M_i \text{ maximal}} \frac{X}{M_i}$$

For every module, X/Jac(X) has zero Jacobson radical, i.e., is semi-primitive.

3.2 Semi-simple Modules

A module is **semi-simple** when it can be decomposed into simple sub-modules $X = \sum_{i} Y_i = \text{Soc}(X)$. (The sum, without repetitions, can be taken to be direct since $Y_i \cap \sum_{i} Y_j$ is a sub-module of Y_i .)

1. Every sub-module is complemented.

Proof: Given $X = \sum_i Y_i$ and a sub-module Y, let $M := \sum_{i \leq r} Y_i$ for some maximal r with $Y \cap M = 0$; then for any j > r, $0 \neq x \in Y \cap (M + Y_j)$ for some $x = a + b \in M + Y_j$, $0 \neq b = x - a \in (Y + M) \cap Y_j$; but Y_j is simple, so $Y_j \subseteq M + Y$ and M + Y = X. Conversely, for $x \neq 0$, let Z be that maximal submodule st $x \notin Z$; then $X = Z \oplus A$ with $x \in A$ simple.

- 2. Sub-modules, images X/Y, and products are again semi-simple (since $X \times Y = (X \times 0) \oplus (0 \times Y)$).
- 3. Semi-simple modules are semi-primitive.

Proof: Each Y_i has a complement Y'_i and $Y_i \cong X/Y'_i$, so Y'_i is maximal; hence $\operatorname{Jac}(X) \subseteq \bigcap_i Y'_i = 0$.)

 $4. \ Proposition \ 2$

(Wedderburn)

For X, Y non-isomorphic simple R-modules, $\operatorname{Hom}_R(X \times Y) = \operatorname{Hom}_R(X) \times \operatorname{Hom}_R(Y),$ $\operatorname{Hom}_R(X^n) = M_n(F),$ where $F = \operatorname{Hom}_R(X)$ (division ring) $\operatorname{Hom}_R(X^n \times \cdots \times Y^m) = M_n(F_X) \times \cdots \times M_m(F_Y)$

Proof: A linear map on $X \times Y$ induces a map $X \to X \times Y \to Y$, which is 0 unless $X \cong Y$. Similarly, a linear map $T: X^n \to Y^m$ induces a map $X \to X^n \to Y^m \to Y$, so T = 0 unless $X \cong Y$. So $\operatorname{Hom}_R(X^n \times Y^m) =$ $\operatorname{Hom}_R(X^n) \times \operatorname{Hom}_R(Y^m) \cong M_n(F_X) \times M_m(F_Y)$.

5. Every element of Hom(X) is regular (von Neumann ring).

Proof: $X = \ker T \oplus Y$, and $X = TY \oplus Z$; $T|_Y$ is an isomorphism $Y \to TY$; let S be the inverse $TY \to Y$, so that TST = T.

3.3 Finitely Generated Modules

 $X = [\![x_1, \dots, x_n]\!] = [\![x_1]\!] + \dots + [\![x_n]\!].$

- 1. Images remain finitely generated, but sub-modules need not be, e.g. every ring is finitely generated by 1, but not necessarily its left ideals (e.g. $\mathbb{Z} \times \mathbb{Q}$ with $1 := (1,0), (0,1)^2 := (0,0)$).
- 2. If both X/Y and Y are finitely generated, then so is X.
- 3. If $X = \sum_{i} Y_i$ then a finite number of Y_i suffice to generate X (since $x_i \in \sum_{i=1}^{n} Y_i$); thus finitely generated semi-simple modules have finite length.
- 4. (Nakayama) If X is finitely generated, and J := Jac(R), then $J \cdot X < X$ (except for X = 0) and $J \cdot X$ is superfluous.

Proof: Suppose $J \cdot X = X = [x_1, \ldots, x_n]$, a minimal generating set. Then $x_n = \sum_{i=1}^n a_i x_i$ with $a_i \in J$, so $x_n = \sum_{i=1}^{n-1} (1-a_n)^{-1} a_i x_i$ (since 1-a is invertible, see below), a contradiction. If $J \cdot X + Y = X$ then $(1-J) \cdot X = Y$, so X = Y.

3.3.1 Noetherian Modules

are modules in which every non-empty subset of sub-modules has a maximal element; equivalently, every ascending chain of sub-modules is finite.

Noetherian modules are finitely generated since the chain

$$0 \leqslant \llbracket x_1 \rrbracket \leqslant \llbracket x_1, x_2 \rrbracket \leqslant \dots \leqslant X$$

with $x_{n+1} \notin [\![x_1, \ldots, x_n]\!]$ stops at some *n*. Every sum of sub-modules equals a finite sum, e.g. Soc(X) is a finite sum of minimal sub-modules.

Sub-modules, quotients, and finite products are obviously Noetherian, and each proper sub-module is contained in a maximal sub-module. If X/Y and Y are Noetherian, then so is X.

Artinian modules have the dual property: every non-empty subset of submodules has a minimal element and every descending chain of modules is finite. Thus every sub-module contains a minimal (simple) sub-module. Every intersection of sub-modules equals some finite intersection; e.g. Jac(X) is the finite intersection of maximal sub-modules.

There are examples of Artinian modules that are not Noetherian and vice versa.

3.3.2 Modules of finite length

Modules of finite length have a finite composition series, i.e., are both Artinian and Noetherian. $\ell(X) = \ell(X/Y) + \ell(Y)$.

1. X is the sum of a finite number of indecomposable sub-modules (Krull-Schmidt: unique).

2. Important examples are the finite products of simple modules (finite-length semi-simple):

 $X \cong Y_1 \times \cdots \times Y_n$ (Y_i simple) $\Leftrightarrow X$ is Noetherian semi-simple $\Leftrightarrow X$ is Artinian semi-primitive

Proof: That $Y_1 \times Y_2$ is semi-simple of finite length is trivial. If $X = \bigoplus_i Y_i$ is Noetherian semi-simple then

 $0 \leq Y_1 \leq Y_1 \oplus Y_2 \leq \cdots \leq \operatorname{Soc}(X) = X$

shows X is a finite sum. If X is Artinian semi-primitive then

 $X \ge M_1 \ge M_1 \cap M_2 \ge \cdots \ge \operatorname{Jac}(X) = 0$

and so X is embedded in a finite product of simple modules, hence semi-simple.

3. (Fitting) Every linear map T on X of finite length induces a decomposition $X = \ker T^n \oplus \operatorname{im} T^n$ for some n.

Proof: The ascending and descending chains of T stop, so $\operatorname{im} T^{n+1} = \operatorname{im} T^n$, $\operatorname{ker} T^{n+1} = \operatorname{ker} T^n$. For every $x \in X$, $T^n x = T^{2n} y$, so $x - T^n y \in \operatorname{ker} T^n$, and $X = \operatorname{im} T^n + \operatorname{ker} T^n$. If $x \in \operatorname{im} T^n \cap \operatorname{ker} T^n$, i.e., $T^n x = 0$, $x = T^n y$, then $T^{2n} y = 0$, so $y \in \operatorname{ker} T^n = \operatorname{ker} T^n$, and $x = T^n y = 0$.

Thus if X is indecomposable, then T is either invertible or nilpotent; hence $\operatorname{Hom}_R(X)$ is a local ring since it cannot have idempotents.

4 Ring Structure

1. A ring is decomposable when it contains an idempotent $e \in R$. Then Annih(e) = R(1-e), so

$$R = Re \oplus R(1-e) \cong Re \times R(1-e),$$

$$R = eRe \oplus eR(1-e) \oplus (1-e)Re \oplus R(1-e) \cap (1-e)R$$

$$x = exe + ex(1-e) + (1-e)xe + (1-e)x(1-e).$$

If $R = I \oplus J$ (ideals) then I = Re for some central idempotent (since 1 = e + f so $0 = ef = e - e^2$; for every $x \in I$, x = xe + xf = ex + fx, uniquely, so xe = ex).

Then any *R*-module splits as $X = R \cdot X = (Re) \cdot X + (Rf) \cdot X$.

2. The central idempotents $(e^2 = e, ae = ea)$ form a Boolean algebra with $e \wedge f := ef$ and $e \vee f := e + f + ef$. If an idempotent commutes with all other idempotents, then it is central.

For example, in a reduced ring (no nilpotents except 0), all idempotents are central. (Proof: e(x - xe)e(x - xe) = 0 and (x - ex)e(x - ex)e = 0, so e(x - xe) = 0, i.e., ex = exe = xe).

3. A **nilpotent** ideal is one for which $I^n = 0$, e.g. $6\mathbb{Z}$ in \mathbb{Z}_{12} . Its elements are super-nilpotent. For a nilpotent ideal, $I \cdot X \subset X$ (else $X = I^n X = 0$). If I is a nilpotent left ideal, then $I \cdot R$ is nilpotent.

The sum of nilpotent ideals I + J is again nilpotent $((I + J)^{m+n} = 0)$. The sum of all nilpotent ideals (not necessarily itself nilpotent) is denoted

$$Nilp(R) := \sum \{ I : nilpotent \} = \{ a \in R : supernilpotent \}.$$

Proof: $a_1(x_1+x_2)a_2(x_1+x_2)\cdots = b_1x_1b_2x_1\cdots \in I_1^k = 0$ if enough factors are taken.

(Note: The notation I^n is ambiguous: in a module, it usually means $I \times \cdots \times I$, but in a ring it means $I \cdots I$.)

4. $I \cdot J \subseteq I \cap J$ but the two may be distinct. S is a **semi-prime** ideal iff

$$I \cdot J \subseteq S \implies I \cap J \subseteq S,$$

$$\exists n \in \mathbb{N}, \ I^n \subseteq S \implies I \subseteq S,$$

$$xRx \subseteq S \implies x \in S.$$

Proof: $I \cdot I \subseteq S \Rightarrow I = I \cap I \subseteq S$, so $I^{2n} \subseteq S \Rightarrow I^n \subseteq S \Rightarrow I \subseteq S$ by induction. $xRx \subseteq S \Rightarrow \langle x \rangle^2 \subseteq S$. If $I \cdot J \subseteq S$ and $x \in I \cap J$, then $xRx \subseteq I \cdot J \subseteq S$, so $x \in S$.

Every nilpotent ideal is contained in every semi-prime one: $I^n = 0 \subseteq S \Rightarrow I \subseteq S$; and $I \cdot J$ is semi-prime only when $I \cdot J = I \cap J$.

5. An **irreducible** ideal is lattice-irreducible, i.e., for any ideals I and J,

$$P = I \cap J \implies P = I \text{ or } P = J,$$

e.g. $4\mathbb{Z}$ in \mathbb{Z} . The lattice-prime ideals are those that satisfy

$$I \cap J \subseteq P \Rightarrow I \subseteq P \text{ or } J \subseteq P$$

hence irreducible. But for rings, it is more relevant to define the **prime** ideals P by the stronger condition

$$I \cdot J \subseteq P \implies I \subseteq P \text{ or } J \subseteq P,$$

equivalently, $xRy \subseteq P \implies x \in P \text{ or } y \in P,$

e.g. 2Z. Morphisms $\phi : R \to S$ pull prime ideals in S to prime ideals in R. Since $I \cdot J \subseteq I \cap J$, the intersection of two ideals cannot be prime, unless $I \subseteq J$ or vice-versa.

6. The intersection of prime ideals is a semi-prime ideal (and conversely).

Proof: If $I \cdot J \subseteq \bigcap_i P_i \subseteq P$ then $I \subseteq P$ or $J \subseteq P$, so $I \cap J \subseteq P$ for any P. Conversely, R/S has no non-trivial nilpotent ideals, so for every $a \notin S$, let $a_1 := a, a_{n+1} := a_n r_n a_n \notin S$, let P be maximal wrt $a_n \notin P$, so P is prime with $a \notin P$. 7. The set of prime ideals is called the *spectrum* of the ring; the spectrum of an ideal is

 $\operatorname{Spec}(I) := \{ P \ge I : \operatorname{prime} \}$

- (a) $I \leq J \Rightarrow \operatorname{Spec}(I) \supseteq \operatorname{Spec}(J)$,
- (b) $\operatorname{Spec}(I \cdot J) = \operatorname{Spec}(I) \cup \operatorname{Spec}(J),$
- (c) $\operatorname{Spec}(I+J) = \operatorname{Spec}(I) \cap \operatorname{Spec}(J)$

Two ideals are *co-prime* when I + J = R, i.e., a + b = 1 for some $a \in I$, $b \in J$. Then $I \cap J = I \cdot J + J \cdot I$.

8. The prime radical of R is the smallest semi-prime ideal

$$\operatorname{Prime}(R) := \bigcap \{ P : \operatorname{prime} \}$$

More generally, the smallest semi-prime ideal containing an ideal I is its prime radical $\operatorname{prad}(I) := \bigcap \{ P \ge I : \text{ prime } \} = \bigcap \operatorname{Spec}(I).$

9. Prime(R) is the set of strong nilpotents. Thus Prime(R/Prime(R)) = 0.

Proof: If x is not a strong nilpotent, choose a sequence a_n such that $a_0 = x \neq 0, 0 \neq a_{n+1} \in \langle a_n \rangle^2$; let P be an ideal which is maximal wrt $\forall n, a_n \notin P$. Then $I, J \not\subseteq P$ implies there are $n \geq m$, say, with $a_n \in I+P$, $a_m \in J+P$. Thus $a_{n+1} \in (I+P)(J+P) = IJ+P$, so $IJ \not\subseteq P$. Thus P is prime and $x \notin Prime(R)$. Conversely, the last term of the sequence a_n of a strong nilpotent a is of the type $aRa = 0 \subseteq Prime$, so $a \in Prime$. Since R/Prime(R) has no super nilpotents, its prime radical is 0.

10. Recall radical sets $r(A) := \{x \in R : x^n \in A, \exists n \in \mathbb{N}\}$ (see Groups). Radical ideals are clearly semiprime. $x \in r(I) \Leftrightarrow (x+I)$ is nilpotent in R/I. The union and intersection of radical ideals is radical,

$$r(I \cup J) = r(I) \cup r(J), \quad r(I \cdot J) = r(I \cap J) = r(I) \cap r(J)$$

- 11. $\operatorname{Prime}(R \times S) = \operatorname{Prime}(R) \times \operatorname{Prime}(S)$; $\operatorname{Prime}(M_n(R)) = M_n(\operatorname{Prime}(R))$ (since an ideal of $M_n(R)$ is prime when it is of the type $M_n(P)$, P prime in R).
- 12. A *nil* ideal is one that consists of nilpotents. The sum of nil ideals is again nil (since $(a + b)^{mn} = (a^m + c)^n = c^n = 0$), so the largest nil ideal exists and is called the *nilradical* Nil(R).

The nilradical of R/Nil(R) is 0 (proof: Let I/Nil be a nil ideal in R/Nil; then for every $a \in I$, $a^n \in (I + \text{Nil})^n = \text{Nil}$, so $a^{nm} = 0$, and $I \subseteq \text{Nil}$).

(Köthe's conjecture: $Nil(M_n(R)) = M_n(Nil(R))$, or all nil left ideals are in Nil.)

13. The core of a maximal left ideal is called a *primitive* ideal; equivalently it is the annihilator of a simple module X.

Proof: M is a maximal left ideal of $R \Leftrightarrow X \cong R/M$ is a simple module, $\Leftrightarrow \operatorname{Annih}(X) = [M : R].$

14. Maximal \Rightarrow Primitive \Rightarrow Prime.

Proof: A maximal ideal \tilde{M} is contained in a maximal left-ideal M, so $[M:R] = \tilde{M}$. If $I \not\subseteq [M:R]$, then $I \not\subseteq M$, so I + M = R; thus if $I, J \not\subseteq [M:R]$, then IJ + M = (I + M)(J + M) = R, so $IJ \not\subseteq M$.

15. A left ideal I is in all the maximal left ideals \Leftrightarrow it is superfluous \Leftrightarrow it consists of quasi-nilpotents.

The Jacobson radical of a ring is

$$Jac(R) = rad(0) = \bigcap \{ M \leq X : maximal/primitive left ideal \}$$
$$= \sum \{ I \leq X : superfluous \} \text{ (see Ordered Sets)}$$
$$= \{ a \in R : quasi-nilpotent \}$$

Proof: There is a maximal left ideal M such that $I \leq M < R$, so $I + J \leq I + M = M < R$. $a \in I \Rightarrow xa \in I \Rightarrow Rxa$ is superfluous, but R = Rxa + R(1 - xa), so R = R(1 - xa) and a is quasi-nilpotent. $I + M = R \Rightarrow 1 = a + b \Rightarrow b = 1 - a$ is invertible, so M = R, a contradiction; thus I + M = M.

- (a) $\operatorname{Jac}(R)$ is an ideal (since $a \in J \Leftrightarrow Ra \subseteq J \Leftrightarrow a \in [J:R]$ an ideal).
- (b) $\operatorname{Jac}(R)$ is the largest left ideal such that $1 + J \subseteq \mathcal{G}(R)$ (the group of invertibles).
- (c) $\operatorname{Jac}(R)$ contains no idempotents, except for 0 (1 e is invertible).
- (d) $\operatorname{Jac}(R)X \subseteq \operatorname{Jac}(X)$ (using $T: a \mapsto ax$); in particular $\operatorname{Jac}(R)$ annihilates every (semi-)simple *R*-module.
- (e) $\operatorname{Jac}(R \times S) = \operatorname{Jac}(R) \times \operatorname{Jac}(S)$ (since (1,1) (x,y)(a,b) is invertible for all x, y iff $a \in \operatorname{Jac}(R), b \in \operatorname{Jac}(S)$).
- (f) $\operatorname{Jac}(M_n(R)) = M_n(\operatorname{Jac}(R))$ (since $TJ \subseteq J(TR)$).

The dual notions are, if they exist, *minimal* ideals, their upperbounds the *essential* ideals, and their sum the *socle*.

16. Nilp \subseteq Prime \subseteq Nil \subseteq Jac \subseteq Br

Proof: For any nilpotent ideal, $I^n = 0 \subseteq P(\text{prime}) \Rightarrow I \subseteq P$. Elements of Prime are nilpotent. Nil ideals are superfluous since N + I = R implies $1^n = (a + b)^n = a^n + c = c \in I$. If $a \in \text{Nil}$, then for any x, xa is nilpotent, hence a is quasi-nilpotent. Br(R) is defined as the intersection of all maximal ideals, so includes Jac(R).

Nil is the intersection of those prime ideals that are not contained in a nil ideal.

17. The sum of those minimal left ideals that are isomorphic to I form an ideal B_I . For I, J non-isomorphic minimal left-ideals, $B_I B_J = 0$.

Proof: For $J \cong I$, and any $a \in R$, Ja is a left ideal and there is a module morphism $J \to Ja$, so Ja = 0 or $Ja \cong J \cong I$, so $Ja \subseteq B_I$.

18. A minimal left ideal is either nilpotent, $I^2 = 0$, or generated by an idempotent I = Re; in either case, it consists entirely of zero divisors.

Proof: If $I^2 \neq 0$, then there is an $a \in I$ such that $I = Ia \neq 0$; so there is an $e \in I$ such that ea = a; also Annih $(a) \cap I$ is a left ideal, so must be 0; but $e^2 - e$ belongs to this intersection, so $e^2 = e$; $Re \subseteq I$, so Re = I.

4.1 Division rings

are rings in which every non-zero is invertible; equivalently left-simple rings F, i.e., the only left ideals are 0 and F (for any $a \neq 0$, Fa = F, so a has a left-inverse b, and b has a left-inverse c, so $a = c = b^{-1}$). Note: left-simple is stronger than simple. The composition series is just 0 < F.

The smallest sub-ring is \mathbb{Z} or \mathbb{Z}_p , called the *characteristic* of F.

- 1. The centralizers Z(A) of a division ring are themselves division rings (since $xy = yx \Rightarrow yx^{-1} = x^{-1}y$); in particular the center Z(F) (a field).
- 2. A division ring is generated by its center and its commutators.

Proof: Any $a \notin Z(F)$ must have a b such that $[a, b] \neq 0$; hence a[a, b] = [a, ab], so $a = [a, ab][a, b]^{-1}$.

3. If $2 \neq 0$, then any sub-division ring E which is closed under commutators of F must be a field (similarly if it is closed under conjugates $x^{-1}Ex$).

Proof: For $x \in E \leq F$, $y \notin E$, $2y[y,x] = [y^2,x] + [y,[y,x]] \in E$, so [y,x] = 0. For $z \in E$, $xz = xy^{-1}yz = y^{-1}xyz = y^{-1}yzx = zx$.

4. Finite domains are fields (Wedderburn).

'Proof': For $a \neq 0$, $x \mapsto ax$ is 1-1, hence onto, so both ax = 1 has a solution; similarly for $x \mapsto xa$. So R is an algebra over its center F, which is a finite field of size p^n , hence R has size p^{nm} . As groups, the conjugacy class equation is $p^{nm} = p^n + \sum_i [R:C_i]$; a counting argument then shows m = 1.

