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1 Semi-Rings

The morphisms on a commutative monoid have two operations: addition and
composition, (φ + ψ)(x) = φ(x) + ψ(x), (φ ◦ ψ)(x) = φ(ψ(x)). They form the
defining template for algebras having two operations:

Definition A semi-ring is a set R with two associative operations +, ·,
where + is commutative with identity 0, and · has identity 1, related together
by the distributive laws

a(b+ c) = ab+ ac, (a+ b)c = ac+ bc,

and 0a = 0 = a0 (0 is a zero for ·).
A semi-module is a semi-ring R acting (left) on a commutative monoid X

as endomorphisms, i.e., for all a, b ∈ R, x, y ∈ X ,

a(x+ y) = ax+ ay, a0 = 0,
(a+ b)x := ax+ bx, 0x := 0,

(ab)x := a(bx), 1x := x

Thus a semi-ring is a semi-module by acting on itself (either left or right).

Repeated addition and multiplication are denoted by nx = x + · · ·+ x and
an = a · · ·a. Then N acts on X , forming a (trivial) semi-module,

(m+ n)x = mx+ nx, m(nx) = (mn)x,

n(x+ y) = nx+ ny, n0 = 0, n(ab) = (na)b = a(nb)

(the last follows by induction: n+(ab) = n(ab) + (ab) = (na)b + (ab) = (na +
a)b = (n+a)b.) Thus multiplication is a generalization of repeated addition.
(Exponentiation ab is not usually well-defined e.g. in Z3, 2

1 6= 24.)

(a+ b)2 = a2 + ab+ ba+ b2,

(a+ b)n = an + an−1b + an−2ba+ · · ·+ ban−1 + · · ·+ bn

Only for the trivial semi-ring { 0 } is 1 = 0. If R doesn’t have a 0 or 1, they
can be inserted: define 0 + a := a, a + 0 := a, 0 + 0 := 0, 0a := 0, a0 := 0,
00 := 0, and extend to N×R with (n, a) written as n+ a and

(n+ a) + (m+ b) := (n+m) + (a+ b),

(n+ a)(m+ b) := (nm) + (na+mb+ ab).
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Then the associative, commutative, and distributive laws remain valid, with
new zero (0, 0) and identity (1, 0), and with R embedded as 0×R.

Monoid terminology, such as zero, nilpotent, regular, invertible, etc. are
reserved for the multiplication. If they exist, a ‘zero’ for + is denoted ∞; a
+-inverse of x is denoted by −x (‘negative’), and (−n)x := n(−x).

+,· Finite Artinian Noetherian

Semi-Rings
(x+ y)z = xz + yz

N NN

Rings
−x

Zm[G],Mn(Zn) Q[G] Un(Z) Z〈x, y, . . . 〉/〈x2, y3, . . . 〉

Semi-
Primitive

///// ///// Mn(Z) Q〈x, y〉

Semi-Simple Zp[G], Mn(Fpn) Mn(Q), H ///// /////
Commutative rings
xy = yx

Zm, Fpn × Fqm F[x]/〈xn〉 Zn[x] ZZ, Zn[x, y, . . .]

Integral Domains
xy = 0 ⇒
x = 0 or y = 0

///// ///// Z[x] AZ

Principal Ideal Do-
mains

///// ///// Z, Q[x] /////

Fields
x−1

Fpn Q ///// /////

(G finite group)

1.0.1 Examples

• Some small examples of semi-rings (subscripts are ab, with a0 = 0, a1 = a
suppressed)

+× 0 1
0 0 1
1 1 1

0 1 2
1 2 1
2 1 00

0 1 2 3
1 1 1 1
2 1 20 32
3 1 30 33

• N with +,×. More generally, sets with disjoint union and direct product.

• Subsets with △ and ∩.
• Hom(X) is a semi-ring acting on the commutative monoid X .

• Distributive lattices, e.g. N with max,min, N with lcm, gcd.

• N with max,+ (and −∞ as a zero).

• Subsets of a Monoid, with ∪ and product AB := { ab : a ∈ A, b ∈ B }.
• Every commutative monoid is trivially a semi-ring with xy := 0 (x, y 6= 1).
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• Every semi-ring has a mirror-image opposite semi-ring with the same +
but a ∗ b := ba. Rop acts on an R-semi-module X by x ∗ a := ax.

Morphisms of semi-modules are linear maps T : X → Y ,

T (x+ y) = T (x) + T (y), T (ax) = aT (x).

Morphisms of semi-rings are maps φ : R→ S,

φ(a+ b) = φ(a) + φ(b), φ(ab) = φ(a)φ(b),
φ(0) = 0, φ(1) = 1

The spaces of such morphisms are denoted HomR(X,Y ) and Hom(R,S) respec-
tively.

1. For semi-modules, isomorphisms are invertible morphisms; the trivial mod-
ule { 0 } is an initial and zero object (i.e., unique 0→ X → 0).

2. HomR(X,Y ) is itself an R-semi-module with

(S + T )(x) := S(x) + T (x), (aT )(x) := aT (x)

3. For semi-rings, N is an initial object (i.e., unique N→ R). Ring morphisms
preserve invertibility, φ(a)−1 = φ(a−1).

4. If a is invertible, then conjugation τa(x) := a−1xa is a semi-ring automor-
phism. If a is invertible and central (ax = xa) then its action on X is a
semi-module automorphism.
a−1 + b−1 = a−1(b + a)b−1

5. The module-endomorphisms of a semi-ring are x 7→ xa, hence HomR(R)
is isomorphic to R (as a module). Similarly, HomR(R,X) ∼= X (via T 7→
T (1)).

6. Every semi-ring is embedded in some Hom(X) for some commutative
monoid X (take X := R+).

Products: The product of R-semi-modules X × Y and functions XS are
also semi-modules, acted upon by R, with

(x1, y1) + (x2, y2) := (x1 + x2, y1 + y2), a(x, y) := (ax, ay),

(f + g)(t) := f(t) + g(t), (af)(t) := af(t).

For semi-rings, (fg)(t) := f(t)g(t). A free semi-module is given by R acting on
RS . Note the module morphisms ιi : X → Xn, x 7→ (. . . , 0, x, 0, . . .) and πi :
Xn → X , (x1, . . . , xn) 7→ xi. HomR(X × Y, Z) ∼= HomR(X,Z) × HomR(Y, Z)
(let T 7→ (TX , TY ) where TX(x) := T (x, 0)).
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Matrices: The module morphisms Rn → Rm can be written as matrices of
ring elements,







x1
...
xn






7→







a11 · · · a1n
...

...
am1 · · · amn













x1
...
xn






:=







x1a11 + · · ·+ xna1n
...

x1am1 + · · ·+ xnamn






,

forming a semi-module Mm×n(R) with addition and scalar multiplication

(aij) + (bij) := (aij + bij), r(aij) := (raij).

When n = m, the matrices form a semi-ring Mn(R) on +, ◦. More generally,

HomR(X
m, Y n) =Mn×m(HomR(X,Y ))

(the matrix of T has coefficients Tij := πi ◦ T ◦ ιj : X → Xn → Y m → Y ).