4.1.1 Vector Spaces

are modules over a division ring. For example, division rings themselves are vector spaces over their center.

1. $ax = 0 \Rightarrow a = 0$ or x = 0.

2. Any vector space is free, $\bigoplus_E F$; i.e., there is always a basis.

Proof: Given a (well-ordered) generating set W and a linearly independent set U, if $w \in W$, $w \notin \llbracket U \rrbracket$, then $U \cup \{w\}$ is linearly independent. A chain of independent set U_i can be formed by adding elements of W. Moreover, any linear combination in $\bigcup_i U_i$ is a finite sum so must belong to some U_j , and cannot be 0. By Zorn's lemma there is a maximal linearly independent set E which generates X (and includes U).

3. All bases have the same number of elements, called the *dimension* $\dim X$.

Proof: If $w \in W$, $w \in \llbracket U \rrbracket$, then there is a $u \in U$, $\llbracket U \setminus u \rrbracket + \llbracket w \rrbracket = \llbracket U \rrbracket$; so a finite generating set cannot have less elements than an independent set. For an infinite W, each $w = \sum_i a_{ij} u_j$ are finite sums, so the total number of u_j involved in such sums does not exceed |W|; any missed u would be a linear combination of some w's, hence some u_i 's, a contradiction.

4. Subspaces are complemented: $X = V \oplus W$, thus have a smaller dimension than X.

Proof: Start with a basis e_i for V, then extend to a basis w_k for X. The basis vectors not in V are a basis f_j for X/V (since $x = \sum_k a_k w_k = \sum_j a_j f_j \pmod{V}$, $0 = \sum_j a_j f_j \pmod{V} \Rightarrow \sum_j a_j f_j \in V \Rightarrow a_j = 0$). So dim $X = \dim(X/Y) + \dim Y$. For example, for any linear map T, dim $X = \dim \ker T + \dim \operatorname{im} T$.

 $\operatorname{rank}(S+T) \leq \operatorname{rank}(S) + \operatorname{rank}(T)$ $\operatorname{rank}(ST) \leq \operatorname{rank}(S) \wedge \operatorname{rank}(T)$ $\operatorname{null}(ST) \leq \operatorname{null}(S) + \operatorname{null}(T)$

- 5. Products: $\dim(X \times Y) = \dim X + \dim Y$, since the vectors $(e_i, 0)$ with $(0, e'_i)$ form a basis for $X \times Y$.
- 6. The ring $\operatorname{Hom}_F(X)$ is semi-simple and contains the unique minimal ideal K of finite-rank linear maps (i.e., $\operatorname{im} T$ is finitely generated), which is prime and idempotent; the other ideals are contained in each other, each being the linear maps whose rank has a certain cardinality. $\operatorname{Hom}_F(X)$ acts on the unique simple faithful module Kx = X.

 $B := \operatorname{Hom}_F(X)$ acts faithfully on the simple module eB (since there is a projection $e: X \to Fx \subseteq X$, and the map $J: B \to X, T \mapsto Tx$ is linear, onto, $(\ker J)e = 0$, $\ker J = B(1-e)$, so $X \cong Be$ as modules over B).

- 7. dim Hom(X, Y) = dim X dim Y (using the basis E_{rs}).
- 8. Hom(X, Y) is a simple ring (suppose *I* is an ideal containing $A \neq 0$, then $E_{mn} = a_{ji}^{-1} E_{mi} A E_{jn} \in I$, so I = Hom(X, Y)).

 $M_n(F) = \operatorname{Hom}_F(F^n)$ is a simple ring since its ideals are of the type $M_n(I)$, where I is an ideal of F, so I = 0, F. $M_{m \times n}(F) \cong F^{nm} = Y_1 \oplus \cdots \oplus Y_n$ as modules, where $Y_i = M_n(F)E_{ii}$ is the simple sub-module of matrices having zero columns except for the *i*th column.

- 9. Center $Z(M_n(F)) = Z(F)$ (by considering $E_{rs}T = TE_{rs}$, to get $a_{rr} = a_{ss}$).
- 10. $\operatorname{Hom}_{F_1}(X_1) \cong \operatorname{Hom}_{F_2}(X_2) \Leftrightarrow F_1 \cong F_2$ and X_1, X_2 have the same dimension.

Proof: $R := \operatorname{Hom}_F(X)$ acts faithfully simply on X; so given $\tau : R_1 \to R_2$ isomorphism, then R_1 also acts on X_2 faithfully simply, so there is an isomorphism $T : X_1 \to X_2$ of R_1 -modules. For every $S \in R$, TSx = STxgives $TST^{-1} = \tau(S)$, a morphism on X_2 ; in particular the maps $S_a : x \mapsto$ ax, hence $TS_aT^{-1} = S_{f(a)}$; in fact $f : F_1 \to F_2$ is a 1-1 ring morphism; conversely, $T^{-1}S_aT = S_b$, so f is invertible. So $T(\lambda v) = S_{f(\lambda)}Tv =$ $f(\lambda)Tv$. Thus every k linearly independent vectors in X_1 correspond to klinearly independent vectors in X_2 , so must have the same dimension.

Thus F can be thought of as linear maps of simple modules $(F \cong \text{Hom}_F(F))$.

11. $R \leq \operatorname{Hom}_F(X)$ is 1-transitive $\Rightarrow R$ is primitive.

4.1.2 **Projective Spaces**

are the spaces PX of subspaces $\llbracket x \rrbracket$ of a vector space X.

PY is a projective subspace, when Y is a subspace of X; the dimension of PY is defined as one less than the dimension of Y. Projective subspaces of dimension 0 are called *points*, of dimension 1 are called *lines*, 2 *planes*, etc.

 $\llbracket x \rrbracket, \ldots, \llbracket y \rrbracket$ are said to be linearly independent when x, \ldots, y are linearly independent in X.

There is exactly one *n*-plane passing through n + 2 generic points (i.e., any n + 1 points being linearly independent), in particular there is exactly one line passing through any two independent points in PX (namely $[\![x, y]\!]$); there is exactly one point meeting two lines in a plane.

Linear maps induce maps on PX by $T[\![x]\!] = [\![Tx]\!]$; eg $\lambda[\![x]\!] = [\![x]\!]$; the set of such maps $PGL(X) = GL(X)/[\![\lambda]\!]$ (ie S = T in $PGL \Leftrightarrow S = \lambda T$ in GL);

The cross-ratio of 4 collinear points is $(x, y; u, v) := \alpha/\beta$ where $x \wedge u = \alpha x \wedge v$, $y \wedge u = \beta y \wedge v$; it is invariant under PGL(X).

A finite geometry is a set of points and lines such that every line has n+1 points and every point has n+1 lines; there must be $n^2 + n + 1$ points (and lines); for example, projective planes of finite division rings \mathbb{F}_n . e.g. n = 1 is the triangle, n = 2 is the Fano plane.

 A finite geometry has the Desargues property (Aa, Bb, Cc are concurrent ⇔ AB ∩ ab, BC ∩ bc, CA ∩ ca are collinear) ⇔ it is embedded in some projective plane PF³.
 • A finite geometry has the Pappus property (two lines ABC, abc give another line $Ab \cap aB$, $Bc \cap bC$, $Ca \cap cA$) \Leftrightarrow it is embedded in a projective plane PF^3 with F a field.

4.2 Local Rings

A local ring is one such that the non-invertibles form an ideal J.

- 1. Equivalently,
 - (a) The sum of any two non-invertibles is non-invertible
 - (b) Either x or 1 x is invertible
 - (c) There is a single maximal left ideal.

Proof: (b) \Rightarrow (c) Let M be a maximal left ideal and $x \notin M$, then M+Rx = R so 1 = a + bx gives bx = 1 - a is invertible, making cx = 1 for some c; both x and c are invertible else (c - 1)x = 1 - x gives a contradiction; so every proper left ideal is contained in M. (c) \Rightarrow (lr) If M is the unique maximal left ideal, then it is the radical (ideal) and R/M is a division ring, hence for each $x \in R \setminus M$, there is a y, $1 - xy \in M$, quasinilpotent, which implies $xy \ (= yx)$, and thus x, are invertible.

- 2. Every left (or right) invertible is invertible (since $1 \in Ru \Rightarrow u \notin J$).
- 3. The radical is J, which is the maximal ideal.
- 4. R/I is again a local ring. R/J has no left ideals (a division ring).
- 5. Local rings have only trivial idempotents, so are indecomposable and have no proper co-prime ideals (since e or 1 e must be 1).
- 6. In any ring, if prad(I) is maximal, so is the only prime ideal that contains I, then R/I is a local ring.

Examples: F[[x]] $(J = xF[[x]], \text{ for } F \text{ a division ring}); \mathbb{Z}_{p^n}$ $(J = p\mathbb{Z}_{p^n}); \mathbb{F}_p[G]$ with G a p-group $(J = \{ (a_n) : \sum_n a_n = 0 \}); \mathbb{Q}_{(p)}$ fractions that omit a prime p from the denominator $(J = p\mathbb{Z}_{(p)}).$

4.3 Semi-Prime Rings

are rings in which $\operatorname{Prime}(R) = \bigcap_i P_i = \{0\}$ (P_i prime ideals), i.e., $I^n = 0 \Rightarrow I = 0$, or $I \cdot J = 0 \Rightarrow I \cap J = 0$.

Thus R is embedded in $\prod_i R_i$ where $R_i = R/P_i$ are **prime rings**, i.e., have the property $I \cdot J = 0 \Rightarrow I = 0$ OR J = 0.

The matrix ring of a semi-prime (or prime) ring is again semi-prime (or prime). So is R[x].

For any ring, R/Prime(R) is a semi-prime ring. Reduced rings are rings whose only nilpotent is 0; so $Prime(R) \subseteq Nil(R) = 0$.

4.4 Semi-primitive Rings

are rings in which $\operatorname{Jac}(R) = \bigcap_i P_i = \{0\}$ (P_i primitive ideals), i.e., there are no quasi-nilpotents (hence semi-prime).

Examples: \mathbb{Z} ; any finite product of simple rings; for any ring, $R/\operatorname{Jac}(R)$ is a semi-primitive ring; any ring where the sum of invertibles is again invertible or 0 (since 1 + a invertible implies a = 0), such as $F\langle x, y \rangle$.

R is embedded in $\prod_i R_i$ where $R_i = R/P_i$ are **primitive rings**, i.e., $\{0\}$ is a primitive ideal, or equivalently [M : R] = 0 for some maximal left-ideal *M*. Thus a primitive ring acts faithfully on the simple module X := R/M (since Annih(X) = [M : R] = 0). (Conversely, if X is a simple module, R/Annih(X) is a primitive ring.)

Of course, primitive rings are prime rings and semi-primitive $(\operatorname{Jac}(R) = \bigcap_{M \max}[M:R] = 0)$. A prime ring R acting faithfully on a module of finite length must be primitive; let $I_n := \operatorname{Annih}(M_i/M_{i-1})$. $M_n(R)$ is again primitive $([M_n(I):M_n(R)] = M_n[I:R] = 0)$.

The action of a semi-primitive ring gives a semi-primitive module. R acts faithfully on a semi-simple module (e.g. on $\sum_i X_i$ where X_i are non-isomorphic simple modules, so $\operatorname{Annih}(X) = \bigcap_i \operatorname{Annih}(X_i) = \operatorname{Jac}(R) = 0$).

4.4.1 von Neumann ring

is a ring in which every element is regular a = aba, $\exists b$.

Equivalently, every $\langle x_1, \ldots, x_n \rangle = Re$ for some idempotent e. Proof: If Ra = Re, then a = be and e = ca; so aca = ae = be = a. Conversely, Given x = xax, then e := ax is an idempotent and x = xe, so $Re \leq Rx \leq Re$. Given $Re_1 + Re_2$, then $Re_2(1 - e_1) = Rf$; clearly, $R(e_1 + f) \subseteq Re_1 + Re_2(1 - e_1) \subseteq Re_1 + Re_2$;

$$a_1e_1 + a_2e_2 = a_1e_1 + a_2e_2e_1 + a_2e_2(1 - e_1)$$

= $r_1e_1 + rf$
= $r_1(e_1 + f) + (r - r_1)f(e_1 + f)$

shows $Re_1 + Re_2 = R(e_1 + f)$.

They are semi-primitive (since $a \in J \Rightarrow Ra = Re$, so $e \in J$, 1 - e is invertible, and thus $e = (1 - e)^{-1}0 = 0$).

Examples: division rings; $M_n(F)$ (use Gaussian elimination to write any matrix A = UJV, then $A(UV)^{-1}A = A$); Boolean lattices.

 $\operatorname{Hom}_F(X)$ is von Neumann, primitive, but not simple.

4.4.2 Simple Rings

have trivial ideals.

- 1. Simple rings are primitive (since the core of any maximal left ideal must be 0).
- 2. The center Z(R) is a field (proof: if $a \in Z \setminus 0$, then the ideal Ra = R, so 1 = ba invertible; for any $c \in R$, $(ca^{-1} a^{-1}c)a = 0$, so $ca^{-1} = a^{-1}c$).

- 3. Ring-morphisms to/from a simple ring are 0 or 1-1/onto.
- 4. $M_n(R)$ is again simple.
- 5. Similarly to semi-primitive rings, a ring with a trivial Br(R) ideal is embedded in a product of simple rings.

(Note: simple rings need not be Artinian or Noetherian or semi-simple, e.g. the Weyl algebra.)

4.5 Noetherian Rings

when R is Noetherian as a (left) module.

1. (Levitzky) Nilp = Prime = Nil

Proof: The number of nilpotent ideals in the sum $N := \operatorname{Nilp}(R)$ must be finite, hence N is a nilpotent ideal. Let I be a nil ideal which is not in N; pick $a \in I \setminus N$ which makes [N : a] maximal. If [N : a] = R then $a \in N$; otherwise for any $x \in R$, if $ax \in I \setminus N$, then there is an n such that $(ax)^n \in$ N but $(ax)^{n-1} \notin N$ since ax is nilpotent; so $ax \in [N : (ax)^{n-1}] = [N : a]$; in any case, $axa \in N$, so $\langle a \rangle^2 \subseteq N$ making $\langle a \rangle$ nilpotent and $a \in N$. Thus $I \subseteq N$.

Hence $\operatorname{prad}(I)^n = I, \exists n \text{ (working in } R/I).$

- 2. R/I and I are again Noetherian, but subrings need not be.
- 3. Every finitely generated *R*-module is Noetherian.
- 4. A Noetherian ring is isomorphic to $R\langle x_1, \ldots, x_n \rangle / I$ for some finitely generated left ideal I (so has a presentation).
- 5. (Hilbert basis theorem) $R[x_1, \ldots, x_n]$ is again Noetherian (also R[[x]]).

Proof: Let I be a left ideal of R[x]; choose polynomials $p_{n+1} \in I$, each of minimal degree in $J_n := \langle p_1, \ldots, p_n \rangle$. Then the left ideal of their leading coefficients $\langle a1, a2, \ldots \rangle \subseteq R$ is finitely generated, say by the first n terms. Then $a_{n+1} = \sum_{i=1}^{n} b_i a_i$; let $q(x) := \sum_{i=1}^{n} b_i x^{r(i)} p_i(x) \in J_n$, where $r(i) = \deg(p_{n+1}) - \deg(p_i)$. Yet $q - p_{n+1} \in J_n$ has degree less than p_{n+1} . Thus $I = J_n$ is finitely generated.

- 6. $M_n(R)$ is again Noetherian.
- 7. (Jacobson's conjecture: $\bigcap_n \operatorname{Jac}^n = 0.$)
- 8. \mathbb{Z} is Noetherian semi-primitive but not Artinian. $\begin{pmatrix} \mathbb{Z} & \mathbb{Q} \\ 0 & \mathbb{Q} \end{pmatrix}$ is right, but not left, Noetherian.

4.5.1 Artinian/Finite-Length Rings

when R is Artinian as a module.

1. Every element is either invertible or a two-sided zero divisor.

Proof: $R \ge Ra \ge Ra^2 \ge \cdots \ge Ra^n = Ra^{n+1}$. So for some $b \in R$, $(1-ba)a^n = 0$; either 1 = ba or a is a right zero divisor. (Similarly for b, but b cannot be a right zero divisor, so 1 = cb, and a is invertible.) Similarly, a is either right invertible or a left zero divisor.

2. Nilp = Prime = Nil = Jac = Br, so nil ideals are nilpotent, prime ideals are maximal, and quasi-nilpotents are nilpotents.

Proof: For $J := \operatorname{Jac}(R)$, $J \ge J^2 \ge \cdots \ge J^n = J^{n+1}$. Suppose $J^n \ne 0$, then let I be minimal among those ideals with $J \cdot I = I \ne 0$. So there is an $a \in I$, $Ja \ne 0$; $J \cdot J^n a = J^n a$ implies $I = J^n a$, so a = ba with $b \in J^n \subseteq J$. Thus (1-b)a = 0, hence a = 0 since b is quasi-nilpotent. This contradiction gives $J^n = 0$. Now R/J is semi-primitive so $\operatorname{Br}(R/J) = 0$, i.e., there are no maximal ideals that contain J properly, and $\operatorname{Br}(R) = J$.

3. Every Artinian *R*-module is Noetherian (and so of finite length). In particular, Artinian rings are Noetherian.

Proof: For $J := \operatorname{Jac}(R)$, $X \ge JX \ge J^2X \ge \cdots J^nX = 0$. If $Y = J^iX$ is Artinian and $JY = J^{i+1}X$ is Noetherian, then the semi-primitive ring R/J acts on Y/JY as an Artinian semi-primitive module, so is Noetherian. Thus Y is Noetherian, and by induction, X is too.

- 4. Every finitely generated *R*-module is of finite length.
- 5. Semi-prime Artinian rings are semi-simple; and prime rings are simple (since semi-simple).
- 6. For R Artinian, $M_n(R)$ and R[G] for G finite (Connel), are again Artinian, e.g. $F[x]/\langle x^n \rangle$.

4.5.2 Semi-simple rings

when R is a sum of minimal left ideals.

R is of finite length (since $1 \in \sum_{i=1}^{n} I_i$). Every left ideal is Re for some (central) idempotent (hence von Neumann).

1. Equivalently, a semi-prime Artinian ring, or a von Neumann Noetherian ring.

Proof: If R is semi-simple then $R \cong \text{Hom}_R(R)$ is von Neumann and semiprimitive. Conversely, every left ideal I of a Noetherian ring is finitely generated, hence of the type Re where e is an idempotent (von Neumann); so I is complemented by R(1 - e). Otherwise, semi-prime Artinian rings are semi-primitive Artinian, thus semi-simple.

- 2. An *R*-module is again semi-simple ($X = \sum_{x \in X} Rx$ with $Rx \cong R/Annih(x)$ semi-simple, so X is a sum of simple modules.)
- 3. $M_n(R)$ is again semi-simple.

Proof: $M_n(R) = I_1 \oplus \cdots \oplus I_n$ where I_i consists of matrices that are zero except for *i*th column. $I_i \cong \mathbb{R}^n$ which is semi-simple.

4. Every primitive Artinian ring is of the type $M_n(F)$, where F is a division ring, thus simple.

Proof: A primitive Artinian ring is prime, hence simple, of finite length $R \cong I^n$ for some minimal left ideal I = Re; so $R \cong \operatorname{Hom}_R(I^n) = M_n(F)$ where $F = \operatorname{Hom}_R(I) = eRe$ is a division ring with e as identity.

5. Proposition 3

(Wedderburn)

A semi-simple ring is the finite product of matrix rings over division rings

$$R \cong \operatorname{Hom}_{R}(R) \cong M_{n_{1}}(F_{1}) \times \cdots \times M_{n_{k}}(F_{k})$$

Each matrix ring is different unless the ring is simple Artinian. That is, $R \cong B_1 \times \cdots \times B_r$ where $B_i = I_i^{n_i} = I_i \oplus \cdots \oplus I_i \cong M_{n_i}(F_i)$, $F_i = \operatorname{Hom}_R(I_i)$, each I_i is a vector space over F_i . All the simple left ideals of R are isomorphic to one of I_i (since $I = Ra \cong R/\operatorname{Annih}(a)$, so $R = I \oplus \operatorname{Annih}(a)$, so I appears in the sum of R).

- 6. If R has no nil ideals, then R[x] is semi-simple.
- 7. (Maschke) R[G] (G group) is semi-simple iff G is finite and |G| is invertible in R. Thus, $\mathbb{Z}[G]$ is not semi-simple, $\mathbb{C}[G] \cong M_n(\mathbb{C}) \times \cdots \times M_m(\mathbb{C})$ (irreducible representations of G, one for each conjugacy class).

4.5.3 Finite rings

The simple finite rings are $M_n(\mathbb{Z}_p)$. A finite ring R of size $n = p_1^{r_1} \cdots p_k^{r_k}$ is the product of rings of size $p_i^{r_i}$ (each $R_i \cong \{a \in R : p_i^m a = 0, \exists m\}$). So the classification of finite rings depends on finding those of size p^n .

- 1. p only one ring (field) \mathbb{Z}_p .
- 2. $p^2 \mathbb{Z}_{p^2}, \mathbb{Z}_p \times \mathbb{Z}_p, [[a:p1=0, a^2=0]], \mathbb{F}_{p^2}.$
- 3. $p^3 12$ rings for p > 2, 11 for p = 2.

(There are many more 'rings' without an identity.)

5 Commutative Rings

xy = yx

Products and subrings are obviously commutative. For example, \mathbb{Z}_n .

1. Binomial theorem:

$$(x+y)^n = x^n + nx^{n-1}y + \dots + \binom{n}{k}x^ky^{n-k} + \dots + nxy^{n-1} + y^n$$

,

For example, if the prime sub-ring is \mathbb{Z}_p (*p* prime), then $x \mapsto x^p$ is a morphism.

- 2. There is no distinction between ideals and left/right ideals; so $I \cdot J = J \cdot I$, Br(R) = Jac(R).
- 3. $\langle a \rangle = Ra; \langle a \rangle \langle b \rangle = \langle ab \rangle; \langle a \rangle = R \Leftrightarrow a \text{ is invertible } \Leftrightarrow \forall x, a | x.$
- 4. P is a prime ideal when $xy \in P \implies x \in P$ OR $y \in P$ (i.e., X/P has no zero-divisors).

p is called *prime* when $\langle p \rangle$ is prime, i.e., $p|xy \Rightarrow p|x$ OR p|y.

5. If $I \leq P_1 \cup \cdots \cup P_n$ then $I \leq P_i$ for some *i*.

Proof: Take *n* to be minimal, i.e., $\exists a_i \in I \cap P_i, a_i \notin P_j \ (j \neq i)$. Then $a_2 \cdots a_n \in I \cap P_2 \cap \cdots \cap P_n$ but not in P_1 , so $a_1 + a_2 \cdots a_n \in I$ but not in $P_1 \cup \cdots \cup P_n$; hence n = 1.

- 6. S is a semi-prime ideal when $x^n \in S \implies x \in S$, that is when S is a radical ideal.
- 7. $\langle a \rangle$ is nilpotent iff a is nilpotent.
- 8. The sum of two nilpotents is again nilpotent (by the binomial theorem), so the set of all nilpotents is an ideal, in fact Nil(R) = Prime(R) (since $a^n = 0 \in P \implies a \in P$).

More generally, r(I) is an ideal, so prad(I) = r(I).

- 9. If I_i are mutually co-prime, then I₁ ··· I_n = I₁ ∩ ··· ∩ I_n (by induction on I ∩ J = I · J + J · I = I · J). In particular, for p,q co-prime, i.e., ⟨p⟩ + ⟨q⟩ = R, pq|x ⇔ p|x AND q|x.
 For modules, IX ∩ JX = (I · J)X (since x ∈ IX ∩ JX ⇒ x = ax + bx ∈ IJX + JIX = IJX), so X/(IJX) ≅ X/IX × X/JX.
 If I + J = R and I · J = Kⁿ then I = Lⁿ (with L = I + K).
- 10. For a regular element, $a = a^2 u$ with u invertible. The regular elements are closed under multiplication; there are no regular nilpotent elements except 0.

Proof: If $a = a^2b$, take $u := 1 - ab + ab^2$, with $u^{-1} = 1 - ab + a.ac = a^2bc^2d = (ac)^2(bd)$. $a^{n-1} = a^{2(n-1)}b^{n-1} = 0$.

- 11. *a* is said to be *irreducible* when $a = xy \Rightarrow a \approx x$ OR $a \approx y$ (i.e., equality up to invertible elements); equivalently, $\langle a \rangle$ is maximal with respect to principal ideals, $\langle a \rangle \subset \langle x \rangle \Rightarrow \langle x \rangle = R$. Otherwise *a* is called *composite* when $\langle a \rangle \subset \langle b \rangle$.
- 12. $r\langle p_1^{m_1}\cdots p_n^{m_n}\rangle = \langle p_1\cdots p_n\rangle$ for p_i co-prime primes. Proof: $pq \in r\langle p^sq^t\rangle$ since $(pq)^{\max(s,t)} \in \langle p^sq^t\rangle$; conversely, if $x^m \in \langle p^sq^t\rangle \subseteq \langle p\rangle \cap \langle q\rangle$, then $x \in \langle p\rangle \cap \langle q\rangle = \langle pq\rangle$.
- 13. A primary ideal is defined as one such that

$$\begin{array}{l} ab \in Q \ \Rightarrow \ a \in Q \ \text{or} \ b \in Q \ \text{or} \ a, b \in r(Q) \\ ab \in Q \ \Rightarrow \ a \in Q \ \text{or} \ b \in r(Q) \end{array}$$

i.e., R/Q has invertibles or nilpotents only (so is a local ring).

Examples include prime ideals and $\langle p^n \rangle$ for any prime element.

- (a) Q primary $\Rightarrow r(Q)$ prime. Proof: $ab \in r(Q) \Rightarrow a^n b^n \in Q$, so if $a \notin r(Q)$ then $a^n \notin Q$, so $b^n \in r(Q)$, i.e., $b \in r(Q)$.
- (b) But various primary ideals Q may induce the same prime r(Q). If $a \notin Q$ then [Q:a] is also primary and r[Q:a] = r(Q). Proof: If $bc \in [Q:a]$ but $c \notin [Q:a]$ then $abc \in Q$, $ac \notin Q$, so $b^n \in Q \subseteq [Q:a]$. If $b \in [Q:a]$ $(ab \in Q)$ then $b \in r(Q)$, so $Q \subseteq [Q:a] \subseteq r(Q)$, and r(Q) = r[Q:a].
- (c) r(I) maximal $\Rightarrow I$ primary. Proof: If $ab \in I$ but $b \notin r(I)$ then $r(I) + \langle b \rangle = R$, so 1 = cb+d, $d^n \in I$, and $a(1-d) \in I$. Let $r := 1 + d + \dots + d^{n-1}$, so $r(1-d) = 1 - d^n$; then $a = ra(1-d) + ad^n \in I$.
- (d) Thus powers of maximal ideals are primary: $r(M^n) = r(M) = M$.
- 14. Primitive ideals are maximal (since a maximal 'left' ideal is its own core), and primitive rings are simple.
- 15. A simple commutative ring is called a field. A commutative
 - (a) semi-primitive ring is embedded in a product of fields,
 - (b) semi-simple ring is a finite product of fields,
 - (c) von Neumann ring is reduced, and localizes at any maximal ideal to a field.
- 16. R[x] is again commutative but $M_n(R)$ is only commutative for n = 1 or R = 0 since $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

5.0.4 Modules over Commutative Rings

1. In a free module X, if A is linearly independent and B spans, then $|A| \leq |B|$. Hence any two bases of X have the same cardinality, called its dimension dim X.

Proof: Let I be a maximal ideal of R, then $V := X/(I \cdot X)$ is a vector space over the field R/I; also $x_i + I \cdot X$ ($x_i \in B$) generates V and $y_i + I \cdot X$ ($y_i \in A$) remain linearly independent, hence $|A| \leq |B|$.

2. A torsion element x of a module is one such that there is a cancellative $a \in R$, ax = 0. The set of torsion elements is a sub-module X_{tor} . X/X_{tor} is torsion-free.

Proof: $ax = 0 \pmod{X_t}$ implies $ax = y \in X_t$, so bax = by = 0; but ba is cancellative, so $x = 0 \pmod{X_t}$.

- 3. A sub-module Y is primary when $ax \in Y \Rightarrow x \in Y$ OR $a^n X \subseteq Y$. Then Annih(X/Y) is a primary ideal.
- 4. The dual space $X^{\top} := \operatorname{Hom}_R(X, R)$ is an *R*-module. There are dual concepts for subsets $A \subseteq X$, $\Phi \subseteq X^{\top}$, and linear maps $T \in \operatorname{Hom}_R(X, Y)$:

$$\begin{split} A^\circ &:= \{ \, \phi \in X^{\scriptscriptstyle \top} : \phi A = 0 \, \}, \quad \text{sub-module of } X^{\scriptscriptstyle \top}, \\ \Phi^\circ &:= \{ \, x \in X : \Phi x = 0 \, \}, \quad \text{sub-module of } X, \\ T^{\scriptscriptstyle \top} : Y^{\scriptscriptstyle \top} \to X^{\scriptscriptstyle \top}, \quad \phi \mapsto \phi \circ T, \quad \text{linear map.} \end{split}$$

- (a) $\Phi \leq A^{\circ} \Leftrightarrow A \leq \Phi^{\circ}$, so the dual maps are adjoints; hence $A \subseteq B \Rightarrow B^{\circ} \subseteq A^{\circ}$; $\llbracket A \rrbracket \subseteq A^{\circ \circ}$, $\llbracket A \rrbracket^{\circ} = A^{\circ}$; $(A \cup B)^{\circ} = A^{\circ} \cap B^{\circ}$; $(A \cap B)^{\circ} \supseteq A^{\circ} + B^{\circ}$;
- (b) $(A \times B)^{\circ} = A^{\circ} \times B^{\circ}; X^{\top}/A^{\circ} \cong \llbracket A \rrbracket^{\top}, (X/Y)^{\top} \cong Y^{\circ};$
- (c) $T \mapsto T^{\top}$ is a linear map; $(ST)^{\top} = T^{\top}S^{\top}$; $(T^{-1})^{\top} = (T^{\top})^{-1}$; ker $T^{\top} = (\operatorname{Im} T)^{\circ}$;
- (d) the map $X \to X^{\top \top}, x^{\top \top}(\phi) := \phi(x)$ is linear, and then it also maps $A \to A^{\circ \circ}$, and $T \mapsto T^{\top \top}$;
- 5. Given $T: X \to X$ linear, we can consider the action of R[T] on X (a submodule); Y is a submodule of X in this action $\Leftrightarrow TY \subseteq Y$; then T can be defined on X/Y via T(x+Y) = Tx + Y.

5.0.5 Polynomials

- 1. Polynomials become functions: they can be *evaluated* at any element a using the morphism $R[x] \to R$, $p \mapsto p(a)$.
- 2. Division algorithm: Every polynomial p can be divided by a monic polynomial s to leave unique *quotient* and *remainder*

$$p = qs + r, \quad \deg r < \deg s.$$

In particular, p(x) = q(x)(x-a) + p(a), and $p(a) = 0 \Leftrightarrow p \in \langle x - a \rangle$. Proof: Let $s(x) := x^m + b_{m-1}x^{m-1} + \dots + b_0$, then

$$p(x) = a_n x^n + \dots + a_0$$

= $a_n x^{n-m} (x^m + \dots + b_0) + (c_{n-1} x^{n-1} + \dots + c_0),$
= $a_n x^{n-m} s(x) + r_{n-1}(x)$

where $r_{n-1} = q's + r$ by induction, so $p = (a_n x^{n-m} + q')s + r$.

3. Translation $\tau_a : x \mapsto x + a$ is an automorphisms on R[x]:

$$p(x+a) = p(a) + b_1(a)x + b_2(a)x^2 + \dots + b_n(a)x^n,$$

where $b_r(a) = \sum_{k=r}^n \binom{k}{r} a_k a^{k-r}$

- 4. When $(x \alpha_1) \cdots (x \alpha_n)$ is expanded out, its (n i)th coefficient is a symmetric polynomial in α_i , $(-1)^i \sum_{j_1 < \cdots < j_i} \alpha_{j_1} \cdots \alpha_{j_i}$.
- 5. A polynomial is nilpotent iff the ideal generated by its coefficients is nilpotent. A monic polynomial is invertible only when it has degree 0.
- 6. *a* is called a root or zero of $p \neq 0$ when p(a) = 0. It is said to be a multiple root of *p* when $p \in \langle (x-a)^r \rangle$, i.e., $b_i(a) = 0$ for $i = 0, \ldots, r-1$.

Polynomials may have any number of roots, e.g. in $\mathbb{Z}_6[x]$, $x^2 + 1$ has no roots, x^n has one root, $x^2 + x = x(x+1) = (x-2)(x-3)$ has 4, $x^3 - x$ has 6 roots; in $\mathbb{H}[x]$, $x^2 + 1$ has an infinite number of roots ai + bj + ck with $a^2 + b^2 + c^2 = 1$).

- 7. (a) If p is of degree ≥ 2 and has a root then it is reducible.
 - (b) If it is monic of degree ≤ 3 and has no roots, then it is irreducible (otherwise a factor must have degree 1);
 - (c) Monic polynomials of degree ≥ 4 may be reducible yet have no roots, e.g. $x^4 + 4 = (x^2 + 2x + 2)(x^2 - 2x + 2), x^4 + x^2 + 1 = (x^2 + x + 1)(x^2 - x + 1)$ in $\mathbb{Z}[x]$.
- 8. If a satisfies a monic polynomial with coefficients b_i , then a is said to be *integral* over the sub-ring $[\![b_0, \ldots, b_n]\!]$. For example, an *algebraic integer* is an element that satisfies some $p \in \mathbb{Z}[x]$.

5.0.6 Ring of Fractions

Given any subset $S \subseteq R$ that is cancellative (contains no zero divisors), the ring is embedded in a larger ring in which elements of S become invertible: extend S to contain all its products and 1 (it will not contain 0) and take the *localization* ring $S^{-1}R$ to be $R \times S$, with element pairs (x, a) denoted by x/a or $\frac{x}{a}$, in which

$$\frac{x}{a} = \frac{y}{b} \iff bx = ay$$

$$\frac{x}{a} + \frac{y}{b} := \frac{xb + ya}{ab}, \qquad \frac{x}{a}\frac{y}{b} := \frac{xy}{ab}$$

so $(a/1)^{-1} = 1/a$, and the map $x \mapsto x/1$ is an embedding of R. The same construction applies to localization of a module $S^{-1}X$, with X replacing R and $S \subseteq R$ not annihilating any element of X ($\forall a \in S, ax = 0 \Rightarrow x = 0$). Typical localizations are:

- The ring of fractions $\operatorname{Frac}(R)$ is the localization of the (multiplicative) set of all cancellative elements (thus all non zero divisors become invertible). For example, the ring of fractions of \mathbb{Z} is \mathbb{Q} ; that of $\mathbb{Z}[\sqrt{d}]$ is $\mathbb{Q}[\sqrt{d}]$, of $\mathbb{F}[x]$ consists of the 'rational' functions p(x)/q(x).
- The localization R_P at a prime ideal P, with $S := R \setminus P$ (multiplicative); $S^{-1}R$ is a local ring with radical $S^{-1}P$. The sub-ideals of P remain intact in $S^{-1}R$ but all sup-ideals vanish. For example, $S_p^{-1}\mathbb{Z}$ with $S_p = || \setminus \langle p \rangle$ gives $\mathbb{Q}_{(p)}$.
- The localization at a single cancellative element x is $R[x^{-1}]$ (using $S := \{1, x, x^2, \dots\}$); e.g. \mathbb{Z} at $n \neq 0$ gives $\mathbb{Z}[1/n]$.
- 1. $S^{-1}(X+Y) = S^{-1}X + S^{-1}Y, S^{-1}(X \cap Y) = S^{-1}X \cap S^{-1}Y, S^{-1}(X/Y) \cong S^{-1}X/S^{-1}Y.$
- 2. $\operatorname{Spec}(S^{-1}R) \subseteq \operatorname{Spec}(R)$.
- 3. $\bigcap_{M \text{ maximal}} R_M = R.$
- 4. The ring of fractions of a local ring with radical P can be given a natural uniform topology from the base P^m , making it a topological ring, called the *P*-adic ring; when the ring is Noetherian, the topology is T_2 .
- 5. Elements of a commutative ring R can be thought of as continuous functions $C(\operatorname{Spec}(R))$, with $f_a(P) := a + P \in \operatorname{Frac}(R/P)$.

5.1 Noetherian commutative rings

1. Irreducible ideals are primary.

Proof: Let I be irreducible and $ab \in I$; then

$$[I:b] \leqslant [I:b^2] \leqslant \dots \leqslant [I:b^n] = [I:b^{n+1}]$$

so $I = (\langle a \rangle + I) \cap (\langle b^n \rangle + I)$ since $c = ra = sb^n \pmod{I}$ implies $cb = 0 = sb^{n+1} = sb^n = c \pmod{I}$, so $c \in I$; thus either $I = \langle a \rangle + I$ or $I = \langle b^n \rangle + I$.

- 2. Every primary ideal Q satisfies $r(Q^n) \subseteq Q$ for some n (since nil ideals are nilpotent).
- 3. $S^{-1}R$ is Noetherian/Artinian when R is.

4. For any *R*-module X, the maximal elements in the set of annihilators $Annih(x), x \neq 0$, are prime ideals $Annih(x_0)$, called the *associated prime ideals* of X.

Proof: If $ab \in P := \operatorname{Annih}(x_0)$ but $b \notin P$, then $bx_0 \neq 0$ yet $abx_0 = 0$, but $\operatorname{Annih}(bx_0) \geq \operatorname{Annih}(x_0) = P$, so $a \in \operatorname{Annih}(bx_0) = P$.

Proposition 4

(Lasker-Noether)

Every proper ideal has a decomposition into primary ideals, $I = Q_1 \cap \cdots \cap Q_n$, with distinct and unique $r(Q_i)$, and no Q_i contains the intersection of the other primary ideals.

Proof: Every such ideal can be decomposed into a finite number of irreducible ideals, since R is Noetherian; if $r(Q_1) = r(Q_2) = P$ then $Q_1 \cap Q_2$ is still primary and $r(Q_1 \cap Q_2) = P \cap P = P$, so one can assume each Q has a different r(Q); if $Q_i \supseteq \bigcap_{i \neq i} Q_j$ then remove it.

More generally, given a finitely generated R-module, every sub-module is the finite intersection of primary sub-modules: decompose $Y = M_1 \cap M_2$ and continue until the remaining sub-modules cannot be written as an intersection; for such "irreducible" sub-modules X/M_i is primary.

5.1.1 Finite Length (Artinian) commutative rings

- 1. Prime ideals = Maximal (since R/P is Artinian but has no zero divisors, so is simple, i.e., P is maximal).
- 2. Their spectrum is finite.
- 3. They are a finite product of local Artinian rings (since Jac is the finite intersection of maximal ideals; so $0 = \prod_i M_i^k = \bigcap_i M_i^k$, so R is isomorphic to a finite product of R/M_i^k which are local, by CRT).
- 4. R/Jac(R) is isomorphic to a finite product of fields (since primitive commutative rings are fields).

5.2 Integral Domains

are cancellative commutative rings, so without proper zero divisors,

$$xy = 0 \Rightarrow x = 0 \text{ OR } y = 0$$

Equivalently, [0] is prime, i.e., a commutative prime ring.

(More generally, semi-prime commutative rings have Nil = 0; equivalently reduced commutative rings.)

Subrings are again integral domains. The smallest sub-ring is either \mathbb{Z} or \mathbb{Z}_p , called the *characteristic* of R (\mathbb{Z}_{pq} has zero divisors).

Examples include \mathbb{Z} , and the center of any prime ring.

- 1. There are no non-trivial idempotents, so indecomposable. There are no proper nilpotents, so Nil = 0.
- 2. All ideals are isomorphic as modules, using $Ra \to Rb$, $xa \mapsto xb$.
- 3. Divisibility becomes an order (mod the invertible elements) i.e., x|y AND $y|x \Rightarrow x \approx y$; an inf of two elements is called their greatest common divisor, a sup is called their lowest common multiple.
- 4. Prime elements are irreducible $(p = ab \Rightarrow p|a \text{ (say)} \Rightarrow pr = a \Rightarrow prb = ab = p \Rightarrow rb = 1).$
- 5. The ring of fractions Frac(R) is a field; so integral domains are subrings of fields.
- 6. R[x] is again an integral domain; its field of fractions is R(x); that of R[[x]] is R((x)) (Laurent series). The invertibles of R[x] are the invertibles of R.
- 7. Any polynomial of degree n has at most n roots.

Proof: By the division algorithm, $p(x) = q(x)(x - a_1)^{r_1}$, so $q(a_2) = 0$; repeating this process must end after at most n steps since the degree of q decreases each time.

- 8. Every polynomial in $R[x_1, \ldots, x_n]$ can be rewritten with highest degree y_n^m , under the change of variables $y_i := x_i + x_n^{r^i}$, $y_n := x_n$ for large enough r.
- 9. For X finitely generated, X is torsion-free iff it is embedded in some finitely generated free module.

Proof: $X = \llbracket x_1, \ldots, x_n \rrbracket$, split them into x_1, \ldots, x_s linearly independent and the rest depend on them; so $Y := \llbracket x_1, \ldots, x_s \rrbracket \cong R^s$ is free; $a_{s+i}x_{s+i} \in Y$, so $T_{a_s \cdots a_r} X \subseteq Y$ with T 1-1; so X is embedded in Y.