Polynomials: A polynomial is a finite sequence (a0, . . . , an, 0, . . .), written
as a formal sum a0 + a1x + · · · + anx

n, n ∈ N, ai ∈ R with addition and
multiplication defined by

∑

i

aix
i+

∑

i

bix
i :=

∑

i

(ai+bi)x
i,

(

∑

i

aix
i
)(

∑

j

bjx
j
)

:=
∑

k

(

∑

i+j=k

aibj
)

xk

Much more generally, given a semi-ring R and a category C, R can be ex-
tended to the semi-ring

R[C] := { a : C → R, supp(a) is finite }

(supp(a) := {φi ∈ C : a(φi) 6= 0 }) with ‘free’ operations of addition and
convolution

(a+ b)(φi) := a(φi) + b(φi), (a ∗ b)(φi) :=
∑

φjφk=φi

a(φj)b(φk)

(i.e., set φiφj = 0 when not compatible) with identity δ given by δ(φ) = 0 except
δ(ι) = 1 (for any identity morphism ι). (It is the adjoint of the forgetful functor
from R-modules to the category.) Elements a ∈ R[C] are often denoted as formal
(finite) sums

∑

i aiφi (where ai = a(φi)) with the requirement (aφ+ bψ)(cη) :=
(ac)(φη) + (bc)(ψη), etc.; then

(

∑

i

aiφi
)(

∑

j

bjφj
)

=
∑

k

(

∑

φk=φiφj

aibj
)

φk =
∑

k

(a ∗ b)kφk

An element a ∈ R[C] is invertible ⇔ ∀i, a(φi) 6= 0.
The map

∑

i aiφi →
∑

i ai is a morphism onto R. The zeta function is the
constant function ζ(φi) := 1; its inverse is called the Möbius function µ. If the
category is bounded, then the Euler characteristic is χ := µ(0→ 1).

Special cases are the following:
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1. Monoid/Group Algebras R[G]

a ∗ b(g) :=
∑

h

a(h)b(h−1g), δ(g) =

{

1 g = 1

0 o/w

Every element of finite order gives a zero divisor because 0 = 1 − gn =
(1 − g)(1 + g + · · ·+ gn−1) (conjecture: these are the only zero divisors).

• The Polynomials R[x] are the finite sequences that arise when G = N.
The sequence (0, 1, 0, . . .) is often denoted by ‘x’, so

p = a0 + a1x+ · · ·+ anx
n, ∃n ∈ N

They are generated by xn with xnxm = xn+m, ax = xa for a ∈ R.
The degree of p is defined by max{n ∈ N : an 6= 0 }; then

deg(p+ q) 6 max(deg(p), deg(q)), deg(pq) 6 deg(p) + deg(q).
Any combina-
tion of variables
gives a polyno-
mial in them:
x((y+zx)+y) =
2xy + xzx

• R[Z] is the ring of rational polynomials,

• R[x1, . . . , xn] is obtained from G = Nn; e.g. R[x, y] = R[x][y]; con-
tains the sub-ring of symmetric polynomials S[x, y] (generated by the
elementary symmetric polynomials 1, x+ y, xy,

∑

i<···<j xi · · ·xj)
• The “free algebra” R〈A〉 := R[A∗] where A∗ is the free monoid on A,

• The power series R[[x]] consists of infinite sequences with the same
addition and multiplication as for R[x].

2. The Incidence Algebras R[6], let a(x, y) := a(x 6 y);

a ∗ b(x, y) :=
∑

x6z6y

a(x, z)b(z, b), δ(x, y) =

{

1 x = y

0 o/w
,

µ(x, y) =

{

−∑

x6z<y µ(x, z) x < y

1 x = y

• R[2X ], µ(A ⊆ B) = (−1)|BrA|.

Polynomials N[x, y, . . .] are sufficiently complex that they can encode many
logical statements about the naturals. That is, any computable subset of N can
be encoded as { x ∈ N : ∃y, . . . , p(x, y, . . .) = 0 } for some polynomial p; so
polynomials are in general unsolvable (Hilbert’s 10th problem).

A sub-module is a subset Y ⊆ X that is closed under +, 0 and the action
of R, i.e., 0 ∈ Y , Y + Y ⊆ Y , RY ⊆ Y ,

a ∈ R, x, y ∈ Y ⇒ 0, x+ y, ay ∈ Y.
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A sub-module induces a congruence relation

x1 = x2 (mod Y ) ⇔ ∃y1, y2 ∈ Y, x1 + y1 = x2 + y2,

with x+ Y ⊆ [x] and [0] = Y sub := { x ∈ X : x + y ∈ Y, ∃y ∈ Y } ⊇ Y , so can
form the quotient space X/Y sub of equivalence classes

[x1] + [x2] := [x1 + x2], a[x] := [ax].

A sub-module of a semi-ring R acting on itself is called a left ideal I 6 R,
i.e., I + I, RI ⊆ I. A is a sub-semi-ring of R when it is closed under +, ·, 0, 1.

1. If M,N are sub-modules, then so areM +N (=M ∨N) and M ∩N , thus
making sub-modules into a complete modular lattice (for ⊆)

N ⊆ L ⇒ (L ∩M) +N = L ∩ (M +N).

A sub-module M is complemented by N when M +N = X , M ∩N = 0,
denoted X =M ⊕N .

2. Generated sub-modules : the smallest sub-module containing B ⊆ X is

[[B]] = R · B := { a1x1 + · · ·+ anxn : ai ∈ R, xi ∈ B, n ∈ N }

[[x]] = Rx is called cyclic (or principal left ideal for rings). [[A ∪ B]] =
[[A]] + [[B]],

∑

iMi := [[
⋃

iMi]]. A basis is a subset B which generates X ,
and for each x, the coefficients ai are unique (but a basis need not exist).

3. More generally, if I is a left ideal then

I · B := { a1x1 + · · ·+ anxn : ai ∈ I, xi ∈ B, n ∈ N }

is a sub-module (but need not contain B).

4. Module morphisms preserve the sub-module structure: If M 6 N then
φM 6 φN and ψ−1M 6 ψ−1N . Ring morphisms also preserve sub-semi-
rings.

5. The only left ideal that contains 1 or invertible elements is R (since x =
(xa−1)a ∈ I).

6. Left ideals of R×S are of the type I×J , where I, J are left ideals of R,S.

7. A sub-module Y is subtractive when x, x + y ∈ Y ⇒ y ∈ Y . The
intersection of subtractive sub-modules is again subtractive, so the small-
est subtractive sub-module containing A is Asub a closure operation on
sub-modules. If Y is subtractive, so is φ−1Y .

Example: kN are the subtractive (left) ideals of N, but 2N + 3N =
{ 0, 2, 3, . . .} is not.
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8. The set of elements that have a negative is a subtractive sub-module N ,
since −(x+ y) = (−x) + (−y), −(ax) = a(−x), x+ y ∈ N ⇔ x, y ∈ N .

9. A left semi-unit of a ring is u such that (Ru)sub = R, i.e., 1+ au = bu for
some a, b; e.g. any left invertible element. A subtractive left ideal, except
R, cannot contain a semi-unit.

10. The annihilator of a subset B ⊆ X is the subtractive left ideal

Annih(B) := { a ∈ R : aB = 0 }.

For a sub-module, Annih(M) is an ideal, Annih(M +N) = Annih(M) ∩
Annih(N). For semi-rings, Annih(B) := { a ∈ R : aB = 0 = Ba }; then
B ⊆ Annih(Annih(B)).

The adjoint of the annihilator is the zero set

Zeros(I) := { x ∈ X : Ix = 0 },
I 6 Annih(Y ) ⇔ Y 6 Zeros(I)

More generally, for a sub-module Y ,

[Y : B] := { a ∈ R : aB ⊆ Y },
[Y : I]∗ := { x ∈ X : Ix ⊆ Y }

[Y : B] is a left ideal (a sub-ring if Y is just a sub-monoid); [Y : X ] is an
ideal. [Y : I]∗ is a sub-module when I is a right ideal; [Y : R]∗ = Y .