10. Finite Integral Domains are fields (see later).

5.2.1 GCD Domains

are integral domains in which divisibility is a semi-lattice relation (up to invertible elements): any two elements have a gcd $x \wedge y$ and an lcm $x \vee y$.

- 1. (a) $(ax) \wedge (ay) = a(x \wedge y)$, (since a|ax, ay so $ab = (ax \wedge ay)$, so ab|ax, ayand b|x, y, hence $ab|a(x \wedge y)$), so they are lattice monoids,
 - (b) $x \wedge y = 1$ and $x|yz \Rightarrow x|z$ (since $x|(xz \wedge yz) = z)$,
 - (c) $(xy) \wedge z = 1 \Leftrightarrow (x \wedge z) = 1 = (y \wedge z)$ (since $a|xy, z \Rightarrow a|(xz \wedge xy) = x(z \wedge y) = x$, so $a|(x \wedge z) = 1$),

(d) $x \wedge (y + xz) = x \wedge y$.

- 2. Irreducibles = Primes (If p is irreducible then either p|x or $p \land x = 1$ for any x, so p|ab AND $p \not|a \Rightarrow p|b$.)
- 3. The 'content' of a polynomial is $\operatorname{con}(p) := \operatorname{gcd}(a_0, \ldots, a_n)$. Every polynomial can be written as $p = \operatorname{con}(p)\tilde{p}$ where $\operatorname{con}(\tilde{p}) = 1$; such a \tilde{p} is called a *primitive* polynomial.

$$\operatorname{con}(ap) = \operatorname{gcd}(aa_0, \cdots, aa_n) = a\operatorname{con}(p)$$

4. The product of primitive polynomials is primitive,

$$\operatorname{con}(pq) \approx \operatorname{con}(p)\operatorname{con}(q)$$

Proof: Let $p(x) = a_0 + \cdots + a_n x^n$ and $q(x) = b_0 + \cdots + b_m x^m$ be primitive polynomials; let $c := \operatorname{con}(pq)$, $d := c \wedge a_n$, then d|c|pq and $d|a_n$, so $d|(p - a_n x^n)q$ which has a lower degree; so by induction, $d|\operatorname{con}(p - a_n x^n)\operatorname{con}(q)$; hence $d|(p - a_n x^n)$ and so $d|\operatorname{con}(p) \approx 1$. Thus $c \wedge a_n \approx 1 \approx c \wedge b_m$; but $c|a_n b_m$, so $c \approx 1$. More generally, for any p, q not necessarily primitive, $\operatorname{con}(pq) \approx \operatorname{con}(\operatorname{con}(p)\operatorname{con}(q)\tilde{p}\tilde{q}) \approx \operatorname{con}(p)\operatorname{con}(q)$.

5. A polynomial $p(x) \in R[x]$ is irreducible iff it is primitive and it is irreducible over its field of fractions, F[x].

Proof: If p is reducible in R[x] then either it is so in F[x] or $p = \operatorname{con}(p)\tilde{p}$. Suppose p(x) = r(x)s(x) with $r, s \in F[x]$; then $p(x) = \frac{a}{b}\tilde{r}(x)\frac{c}{d}\tilde{s}(x)$ where $\tilde{r}, \tilde{s} \in R[x]$ are primitive. But then $bd|\operatorname{con}(ac\tilde{r}\tilde{s}) = ac$, so $\frac{ac}{bd} \in R$ and r, s can be taken to be in R[x].

Thus, a primitive polynomial $p(x) \in R[x]$ has no roots that are in the field of fractions F that are not in R.

6. (Eisenstein) A convenient test that checks whether a primitive polynomial $p(x) = a_0 + \cdots + a_n x^n$ is irreducible is: Find a prime ideal P such that $a_0, \ldots, a_{n-1} \in P, a_n \notin P, a_0 \notin P^2$.

Proof: If p = gh, then $gh = a_n x^n \pmod{P}$, so $b_0, c_0 = 0 \pmod{P}$ and $a_0 = b_0 c_0 \in P^2$.

Examples include $x^n - p$ (*p* prime), $1 + x + \dots + x^{p^n - 1}$ (first translate by 1 to get $p + \binom{p}{2}x + \dots + x^{p-1}$).

7. R[x] is again a GCD.

Proof: Let $d := p \wedge q$ in F[x]; then d|p, d|q in F[x], hence in R[x]; and c|p, c|q in R[x] implies c|d in F[x], hence in R[x].

5.2.2 Unique Factorization Domains

In general, one can try to decompose an element into factors x = yz, and repeat until perhaps one reaches irreducible elements. An integral domain has a factorization of every element into irreducibles iff its principal ideals satisfy ACC (e.g. commutative Noetherian); such factorizations are unique iff irreducibles are prime.

 $\forall x, \exists p_1, \ldots, p_m \text{ prime}, x \approx p_1 \ldots p_m$

Proof: $\langle x_1 \rangle < \langle x_2 \rangle < \cdots$ is equivalent to $x_1 = a_1 x_2 = a_1 a_2 x_3 = \cdots$ with a_i not invertible. Such an x_1 can only have a finite factorization iff the principal ideals eventually stop. See Factorial Monoids for uniqueness.

Equivalently a UFD is an integral domain in which every prime ideal contains a prime.

- 1. UFDs are GCD domains: the gcd is the product of the common primes $(p^{\min(r_a,r_b)}\cdots)$, the lcm is the product of all the primes without repetition $(p^{\max(r_a,r_b)}\cdots)$.
- 2. R[x] is a UFD.

Proof: F[x] is a UFD (since it is an ER), so $p \in R[x]$ has a factorization in irreducible polynomials $q_i \in F[x]$, which are in R[x]. This factorization is unique since irreducibles of R[x] are primes.

5.2.3 Principal Ideal Domains

are integral domains in which every ideal is principal $\langle x \rangle$.

- 1. $\langle x \rangle + \langle y \rangle = \langle \gcd(x, y) \rangle, \langle x \rangle \cap \langle y \rangle = \langle \operatorname{lcm}(x, y) \rangle$. So the gcd can be written as $a \wedge b = sa + tb$ for some $s, t \in R$. For example, $\langle x \rangle, \langle y \rangle$ are co-prime when $\gcd(x, y) = 1$.
- 2. ax + by = c has a solution in $R \Leftrightarrow \gcd(a, b)|c$.
- 3. If $R \subseteq S$ are PIDs, then gcd(a, b) is the same in both R and S (since $(a \wedge b)_S | sa + tb = (a \wedge b)_R$).
- 4. PIDs are Noetherian, hence UFDs.

Proof: For any increasing sequence of ideals

$$\langle x_1 \rangle \leqslant \langle x_2 \rangle \leqslant \cdots \leqslant \bigcup_i \langle x_i \rangle = \langle y \rangle,$$

so $y \in \langle x_n \rangle$, implying $\langle x_n \rangle = \langle x_{n+1} \rangle = \cdots = \langle y \rangle$.

5. p is irreducible/prime $\Leftrightarrow \langle p \rangle$ is maximal; i.e., prime ideals = maximal. Proof: If $\langle p \rangle \leqslant \langle a \rangle$, then p = ab so either a or b is invertible, i.e., $\langle a \rangle = R$ or $\langle a \rangle = \langle p \rangle$. 6. But $\langle a \rangle$ is irreducible iff primary iff $\langle p^n \rangle$ for some prime p.

Proof: If $\langle a \rangle$ is primary, then $r \langle a \rangle = \langle p \rangle$ prime; if $a = p^n q^m \cdots$ is its prime decomposition, then $q \in r \langle a \rangle = \langle p \rangle$, so $a = p^n$.

The decomposition of ideals into primary ideals becomes $\langle a \rangle = \langle p^r \rangle \cdots \langle q^s \rangle$.

- 7. In general, R[x] need not be a PID (unless R is a field), e.g. $\langle 1, x \rangle$ is not principal in $\mathbb{Z}[x]$.
- 8. Smith Normal form: Every matrix in $M_n(R)$ has a unique form for a suitable generating set of elements, $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \\ & \ddots \end{pmatrix}$. Hence can solve linear

equations in PIDs efficiently.

Proof: Use Gaussian elimination of row/column subtractions and swaps to reduce to gcd.

9. The ideal Annih(X) of a module is principal $\langle r \rangle$, with r called the *order* of X.

Important examples of PIDs are **Euclidean Domains**, defined as integral domains with a 'norm' $|\cdot| : R \searrow 0 \rightarrow \mathbb{N}$ and a division:

$$\forall x, y \neq 0, \exists a, r, x = ay + r, \text{ where } 0 \leq |r| < |y| \text{ OR } r = 0$$

Proof: Let I be a non-trivial ideal; pick $y \in I$ with smallest norm; then $\forall x \in I, x = ay + r \text{ AND } r \neq 0 \implies r = x - ay \in I$ impossible, so r = 0 and x = ay, i.e., $I = \langle y \rangle$.

Examples include
$$\mathbb{Z}$$
 with $|n| := \begin{cases} n & n > 0 \\ -n & n < 0 \end{cases}$, and $F[x]$ with $|p| := \deg(p)$.

5.2.4 Finitely-Generated PID Modules

1. Submodules of finitely-generated free modules are also free.

Proof: Let $Y_1 := \{x = (a_1, 0, \ldots) \in \mathbb{R}^A : x \in Y\}$ and $Y_2 = \{x = (0, a_2, \ldots) \in \mathbb{R}^A : x \in Y\}$, both submodules of \mathbb{R}^A ; in fact $Y_1 = \llbracket e_1 \rrbracket \cong \mathbb{R}$ (or $Y_1 = 0$); by induction $Y_2 = \mathbb{R}^C$, so that $Y \cong \mathbb{R} \times \mathbb{R}^C = \mathbb{R}^{1+C}$.

2. X is torsion-free \Leftrightarrow free.

Proof: Let e_1, \ldots, e_n be generators with the first k being linearly independent; suppose $k \neq n$, then for i > k, $a_i e_i = \sum_j \lambda_j e_j$, let $a := a_{k+1} \cdots a_n \neq 0$, so $[\![a]\!]$ is a submodule of the free module $[\![e_1, \ldots, e_k]\!]$, so itself must be free; but $x \mapsto ax$ is an isomorphism, so $X = [\![a]\!]$ is free.

3. A finitely generated module over a PID is isomorphic to

$$X \cong R^n \times \frac{R}{\langle p^m \rangle} \times \ldots \times \frac{R}{\langle q^k \rangle}$$

where p, \ldots, q are unique primes.

Proof: Let X be indecomposable. The order of X is p^n since r = ab coprime gives sa + tb = 1, so $x = (sa + tb)x \in M_b + M_a$ where $M_a = \{x \in X : ax = 0\}$; if $x \in M_a \cap M_b$ then ax = 0 = bx, so x = (sa + tb)x = 0. Suppose $x \neq 0$, then $X = [\![x]\!] \cong R/Annih(x) = R/\langle p^n \rangle$.

5.3 Fields

are commutative rings in which every $x \neq 0$ has an inverse $xx^{-1} = 1$. Equivalently, they are

- simple commutative rings (since the only possible ideals are 0 and F);
- finite-length integral domains (since elements of Artinian rings are either invertible or zero divisors; this can be seen directly for finite integral domains as $0x, 1x, r_3x, \ldots, r_nx$ are all distinct, so must contain 1).
- von Neumann integral domains (since regular cancellatives are invertible).

The smallest subfield in F, called its *prime subfield*, is isomorphic to $\mathbb{F}_p := \mathbb{Z}_p$ or \mathbb{Q} (depending on whether the prime sub-ring is \mathbb{Z}_p or \mathbb{Z}); it is fixed by any 1-1 morphism. Thus every field is a vector space (algebra) over its prime subfield.

Examples include fields of fractions of an integral domain, such as \mathbb{Q} , the center of any division ring, and R/I with R commutative and I maximal, such as $F[x]/\langle p \rangle$ with p irreducible.

1. Every finite (multiplicative) sub-group of $F \searrow 0$ is cyclic.

Proof: Being a finite abelian group, $G \cong \mathbb{Z}_{p^n} \times \mathbb{Z}_{q^r} \times \cdots$; so all elements satisfy $x^m = 1$ where $m = \operatorname{lcm}(p^n, q^r, \ldots)$. But the number of roots of $x^m = 1$ is at most m. Hence p, q, \ldots are distinct primes, so G is cyclic.

- 2. The polynomials F[x] form a Euclidean domain with $|p(x)| := \deg(p)$.
- 3. $\frac{F[x]}{\langle p(x) \rangle} \cong \frac{F[x]}{\langle p_1^{r_1} \rangle} \times \cdots \times \frac{F[x]}{\langle p_n^{r_n} \rangle}$ with $p_i(x)$ irreducible (Lasker).
- 4. If the prime subfield is \mathbb{F}_p , then $x \mapsto x^p$ is a 1-1 morphism which preserves \mathbb{F}_p (since $a \in \mathbb{F}_p \Rightarrow a^p = a, x^p = 0 \Rightarrow x = 0$).
- 5. The finite fields are of the type $\mathbb{F}_{p^n} := \mathbb{F}_p[x]/\langle q(x) \rangle$, where q is an irreducible polynomial in $\mathbb{F}_p[x]$ of degree n. Its dimension over \mathbb{F}_p is n, so it has p^n elements.

Existence: take the splitting field for $x^{p^n} = x$ (see later); its p^n roots form a field since $(a + b)^{p^n} = a^{p^n} + b^{p^n} = a + b$, and similarly $(-a)^{p^n} = -a$ (even if p = 2), $(ab)^{p^n} = ab$, $(a^{-1})^{p^n} = a^{-1}$. Uniqueness: every non-zero element satisfies $x^{p^n-1} = 1$, so every element satisfies $x^{p^n} = x$ and there are no multiple roots (derivative is -1); F is thus the splitting field for a polynomial. 6. For $M_n(F)$, the Smith normal form is $\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$ for suitable bases.

Formally real fields: those such that $\sum_i a_i^2 = 0 \implies a_i = 0$.

Perfect fields: has prime subfield either \mathbb{Q} or \mathbb{F}_p with $x \mapsto x^p$ an automorphism.

5.3.1 Algebraically Closed Fields

when every non-constant polynomial in F[x] has a root in F (hence has deg(p) roots, i.e., 'splits'); equivalently, when its irreducible polynomials are of degree 1, i.e., x + a.

Every field has an algebraically closed extension, unique up to isomorphisms (e.g. list all irreducible polynomials, if possible, and keep extending by roots).

6 Algebras

Definition An **algebra** is a ring R with a sub-field F in its center,

$$\lambda(xy) = (\lambda x)y = x(\lambda y)$$

They are vector spaces with an associative bilinear product. Examples include

- Integral domains or division rings, at least over their prime sub-field \mathbb{Q} or \mathbb{Z}_p ;
- $\operatorname{Hom}_F(X)$ when F is a field acting on a vector space X;
- Group algebras F[G] (for example, $\mathbb{H} := \mathbb{R}[Q]$ where Q is the quaternion group $i^2 = j^2 = k^2 = -1$; $F[C_n] \cong F[x]/\langle x^n 1 \rangle$).

Morphisms preserve $+, \cdot, F$:

$$\phi(x+y) = \phi(x) + \phi(y), \quad \phi(xy) = \phi(x)\phi(y), \quad \phi(\lambda x) = \lambda\phi(x), \quad \phi(1) = 1.$$

Note that as $\phi(\lambda) = \lambda$, morphisms fix F.

Subalgebras are sub-rings that contain F; e.g. the center. The subalgebra generated by A is the smallest subalgebra that contains F and A, denoted F[A].

Every algebra is a subalgebra of $\operatorname{Hom}_F(X)$ for some vector space (take X = R and the isomorphism $x \mapsto T_x$ where $T_x(y) = xy$).

1. A free algebra with a basis e_i is characterized by its structure constants $\gamma_{ij}^k \in F$, defined by $e_i e_j = \gamma_{ij}^k e_k$.

- 2. Every element is either **algebraic**, i.e., satisfies a non-zero polynomial in F[x], or **transcendental** wrt F (otherwise). If a is algebraic, the polynomials it satisfies form an ideal $\langle p_a \rangle$, where p_a is called its *minimal* polynomial. The roots of p_a are called the 'eigenvalues' of a. Idempotents $x^2 = x$ and nilpotents $x^n = 0$ are algebraic.
- 3. Morphisms between algebras over F map $\phi(p(a)) = p(\phi(a))$, so they preserve algebraic and transcendental numbers.
- 4. If a is algebraic, then $F[x] \to F[a], q(x) \mapsto q(a)$, is an algebra morphism with kernel $\langle p_a \rangle$. So F[a] has dimension deg (p_a) .
- 5. The set of algebraic elements form an algebra R^{alg} . The minimal polynomials of $a + \alpha$, αa , a^{-1} , a^n , $b^{-1}ab$ are related to that of a (but not so for a + b and ab).

Proof: If a is algebraic, then so is the ring $F[a] \subseteq R$ since it is finite dimensional. Hence for a, b algebraic, $a + b, ab \in F[a][b]$ are algebraic.

- 6. The algebraic elements of $\operatorname{Jac}(R)$ are the nilpotents (since for $r \in J$, 1+ar is invertible, so the minimal polynomial must be $0 = a_k r^k + \cdots + a_n r^n = a_k r^k (1+ar)$ hence $r^k = 0$).
- 7. Every set of group morphisms $G \to R \\ 0$ is F-linearly independent.

Proof: If $a_1\sigma_1 + \cdots + a_n\sigma_n = 0$, then also for all $g \in G$,

$$a_1\sigma_1(g)\sigma_1(x) + \dots + a_n\sigma_n(g)\sigma_n(x) = 0,$$

$$\therefore a_1(\sigma_1(g) - \sigma_n(g))\sigma_1 + \dots + a_n(\sigma_{n-1}(g) - \sigma_n(g))\sigma_{n-1} = 0,$$

so by induction, $a_i(\sigma_i(g) - \sigma_n(g)) = 0$; but for each *i* there is a *g* such that $\sigma_i(g) \neq \sigma_n(g)$, so $a_i = 0$. Hence also $a_n = 0$.

Let $G := \operatorname{Aut}_F(R)$ be the group of algebra automorphisms of R. To each subalgebra $F \leq S \leq R$ there is a group

$$Gal(S) := \{ \sigma \in G : \forall x \in S, \sigma(x) = x \}$$

and for a subgroup $H \leq G$, there is a subalgebra of R,

$$Fix(H) := \{ x \in R : \forall \sigma \in H, \sigma(x) = x \}$$

They are adjoints,

$$H \leq \operatorname{Gal}(S) \Leftrightarrow \operatorname{Fix}(H) \geq S$$

- 1. Writing $S' := \operatorname{Gal}(S)$, $H' := \operatorname{Fix}(H)$, it follows, as for all adjoints, that $S_1 \leqslant S_2 \Rightarrow S'_2 \leqslant S'_1$, $H_1 \leqslant H_2 \Rightarrow H'_2 \leqslant H'_1$; $S \leqslant S''$, $H \leqslant H''$; S''' = S', H''' = H'.
- 2. Fix $(\sigma H \sigma^{-1}) = \sigma$ Fix(H) (since $\sigma H \sigma^{-1}(x) = x \Leftrightarrow \sigma^{-1}(x) \in$ Fix(H)).
- 3. $\sigma \operatorname{Gal}(S)\sigma^{-1} = \operatorname{Gal}(\sigma S)$ (since $\sigma\tau\sigma^{-1} = \omega \Leftrightarrow \sigma^{-1}\omega\sigma(x) = x, \forall x \in S$, so $\omega\sigma(x) = \sigma(x)$).

6.1 Algebraic Algebras

are algebras in which every element is algebraic, i.e., satisfies some polynomial in F[x]. For example, R^{alg} .

1. If R is algebraic on E which is algebraic on F, then R is algebraic on F

Proof: Every $r \in R$ satisfies a poly $p = \sum_i a_i x^i \in E[x]$; so $F \leq F[a_0, \ldots, a_n] \leq F[a_0, \ldots, a_n, r]$, each extension being finite dimensional; hence the last algebra is algebraic.

- 2. Jac(R) = Nil(R) (since all algebraic numbers in J are nilpotent).
- 3. Non-commutative algebraic algebras over \mathbb{F}_{p^n} have non-trivial nilpotents, e.g. algebraic division algebras over \mathbb{F}_{p^n} are fields.
- 4. The algebraic division algebras over \mathbb{R} are \mathbb{R} , \mathbb{C} , or \mathbb{H} .

Proof: For any $a \notin \mathbb{R}$, $\mathbb{R}[a] \cong \mathbb{C}$; so R is a vector space over \mathbb{C} ; now R splits into two subspaces: those that anti/commute with i, x = (ix + xi)/2i + (ix - xi)/2i. If all commute then $R \cong \mathbb{C}$; otherwise choose a that anticommutes, the map $x \mapsto a^{-1}x$ converts anti-commuting to commuting; hence $R \cong \mathbb{C} + a\mathbb{C}$; note that a^2 commutes, so $a^2 \in \mathbb{C}$, yet is also algebraic over \mathbb{R} , hence $0 > a^2 \in \mathbb{R}$; let j := a/|a|, so $R \cong \mathbb{C} + j\mathbb{C} = \mathbb{H}$.