Annih(X/Y ) = [Y sub : X ].

The torsion radical is the sub-module τ(X) := { x ∈ X : ∃n > 1, nx = 0 }.

11. R→ Hom(X) is a ring-morphism, with kernel being the congruence rela-
tion ax = bx, ∀x ∈ X .

12. X → X/Y sub, x 7→ [x] is a module-morphism, and the usual Isomorphism
theorems hold (see Universal Algebras), e.g. R/ kerφ ∼= φR, sub-modules
that contain M correspond to sub-modules of X/≈M .

13. If φ : R → S is a ring-morphism, and S acts on X , then R acts on X as
a semi-module by a · x := φ(a)x.

14. A sub-module Y is maximal when Y 6= X and there are no other sub-
modules Y ⊂ Z ⊂ X (i.e., a coatom in the lattice of sub-modules). For
example, 3N in the semi-module N.

Y ⊂ Z ⊆ X is maximal in Z iff Y =M ∩ Z for some maximal M in X .

Every (left) ideal of a ring (with Isub 6= R) can be enlarged to a maximal
(subtractive left) ideal (by Zorn’s lemma).

http://staff.um.edu.mt/jmus1/universal_algebra.pdf
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15. Generated sub-semi-ring of A ⊆ R is the smallest sub-semi-ring containing
A:

[[A]] = {
∑

a1 · · ·ak : ai ∈ A ∪ { 1 }, k ∈ N, finite sums }

e.g. [[x]] = { k0 + k1x + · · · + knx
n : ki, n ∈ N }, [[1]] = N or Zm (in which

case R is a ring).

16. Sub-semi-rings can be intersected A ∩ B, and joined A ∨ B := [[A ∪ B]],
thus forming a complete lattice.

17. The centralizer (or commutant) of a subset A ⊆ R is the sub-semi-ring

Z(A) := { x ∈ R : ∀a ∈ A, ax = xa },

in particular the center Z(R). Z(R × S) = Z(R) × Z(S). A ⊆ B ⇒
Z(B) ⊆ Z(A), so if A ⊆ Z(A) then Z(Z(A)) is a commutative sub-semi-
ring.

18. Given an automorphism σ of R, Fix(σ) := { x : σ(x) = x } is a sub-semi-
ring. For example, Fix(τa) = Z(a).

An ideal I E R is a subset that is stable under +, ·, i.e.,

(a+ I) + (b+ I) ⊆ a+ b+ I, (a+ I)(b + I) ⊆ ab+ I,

equivalently a left ideal I that is also a right ideal, IR ⊆ I. The quotient by
the induced congruence R/Isub is a semiring with zero Isub and identity [1].

1. Generated ideal : the smallest ideal containing A ⊆ R is

〈A〉 = R · A ·R = { x1a1y1 + · · ·+ xnanyn : ai ∈ A, xi, yi ∈ R, n ∈ N },

in particular 〈a〉 is called a principal ideal. In general, Ra is not an ideal;
but for “invariant” elements Ra = aR, it is.

2. If I E J then φI E φJ and φ−1I E φ−1J .

3. I ∨J = 〈I ∪ J〉 = I +J , I ∧J = I ∩J , so the set of ideals form a modular
lattice (wrt ⊆).

4. If I is a left ideal and J a right ideal, then I ·J is an ideal, and J ·I ⊆ I∩J .
This product is distributive over +, (I + J) · K = I · K + J · K, and is
preserved by ring-morphisms, φ(I · J) = φI · φJ . Thus the set of ideals is
a semi-ring with +, · and identities 0, R.

(I + J) · (I ∩ J) ⊆ I · J + J · I ⊆ I ∩ J ⊆ I ⊆ I + J

Let I → J = { x ∈ R : Ix ⊆ J } and I ← J = { x ∈ R : xI ⊆ J }; then
I · (I → J) ⊆ J , so the set of ideals is residuated (see Ordered Sets:2.0.1).

http://staff.um.edu.mt/jmus1/order.pdf
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5. The largest ideal inside a left ideal I is its core [I : R]. It equals Annih(R/I)
since a(R/I) ⊆ I ⇔ aR ⊆ I.

6. The ideals of R× S are of the form I × J , both ideals.

7. An ideal of a semi-ringMn(R) consists of matrices (aij) where aij ∈ I, an
ideal of R. [Mn(I) :Mn(J)] =Mn[I : J ].

Proof: Given an ideal J of matrices, let I be the set of coefficients of the
matrices in J ; let Ers := (δirδsj), then E1rAEs1 ∈ J is essentially ars; so
I is an ideal.
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2 Rings

Definition A ring is a semi-ring in which all elements have negatives. A
module is the action of a ring on a commutative monoid.

Equivalently, if an element of a semi-ring has a negative and an inverse:
1 + (−a)a−1 = (a− a)a−1 = 0, so −1 exists; then −b = (−1)b. The Monoid of
the module must be a Group since −x = (−1)x; it must be commutative since
−x− y = −(x+ y) = −y − x.

When a +-cancellative semi-ring R is extended to a group (see Groups), it
retains distributivity and becomes a ring: take R2 and write (a, b) as a − b;
identify a − b = c − d whenever a + d = b + c (a congruence), and define
(a− b) + (c− d) := (a+ c)− (b+ d), (a− b)(c− d) := (ac+ bd)− (bc+ ad); R is
embedded in this ring via a 7→ a−0 and the negative of a is 0−a; a cancellative
element in R remains so; a congruence ≈ on R can be extended to the ring by
letting (a− b) ≈ (c− d) := (a+ d) ≈ (b+ c).

Examples:

• The integers Z (extended from N), and Zn.

• The rational numbers with denominator not containing the prime p. The
rational numbers with denominator being a power of p, Z[ 1p ].

• The Gaussian integers Z+ iZ and the quaternions H := R[Q].

• The morphisms on an abelian group (called ring representations).

• The elements of a semi-ring having a negative.

Immediate consequences:

1. 0x = 0 = a0 and φ0 = 0 now follow from the other axioms.

Proof: ax = a(x+0) = ax+a0, ax = (0+a)x = 0x+ax, φ(x) = φ(0+x) =
φ(0) + φ(x).

2. (−a)x = −(ax) = a(−x), (−a)(−x) = ax; φ(−x) = −φ(x). There is no
∞.

Proof: ax+a(−x) = a(x−x) = 0 = (a−a)x = ax+(−a)x; 0 = φ(x−x) =
φ(x) + φ(−x). ∞ =∞+ 1, so 0 = 1.

3. Every element of a ring is either left cancellative or a left divisor of zero.

Proof: Either ax = 0 ⇒ x = 0 or a is a left divisor of zero. In the first
case, ax = ay ⇒ a(x− y) = 0 ⇒ x = y.

4. The invertible elements of a ring form a group (but not any group, e.g. not
C5, C9, C11, etc.).

http://staff.um.edu.mt/jmus1/groups.pdf
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5. Divisibility a|b (see Groups) induces a (pre-)order on R; there are no
known criteria on general rings for when elements have factorizations into
irreducibles, or when irreducibles exist.

6. If e is an idempotent, then so is f := 1 − e, and ef = 0 = fe. So
idempotents, except 1, are divisors of zero.

7. There is an associative operation defined by 1− x ∗ y = (1 − x)(1 − y); a
is said to be quasi-regular when 1 − a is invertible, or equivalently there
is a b, a ∗ b = 0 = b ∗ a.

(a) If an is quasi-regular, then so is a, since

1− an = (1 − a)(1 + a+ · · ·+ an−1).

In particular, nilpotents are quasi-regular.

(b) If ab is quasi-regular, then so is ba,

(1− ba)−1 = 1+ b(1− ab)−1a.

(c) Idempotents (except 0) cannot be left or right quasi-regular (since
0 = e ∗ b = e+ b− eb, so e+ eb = e(e+ b) = eb).

(d) A left ideal of left quasi-regulars is also right quasi-regular.

Proof: (1 − b)(1 − a) = 1 ⇒ b = ba− a ∈ I, so (1 − c)(1 − b) = 1;
therefore 1 − c = (1 − c)(1 − b)(1 − a) = 1 − a, and a = c is right
quasi-nilpotent.

8. There are various grades of nilpotents:

(a) ‘super nilpotents ’, any word containing n a’s is 0 (for some n), e.g. cen-
tral or invariant nilpotents.

(b) strong nilpotents, any sequence an+1 ∈ 〈an〉2, a0 = a, is eventually 0
(the last non-zero term is a super nilpotent with n = 2).

(c) nilpotents, an = 0, ∃n ∈ N.

(d) quasi-nilpotents, 1 − xa is invertible for all x ∈ R. A left-ideal of
nilpotents is quasi-nilpotent.

9. Sub-modules are subtractive Y sub = Y , and are automatically stable for
negatives, −Y = (−1)Y = Y . The congruence relation induced by a sub-
module Y , x1 = x2 (mod Y ) becomes x1 − x2 ∈ Y , so [x] = x + Y . For
example, R[x, y] ∼= R〈x, y〉/[xy − yx].

10. The kernel of a morphism is now the ideal kerT = T−10; thus a morphism
is 1-1 ⇔ its kernel is trivial. The solutions of the equation Tx = y are
T−1y = x0 + kerT (particular + homogeneous solutions).

http://staff.um.edu.mt/jmus1/groups.pdf
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11. X → X/Y , x 7→ x+Y is a module morphism, and the usual Isomorphism
theorems hold (see Universal Algebras), e.g. sub-modules that contain M
correspond to sub-modules ofX/M , (M+N)/N ∼=M/(M∩N), R/ kerφ ∼=
φR.

12. The module morphism R→ X , a 7→ ax, has kernel Annih(x), so

R/Annih(x) ∼= [[x]].

Let Ta(x) := ax, then HomR(X) = Z({Ta : a ∈ R }) since

S(ax) = aS(x) ⇔ STa = TaS, ∀a ∈ R

If the ring action is faithful, then R is embedded in Hom(X).

13. Generated subrings are now

[[A]] = {
∑

±a1 · · · ak : ai ∈ A ∪ { 1 }, k ∈ N, finite sums }.

14. (Jacobson) If R acts faithfully on a module X , then it is a ‘dense’ subring
of its double centralizer in HomZ(R), i.e., for any x1, . . . , xn and any s in
the double centralizer, then there is an r ∈ R, rxi = sxi. In a sense, R is
indistinguishable from S for finite sets.

15. The ideals of R[x] are of the type I0+ I1x+ · · · where I0 ⊆ I1 ⊆ · · · ; then
R[x]/I[x] ∼= (R/I)[x] (via the morphismR[x]→ (R/I)[x], xk 7→ (1+I)xk);
I[x] is prime iff I is prime.

Since there is now a correspondence between sub-modules/ideals and congru-
ence relations, the analysis of modules and rings becomes simpler. The quotient
space X/Y simplifies:

(x+ Y ) + (y + Y ) = (x+ y) + Y, a(x+ Y ) = ax+ Y.

3 Module Structure

To analyze a module, one typically splits X into a sub-module Y and an image
X/Y ; one can continue this process until perhaps all such modules are simple
(or irreducible) when they have no non-trivial sub-modules.

For simple modules,

1. X = Rx ∼= R/Annih(x) for any x 6= 0. So each Annih(x) is a maximal left
ideal in R. The structure of a simple module thus mirrors that of the ring
R itself, or rather of the left-simple ring R/Annih(x); such a ring whose
only left ideals are trivial is called a division ring.

http://staff.um.edu.mt/jmus1/universal_algebra.pdf
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2. The image of any module morphism to a simple module X , and the kernel
of any morphism fromX , can only be the whole module or 0. So any linear
map between simple modules is either 0 or an isomorphism. In particular,
the ring HomR(X) consists of 0 and invertible maps (automorphisms),
thus a division ring.

3. The simple Z-modules are the simple abelian groups, i.e., Zp.

Decomposition of a module as X ∼= Y × Z is a special case of finding
quotients.

1. X = M + N ∼= M × N ⇔ M ∩ N = [[0]], since the map (x, y) 7→ x + y
is an onto module morphism with kernel { (x,−x) : x ∈M }, so 1-1 when
M ∩N = 0. M and N are complements in the lattice of sub-modules.

To any decomposition there correspond projections e : x+y 7→ x, X →M ,
and f : X → N , which are idempotents in HomR(X) such that e+ f = 1,
ef = 0 = fe, ker e = N = im f , X = eX ⊕ fX .

In general, X ∼=
⊕

iMi iff X =
∑

iMi, Mi ∩
∑

j 6=iMj = 0.

2. Every module can be decomposed into sub-modules X = Y ⊕ Z until
indecomposable sub-modules are reached. A module is indecomposable iff
HomR(X) has only trivial idempotents iff R has trivial idempotents.

Indecomposable need not be simple because a sub-module need not neces-
sarily be complemented (e.g. Z4 is indecomposable but contains the ideal
〈2〉).

3. X is a free module
⊕

e∈E R iff it has a (Hamel) basis E, i.e., [[E]] = X and
E independent (e ∈ E ⇒ e /∈ [[Ere]], equivalently

∑

i aiei = 0 ⇒ ai =
0). Thus every module element is a unique (finite) linear combination of
ei’s,

x =
∑

i

aiei, ∃!ai ∈ R

Proof: Each e ∈ E corresponds to ue ∈ RE, t 7→
{

1 t = e

0 t 6= e
. So 1 =

∑

e∈E ue, x(t) =
∑

e x(e)ue(t); if
∑

e aeue = 0 then 0 = aeue(e) = ae.
Conversely, the map (ai) 7→

∑

i aiei is an isomorphism.

Every module is the quotient of some free module (with the generators of
X). Every ring has the basis { 1 }.
The number of basis elements need not be well-defined (when it is, it is
called the rank of X). For example, the ring of 2 × 2 matrices has the

basis { I } as well as the basis E1 :=

(

1 0
0 0

)

, E2 :=

(

0 1
0 0

)

(any AE1 has

a zero second column; I = E⊤

1 E1 + E⊤

2 E2.)

(Note that a linearly independent set need not be part of a basis, e.g. { 2 }
in Z.)
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4. Matrices Mm×n(R) form a free module with basis Ers = [δirδjs]. Polyno-
mials R[x] form a free module with basis 1, x, x2, . . ..

5. The map x 7→ (x + Y1, . . . , x + Yn) is a morphism X → ∏

i(X/Yi) with
kernel Y1 ∩ · · · ∩ Yn.

Proposition 1

If Yi are sub-modules such that
X = Yi +

⋂

j 6=i Yj, then

X

Y1 ∩ · · · ∩ Yn
∼= X

Y1
× · · · × X

Yn
.

That is, x = xi (mod Yi) can be solved modulo
⋂

i Yi.

Proof: To show surjectivity: Given xi, by induction ∃y = xi (mod Yi) for
all i = 1, . . . , n− 1. But xn− y = a+ b ∈ Yn +

⋂

j 6=n Yj ; let x := xn − a =
y + b. Then x − y = b ∈ ⋂

j<n Yj , x − xn = −a ∈ Yn, so x = y = xi
(mod Yi) and x = xn (mod Yn).