6.2 Finite-dimensional Algebras

1. An algebra is finite-dimensional iff it is algebraic (of bounded degree) and finitely generated.

Proof: For any $a \in R$, then $1, a, a^2, \ldots$ are linearly dependent, so a is algebraic. $F[a_1] < F[a_1, a_2] < \cdots$ where $a_n \notin F[a_1, \ldots, a_{n-1}]$; for finite dimensions, $R = F[a_1, \ldots, a_n]$. Conversely, F[a] is finite dimensional over F, since a is algebraic, hence by induction $F[a_1, \ldots, a_n]$ is finite dimensional over F.

2. Every finite-dimensional algebra can be represented by matrices in $M_n(F)$; each element has corresponding 'trace' and 'determinant'. For example, for $\mathbb{Q}(i)$, the trace of z is $\operatorname{Re}(z)$, the determinant is $|z|^2$.

If $x_i x_j = \gamma_{ij}^k x_k$, then x_i corresponds to the matrix $x_j \mapsto x_i x_j$, i.e., $[\gamma_{ij}^k]$ (fixed *i*).

- 3. Every simple finite-dimensional algebra is isomorphic to $M_n(H)$, where H is a division ring (Wedderburn).
- 4. (Noether normalization lemma) Every finite-dimensional commutative algebra over F is a finitely generated module over $F[x_1, \ldots, x_n]$, where x_i are not algebraic in the rest of the variables.

Proof: If $p(x_1, \ldots, x_n) = \sum_{k} a_k x^k = 0$ (not algebraically independent) then define new variables $y_i := x_i - x_n^r$, $y_n := x_n$ to get a new polynomial $x_n^m + q_{m-1}(x_1, \ldots, x_{n-1})x_n^{m-1} + \cdots = 0$, satisfied by x_n . The result follows by induction on n.

- 5. (Zariski lemma) If R is a field which is a finitely generated algebra over F, then it is a finite dimensional field extension of F. (since R is a finitely generated module over $F[x_1, \ldots, x_n]$, yet R is a field (simple), so n = 0).
- 6. Recall the adjoint maps connecting subsets of F^N and ideals in $F[x_1, \ldots, x_N]$,

$$I \leq \operatorname{Annih}(A) \Leftrightarrow A \leq \operatorname{Zeros}(I)$$

If F is algebraically closed, then every maximal ideal in $F[x_1, \ldots, x_n]$ is the kernel of an evaluation F-morphism $p(x_1, \ldots, x_n) \mapsto p(a_1, \ldots, a_n)$, i.e., the ideal generated by $(x - a_1) \cdots (x - a_n)$. Thus each maximal ideal M corresponds to a point in F^n , $M = \text{Annih}(\mathbf{a})$.

Proof: Let $R := F[x_1, \ldots, x_n]$; $F \to R \to R/M$ is an isomorphism, since R/M is finitely generated algebra over F and is a field, so it is a finitedimensional (algebraic) extension of F; but F is algebraically closed, so $R/M \cong F$ and M is the kernel of the morphism $\phi : R \to R/M \to F$; $a_i = \phi(x_i)$.

- 7. (Weak Nullstellensatz) If F is algebraically closed, and I is a proper ideal of $F[x_1, \ldots, x_n]$, then I has a zero, i.e., $\operatorname{Zeros}(I) \neq \emptyset$. (since $I \leq M$ maximal ideal, which corresponds to (a_1, \ldots, a_n) . Thus $\operatorname{Zeros}(I) \supseteq \operatorname{Zeros}(M) = \{a\}$.)
- 8. (Strong Nullstellensatz) For an algebraically closed field, $Annih\circ Zeros(I) = r(I)$.

Proof: If $p(x)^n \in I$ and $a \in \operatorname{Zeros}(I)$, then $p(a)^n = 0$, so p(a) = 0, i.e., $p \in \operatorname{Annih} \circ \operatorname{Zeros}(I)$. Conversely, let $q(x_1, \ldots, x_{n+1}) := 1 - p(x_1, \ldots, x_n)x_{n+1}$; then $I + \langle q \rangle$ has no zeros in F^{n+1} , so $I + \langle q \rangle = F[x_1, \ldots, x_{n+1}]$. Thus $1 = r_1q_1 + \cdots + r_nq_n + r_{n+1}q$; the map $F[x_1, \ldots, x_{n+1}] \to F[x_1, \ldots, x_n][p^{-1}]$ that takes $x_{n+1} \mapsto p^{-1}$ but fixes x_i , gives $1 = (r_1/p^{k_1})q_1 + \cdots + (r_n/p^{k_n})q_n + r_{n+1}(1 - p/p)$, hence $p^N = \sum_{k=1}^n s_k q_k \in I$.

6.3 Field Extensions

A field E with a subfield F form an algebra, called a *field extension*. (Note: F[x] is a subalgebra of E[x].)

The field generated by a subset A is the smallest field in E containing F and A, denoted F(A); it equals the field of fractions of F[A], thus 'independent' of E. F(a) is called a *simple* extension, and a a *primitive* element. Note that $F(A \cup B) = F(A)(B)$.

1. If $a \in E$ are algebraic numbers which are roots of an irreducible (minimal) polynomial $p(x) \in F[x]$, then

$$F(a) \cong \frac{F[x]}{\langle p \rangle} \cong F[a]$$

which has dimension $\deg(p)$.

Proof: The morphism $q \mapsto q(a)$ has kernel $\langle p \rangle$ and its image contains F and a. Every polynomial $q = sp + r = r \pmod{p}$ with $\deg(r) < \deg(p) = n$, and $1, a, \ldots, a^{n-1}$ are linearly independent. Thus a corresponds to the polynomial x; $p(x + \langle p \rangle) = p(x) + \langle p \rangle = \langle p \rangle$.

For example, 'quadratic algebras' are algebras of dimension 2 obtained from irreducible quadratic polynomials.

F(a) need not include the other roots of p(x) and may include other linearly independent non-roots such as perhaps a^2 .

Note that the generators of a field extension need not, in general, be a basis: e.g. $\mathbb{Q}(\sqrt{2},\sqrt{3}) = \mathbb{Q}(\sqrt{2}+\sqrt{3})$ has dimension 4 with basis $\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}; \mathbb{Q}(i,\sqrt{n}) = \mathbb{Q}(i+\sqrt{n}).$

- 2. If a is transcendental, $F(a) \cong \{ p(x)/q(x) : p, q \in F[x], q \neq 0 \}$ is an infinite-dimensional extension.
- 3. If a is algebraic over F, then
 - (a) the coefficients of its minimal polynomial generate F, Proof: Suppose they generate $K \subseteq F$. Since p(x) remains minimal in $K[x] \subseteq F[x]$, its degree equals $\dim_K F(a) = \dim_F F(a)$, so K = F.
 - (b) there are only a finite number of subfields $F \leq E \leq F(a)$ (since the minimal polynomial q(x) of a in E[x] is a factor of that in F[x], of which there are a finite number; and E is generated by the coefficients of q).
- 4. (a) An algebra morphism $\phi: E_1 \to E_2$ sends roots of p(x) in E_1 to roots in E_2 , since

$$p(\phi(a)) = \phi(p(a)) = 0$$

If $\phi: E \to E$ is 1-1, it permutes these roots.

- (b) A 1-1 algebra morphism on E is an automorphism on E^{alg} (since for $a \in E^{\text{alg}}$ with p(a) = 0, ϕ permutes its roots in E, in particular $\phi(b) = a$ and $\phi(a) \in E^{\text{alg}}$).
- (c) If a, b have the same minimal polynomial p(x), then $F(a) \cong F(b)$, $a \mapsto b$ (since $a \leftrightarrow x \leftrightarrow b$). Thus there are deg(p) 1-1 algebra morphisms $F(a) \to E$, each mapping a to a different root of p(x).
- 5. Two co-prime polynomials in F[x] cannot have a common root in E[x] (since their gcd is 1 in both). Roots of the same irreducible polynomial are called *conjugates*; they partition E^{alg} . Conjugates must satisfy the same algebraic properties because of the morphisms between them.
- 6. There is a field $E \ge F$ in which a given polynomial p has all deg(p) roots (possibly repeated), called a *splitting* field of p: when extending to F(a), p decomposes but may still contain irreducible factors; keep extending

to contain all the roots, so the polynomial splits into linear factors. For example

$$\begin{array}{ccc}
\mathbb{Q} & x^3 - 2 \\
\mathbb{Q}(\alpha) & (x - \alpha)(x^2 + \alpha x + \alpha^2) \\
\text{splitting field } \mathbb{Q}(\alpha, \beta) & (x - \alpha)(x - \beta)(x + \alpha + \beta)
\end{array}$$

Of course, every irreducible quadratic polynomial splits with the addition of one root, e.g. $x^2 + 1$ splits in $\mathbb{Q}(i)$.

Note that a field may split several polynomials, for example, $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$ splits $x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2}), x^2 - 3 = (x - \sqrt{3})(x + \sqrt{3}),$ and $x^4 - 10x^2 + 1 = \prod (x \pm \sqrt{2} \pm \sqrt{3}); \mathbb{Q}(i)$ splits both $x^2 + 1$ and $x^2 + 2x + 2; \mathbb{Q}(\sqrt{3})$ splits $x^2 + 2nx + (n^2 - 3)$ $(n \in \mathbb{Z}).$

A field extension which is closed for conjugates is called *normal*. The normal closure of E is the smallest normal extension containing E, namely the splitting field for its generators (e.g. the normal closure of $\mathbb{Q}(\sqrt[3]{2})$ is $\mathbb{Q}(\sqrt[3]{2}, \omega)$).

7. It is quite possible for an irreducible polynomial to have a multiple root in an extension: all roots are then equally multiple; so the number of roots divides the degree of p. But for this to happen, p(a) = 0 = p'(a), so p' = 0 since p is irreducible, hence $na_n = 0$ for each n, so $n = 0 \pmod{p}$ prime and

$$p(x) = a_0 + a_1 x^p + \dots + a_n (x^p)^n$$
,

For 'perfect' fields, such as those with \mathbb{Q} as prime subfield, or finite fields $(x^p = x)$, or algebraically closed fields, this is not possible, i.e., every irreducible polynomial has simple roots, called *separable*.

8. If p(x) splits into simple roots a, \ldots , then the splitting field is a simple extension. More generally, every separable finite-dimensional field extension is a simple extension.

Proof: Let p, q be minimal polynomials for a, b, and let K be their splitting field, so p has roots a, a_2, \ldots, a_n , and q has roots b, b_2, \ldots, b_m . Pick a $c \in F$ such that $\alpha := a + cb \neq a_i + cb_j$ for any i, j. Then $F(a, b) = F(\alpha)$ since the only common root of q(x) and $p(\alpha - cx)$ is $b: q(x) = 0 = p(\alpha - cx) \Rightarrow \alpha - cb_i = a_j \Rightarrow x = b$; thus b and $a = \alpha - cb \in F(\alpha)$. By induction $F(a_1, \ldots, a_n) = F(\beta)$.

9. If $p(x) \in F''[x]$ splits in E then it has simple roots.

Proof: If $p(x) \in F''[x]$ is an irreducible factor with roots $a_1, \ldots, a_n \in E$, let $q(x) := (x - a_1) \cdots (x - a_n)$. Any $\sigma \in G = F'$ fixes F'' hence permutes the roots of p, hence fixes q; the coefficients of q must be in F''. But q|p, so p = q is separable.

10. Translations and scalings of polynomials p(ax + b) $(a \neq 0)$ are automorphisms, and have corresponding effects on their roots. Indeed, Aut F[x] consists precisely of these *affine* automorphisms.

11. The automorphism group of F(x) is $PGL_2(F)$, i.e., $p(x) \mapsto p(\frac{ax+b}{cx+d})$ $(ad - bc \neq 0)$ with kernel consisting of a = d, b = c = 0.

6.3.1 Algebraic Extensions

are extensions all of whose elements are algebraic over F.

- 1. Every subring $F \leq R \leq E$ is a subfield (since any $a \in R$ is algebraic, so the field $F(a) = F[a] \leq R$, so a is invertible in R).
- 2. Every 1-1 algebra morphism $E \to E$ is onto.
- 3. The algebraic closure of a field, \overline{F} , contains all the roots of all the polynomials in $\overline{F}[x]$. The algebraic closure of E is the same as that of F.

Proof: Let $p \in \overline{F}[x]$ be irreducible; then there is a field $B \ge \overline{F}$ which has a root b of $p(x) = \sum_{i=1}^{n} a_i x^i$; so $F < F[a_0, \ldots, a_n, b] \le B$ are finitedimensional, hence algebraic, over F, so $b \in \overline{F}$ is algebraic, and p is of degree 1.

4. If $F \leq K \leq E$, every 1-1 algebra morphism $\phi: K \to \overline{F}$ extends to $E \to \overline{F}$. Proof: By Zorn's lemma any chain of extensions is capped by $\bigcup_i K_i =: L$; if $a \in E \setminus L$, its minimal polynomial maps to an irreducible polynomial in \overline{F} , so has a root $b \in \overline{F}$ and $\tilde{\phi}(a) = b$; in particular, $L(a) \to \overline{F}$ is an extension; hence L = E.

6.3.2 Finite Dimensional Extensions

- 1. F(A) = F[A] (since $F[a_1] \cdots [a_n] = F(a_1) \cdots (a_n) = F(a_1, \dots, a_n)$).
- 2. *E* is a normal extension of $F \Leftrightarrow E$ is the splitting field of some polynomial in $F[x] \Leftrightarrow$ every *F*-automorphism $\overline{F} \to \overline{F}$ restricts to an *F*-automorphism of *E*.

Proof: $E = F(a_1, \ldots, a_n)$, each a_i has a minimal polynomial $p_i(x)$ whose conjugates belong to E (since normal), so $p_i(x)$ splits in E. Thus the polynomial $p(x) := p_1(x) \cdots p_n(x)$ splits in E, and has roots a_i . Any $\sigma: \overline{F} \to \overline{F}$ maps roots of p(x) to roots, so $\sigma E = F(\sigma(a_1), \ldots, \sigma(a_n)) =$ $F(a_1, \ldots, a_n) = E$. Finally, let $a \in E$ with minimal polynomial p(x); any conjugate root is obtained from a via $a_i = \sigma_i(a), \sigma_i \in \operatorname{Aut} \overline{F}$; if $\sigma E = E$, then $a_i \in E$ and E is normal.

Hence conjugate roots are connected via automorphisms in G.

3. For *E* separable finite dimensional, the number of 1-1 algebra morphisms $E \to \overline{F}$ is dim *E*.

Proof: For any subfield, $|\operatorname{Aut}_F K| = |G|/|K'|$. For a simple extension K, the number of 1-1 algebra morphisms $K \to \overline{F}$ equals dim K, one for each distinct root; hence the number of such morphisms on $E = F(a_1, \ldots, a_n)$ equals dim $F(a_1) \dim_{F(a_1)} F(a_1, a_2) \cdots = \dim E$.

6.3.3 Galois extensions

A field E is called a *Galois* extension of F when it is finite dimensional and is closed under the adjoint maps Fix and Gal,

$$F = G' = F'' = \operatorname{Fix} \circ \operatorname{Gal}(F)$$

Every finite dimensional extension is Galois over F''.

- 1. For any subfield, K'' = K (since $a \notin K$ has a minimal polynomial p(x) with some conjugate root $\sigma(a) = b \neq a$, where $\sigma \in K'$; so $a \notin K''$).
- 2. A subfield K is Galois $\Leftrightarrow K' \trianglelefteq G$. Then $\operatorname{Aut}_F K \cong G/K'$.

Proof: If K is Galois, $\sigma \in G$, $a \in K, \tau \in K'$, then $\tau \sigma(a) = \sigma(a) \in K'' = K$, so $\sigma^{-1}\tau \sigma \in K'$. If $K' \trianglelefteq G$, $\sigma \in G$ then $\sigma K = \sigma K'' = K'' = K$, so K is a normal extension wrt E. The map $\sigma \mapsto \sigma|_K$ (valid since K is normal) is a morphism with kernel $\sigma|_K = I \Leftrightarrow \sigma \in \operatorname{Aut}_K E = K'$.

3. E is a Galois extension iff E is the splitting field for some separable polynomial in F[x], iff E is a normal separable extension of F.

Proof: $G = \operatorname{Aut}_F(E)$ is finite since E is finite dimensional. Let $a \in E$ and take the orbit $a_i := \sigma_i(a)$ for $\sigma_i \in G$. Then G fixes the polynomial $p(x) := (x - a_1) \cdots (x - a_n) \in F''[x]$. It is the minimal polynomial for a since $q(a) = 0 \Rightarrow q(a_i) = \sigma_i q(a) = 0$, so p|q. Thus every minimal polynomial splits into simple factors, so E is normal and separable.

If E is normal separable, then G'' = G (see below) so $\dim_{F''} E = |\operatorname{Aut}_{G'}(E)| = |G''| = |G| = |\operatorname{Aut}_F(E)| = \dim_F E$, hence F = F''.

The Galois group of a separable polynomial p(x) is denoted $\operatorname{Gal}(p) := \operatorname{Gal}(E)$ where E is the splitting field of p. Note that p has exactly $\operatorname{deg}(p)$ roots in E, which form a basis for E.

4. For a Galois extension E, $|G| = \dim E$; $|K'| = \dim E/K$.

Proof: For E normal, every algebra automorphism $\overline{F} \to \overline{F}$ restricts to an automorphism in G. When E is also separable, there are exactly dim E of them; hence $|G| = \dim E$. For any subfield K, E remains a Galois extension of K, so $|\operatorname{Aut}_K E| = \dim_K E$.

- 5. Any separable polynomial p(x) with roots a_i , satisfies $a_i = \phi_i(a)$ for ϕ_i all the 1-1 algebra morphisms $F(a) \to \overline{F}$, so $p(x) = (x a) \cdots (x \phi_n(a))$.
- 6. H'' = H, in particular G'' = G.

Proof: E = H'(a) (simple extension since E is separable), let $p(x) := (x - \sigma_1(a)) \cdots (x - \sigma_n(a))$ for $\sigma_i \in H$, then $p(x) \in H'[x]$ since any $\sigma \in H$ permutes the roots and fixes p's coefficients. Therefore, dim $E/H' = \dim_{H'} H'(a) \leq \deg(p) = |H| \leq |H''| = \dim_{H'} E$. So H'' = H.

Proposition 5

Galois

The subfields of a Galois extension correspond to the subgroups of its Galois group, via the maps $K \mapsto \text{Gal}(K)$, $H \mapsto \text{Fix}(H)$. The Galois subfields correspond to the normal subgroups.

Proof: The map $K \mapsto K'$ is onto since H'' = H and 1-1 since $K'_1 = K'_2 \Rightarrow K_1 = K''_1 = K''_2 = K_2$.

So given a subgroup H of G, its largest normal subgroup corresponds to the smallest normal extension of F that contains H'.

7. If p has only simple roots, then each irreducible factor corresponds to an orbit of the roots (under Gal(p)); the degree of the factor equals the size of the orbit.

Proof: Each irreducible factor corresponds to a selection of roots, $(x - a_i) \cdots (x - a_j)$. For any two roots a, b, there is an isomorphism $a \leftrightarrow b$; thus an isomorphism $F(a) \to F(a_1, \ldots, a_n)$, which can be extended to an automorphism of $F(a_1, \ldots, a_n)$.

The stabilizer subgroup which fixes a root α has $|G|/\deg(p)$ elements; this is non-trivial precisely when $E = F(\alpha)$.

- 8. Example: the Q-automorphisms of $x^4 10x^2 + 1$ form the group $C_2 \times C_2$ generated by $\sqrt{2} \leftrightarrow -\sqrt{2}, \sqrt{3} \leftrightarrow -\sqrt{3}$; each automorphism fixes one of $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{2} + \sqrt{3}), \mathbb{Q}(\sqrt{6}).$
- 9. The discriminant of a polynomial p(x) with roots α_i is $\Delta(p) := \prod_{i < j} (\alpha_i \alpha_j)$ (defined up to a sign), which can be written in terms of the coefficients of p. It determines when there are repeated roots, $\Delta(p) = 0$. Since each transposition of roots introduces a minus sign (unless the characteristic is 2, when -1 = +1), then $\sigma \Delta = \operatorname{sign}(\sigma) \Delta$; thus $\Delta(p)$ is invariant under $\operatorname{Gal}(p) \Leftrightarrow \operatorname{Gal}(p) \leqslant A_n$.
- 10. Example: The irreducible polynomial $x^4 2$ has roots $\pm \sqrt[4]{2}$, $\pm i \sqrt[4]{2}$, so its splitting field is $\mathbb{Q}(\sqrt[4]{2}, i)$, which is Galois. It has dimension 8, with a Galois group D_4 , generated by $i \mapsto -i$ and $\sqrt[4]{2} \mapsto i \sqrt[4]{2}$. The subgroups of D_4 , namely two $C_2 \times C_2$, C_4 , and five C_2 , correspond to the fields (respectively) $\mathbb{Q}(\sqrt{2})$ (normal) and $\mathbb{Q}(i\sqrt{2})$ (normal), $\mathbb{Q}(i)$ (normal), and $\mathbb{Q}(i\sqrt{2})$, $\mathbb{Q}(i\sqrt{2})$, $\mathbb{Q}(i,\sqrt{2})$, $\mathbb{Q}((1+i)\sqrt[4]{2})$, $\mathbb{Q}((1-i)\sqrt[4]{2})$.