For rings, it is enough to have mutually co-prime ideals Ii + Ij = R, i 6= j

(since by induction R = I1+
⋂n−1

i=2 Ii, so 1 = a+b and In ⊆ In ·I1+
⋂n

i=2 Ii,
hence R = I1+ In ⊆ I1+

⋂n
i=2 Ii). This gives a method for solving x = xi

(mod Ii); 1 = aij + aji with aij ∈ Ii, so 1 = ai1 + a1i(ai2 + a2i) = · · · =
ai + bi (bi =

∏

j 6=i aji ∈
⋂

j 6=i Ij); so x =
∑

i bixi.

6. If Yi are sub-modules of Xi, then using the map (x1, . . . , xn) 7→ (x1 +
Y1, . . . , xn + Yn),

X1 × · · · ×Xn

Y1 × · · · × Yn
∼= X1

Y1
× · · · × Xn

Yn

7. Xn is not isomorphic to Xm unless n = m (by Jordan-Hölder).

3.0.2 Composition Series

The most refined version of decomposition is a composition series

0 6 · · · < Yi < Yi+ < · · · 6 X

with Yi+/Yi (unique) simple modules. The (maximum) number of terms is
called the length of X . For example, · · · < 23Z < 22Z < 2Z < Z. There are two
standard ways of starting this out:
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• Top approach: Maximal sub-modules (if there are any), so X/M is simple.
If M1,M2, . . . are maximal sub-modules, then

· · · < M2 ∩M1 < M1 < X

is part of a composition series since M1/(M2 ∩ M1) ∼= (M1 + M2)/M2

simple. Their intersection is the (Jacobson) radical

Jac(X) :=
⋂

{M : maximal sub-module }

More generally, the radical of a sub-module Y is the intersection of all
maximal sub-modules containing Y ,

rad(Y ) :=
⋂

{ Y 6M :M maximal sub-module }.

If Y is a sub-module then Jac(Y ) = Y ∩Jac(X). If T : X → Y is a module-
morphism then TJac(X) ⊆ Jac(Y ). For Y 6 Jac(X), Jac(X/Y ) =
Jac(X)/Y , so X/Jac(X) has no radical.

Note: if Rx+ Y = X , but x /∈ Y , there is a maximal sub-module Z with
the property x /∈ Z; so x /∈ Jac(X) ⊆ Z.

• Bottom approach: Minimal sub-modules (if there are any) are simple. If
Y1, Y2, . . . are minimal sub-modules, then

0 < Y1 < Y1 ⊕ Y2 < · · ·

is part of a composition series since Y1 ∩ Y2 = 0 as a sub-module of Y1;
thus (Y1 ⊕ Y2)/Y1 ∼= Y2. Their sum is the socle

Soc(X) :=
∑

{ Y : minimal sub-module }

Such considerations can also be used for a linear map T on X , as it induces
an ascending and descending chain of sub-modules:

0 6 kerT 6 kerT 2
6 kerT 3

6 · · · 6
⋃

n

kerT n

⋂

n

imT n
6 · · · 6 imT 3

6 imT 2
6 imT 6 X

3.1 Semi-primitive Modules

are modules whose radical is zero. So, by x 7→ (x+Mi), the module is embedded
in a product of simple modules,

X ⊂∼
∏

Mi maximal

X

Mi

For every module, X/Jac(X) has zero Jacobson radical, i.e., is semi-primitive.
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3.2 Semi-simple Modules

A module is semi-simple when it can be decomposed into simple sub-modules
X =

∑

i Yi = Soc(X). (The sum, without repetitions, can be taken to be direct
since Yi ∩

∑

j Yj is a sub-module of Yi.)

1. Every sub-module is complemented.

Proof: Given X =
∑

i Yi and a sub-module Y , let M :=
∑

i6r Yi for some
maximal r with Y ∩M = 0; then for any j > r, 0 6= x ∈ Y ∩ (M + Yj)
for some x = a + b ∈ M + Yj , 0 6= b = x − a ∈ (Y +M) ∩ Yj ; but Yj is
simple, so Yj ⊆ M + Y and M + Y = X . Conversely, for x 6= 0, let Z be
that maximal submodule st x /∈ Z; then X = Z ⊕A with x ∈ A simple.

2. Sub-modules, images X/Y , and products are again semi-simple (since
X × Y = (X × 0)⊕ (0× Y )).

3. Semi-simple modules are semi-primitive.

Proof: Each Yi has a complement Y ′
i and Yi ∼= X/Y ′

i , so Y
′
i is maximal;

hence Jac(X) ⊆ ⋂

i Y
′
i = 0.)

4. Proposition 2

(Wedderburn)

For X, Y non-isomorphic simple R-modules,

HomR(X × Y ) = HomR(X)×HomR(Y ),

HomR(X
n) =Mn(F ), where F = HomR(X) (division ring)

HomR(X
n × · · · × Y m) =Mn(FX)× · · · ×Mm(FY )

Proof: A linear map on X × Y induces a map X → X × Y → Y , which
is 0 unless X ∼= Y . Similarly, a linear map T : Xn → Y m induces a map
X → Xn → Y m → Y , so T = 0 unless X ∼= Y . So HomR(X

n × Y m) =
HomR(X

n)×HomR(Y
m) ∼=Mn(FX)×Mm(FY ).

5. Every element of Hom(X) is regular (von Neumann ring).

Proof: X = kerT ⊕Y , and X = TY ⊕Z; T |Y is an isomorphism Y → TY ;
let S be the inverse TY → Y , so that TST = T .

3.3 Finitely Generated Modules

X = [[x1, . . . , xn]] = [[x1]] + · · ·+ [[xn]].
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1. Images remain finitely generated, but sub-modules need not be, e.g. every
ring is finitely generated by 1, but not necessarily its left ideals (e.g. Z×Q

with 1 := (1, 0), (0, 1)2 := (0, 0)).

2. If both X/Y and Y are finitely generated, then so is X .

3. If X =
∑

i Yi then a finite number of Yi suffice to generate X (since
xi ∈

∑n
i=1 Yi); thus finitely generated semi-simple modules have finite

length.

4. (Nakayama) If X is finitely generated, and J := Jac(R), then J ·X < X
(except for X = 0) and J ·X is superfluous.

Proof: Suppose J · X = X = [[x1, . . . , xn]], a minimal generating set.

Then xn =
∑n

i=1 aixi with ai ∈ J , so xn =
∑n−1

i=1 (1 − an)−1aixi (since
1 − a is invertible, see below), a contradiction. If J · X + Y = X then
(1 − J) ·X = Y , so X = Y .

3.3.1 Noetherian Modules

are modules in which every non-empty subset of sub-modules has a maximal
element; equivalently, every ascending chain of sub-modules is finite.

Noetherian modules are finitely generated since the chain

0 6 [[x1]] 6 [[x1, x2]] 6 · · · 6 X

with xn+1 /∈ [[x1, . . . , xn]] stops at some n. Every sum of sub-modules equals a
finite sum, e.g. Soc(X) is a finite sum of minimal sub-modules.

Sub-modules, quotients, and finite products are obviously Noetherian, and
each proper sub-module is contained in a maximal sub-module. If X/Y and Y
are Noetherian, then so is X .

Artinian modules have the dual property: every non-empty subset of sub-
modules has a minimal element and every descending chain of modules is finite.
Thus every sub-module contains a minimal (simple) sub-module. Every inter-
section of sub-modules equals some finite intersection; e.g. Jac(X) is the finite
intersection of maximal sub-modules.

There are examples of Artinian modules that are not Noetherian and vice
versa.

3.3.2 Modules of finite length

Modules of finite length have a finite composition series, i.e., are both Artinian
and Noetherian. ℓ(X) = ℓ(X/Y ) + ℓ(Y ).

1. X is the sum of a finite number of indecomposable sub-modules (Krull-
Schmidt: unique).
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2. Important examples are the finite products of simple modules (finite-
length semi-simple):

X ∼= Y1 × · · · × Yn (Yi simple) ⇔ X is Noetherian semi-simple

⇔ X is Artinian semi-primitive

Proof: That Y1×Y2 is semi-simple of finite length is trivial. If X =
⊕

i Yi
is Noetherian semi-simple then

0 6 Y1 6 Y1 ⊕ Y2 6 · · · 6 Soc(X) = X

shows X is a finite sum. If X is Artinian semi-primitive then

X >M1 >M1 ∩M2 > · · · > Jac(X) = 0

and so X is embedded in a finite product of simple modules, hence semi-
simple.

3. (Fitting) Every linear map T onX of finite length induces a decomposition
X = kerT n ⊕ imT n for some n.

Proof: The ascending and descending chains of T stop, so im T n+1 =
imT n, kerT n+1 = kerT n. For every x ∈ X , T nx = T 2ny, so x − T ny ∈
kerT n, and X = imT n + kerT n. If x ∈ imT n ∩ kerT n, i.e., T nx = 0,
x = T ny, then T 2ny = 0, so y ∈ kerT n = kerT n, and x = T ny = 0.

Thus if X is indecomposable, then T is either invertible or nilpotent; hence
HomR(X) is a local ring since it cannot have idempotents.

4 Ring Structure

1. A ring is decomposable when it contains an idempotent e ∈ R. Then
Annih(e) = R(1− e), so

R = Re⊕R(1− e) ∼= Re×R(1− e),
R = eRe⊕ eR(1− e)⊕ (1− e)Re⊕R(1− e) ∩ (1− e)R
x = exe + ex(1− e) + (1 − e)xe+ (1− e)x(1 − e).

If R = I ⊕ J (ideals) then I = Re for some central idempotent (since
1 = e + f so 0 = ef = e − e2; for every x ∈ I, x = xe + xf = ex + fx,
uniquely, so xe = ex).

Then any R-module splits as X = R ·X = (Re) ·X + (Rf) ·X .

2. The central idempotents (e2 = e, ae = ea) form a Boolean algebra with
e ∧ f := ef and e ∨ f := e + f + ef . If an idempotent commutes with all
other idempotents, then it is central.

For example, in a reduced ring (no nilpotents except 0), all idempotents
are central. (Proof: e(x − xe)e(x − xe) = 0 and (x − ex)e(x − ex)e = 0,
so e(x− xe) = 0, i.e., ex = exe = xe).
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3. A nilpotent ideal is one for which In = 0, e.g. 6Z in Z12. Its elements
are super-nilpotent. For a nilpotent ideal, I ·X ⊂ X (else X = InX = 0).
If I is a nilpotent left ideal, then I · R is nilpotent.

The sum of nilpotent ideals I + J is again nilpotent ((I + J)m+n = 0).
The sum of all nilpotent ideals (not necessarily itself nilpotent) is denoted

Nilp(R) :=
∑

{ I : nilpotent } = { a ∈ R : supernilpotent }.

Proof: a1(x1+x2)a2(x1+x2) · · · = b1x1b2x1 · · · ∈ Ik1 = 0 if enough factors
are taken.

(Note: The notation In is ambiguous: in a module, it usually means
I × · · · × I, but in a ring it means I · · · I.)

4. I · J ⊆ I ∩ J but the two may be distinct. S is a semi-prime ideal iff

I · J ⊆ S ⇒ I ∩ J ⊆ S,
∃n ∈ N, In ⊆ S ⇒ I ⊆ S,

xRx ⊆ S ⇒ x ∈ S.

Proof: I · I ⊆ S ⇒ I = I ∩ I ⊆ S, so I2n ⊆ S ⇒ In ⊆ S ⇒ I ⊆ S
by induction. xRx ⊆ S ⇔ 〈x〉2 ⊆ S. If I · J ⊆ S and x ∈ I ∩ J , then
xRx ⊆ I · J ⊆ S, so x ∈ S.
Every nilpotent ideal is contained in every semi-prime one: In = 0 ⊆ S ⇒
I ⊆ S; and I · J is semi-prime only when I · J = I ∩ J .

5. An irreducible ideal is lattice-irreducible, i.e., for any ideals I and J ,

P = I ∩ J ⇒ P = I or P = J,

e.g. 4Z in Z. The lattice-prime ideals are those that satisfy

I ∩ J ⊆ P ⇒ I ⊆ P or J ⊆ P
hence irreducible. But for rings, it is more relevant to define the prime
ideals P by the stronger condition

I · J ⊆ P ⇒ I ⊆ P or J ⊆ P,
equivalently, xRy ⊆ P ⇒ x ∈ P or y ∈ P,

e.g. 2Z. Morphisms φ : R→ S pull prime ideals in S to prime ideals in R.

Since I · J ⊆ I ∩ J , the intersection of two ideals cannot be prime, unless
I ⊆ J or vice-versa.

6. The intersection of prime ideals is a semi-prime ideal (and conversely).

Proof: If I · J ⊆ ⋂

i Pi ⊆ P then I ⊆ P or J ⊆ P , so I ∩ J ⊆ P for any P .
Conversely, R/S has no non-trivial nilpotent ideals, so for every a /∈ S,
let a1 := a, an+1 := anrnan /∈ S, let P be maximal wrt an /∈ P , so P is
prime with a /∈ P .
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7. The set of prime ideals is called the spectrum of the ring; the spectrum of
an ideal is

Spec(I) := {P > I : prime }

(a) I 6 J ⇒ Spec(I) ⊇ Spec(J),

(b) Spec(I · J) = Spec(I) ∪ Spec(J),

(c) Spec(I + J) = Spec(I) ∩ Spec(J)

Two ideals are co-prime when I + J = R, i.e., a + b = 1 for some a ∈ I,
b ∈ J . Then I ∩ J = I · J + J · I.

8. The prime radical of R is the smallest semi-prime ideal

Prime(R) :=
⋂

{P : prime }

More generally, the smallest semi-prime ideal containing an ideal I is its
prime radical prad(I) :=

⋂{P > I : prime } = ⋂

Spec(I).

9. Prime(R) is the set of strong nilpotents. Thus Prime(R/Prime(R)) = 0.

Proof: If x is not a strong nilpotent, choose a sequence an such that
a0 = x 6= 0, 0 6= an+1 ∈ 〈an〉2; let P be an ideal which is maximal wrt
∀n, an /∈ P . Then I, J 6⊆ P implies there are n > m, say, with an ∈ I+P ,
am ∈ J + P . Thus an+1 ∈ (I + P )(J + P ) = IJ + P , so IJ 6⊆ P . Thus
P is prime and x 6∈ Prime(R). Conversely, the last term of the sequence
an of a strong nilpotent a is of the type aRa = 0 ⊆ Prime, so a ∈ Prime.
Since R/Prime(R) has no super nilpotents, its prime radical is 0.