Radical Extensions

Let F be a perfect field, so irreducible polynomials do not have multiple roots. A polynomial is solvable by radicals when its roots are given by formulas of elements of F that use $+, \times, \sqrt[n]{}$; this means that there is a *radical* extension field $F(a_1, \ldots, a_n)$ and $r_1, \ldots, r_n \in \mathbb{N}$ such that

$$a_n^{r_n} \in F(a_1, \dots, a_{n-1})$$
$$\dots$$
$$a_2^{r_2} \in F(a_1)$$
$$a_1^{r_1} \in F$$

- 1. The roots of $x^n a \in F[x]$ are of the form $\alpha\beta$ where α is a single root of $x^n a$, and β are the roots of $x^n 1$. If $x^n a$ is irreducible, so $\alpha \notin F$, then also $\alpha^k \notin F$ for gcd(k, n) = 1 (else $a = a^{sk+tn} = \alpha^{skn}a^{tn} = (\alpha^{ks}a^t)^n$).
- 2. The polynomial $x^n 1$ contains the factor $x^m 1$ iff m|n; so it decomposes into "cyclotomic" polynomials ϕ_m . For example,

$$\begin{aligned} x^3 - 1 &= \phi_1 \phi_3 = (x - 1)(x^2 + x + 1), \\ x^4 - 1 &= \phi_1 \phi_2 \phi_4 = (x - 1)(x + 1)(x^2 + 1), \\ x^6 - 1 &= \phi_1 \phi_2 \phi_3 \phi_6 = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1) \end{aligned}$$

Of course, whether ϕ_n is irreducible or not depends on the field; they are in \mathbb{Q} , but $x^2 + 1 = (x+1)^2$ in \mathbb{F}_2 .

- 3. The splitting field of $x^n 1 = (x 1)(x \zeta) \cdots (x \zeta^{n-1})$ is $F(\zeta)$, where ζ is a root of ϕ_n . If the characteristic of F is p and p|n, then $x^n 1 = (x 1)^p (x \zeta)^p \cdots (x \zeta^{n/p-1})^p$; otherwise all ζ^i are distinct. The automorphisms are $\zeta \mapsto \zeta^k$ with gcd(k, n) = 1, i.e., the Galois group is a subgroup of $\Phi_n := \mathbb{Z}_n^*$; it equals Φ_n if ϕ_n is irreducible and F does not have characteristic p|n because then ϕ_n is the minimal polynomial of ζ .
- 4. The splitting field of $x^n a$ is $F(\zeta, \alpha)$ where α is a single root of $x^n a$. The automorphisms that fix $F(\zeta)$ are $\sigma(\alpha) = \alpha \zeta^i$ (the other roots), so the Galois group over $F(\zeta)$ is C_n since $\sigma \mapsto \zeta^i$ is an isomorphism (its image is a subgroup of C_n , i.e., C_m , m|n, so $\zeta^{im} = 1$ for all i, hence $\sigma(\alpha^m) = \alpha^m$ for all σ , so $\alpha^m \in F$, a contradiction unless m = n).
- 5. The Galois group of a radical Galois extension is solvable.

Proof: The Galois group of each extension $F(\sqrt[r]{a}) = F(\zeta, \alpha)$ is cyclic over $F(\zeta)$, whose group is abelian over F. Hence $\operatorname{Aut}_F(\zeta, \alpha)$ is abelian; by induction, the Galois group of E gives normal subgroups $1 \leq G_1 \leq \cdots \leq G_k$ each with abelian factors.

6. Example: For $x^7 - 1$, the splitting field is $\mathbb{Q}(\zeta)$; its subfields correspond to the subgroups of C_6 , namely $C_3 : \zeta \mapsto \zeta^2$ associated with $\mathbb{Q}(\zeta + \zeta^2 + \zeta^4)$, and $C_2 : \zeta \mapsto \zeta^{-1}$ associated with $\mathbb{Q}(\zeta + \zeta^{-1})$.

The splitting field for $x^5 - 2$ is $\mathbb{Q}(\zeta, \sqrt[5]{2})$; its roots are $\zeta^i \sqrt[5]{2}$. The Galois group is generated by $\sigma : \zeta \mapsto \zeta, \sqrt[5]{2} \mapsto \zeta \sqrt[5]{2}$, and $\tau : \zeta \mapsto \zeta^2, \sqrt[5]{2} \mapsto \sqrt[5]{2}$, i.e., $\sigma = (12345)$ and $\tau = (2345)$; their corresponding fixed subfields are $\mathbb{Q}(\zeta)$ and $\mathbb{Q}(\sqrt[5]{2})$.

7. If K is a radical extension, then so is K''.

Proof: $K = F(a_1, \ldots, a_n)$ with each a_i having $p_i(x)$ as minimal polynomial; thus K'' splits $\prod_i p_i(x)$; but $a_i^{n_i} \in F(a_1, \ldots, a_j)$ so the other roots of $p_i(x)$ also belong to it by applying $\sigma : a_i \mapsto b$; hence every root of $\prod_i p_i(x)$ is radical, so K'' is radical.

- 8. If $\mathbb{Q} \subseteq F$ then a polynomial is solvable by radicals iff it has a solvable Galois group.
- 9. Knowing the abstract Galois group allows us to solve for the roots (if possible). For example, if there are 4 roots with group $C_2 \times C_2$, then $C_2 \times C_1$ fixes roots γ, δ but switches α, β ; so it fixes $\alpha + \beta$ and $\alpha\beta$, so $\alpha + \beta, \alpha\beta \in \mathbb{Q}(\gamma, \delta)$ and α, β can be found by solving $x^2 (\alpha + \beta)x + \alpha\beta = 0$; similarly $\gamma + \delta, \gamma\delta \in \mathbb{Q}$ (because they are fixed by $C_1 \times C_2$).
- 10. By translating, every monic polynomial can be written in reduced form

$$x^n + a_{n-2}x^{n-2} + \dots + a_0$$

The discriminant and Galois group for the low degree reduced polynomials in $\mathbb{Q}[x]$ are:

- (a) Quadratics $x^2 + a$; $\Delta^2 = -4a$, $S_2 = C_2 \triangleright 1$ depending on whether $\Delta \in \mathbb{Q}$, e.g. $x^2 2$, $x^2 1$;
- (b) Cubics $x^3 + bx + a$; $\Delta^2 = -4b^3 27a^2$, $S_3 \triangleright A_3$, e.g. $x^3 x + 1$, $x^3 3x + 1$, depending on $\Delta \in \mathbb{Q}$ if irreducible;
- (c) Quartics $x^4 + cx^2 + bx + a$; $27\Delta^2 = 4I^3 J^2$ where $I = 12a + c^2$, $J = 72ac 27b^2 2c^3$, $S_4 \triangleright A_4 \triangleright C_2 \times C_2$.
- (d) If $p(x) \in \mathbb{Q}[x]$ is irreducible with degree p prime with p-2 real roots and 2 complex roots, then its Galois group is S_p , e.g. $x^5 - 6x + 3$ (proof: $i \leftrightarrow -i$ is an automorphism; but there must be a p-cycle by Cauchy's theorem, so the whole group is S_p). So, in general, quintic polynomials or higher are not solvable since $A_n \triangleleft S_n$ are not solvable groups for $n \ge 5$.

For example, the roots of $x^7 = 1$ cannot be written in radicals (but those of $x^n = 1, n < 7$ can).

- 11. Let F^n represent the space of polynomials of degree n (in reduced form). In general factoring out the permutations of the roots, $F^n \to F^n/S_n$, maps the roots to the coefficients; the 'discriminant' subset of F^n is a number of hyperplanes, maps to a variety, whose complement has fundamental group equal to the braid group with n strands.
- 12. Examples: $x^2 + x + 1$ over \mathbb{Z}_2 : it is irreducible, and has a simple extension $\mathbb{Z}_2(\zeta)$ where $\zeta^2 = \zeta + 1$, in which $x^2 + x + 1 = (x + \zeta)(x + 1 + \zeta)$. $x^2 - (1+i)$ over $\mathbb{Z}_2(1+i)$: extension $\mathbb{Z}_2(1+i,\alpha)$, so $(x-\alpha)^2 = x^2 - \alpha^2 = x^2 - (1+i)$, so there are no other roots; so $x^2 - (1+i)$ is irreducible in $\mathbb{Z}_2(1+i)$ since there are no other roots and it is non-separable.

- 13. A number α is *constructible* by ruler and compasses iff $\mathbb{Q}(\alpha)$ is a radical extension of dimension $\dim_{\mathbb{Q}} \mathbb{Q}(\alpha) = 2^n$ (since intersections of lines and circles are points x such that $x^2 \in \mathbb{Q}(\beta, \ldots, \gamma)$ and $\dim_{\mathbb{Q}(\beta, \ldots, \gamma)} \mathbb{Q}(x) = 2$).
 - (a) $\sqrt[3]{2}$ is not constructible since dim $\mathbb{Q}(\sqrt[3]{2}) = 3$; so no doubling of the cube.
 - (b) $e^{2\pi i/n}$ is not constructible unless $n = 2^r p_1 \cdots p_s$ where p_i are distinct Fermat primes $p = 2^k + 1$ (since dim $\mathbb{Q}(e^{2\pi i/n}) = \phi(n) = \prod_{p^r|n} \phi(p^r)$ and $2^k = \phi(p^r) = (p-1)p^{r-1} \Leftrightarrow p = 2$ OR $p = 2^k + 1$). A Fermat prime must be of the form $2^{2^r} + 1$ (since $x^{mn} + 1 = (x^m + 1)(x^{m(n-1)} - x^{m(n-2)} + \cdots + 1)$ for n odd); the five known Fermat primes have $r = 0, \ldots, 4$. So the regular heptagon and nonagon are not constructible, and in general angles cannot be trisected.
 - (c) $\sqrt{\pi}$ is not constructible since it is transcendental; so no squaring of the circle.

7 Lie Rings

The product xy of a ring in which $2 \neq 0$ splits into two invariant bilinear nonassociative products:

$$xy = \frac{1}{2}(xy + yx) + \frac{1}{2}(xy - yx) =: x \circ y + [x, y]$$

The first symmetric part of the product gives a *Jordan* 'ring', the second antisymmetric part of the product gives a *Lie* 'ring'.

Jordan rings: $y \circ x = x \circ y$, $(x \circ x) \circ (y \circ x) = ((x \circ x) \circ y) \circ x$;

Lie rings: [y, x] = -[x, y], [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0;

Although these are not associative rings, much of the theory of rings can be applied to them. Every Lie ring, but not every Jordan ring, is induced from a ring.

Morphisms preserve the respective products, e.g. $\phi([x, y]) = [\phi(x), \phi(y)]$, an ideal satisfies $[x, I] \subseteq I$. Products are again Jordan/Lie rings.

1. A **derivation** on a ring is a map d on R such that

$$d(x + y) = d(x) + d(y), \quad d(xy) = d(x)y + x d(y),$$

 \mathbf{SO}

$$d(1) = 0, \quad d(nx) = nd(x),$$

$$d(xyz) = d(x)yz + x d(y)z + xy d(z),$$

$$d(x^{n}) = d(x)x^{n-1} + x d(x)x^{n-2} + \dots + x^{n-1}d(x),$$

$$d(x) = 1 \implies d(x^{n}) = nx^{n-1},$$

$$d^{n}(xy) = \sum_{k} \binom{n}{k} d^{k}(x)d^{n-k}(y) \quad \text{(Leibniz)}$$

The derivations form a Lie ring Der(R) with $[d_1, d_2] = d_1d_2 - d_2d_1$.

- 2. The inner derivation associated with a is $\pounds_a(x) := [a, x]$. The rest are called *outer* derivations. An outer derivation becomes an inner derivation in some larger ring.
- 3. A Lie ideal of a Lie ring is a subset that is an ideal wrt [,], i.e., is closed under +, \pounds_a . Examples include any ring ideal, and the center. The inner derivations form a Lie ideal in the Lie ring of derivations, i.e., $[d, \pounds_x] = \pounds_{d(x)}$; in particular, $[\pounds_x, \pounds_y] = \pounds_{[x,y]}$. Quotients by a Lie ideal form a Lie ring.
- 4. The map $R \to \text{Der}(R)$, $x \mapsto \pounds_x$ is a morphism from a ring to its Lie ring of derivations, whose kernel is the center.
- 5. The ring of differentiation operators of an *R*-algebra is defined as that generated by left multiplication and derivations. For example, the Weyl algebra is the algebra of differentiation operators on polynomials R[x], where xa = ax + d(a).
- 6. The derivations of an algebra must satisfy in addition $d(\lambda x) = \lambda d(x)$; Lie ideals must be invariant under scalar multiplication. The statements above remain valid for Lie algebras.
- 7. The derived algebra of a Lie algebra is the ideal $\mathcal{A}' := [\mathcal{A}, \mathcal{A}]; \mathcal{A}/\mathcal{A}'$ is the largest abelian image of $\mathcal{A}; [\mathcal{A}, \mathcal{A}']/[\mathcal{A}, \mathcal{A}''] \leq Z(\mathcal{A}/[\mathcal{A}, \mathcal{A}'']).$ For example, ql(n)' = sl(n) (traceless matrices, $sl(n) = \ker \operatorname{tr}$).

For any Lie algebra, the following 'derived series' can be formed:

 $\cdots \leqslant \mathcal{A}''' \trianglelefteq \mathcal{A}'' \trianglelefteq \mathcal{A}' \trianglelefteq \mathcal{A}$

Solvable Lie algebras have a finite derived series ending in 0. The last ideal $0 \triangleleft \mathcal{A}^{(n)}$ is abelian. Subalgebras and images are solvable. The sum of solvable ideals is again solvable (since both J and $(I + J)/J \cong I/(I \cap J)$ are solvable). Hence the sum of all solvable ideals is the largest solvable ideal in \mathcal{A} , called the *radical*.

Nilpotent Lie algebras have a finite central series of ideals

$$0 \leq \ldots \leq [\mathcal{A}, \mathcal{A}'] \leq [\mathcal{A}, \mathcal{A}] \leq \mathcal{A}$$

$$\Rightarrow \forall x_i, [x_1, [x_2, \dots [x_{n-1}, x_n] \dots]] = 0$$

Note that $\mathcal{A}'' = [\mathcal{A}', \mathcal{A}'] \subseteq [\mathcal{A}, \mathcal{A}']$, so nilpotent Lie algebras are solvable; subalgebras and images are nilpotent; the series can be built up using the centers (as in groups); \mathcal{A} is nilpotent iff $x \mapsto [x, \cdot]$ is nilpotent (Engel).

Abelian Lie algebras: [x, y] = 0.

4

Semi-simple Lie algebras have no solvable ideals (except 0), thus no abelian ideals, no radical, no center. Every derivation is inner. They are isomorphic to a product of non-abelian simple Lie algebras.

Simple Lie algebras are either abelian or semi-simple (since the radical is either 0 or \mathcal{A} with $\mathcal{A}' = 0$). The only simple abelian Lie algebras are 0 and F.

7.0.4 Finite-Dimensional Lie algebras over an Algebraically Closed Field that contains $\mathbb Q$

- 1. Every finite-dimensional Lie algebra can be represented by matrices with [S,T] = ST TS, via $x \mapsto L_x := [x, \cdot]$. Every such representation has a *dual* representation $x \mapsto -L_x^{\mathsf{T}}$.
- 2. The trace map $\operatorname{tr} : \mathcal{A} \to F$ is a Lie morphism since $\operatorname{tr}[S, T] = 0$.
- 3. Let γ be the structure constants¹: $[e_i, e_j] = \gamma_{ij}^k e_k$. There is a Killing form (Cartan metric) $\langle x, y \rangle := \operatorname{tr}(L_x L_y) = \gamma_{is}^t \gamma_{jt}^s$; so

$$\gamma_{ijk} = g_{ks}\gamma_{ij}^{\ s} = \operatorname{tr}[X_i, X_j]X_k = \gamma_{ij}^{\ s}\gamma_{kt}^{\ r}\gamma_{sr}^{\ t}$$

is completely anti-symmetric.

- (a) $\langle [x, y], z \rangle = \langle x, [y, z] \rangle$
- (b) If \mathcal{I} is an ideal, then so is $\mathcal{I}^{\perp} := \{ x : \forall a \in I, \langle x, a \rangle = 0 \}$ (since for $b \in \mathcal{I}^{\perp}, a \in \mathcal{I}, \langle [x, b], a \rangle = \langle [x, a], b \rangle = 0$).
- (c) If $I \cap J = 0$ then $I \perp J$.
- (d) A Lie algebra is semi-simple when its Killing form is non-degenerate, $\mathcal{A}^{\perp} = 0$; it is solvable when $\mathcal{A} \perp \mathcal{A}'$.

Proof: If \mathcal{A} has an abelian Lie ideal $I \neq 0$ then for $a \in I$, $x \in \mathcal{A}$, $[a, x] \in I$, so $[x, [a, x]] \in I$, so $(L_a L_x)^2 = [a, [x, [a, x]]] = 0$, so $\langle a, x \rangle = 0$.

- 4. For a semi-simple Lie algebra, the *Casimir* (or Laplacian) element $\sum_i e_i e^i$ (for any basis) is in the center.
- 5. Every finite-dimensional solvable Lie algebra can be represented by upper triangular matrices.

Proof: $\mathcal{A}' < \mathcal{A}$, so there is a maximal ideal $I \supseteq \mathcal{A}'$, $\mathcal{A} = I \oplus FT$. By induction, $Sv = \lambda_S v$ for all $S \in I$. Then $STv = TSv + [S, T]v = \lambda_S Tv$ $(\lambda_{[S,T]} = 0$ since by induction, S is upper triangular with respect to the vectors v, Tv, T^2v, \ldots , so $n\lambda = \operatorname{tr}[S, T] = 0$. In fact, any w generated by these vectors is a common eigenvector of I; choosing it to be an eigenvector of T shows there is a common eigenvector for all of \mathcal{A} ; hence, by induction, every matrix is triangulizable.

- 6. Every finite-dimensional nilpotent Lie algebra is represented by nilpotent matrices (i.e., strictly upper triangular) since $L_x^n y = [x, \dots, [x, y]] = 0$.
- 7. The Cartan subalgebra of \mathcal{A} is the maximal subalgebra \mathcal{H} which is abelian and consists of diagonalizable elements. It has the property $[x, \mathcal{H}] = 0 \Rightarrow x \in \mathcal{H}$.

¹The Einstein convention suppresses the summation sign \sum over repeated indices, so the given formula means $\sum_k \gamma_{kj}^k e_k \gamma_{kj}^k e_k$

The rest of \mathcal{A} is generated by "step operators" e_{α} , such that $[h_i, e_{\alpha}] = \lambda_{i,\alpha} e_{\alpha}$ (this is essentially a diagonalization of $\gamma_{i\beta}^{\gamma}$ to give the 'Cartan-Weyl' basis).