10. Recall radical sets r(A) := { x ∈ R : xn ∈ A, ∃n ∈ N } (see Groups).
Radical ideals are clearly semiprime. x ∈ r(I) ⇔ (x + I) is nilpotent in
R/I. The union and intersection of radical ideals is radical,

r(I ∪ J) = r(I) ∪ r(J), r(I · J) = r(I ∩ J) = r(I) ∩ r(J)

11. Prime(R × S) = Prime(R) × Prime(S); Prime(Mn(R)) = Mn(Prime(R))
(since an ideal of Mn(R) is prime when it is of the type Mn(P ), P prime
in R).

12. A nil ideal is one that consists of nilpotents. The sum of nil ideals is again
nil (since (a + b)mn = (am + c)n = cn = 0), so the largest nil ideal exists
and is called the nilradical Nil(R).

The nilradical of R/Nil(R) is 0 (proof: Let I/Nil be a nil ideal in R/Nil;
then for every a ∈ I, an ∈ (I +Nil)n = Nil, so anm = 0, and I ⊆ Nil).

(Köthe’s conjecture: Nil(Mn(R)) = Mn(Nil(R)), or all nil left ideals are
in Nil.)

http://staff.um.edu.mt/jmus1/groups.pdf
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13. The core of a maximal left ideal is called a primitive ideal; equivalently it
is the annihilator of a simple module X .

Proof: M is a maximal left ideal of R ⇔ X ∼= R/M is a simple module,
⇔ Annih(X) = [M : R].

14. Maximal ⇒ Primitive ⇒ Prime.

Proof: A maximal ideal M̃ is contained in a maximal left-ideal M , so
[M : R] = M̃ . If I 6⊆ [M : R], then I 6⊆ M , so I + M = R; thus if
I, J 6⊆ [M : R], then IJ +M = (I +M)(J +M) = R, so IJ 6⊆M .

15. A left ideal I is in all the maximal left ideals ⇔ it is superfluous ⇔ it
consists of quasi-nilpotents.

The Jacobson radical of a ring is

Jac(R) = rad(0) =
⋂

{M 6 X : maximal/primitive left ideal }

=
∑

{ I 6 X : superfluous } (see Ordered Sets)

= { a ∈ R : quasi-nilpotent }

Proof: There is a maximal left ideal M such that I 6 M < R, so I +
J 6 I + M = M < R. a ∈ I ⇒ xa ∈ I ⇒ Rxa is superfluous,
but R = Rxa + R(1 − xa), so R = R(1 − xa) and a is quasi-nilpotent.
I +M = R ⇒ 1 = a + b ⇒ b = 1 − a is invertible, so M = R, a
contradiction; thus I +M =M .

(a) Jac(R) is an ideal (since a ∈ J ⇔ Ra ⊆ J ⇔ a ∈ [J : R] an ideal).

(b) Jac(R) is the largest left ideal such that 1 + J ⊆ G(R) (the group of
invertibles).

(c) Jac(R) contains no idempotents, except for 0 (1− e is invertible).

(d) Jac(R)X ⊆ Jac(X) (using T : a 7→ ax); in particular Jac(R) annihi-
lates every (semi-)simple R-module.

(e) Jac(R× S) = Jac(R)× Jac(S) (since (1, 1)− (x, y)(a, b) is invertible
for all x, y iff a ∈ Jac(R), b ∈ Jac(S)).

(f) Jac(Mn(R)) =Mn(Jac(R)) (since TJ ⊆ J(TR)).

The dual notions are, if they exist, minimal ideals, their upperbounds the
essential ideals, and their sum the socle.

16. Nilp ⊆ Prime ⊆ Nil ⊆ Jac ⊆ Br

Proof: For any nilpotent ideal, In = 0 ⊆ P (prime) ⇒ I ⊆ P . Elements
of Prime are nilpotent. Nil ideals are superfluous since N + I = R implies
1n = (a + b)n = an + c = c ∈ I. If a ∈ Nil, then for any x, xa is
nilpotent, hence a is quasi-nilpotent. Br(R) is defined as the intersection
of all maximal ideals, so includes Jac(R).

Nil is the intersection of those prime ideals that are not contained in a nil
ideal.

http://staff.um.edu.mt/jmus1/order.pdf
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17. The sum of those minimal left ideals that are isomorphic to I form an
ideal BI . For I, J non-isomorphic minimal left-ideals, BIBJ = 0.

Proof: For J ∼= I, and any a ∈ R, Ja is a left ideal and there is a module
morphism J → Ja, so Ja = 0 or Ja ∼= J ∼= I, so Ja ⊆ BI .

18. A minimal left ideal is either nilpotent, I2 = 0, or generated by an idem-
potent I = Re; in either case, it consists entirely of zero divisors.

Proof: If I2 6= 0, then there is an a ∈ I such that I = Ia 6= 0; so there is
an e ∈ I such that ea = a; also Annih(a) ∩ I is a left ideal, so must be 0;
but e2 − e belongs to this intersection, so e2 = e; Re ⊆ I, so Re = I.

4.1 Division rings

are rings in which every non-zero is invertible; equivalently left-simple rings
F , i.e., the only left ideals are 0 and F (for any a 6= 0, Fa = F , so a has a
left-inverse b, and b has a left-inverse c, so a = c = b−1). Note: left-simple is
stronger than simple. The composition series is just 0 < F .

The smallest sub-ring is Z or Zp, called the characteristic of F .

1. The centralizers Z(A) of a division ring are themselves division rings (since
xy = yx ⇒ yx−1 = x−1y); in particular the center Z(F ) (a field).

2. A division ring is generated by its center and its commutators.

Proof: Any a /∈ Z(F ) must have a b such that [a, b] 6= 0; hence a[a, b] =
[a, ab], so a = [a, ab][a, b]−1.

3. If 2 6= 0, then any sub-division ring E which is closed under commutators
of F must be a field (similarly if it is closed under conjugates x−1Ex).

Proof: For x ∈ E 6 F , y /∈ E, 2y[y, x] = [y2, x] + [y, [y, x]] ∈ E, so
[y, x] = 0. For z ∈ E, xz = xy−1yz = y−1xyz = y−1yzx = zx.

4. Finite domains are fields (Wedderburn).

‘Proof’: For a 6= 0, x 7→ ax is 1-1, hence onto, so both ax = 1 has a
solution; similarly for x 7→ xa. So R is an algebra over its center F , which
is a finite field of size pn, hence R has size pnm. As groups, the conjugacy
class equation is pnm = pn +

∑

i[R : Ci]; a counting argument then shows
m = 1.

4.1.1 Vector Spaces

are modules over a division ring. For example, division rings themselves are
vector spaces over their center.

1. ax = 0 ⇒ a = 0 or x = 0.
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2. Any vector space is free,
⊕

E F ; i.e., there is always a basis.

Proof: Given a (well-ordered) generating setW and a linearly independent
set U , if w ∈W , w /∈ [[U ]], then U ∪ {w } is linearly independent. A chain
of independent set Ui can be formed by adding elements of W . Moreover,
any linear combination in

⋃

i Ui is a finite sum so must belong to some Uj ,
and cannot be 0. By Zorn’s lemma there is a maximal linearly independent
set E which generates X (and includes U).

3. All bases have the same number of elements, called the dimension dimX .

Proof: If w ∈ W , w ∈ [[U ]], then there is a u ∈ U , [[Uru]] + [[w]] = [[U ]]; so
a finite generating set cannot have less elements than an independent set.
For an infinite W , each w =

∑

i aijuj are finite sums, so the total number
of uj involved in such sums does not exceed |W |; any missed u would be
a linear combination of some w’s, hence some ui’s, a contradiction.