- 8. (Cartan) Each eigenvalue $\lambda_{i,\alpha}$ corresponds to a unique eigenvector e_{α} , so λ_i can be written instead of $\lambda_{i,\alpha}$, i.e., $[h_i, e_{\alpha}] = \lambda_i e_{\alpha}$ (since from the Lie sum, $[h_i, [h_j, e_{\alpha}]] = \lambda_i [h_j, e_{\alpha}]$). Each e_{α} has an associated *root* vector $\alpha = (\lambda_i)$:
 - $\begin{aligned} \text{(a)} \quad [h_i, e_\alpha] &= \alpha e_\alpha, \\ \quad [h_i, e_{-\alpha}] &= [h_i, e_\alpha^*] = -\lambda_i e_{-\alpha}, \\ \quad [e_\alpha, e_{-\alpha}] &= \alpha \cdot h =: |\alpha|^2 h_\alpha, \\ \quad [e_\alpha, e_\beta] &= \begin{cases} (\alpha + \beta) e_{\alpha+\beta} & \alpha + \beta \text{ is a root}, \\ 0 & \alpha + \beta \text{ is not a root} \end{cases} \\ \quad [h_\alpha, h_\beta] &= 0, \qquad [h_\alpha, e_\beta] &= n_{\alpha\beta} e_\beta, \qquad (n_{\alpha\alpha} = 1) \\ \text{(since by the Lie sum again, } [h_i, [e_\alpha, e_\beta]] &= (\alpha_i + \beta_i)[e_\alpha, e_\beta]; \text{ and} \\ \langle h_i, [e_\alpha, e_{-\alpha}] \rangle &= \langle e_{-\alpha}, [h_i, e_\alpha] \rangle = \alpha_i). \end{aligned}$
 - (b) For this basis,

$$\langle h_i, h_j \rangle = 0, \quad \langle h_i, e_\alpha \rangle = 0, \quad \langle e_\alpha, e_\beta \rangle = 0,$$

but $\langle e_{\alpha}, e_{-\alpha} \rangle \neq 0$ (since $\alpha_j \langle h_i, e_{\alpha} \rangle = \langle h_i, [h_j, e_{\alpha}] \rangle = \operatorname{tr} h_i [h_j, e_{\alpha}] = \operatorname{tr} [h_i, h_j] e_{\alpha} = 0$, and $\lambda \langle e_{\alpha}, e_{\beta} \rangle = \langle e_{\alpha}, [e_{\alpha-\beta}, e_{\beta}] \rangle = \operatorname{tr} e_{\alpha} [e_{\alpha-\beta}, e_{\beta}] = \operatorname{tr} [e_{\alpha}, e_{\alpha-\beta}] e_{\beta} = 0$);

- (c) For each α , h_{α} and e_{α} form an su(2) algebra, with $e_{\alpha}/|\alpha|$ raising the eigenvalues of h_{α} by 1/2; so the eigenvalues of h_{α} are half-integers, $[h_{\alpha}, e_{\beta}] = n_{\alpha}e_{\beta}$, where $n_{\alpha} := \alpha \cdot \beta/|\alpha|^2 \in \frac{1}{2}\mathbb{Z}$.
- (d) Any two roots have an angle of $\pi/2$ or $\pi/3$ or $\pi/4$ or $\pi/6$ or 0. Proof: $\alpha \cdot \beta \leq |\alpha| |\beta|$ implies that $n_{\alpha} n_{\beta} \leq 4$ where $n_{\alpha} = 2\alpha \cdot \beta / |\alpha|^2$; so n_{α}, n_{β} can take the values 0, 0, or 1, 1, or 2, 1, or 3, 1, or 2, 2); if j is the eigenvalue of h_{β} , there are roots between $\alpha - (j + n_{\alpha}/2)\beta, \ldots, \alpha + (j - n_{\alpha}/2)\beta$.
- 9. Finite-dimensional Lie algebras are products of simple and abelian algebras (take the maximal ideal at each stage).

The semi-simple ones are the direct product of non-abelian simple Lie algebras; $\mathcal{A}' = \mathcal{A}$ (to avoid being solvable).

Proof: If \mathcal{A} is semi-simple, then $I \cap I^{\perp} = 0$ else it would be solvable; thus $\mathcal{A} = I \oplus I^{\perp}$, with each again semi-simple.

- 10. Every Lie algebra modulo its radical is semi-simple.
- 11. The non-abelian simple finite-dimensional Lie algebras over an algebraically closed field are classified:

Proof: A root system can be drawn as a Dynkin diagram: circles are simple roots (ie extremal roots), pairs are joined by n_{α} lines. Disconnected diagrams correspond to a decomposition $\mathcal{A} = I \oplus I^{\perp}$, so simple Lie algebras have connected Dynkin diagrams.

Size	Rings (with 1)	Commutative Rings	Fields
1			\mathbb{F}_1
2			\mathbb{F}_2
3			\mathbb{F}_3
4		\mathbb{Z}_4	\mathbb{F}_4
		$\mathbb{Z}_2 imes \mathbb{Z}_2$	
		$\mathbb{Z}_2[a]/\langle a^2 \rangle$	
5			\mathbb{F}_5
6		\mathbb{Z}_6	
7			\mathbb{F}_7
8	$U_2(\mathbb{F}_2) = \begin{pmatrix} \mathbb{F}_2 & \mathbb{F}_2 \\ 0 & \mathbb{F}_2 \end{pmatrix}$	\mathbb{Z}_8	\mathbb{F}_8
		$\mathbb{Z}_2 imes \mathbb{Z}_4$	
		$\mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_2$	
		$\mathbb{Z}_2 imes \mathbb{F}_4$	
		$\mathbb{Z}_2[a]/\langle a^3 \rangle$	
		$\mathbb{Z}_2[a, b: a^2 = ab = b^2 = 0]$	
		$\mathbb{Z}_2[a, b: a^2 = ab = 0, b^2 = b]$	
		$\mathbb{Z}_2[a:2a=0=a^2]$	
		$\mathbb{Z}_2[a:2a=0,a^2=2]$	

8 Examples

Size	Rings (with 1)	Commutative Rings	Fields
9		\mathbb{Z}_9	\mathbb{F}_9
		$\mathbb{Z}_3 imes \mathbb{Z}_3$	
		$\mathbb{Z}_3[a]/\langle a^3 \rangle$	
10		\mathbb{Z}_{10}	
11			\mathbb{F}_{11}
12		\mathbb{Z}_{12}	
		$\mathbb{Z}_3 imes \mathbb{Z}_4$	
		$\mathbb{Z}_3 \times \mathbb{F}_4$	
		$\mathbb{Z}_3 \times (\mathbb{Z}_2[a]/\langle a^2 \rangle)$	
13			\mathbb{F}_{13}
14		\mathbb{Z}_{14}	
15		\mathbb{Z}_{15}	
16	13	23	1

1. \mathbb{N} is a commutative semi-ring without invertibles (except 1). The prime ideals of \mathbb{N} are $2\mathbb{N} + 3\mathbb{N}$ and $p\mathbb{N}$ (p prime or 1).

Proof: Let p be the smallest non-zero element of P; then p is prime or 1; if $P \\ p\mathbb{N}$ has a smallest element q, then $p\mathbb{N} + q\mathbb{N} \subseteq P$ contains all numbers at least from $(pq)^2$ onwards; so must contain all primes, so p = 2, q = 3. There are no proper automorphisms of \mathbb{N} : f(1) = f(0+1) = f(0) + f(1) and $f(1) = f(1 \cdot 1) = f(1)^2$, so f(0) = 0, f(1) = 1, and $f(n) = f(1 + \dots + 1) = n$.

- 2. \mathbb{Z} is a Euclidean Domain.
 - (a) The primes are infinite in number (otherwise $p_1 \cdots p_n + 1$ is not divisible by any p_i).
 - (b) If m, n are co-prime then $m + n\mathbb{Z}$ has infinitely many primes.
 - (c) $\operatorname{Jac}(\mathbb{Z}) = 0 = \operatorname{Soc}(\mathbb{Z}).$
- 3. $\mathbb{Z}_m, m = p^r q^s \cdots$, is a commutative ring:
 - (a) The invertibles are the coprimes gcd(n,m) = 1; the zero divisors are multiples of p, \ldots ; the nilpotents are multiples of $pq \cdots$.
 - (b) The maximal/prime ideals are $\langle p \rangle, \ldots$; the irreducible ideals are $\langle p^i \rangle, \ldots$; so Jac = $\langle pq \cdots \rangle$ = Nilp.
 - (c) The minimal ideals are $\langle n/p \rangle, \ldots$; so Soc = $\langle n/pq \cdots \rangle$.
 - (d) $\mathbb{Z}_m \cong \mathbb{Z}_{p^r} \oplus \cdots \oplus \mathbb{Z}_{q^s}$.
 - (e) Special cases include Z_{pq}... (i.e., m square-free) which is semi-simple, Z_pⁿ which is a local ring, and Z_p which is a field.
 - (f) $x = a_i \pmod{m_i}$ has a solution when m_i are co-prime (Chinese remainder theorem).

- (g) The Z-module-morphisms $\mathbb{Z}_m \to \mathbb{Z}_n$ are multiplications $x \mapsto rx$ where r is a multiple of $n/\gcd(m,n)$ (since $m\phi(1) = \phi(m) = 0$; there are no ring morphisms except 0 and 1 if m = n).
- (h) $n^{\phi(m)} = 1$ for *n* invertible; so, for *n* invertible, $x = y \pmod{\phi(m)} \Rightarrow n^x = n^y \pmod{m}$;
- 4. \mathbb{F}_{p^n} are the finite fields; they have size p^n with p prime: its prime subfield is \mathbb{Z}_p and \mathbb{F}_{p^n} is an *n*-dimensional vector space (Galois extension) over it.
 - (a) The generator ω of the cyclic group $\mathbb{F}_{p^n} \setminus 0$ is called a 'primitive root of unity'. All extensions are simple since $E \setminus 0$ is a cyclic group generated by, say, a, so E = F(a) = F[a].
 - (b) $\mathbb{F}_{p^n} \cong \mathbb{F}_p[x]/\langle q \rangle$ where q(x) is an irreducible polynomial of degree n having ω as a root.
 - (c) The automorphism group $GL(\mathbb{F}_p^n)$, i.e., the Galois group of \mathbb{F}_{p^n} over \mathbb{F}_p , is $C_{p^{n-1}}$ generated by $x \mapsto x^p$ (since $\sigma(x) = x \Leftrightarrow x^p = x \Leftrightarrow x \in \mathbb{F}_p$).
 - (d) The subfields of \mathbb{F}_{p^n} are $\mathbb{F}_{p^k} = \{x : x^k = x\}$ for each k|n; the corresponding subgroups are $C_{p^{n-k}}$. Proof: \mathbb{F}_{p^n} is a vector space over \mathbb{F}_{p^k} i.e., $\dim_{\mathbb{F}_{p^k}} \mathbb{F}_{p^n} = n - k$; conversely, for all $x \in \mathbb{F}_{p^k}, x^{p^k} = x$, so $x^{p^n} = x$.).
 - (e) The algebraic closure is the field $\bigcup_{n \in \mathbb{N}} \mathbb{F}_{p^n}$.
- 5. \mathbb{F}_p
 - (a) The product of all the invertible pairs is $(p-2)! = 1 \pmod{p}$.
 - (b) The squares x^2 are called 'quadratic residues'; when $p \neq 2$ exactly half of the non-zero numbers are squares.

	×	sq.	non-sq.
(c)	sq.	sq.	non-sq.
	non-sq.	non-sq.	sq.

- (d) Quadratic reciprocity:
 - i. $x^2 = -1$ has a solution $\Leftrightarrow p = 1 \pmod{4}$;
 - ii. $x^2 = 2$ has a solution $\Leftrightarrow p = \pm 1 \pmod{8}$;
 - iii. $x^2 = -3$ has a solution $\Leftrightarrow p = 1 \pmod{3}$;
 - iv. $x^2 = 5 \Leftrightarrow p = \pm 1 \pmod{5};$
 - v. For p, q odd primes, q is a square in $\mathbb{Z}_p \Leftrightarrow p$ is a square in \mathbb{Z}_q and -1 is a square in \mathbb{Z}_p or \mathbb{Z}_q , or p is a non-square in \mathbb{Z}_q and -1 is a non-square in \mathbb{Z}_p and \mathbb{Z}_q .
 - vi. $x^2 = 2 \implies x^4 = 2$ when $p = 3 \pmod{4}$;
 - vii. $x^4 = 2 \Leftrightarrow p = a^2 + 64b^2$ when $p = 1 \pmod{4}$.

- 6. \mathbb{Q} is a field: Hom $(\mathbb{Q}) \cong \mathbb{Q}$. It has no proper automorphisms (since for $n \in \mathbb{N}, f(n) = n$, so $1 = f(\frac{1}{n} + \dots + \frac{1}{n}) = nf(\frac{1}{n})$ and $f(\frac{m}{n}) = f(\frac{1}{n} + \dots + \frac{1}{n}) = \frac{m}{n}$.
- 7. $\mathbb{Z}[\sqrt{d}]$: invertibles of $\mathbb{Z}[i\sqrt{d}]$ are ± 1 ; of $\mathbb{Z}[i]$ are $\pm 1, \pm i$; of $\mathbb{Z}[\sqrt{d}]$ are infinitely many (Pell's equation). For $d \ge 3$, $\mathbb{Z}[\sqrt{-d}]$ is not a GCD (2 is irreducible but not prime).
- 8. \mathcal{O}_F Ring of Algebraic Integers: these are those algebraic numbers over F whose minimal polynomials are monic in $\mathbb{Z}[x]$.

 $\mathcal{O}_{\mathbb{Q}(\sqrt{d})} = \begin{cases} \mathbb{Z}[\sqrt{d}] & \text{when } d = 0, 2, 3 \pmod{4}, \\ \left\{ \frac{1}{2}(m + n\sqrt{d}) : m, n \text{ both odd or both even} \right\} & \text{when } d = 1 \pmod{4} \end{cases}$

For d square-free, $\mathcal{O}_{\mathbb{O}(\sqrt{d})}$ is a UFD/PID only for (the italic are not EDs)

$$d = -163, -67, -43, -19, -11, -7, -3, -2, -1,$$

2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 29, 33, 37, 41, 57, 73, ...

and (conjecture) for infinitely many d > 0.

For example, Fermat's theorem: A prime can be expressed as a sum of two squares iff $p = 1 \pmod{4}$ or p = 2 (since $p = a^2 + b^2 = (a + ib)(a - ib)$ in $\mathbb{Z}[\sqrt{-1}]$).

Every algebraic number over \mathbb{Q} is a fraction times an algebraic integer: if x satisfies $\sum_i \frac{m_i}{n_i} x^i = 0$ then multiplying by $n := \operatorname{lcm}(n_i)$ gives $\sum_i m_i r_i (nx)^i = 0$. The only rational algebraic integers over \mathbb{Q} are the integers (since if m/n satisfies a polynomial, then multiply by n^k to get $m^k + q(m)n + a_0n^k = 0$, so $p|n \Rightarrow p|m$.) For example, \sqrt{n} (n not a square) is irrational.

- 9. $\mathbb{Q}_{(2)}$ (rationals without 2 in denominator) is a local ring and a PID. The invertibles have odd numerator/denominator; the only irreducible/prime element is 2; Jac = $\langle 2 \rangle$ and Nil = 0.
- 10. \mathbb{Z} acting on \mathbb{Q} : Jac = \mathbb{Q} , Soc = 0; no maximal or minimal sub-modules; not finitely generated; torsion-free; not free; Hom_{\mathbb{Z}}(\mathbb{Q}) $\cong \mathbb{Q}$.
- 11. $\mathbb{Q}[x]$ is a Euclidean domain.
 - (a) If a polynomial p is reducible in Q[x] then it is reducible in F_p[x] for all p; but there are irreducible polynomials in Q[x] that are reducible in all F_p[x].
 - (b) If a monic polynomial splits in $\mathbb{Z}_p[x]$ into irreducible factors (having simple roots) of degrees n_i , then the Galois group of p(x) has a permutation with cycle structure n_i , e.g. $x^5 x 1$ is irreducible in $\mathbb{Z}_3[x]$ so there is a cycle (12345), but in $\mathbb{Z}_2[x]$, it equals $(x^2 + x + 1)(x^3 + x^2 + 1)$ so there is a cycle (ab)(cde), hence the Galois group is S_5 .

(c) The cyclotomic polynomials are irreducible. Proof: If $\phi_n(x) = p(x)q(x)$ with p irreducible, then ζ is a root of p(x)but ζ^p is not a root, for some $p \not| n$, wolog prime; so ζ is a root of both

p(x) and $q(x^p)$, so there is a common factor of p(x) and $q(x^p) = q(x)^p$ in $\mathbb{F}_p[x]$, hence p(x), q(x) have a common factor in $\mathbb{F}_p[x]$, so $x^n - 1$ has multiple factors, a contradiction.

Hence the root ζ_n of $x^n = 1$ is an algebraic integer of degree $\phi(n)$ (=degree of ϕ_n).

12. F[x, y]: $\langle x, y \rangle$ is maximal; $\langle x \rangle$, $\langle x, y \rangle$, ... are prime; $\langle x^r, y^s \rangle$ are irreducible. $\langle x, y \rangle^2 \subset \langle x^2, y \rangle \subset \langle x, y \rangle$, so $\langle x^2, y \rangle$ does not have a factorization into prime ideals.

8.1 Matrix Algebras $M_n(V)$

1. Idempotents are the projections $P|_{\ker P} = 0$ and $P|_{\operatorname{im} P} = I$, so $X = \operatorname{im} P \oplus \ker P$.

Proof: $x = Py \Rightarrow Px = P^2y = Py = x$, $P^2x = P(Px) = Px$; $x = (x - Px) + Px \in \ker P + \operatorname{im} P$, $x \in \ker P \cap \operatorname{im} P \Rightarrow x = Px = 0$.

2. The following definitions for a square matrix T are independent of a basis,

 $\begin{array}{ll} \mathrm{Trace} & \mathrm{tr}\,T:=T_i^i, & \mathrm{tr}\,(S+T)=\mathrm{tr}\,S+\mathrm{tr}\,T, \\ \mathrm{Determinant} & \det T:=\sum_{\sigma\in S_n}\mathrm{sign}\,\sigma \,\prod_{i=1}^n T_i^{\sigma(n)}=\epsilon^{ij\cdots k}T_{1i}T_{2j}\cdots T_{nk}, \\ & (\epsilon^{ij\cdots k}=\mathrm{sign}(ij\cdots k) \\ & \det(ST)=\det S\det T, \\ & \det T^{\scriptscriptstyle \top}=\det T, \det \lambda=\lambda^n \end{array}$

(expansion by co-factors; use Gaussian elimination). Cauchy-Binet identity: for $A: U \to V, B: V \to W$,

$$\det_{I,J}(BA) = \sum_{|K|=n} (\det_{J,K} B) (\det_{K,I} A),$$

where $\det_{K,I} A$ is the determinant of the square matrix with rows I and columns K, and |I| = |J| = |K|.

- 3. A matrix T is invertible \Leftrightarrow T is 1-1 \Leftrightarrow T is onto \Leftrightarrow det $T \neq 0 \Leftrightarrow$ T is not a divisor of 0 (since dim im $T = \dim V \Leftrightarrow \operatorname{im} T = V$), $T^{-1} = \frac{1}{\det T} \operatorname{Adj}(T)$;
- 4. For finite dimensions, $M_n(V)$ has no proper ideals, so Jac = 0.
- 5. Each eigenvalue λ of T has a corresponding eigenspace $\bigcup_i \ker(T-\lambda)^i$ that is T-invariant.
 - (a) For each eigenvalue, $Tx = \lambda x$, $T^{-1}x = \lambda^{-1}x$, $p(T)x = p(\lambda)x$. Proof: $m(x) = (x - \lambda)p(x) \Rightarrow 0 = m(T) = (T - \lambda)p(T) \Rightarrow \exists v \neq 0, (T - \lambda)v = 0$. Conversely, $\forall v, 0 = m(T)v = m(\lambda)v \Rightarrow m(\lambda) = 0$,

- (b) Distinct eigenvectors are linearly independent. Proof: If $\sum_i a_i v_i = 0$ then $\sum_i a_i \lambda_i v_i = 0$; if $a_j \neq 0$, then $\sum_i a_i (\lambda_i - \lambda_j) v_i = 0$ so by induction $a_i = 0, i < j$, so $a_j v_j = 0$.
- 6. (a) T is said to be diagonalizable when there is a basis of eigenvectors; equivalently the minimum polynomial has distinct roots, or each eigenspace is $\ker(T-\lambda)$.
 - (b) Every matrix has a triangular form. Proof: c_T splits in the algebraic closure of F, so for any root λ and eigenvector v, $\llbracket v \rrbracket$ is T-invariant, and so T can be defined on $X/\llbracket v \rrbracket$; hence by induction).
 - (c) If S, T are invertible diagonalizable symmetric matrices, and S + αT is non-invertible for n values of α , then S, T are simultaneously diagonalizable.

Proof: $S^{-1}T - \lambda_i$ is non-invertible i.e., $\exists v_i, S^{-1}Tv_i = \lambda_i v_i$ for nvalues of λ_i ; so $\lambda_i v_i^{\mathsf{T}} S v_j = (S^{-1} T v_i)^{\mathsf{T}} S v_j = v_i^{\mathsf{T}} T^{-1} v_j = \lambda_j v_i^{\mathsf{T}} S v_j$, hence $\lambda_i \neq \lambda_j \Rightarrow v_i^{\mathsf{T}} S v_j = 0 = v_i^{\mathsf{T}} T v_j.$

7. Nilpotent matrices have the form
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \vdots \end{pmatrix}$$
 (with respect to the following

basis: consider the *T*-invariant subspaces $0 \leq T^{-1}0 \leq T^{-2}0 \leq \ldots \leq T^{-n}0 = X$, so $X = T^{-1}0 \times \frac{T^{-2}0}{T^{-1}0} \times \cdots \times \frac{T^{-n}0}{T^{-n+1}0}$; then if $u_i + T^{-k}0$ are linearly independent, then so are $Tu_i + T^{-k+1}0$; thus start with a basis for $T^{-n}0/T^{-n+1}0$, and extend for each subspace until $T^{-1}0$;

- 8. The (upper) triangular matrices form a subalgebra $U_n(F^n)$, which contains the sub-algebra Diag of the diagonal matrices. The Jacobson radical of U_n consists of the strictly triangular matrices $\mathcal{N}(F^n)$ (since the map $U_n \to$ $Diag, A \mapsto D$ is a morphism with kernel being the (super-)nilpotents, i.e., Jac), U_n /Jac is semi-simple with n simple sub-modules.
- 9. Jordan Canonical Form: If F is agebraically closed, the minimum polynomial splits into factors $(x-\lambda)^k$, consider the decomposition $T = \lambda + (T-\lambda)$, with $(T - \lambda)^k = 0$, so that T is the sum of a diagonal and a nilpotent matrix. So det $T = \prod_i \lambda_i$, tr $T = \sum_i \lambda_i$;

10. Every matrix T decomposes into a 'product' of irreducible matrices $\begin{pmatrix} T_1 \\ T_2 \\ \ddots \end{pmatrix}$

/λ 1

(via the decomposition of F[T] into T-invariant submodules M_p , where $\llbracket x \rrbracket = F[T]x = \llbracket x, Tx, \dots, T^{m-1}x \rrbracket$). The minimum polynomial of such a product is the lcm of the minimum polynomials of T_i ; conversely, when

$$m_T(x) = p_1(x) \dots p_r(x)$$
 is its irreducible decomposition, then $T_i = \begin{pmatrix} \lambda & \lambda \\ \lambda & \ddots \end{pmatrix}$

The characteristic polynomial of this 'product' is the product of the characteristic polynomials.

11. Linear Representations (in the group of automorphisms GL(n)): the number of inequivalent irreducible representations = number of conjugacy classes; $\sum_i n_i^2 = |G|$, where n_i are the dimensions of the irreducible representations; if the representation is irreducible then $\chi \cdot \chi = |G|$; for two irreducible representations, $\chi_T \cdot \chi_S = 0$.

8.1.1 Tensor Algebras

A multi-linear map is a map on $X^r \times (X^*)^s$ which is linear in each variable. They form the *tensor algebra* $\mathcal{T}_s^r(X)$, with product

$$T \otimes S(x, \ldots, y, \ldots) := T(x, \ldots)S(y, \ldots),$$

or in coordinates, $T^{i\dots}_{j\dots}S^{k\dots}_{l\dots}$. It is associative and graded, i.e., if $S \in \mathcal{T}^r_s(X)$ and $T \in \mathcal{T}^{r'}_{s'}(X)$ then $S \otimes T \in \mathcal{T}^{r+r'}_{s+s'}(X)$.

Tensor algebras have dual tensor algebras, $\mathcal{T}(X)^* \cong T(X^*)$ $(S^* \otimes T^{**}(x, y^*) = S^*(x)T^{**}(y^*)$ is an isomorphism).

Contraction: For each $x \in X$, the map $A_{i...} \mapsto A_{i...}x^j$ is a morphism $\mathcal{T}_s^r(X) \to \mathcal{T}_s^{r+1}(X)$; its dual map is *contraction* by $x, A_{i...}x^j \mapsto A_{i...}x^i, \mathcal{T}_s^r(X) \to \mathcal{T}_{s-1}^r(X)$, here generically denoted by $A \cdot x$.

1. Every bilinear form splits into a symmetric and an anti-symmetric part (if $2 \neq 0$) since $T(x,y) = \frac{1}{2}(T(x,y) + T(y,x)) + \frac{1}{2}(T(x,y) - T(y,x))$; the symmetric part is determined by the *quadratic* form T(x,x) since the polarization identity holds:

$$\frac{1}{2}(T(x,y) + T(y,x)) = \frac{1}{2}(T(x+y,x+y) - T(x,x) - T(y,y))$$

- 2. An inner product $\langle \cdot, \cdot \rangle$ is a symmetric bilinear form g_{ij} .
 - (a) When invertible, there is a correspondence between vectors and covectors (raising and lowering of indices), via $A_i = g_{ij}A^j$, so $V^* \cong V$.
 - (b) It extends to act on tensors, $\langle A, B \rangle = A_{ij...}B^{ij...}$ if of the same grade, otherwise 0.
 - (c) Any 2-tensor can be decomposed into $\alpha g_{ij} + A_{ij} + B_{ij}$ where A is anti-symmetric, B is traceless symmetric (spin-0+spin-1+spin-2).
- 3. A symplectic form is an anti-symmetric bilinear form. Example: $X \times X^*$ has a symplectic form $\omega\begin{pmatrix} x \\ \phi \end{pmatrix}, \begin{pmatrix} y \\ \psi \end{pmatrix} := \psi(x) \phi(y)$; the canonical one-form is $\theta\begin{pmatrix} x \\ \phi \end{pmatrix} = \phi(x)$.

8.1.2 Clifford Algebras and Exterior Algebras

Given a vector space X over F with an inner product \langle , \rangle , then the *Clifford* algebra $\mathcal{C}\ell(X)$ is an algebra over F that contains X such that for $x \in X$,

$$x^2 = \langle x, x \rangle$$

It is realized as the quotient of the tensor algebra $\mathcal{T}(X)/\langle x^2 - \langle x, x \rangle \rangle$ (more generally, for any ring, $R\langle x_1, ..., x_n \rangle/\langle x_i x_j + x_j x_i = 0, x_i^2 = \langle x_i, x_i \rangle \rangle$). Thus

$$\langle x, y \rangle = \frac{1}{2}(xy + yx), \quad x \wedge y := \frac{1}{2}(xy - yx) = -y \wedge x,$$

so $xy = \langle x, y \rangle + x \wedge y$

(assuming throughout $2 \neq 0; x, y, \dots$ denote vectors, a, b, \dots tensors).

Three special cases are:

- 1. The exterior algebra $\Lambda(X)$ with $\langle , \rangle = 0$. It consists of the totally antisymmetric tensors, $A_{\sigma(i...)} = \operatorname{sign}(\sigma)A_{i...}$ (in indices it is written as $A_{[i...]}$).
- 2. Euclidean algebra with g = 1, i.e., $\langle e_i, e_j \rangle = \delta_{ij}$,
- 3. Spinor algebra with g = -1, i.e., $e_i^2 = -1$.

 \wedge is extended to tensors by taking it to be associative, and distributive over +.

1. For example, for
$$g_{ij} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = 3i - 3j + k - 4ijk.$$

- 2. Orthogonal vectors satisfy $\langle x, y \rangle = 0$, so $xy = x \wedge y = -yx$; more generally, $x \cdots y = x \wedge \ldots \wedge y$.
- 3. For an orthonormal basis,

$$x_1 \wedge \ldots \wedge x_n = \frac{1}{n!} \varepsilon^{i_1 \cdots i_n} x_{i_1} \cdots x_{i_n} = \det[x_1, \ldots, x_n] e_1 \ldots e_n,$$

where the matrix columns are the x_i 's in terms of the basis.

- 4. (a) Vectors are invertible with $x^{-1} = x/\langle x, x \rangle$, unless $\langle x, x \rangle = 0$, when x is called *null*.
 - (b) $xyx = 2\langle x, y \rangle x x^2 y$ (since $xy = \langle x, y \rangle + \frac{xy yx}{2}$).
- 5. The algebra is graded: as a vector space it is isomorphic to $\sum_k \Lambda_k(X)$
 - (a) $\Lambda_0(X) = F$, scalars,
 - (b) $\Lambda_1(X) = X$, vectors,

- (c) $\Lambda_2(X)$ consists of 2-forms A^{ij} ; for x, y linearly independent, $x \wedge y$ corresponds to the plane $[\![x, y]\!]$ (with an orientation),
- (d) $\Lambda_k(X)$ is generated by $e_{i_1} \cdots e_{i_k}$ $(i_1 < \cdots < i_k)$, so has dimension $\binom{n}{k}$ where $n = \dim X$. Each $x_1 \land \ldots \land x_k$ defines a sub-space $[\![x_1, \ldots, x_k]\!]$, which satisfies the equation $x \land (x_1 \land \ldots \land x_k) = 0$.
- (e) When finite-dimensional, the 'highest' space is a one-dimensional space of *pseudo-scalars*, $\Lambda_n(X) = \llbracket \omega \rrbracket$, generated by $\omega := e_1 \cdots e_n$, with indices $\varepsilon_{i...j}$.

The dimension of the algebra is thus 2^n .

- 6. $\mathcal{C}(X)$ splits into the even and odd elements $\Lambda_{even} \oplus \Lambda_{odd}$; products of an even/odd number of vectors is of even/odd grade: even even odd odd odd even thus the even-graded elements form a sub-algebra, isomorphic to the Clifford algebra on e^{\perp} with symmetric form $-\langle e, e \rangle g$ for any non-degenerate e.
- 7. (a) $a \wedge b = \pm b \wedge a$ with + when a, b are both odd or both even; even and odd elements are 'invariant', $a \wedge b = c \wedge a$.
 - (b) $x \wedge y + \dots + x' \wedge y' = 0 \implies x, x' \in \llbracket y, \dots, y' \rrbracket$,
 - (c) $x \wedge \ldots \wedge y = 0 \Leftrightarrow x, \ldots, y$ are linearly dependent;
 - (d) $a \wedge a = 0 \Leftrightarrow a = x \wedge y$ (the set of such a is called the Klein quadric)
- 8. Contraction by $x \in V$ maps $\Lambda_k \to \Lambda_{k-1}$, and is the dual map of $x \wedge$.
 - (a) $x \cdot (y \cdot a) = -y \cdot (x \cdot a)$, so double contraction by x gives 0.
 - (b) $x \cdot (a \wedge b) = (x \cdot a) \wedge b \pm a \wedge (x \cdot b)$, with + when a is even.
- 9. The radical of ΛX is the ideal generated by the generators x_i ; the center is generated by the even elements and the *n*th element. ΛX and its center are local rings.
- 10. In finite dimensions, the *Clifford group* is the group of invertible elements a for which $ax(Pa)^{-1}$ is a vector for all $x \in X$; it acts on X by $x \mapsto ax(Pa)^{-1}$. The subgroup of elements of norm 1 is called Pin(X), and its subgroup of det = 1 is called Spin(X).
- 11. In finite dimensions,
 - (a) $\varepsilon^{ab...}\varepsilon_{cd...} = \sum_{\sigma} \operatorname{sign}(\sigma) \delta^a_{\sigma(c)} \delta^b_{\sigma(d)}$, in particular $\varepsilon^{abc} \varepsilon_{ade} = \delta^b_d \delta^c_e \delta^b_e \delta^c_d$, $\varepsilon^{ab...}\varepsilon_{ab...} = n!;$
 - (b) Hodge-dual map $*: \Lambda_k(X) \to \Lambda^{n-k}(X), a_{i\cdots k} \mapsto \varepsilon^{i\cdots k\cdots n} a_{i\cdots k} = \omega a?;$ $** = \pm \pm 1$ with first – when *n* is even and *k* odd, and second + when the number of -1s of the inner product *g* is even; $*(\alpha \wedge *.) = (-1)^{nk} (\alpha \wedge)^*$ (contraction with α).

(c) $\Lambda_k \cong \Lambda_{n-k}$ via the Hodge map, $*a \cdot b\varepsilon = a \wedge b$;

- 12. Linear transformations $T : X \to Y$ extend to $T : \mathcal{C}\ell(X) \to \mathcal{C}\ell(Y)$ (linear) by $T(a \land b) := Ta \land Tb$. Then $T\omega = (\det T)\omega$, so $\det(ST) = \det S \det T$ (since $\det(ST)\omega = (ST)(\omega) = S(\det T\omega) = \det T \det S\omega$). $T^*\omega(x_1,\ldots,x_n) = \omega(Tx_1,\ldots,Tx_n) = (\det T)\omega(x_1,\ldots,x_n)$. $T^{-1} = \frac{1}{\det T}\omega T^{\top}\omega^{-1}$.
- 13. Morphisms T(xy) = (Tx)(Ty) are the linear transformations that preserve the inner product, $\langle Tx, Ty \rangle = \langle x, y \rangle$.
- 14. Reflections P have the property $P^2 = I$, Px = -x; they fix the even subalgebra but not the odd. For example, in Euclidean algebra, $x \mapsto -uxu$ is a reflection along the normal u (since $u \mapsto -u$, $u^{\perp} \mapsto u^{\perp}u^2 = u^{\perp}$).
- 15. There is a transpose, $(x \cdots y)^{\top} := y \cdots x$, e.g. $1^{\top} = 1$, $x^{\top} = x$, $a^{\top} = \pm a$ for a even/odd; $\omega^{\top} = \pm \omega$ (+ when $n = 0, 1 \pmod{4}$).

$$(ab)^{\top} = b^{\top}a^{\top}, \qquad a^{\top \top} = a$$

Conjugation is then $a \mapsto a^* := Pa^{\top}$, so $x^* = -x$, $(xy)^* = -yx$.

16. A rotor in the plane a := xy, where $x^2y^2 = \pm 1$, is the map $R : x \mapsto a^{\top}xa$.

$$\langle Ru, Rv \rangle = \frac{1}{2}(RuRv + RvRu) = \frac{1}{2}yx(uv + vu)xy = \langle u, v \rangle.$$

Over \mathbb{R} , $a = xy = \cos \frac{\theta}{2} + \sin \frac{\theta}{2} b = e^{\frac{1}{2}\theta b} (b^2 = -1)$; A spinor is of the type $a = \alpha + \beta \omega$; then $R : v \mapsto a^{\top} va$ gives $Rv = (\alpha^2 + \beta^2)v$ (for dim X = 0, 3 (mod 4)).

- 17. The inner product extends to a bilinear product on $\mathcal{C}\ell(X)$ by $\langle a, b \rangle := (a^{\top}b)_0$ (the scalar term of $a^{\top}b$).
 - (a) For a, b of grades $r, s, ab =: a * b + \dots + a \wedge b$, where a * b has grade |r s|; in particular, $xa = x * a + x \wedge a$, $a * x = \pm x * a$; for a of grade 2, $ab = a * b + [a, b] + a \wedge b$.
 - (b) $\langle a, b \rangle = \sum_{k=0}^{n} (a)_k (b)_k$
 - (c) $\langle x, y \cdots z \rangle = \frac{1}{2} (xy \cdots z \pm y \cdots zx)$
 - (d) $\langle x \cdots y, z \rangle = \langle x, z \rangle \cdots \langle y, z \rangle$.
 - (e) $\langle x, y \wedge z \rangle = -\langle y \wedge z, x \rangle$
 - (f) $\langle x_1 \wedge \ldots \wedge x_k, y_1 \wedge \ldots \wedge y_l \rangle := \det[\langle x_i, y_j \rangle]$ for k = l, and 0 otherwise.
 - (g) $\langle x^{\top}y, z \rangle = \langle y, xz \rangle, \langle yx^{\top}, z \rangle = \langle y, zx \rangle$
 - (h) $a * (b\omega) = (a \wedge b)\omega$ for a, b of low enough grade (since $(ab\omega)_k = (ab)_{n-k}\omega$).

18. The Clifford algebras over \mathbb{R} and \mathbb{C} are classified:

Over \mathbb{R} , every non-degenerate symmetric form is equivalent to one with 'signature' p, q, i.e., $e_i^2 = \pm 1$. The even sub-algebra of $\mathcal{C}_{p,q}(\mathbb{R})$ is $\mathcal{C}_{p,q-1}(\mathbb{R})$ if q > 0, and $\mathcal{C}_{q,p-1}(\mathbb{R})$ if p > 0; so $\mathcal{C}_{p,q}(\mathbb{R})$ equals

(For example, $\mathcal{C}\!\ell_{0,2}(\mathbb{R})$ has basis $1, i, j, \omega$; the even sub-algebra is \mathbb{C} . $\mathcal{C}\!\ell_{0,3}(\mathbb{R})$ has basis $1, i, j, k, i := ij, j, k, \omega$; the even sub-algebra is \mathbb{H} .).

Over \mathbb{C} , every non-degenerate symmetric form is equivalent to I, so $\mathcal{C}\ell_n(\mathbb{C})$ equals

8.1.3 Weyl algebra

The Weyl algebra over $F \supseteq \mathbb{Q}$ is the algebra of differential operators on F[x]; it is that algebra generated by x, y such that [y, x] = 1; it is realized as $F\langle x, y \rangle / [yx - xy - 1]$, and is the smallest algebra that contains F[x] in which $\partial_x = \mathcal{L}_y$.

For more variables it is similar: $[x_i, x_j] = 0 = [y_i, y_j], y_i x_j = 0, [y_i, x_i] = 1;$ it acts on $F[x_1, ..., x_n]$ via multiplication and differentiation.

1. A Weyl algebra is simple: every non-zero Lie ideal contains 1.

Proof: Elements of the form $x^a y^b$ generate the algebra since yx = xy + 1. $\pounds_x = \partial_x$, $\pounds_y = \partial_y$. But differentiation reduces the degree of a polynomial, so if $a \in I$, $a \neq 0$, then $\pounds_x(a) \neq 0$, so a sequence of derivatives $\pounds_x \pounds_y ...(a) \neq 0$.

2. The same proof shows that the center of a Weyl algebra is F.

8.1.4 Incidence algebra $\mathbb{N}[\leqslant]$

consists of functions f(m, n), where m|n, with

$$(f+g)(m,n) := f(m,n) + g(m,n), \quad f * g(m,n) := \sum_{m \mid i \mid n} f(m,i)g(i,n)$$

The identity is the Kronecker delta function $\delta(m, n)$.

The inverse of the constant function 1 is $\mu'(m,n) := \mu(n/m)$ where μ is the Möbius function $\mu(n) = \begin{cases} (-1)^k & n = p_1 \cdots p_k, \text{ square free} \\ 0 & n \text{ not square-free} \end{cases}$; $\mu(mn) = \mu(m)\mu(n)$.

The incidence algebra on a (finite) ordered space $\mathbb{Q}[\leq]$ is isomorphic to the algebra of upper triangular matrices in which $A_{ij} = 0$ for $i \leq j$ (in the ordered space).

8.1.5 Lie algebras

- 1. so(n) the skew-symmetric matrices $\langle Ax, y \rangle = -\langle x, Ay \rangle$, i.e., $A^{\top}g = -gA$; has basis of $F_{ij} := -i(E_{ij} - E_{ji})$ and $H_i := F_{2i-1,2i}$; dimension $\binom{n}{2}$; $[H_i, F_{2i-1,j}] = iF_{2i,j}, [H_i, F_{2i,j}] = -iF_{2i-1,j}$. so(3) (g = 1) is generated by $l_1 := \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, l_2 := \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, l_3 := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$ with $[l_i, l_j] = \epsilon_{ijk} l_k$; or $L_i := il_i$ with $[L_i, L_j] = i\epsilon_{ijk} L_k$. $L^2 := L_1^2 + L_2^2 + L_3^2$ commutes with each L_i , so the eigenstates of L^2 (with eigenvalues n(n+1)) are common to all L_i . But $e^{2\pi i l} = -1$ not +1, so e^{itl} really act on spinors, not vectors. so(4) and so(5) have rank 2.
- 2. sl(n) the traceless matrices; basis of $H_i := E_{ii} E_{i+1,i+1}$ and E_{ij} $(i \neq j)$; dimension $n^2 - 1$; $[H_i, E_{ij}] = E_{ij}, [H_i, E_{i+1,j}] = -E_{i+1,j}, [H_i, E^{\top}] = -E^{\top}, [H_i, E_{i,i+1}] = 2E_{i,i+1}, [E_{ij}, E_{ji}] = E_{ii} - E_{jj}.$
- 3. u(n) the skew-adjoint matrices $A^*g = -gA$. Contains su(n), the traceless skew-adjoint matrices. The simplest, of rank 1, is $su(2) \cong so(3)$ (g = 1), generated by the 'Pauli' matrices $\sigma_1 = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $\sigma_3 = i \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, with $[\sigma_i, \sigma_j] = \epsilon_{ijk}\sigma_k$; or by $\sigma_+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\sigma_- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, σ_3 , with $[\sigma_+, \sigma_-] = \sigma_3$, $[\sigma_3, \sigma_\pm] = 2\sigma_\pm$.

$$su(3)$$
 has rank 2, having Cartan subalgebra $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$

- 4. sp(2n) matrices $A^{\top}\Omega = -\Omega A$ where $\Omega = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$; basis of $H_i := E_{ii} E_{i+n,i+n}$, $A_{ij} := E_{ij} E_{i+n,j+n}$, $B_{ij} := E_{i+n,j+n} + E_{j+n,i+n}$, $C_{ij} = 2E_{i+n,j+n}$; dimension $\binom{2n}{2}$.
- 5. Upper triangular matrices of dimension $\binom{n+1}{2}$; contains the sub-algebra of Nilpotent matrices of dimension $\binom{n}{2}$, e.g. n = 3 is called the Heisenberg algebra.