4. Subspaces are complemented: X = V ⊕W , thus have a smaller dimension
than X .

Proof: Start with a basis ei for V , then extend to a basis wk for X . The
basis vectors not in V are a basis fj for X/V (since x =

∑

k akwk =
∑

j ajfj (mod V ), 0 =
∑

j ajfj (mod V ) ⇒ ∑

j ajfj ∈ V ⇒ aj = 0).

So dimX = dim(X/Y ) + dimY . For example, for any linear map T ,
dimX = dim kerT + dim imT .

rank(S + T ) 6 rank(S) + rank(T )

rank(ST ) 6 rank(S) ∧ rank(T )

null(ST ) 6 null(S) + null(T )

5. Products: dim(X × Y ) = dimX + dimY , since the vectors (ei, 0) with
(0, e′j) form a basis for X × Y .

6. The ring HomF (X) is semi-simple and contains the unique minimal ideal
K of finite-rank linear maps (i.e., imT is finitely generated), which is
prime and idempotent; the other ideals are contained in each other, each
being the linear maps whose rank has a certain cardinality. HomF (X)
acts on the unique simple faithful module Kx = X .

B := HomF (X) acts faithfully on the simple module eB (since there is a
projection e : X → Fx ⊆ X , and the map J : B → X , T 7→ Tx is linear,
onto, (kerJ)e = 0, kerJ = B(1− e), so X ∼= Be as modules over B).

7. dimHom(X,Y ) = dimX dim Y (using the basis Ers).

8. Hom(X,Y ) is a simple ring (suppose I is an ideal containing A 6= 0, then
Emn = a−1

ji EmiAEjn ∈ I, so I = Hom(X,Y )).
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Mn(F ) = HomF (F
n) is a simple ring since its ideals are of the typeMn(I),

where I is an ideal of F , so I = 0, F . Mm×n(F ) ∼= Fnm = Y1 ⊕ · · · ⊕ Yn
as modules, where Yi = Mn(F )Eii is the simple sub-module of matrices
having zero columns except for the ith column.

9. Center Z(Mn(F )) = Z(F ) (by considering ErsT = TErs, to get arr =
ass).

10. HomF1
(X1) ∼= HomF2

(X2) ⇔ F1
∼= F2 and X1,X2 have the same dimen-

sion.

Proof: R := HomF (X) acts faithfully simply on X ; so given τ : R1 → R2

isomorphism, then R1 also acts on X2 faithfully simply, so there is an
isomorphism T : X1 → X2 of R1-modules. For every S ∈ R, TSx = STx
gives TST−1 = τ(S), a morphism on X2; in particular the maps Sa : x 7→
ax, hence TSaT

−1 = Sf(a); in fact f : F1 → F2 is a 1-1 ring morphism;
conversely, T−1SaT = Sb, so f is invertible. So T (λv) = Sf(λ)Tv =
f(λ)Tv. Thus every k linearly independent vectors in X1 correspond to k
linearly independent vectors in X2, so must have the same dimension.

Thus F can be thought of as linear maps of simple modules (F ∼= HomF (F )).

11. R 6 HomF (X) is 1-transitive ⇒ R is primitive.

4.1.2 Projective Spaces

are the spaces PX of subspaces [[x]] of a vector space X .
PY is a projective subspace, when Y is a subspace of X ; the dimension of

PY is defined as one less than the dimension of Y . Projective subspaces of
dimension 0 are called points, of dimension 1 are called lines, 2 planes, etc.

[[x]], . . . , [[y]] are said to be linearly independent when x, . . . , y are linearly
independent in X .

There is exactly one n-plane passing through n+ 2 generic points (i.e., any
n+ 1 points being linearly independent), in particular there is exactly one line
passing through any two independent points in PX (namely [[x, y]]); there is
exactly one point meeting two lines in a plane.

Linear maps induce maps on PX by T [[x]] = [[Tx]]; eg λ[[x]] = [[x]]; the set of
such maps PGL(X) = GL(X)/[[λ]] (ie S = T in PGL ⇔ S = λT in GL);

The cross-ratio of 4 collinear points is (x, y;u, v) := α/β where x∧u = αx∧v,
y ∧ u = βy ∧ v; it is invariant under PGL(X).

A finite geometry is a set of points and lines such that every line has n+1
points and every point has n + 1 lines; there must be n2 + n + 1 points (and
lines); for example, projective planes of finite division rings Fn. e.g. n = 1 is
the triangle, n = 2 is the Fano plane.

• A finite geometry has the Desargues property (Aa, Bb, Cc are concurrent
⇔ AB ∩ ab, BC ∩ bc, CA ∩ ca are collinear) ⇔ it is embedded in some
projective plane PF 3.
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• A finite geometry has the Pappus property (two lines ABC, abc give an-
other line Ab ∩ aB, Bc ∩ bC, Ca ∩ cA) ⇔ it is embedded in a projective
plane PF 3 with F a field.

4.2 Local Rings

A local ring is one such that the non-invertibles form an ideal J .

1. Equivalently,

(a) The sum of any two non-invertibles is non-invertible

(b) Either x or 1− x is invertible

(c) There is a single maximal left ideal.

Proof: (b)⇒ (c) LetM be a maximal left ideal and x /∈M , thenM+Rx =
R so 1 = a+ bx gives bx = 1− a is invertible, making cx = 1 for some c;
both x and c are invertible else (c− 1)x = 1− x gives a contradiction; so
every proper left ideal is contained in M . (c) ⇒ (lr) If M is the unique
maximal left ideal, then it is the radical (ideal) and R/M is a division
ring, hence for each x ∈ RrM , there is a y, 1 − xy ∈ M , quasinilpotent,
which implies xy (= yx), and thus x, are invertible.

2. Every left (or right) invertible is invertible (since 1 ∈ Ru ⇒ u /∈ J).

3. The radical is J , which is the maximal ideal.

4. R/I is again a local ring. R/J has no left ideals (a division ring).

5. Local rings have only trivial idempotents, so are indecomposable and have
no proper co-prime ideals (since e or 1− e must be 1).

6. In any ring, if prad(I) is maximal, so is the only prime ideal that contains
I, then R/I is a local ring.

Examples: F [[x]] (J = xF [[x]], for F a division ring); Zpn (J = pZpn); Fp[G]
with G a p-group (J = { (an) :

∑

n an = 0 }); Q(p) fractions that omit a prime
p from the denominator (J = pZ(p)).

4.3 Semi-Prime Rings

are rings in which Prime(R) =
⋂

i Pi = { 0 } (Pi prime ideals), i.e., In = 0 ⇒
I = 0, or I · J = 0 ⇒ I ∩ J = 0.

Thus R is embedded in
∏

iRi where Ri = R/Pi are prime rings, i.e., have
the property I · J = 0 ⇒ I = 0 or J = 0.

The matrix ring of a semi-prime (or prime) ring is again semi-prime (or
prime). So is R[x].

For any ring, R/Prime(R) is a semi-prime ring. Reduced rings are rings
whose only nilpotent is 0; so Prime(R) ⊆ Nil(R) = 0.
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4.4 Semi-primitive Rings

are rings in which Jac(R) =
⋂

i Pi = { 0 } (Pi primitive ideals), i.e., there are no
quasi-nilpotents (hence semi-prime).

Examples: Z; any finite product of simple rings; for any ring, R/Jac(R) is a
semi-primitive ring; any ring where the sum of invertibles is again invertible or
0 (since 1 + a invertible implies a = 0), such as F 〈x, y〉.

R is embedded in
∏

iRi where Ri = R/Pi are primitive rings, i.e., { 0 } is
a primitive ideal, or equivalently [M : R] = 0 for some maximal left-ideal M .
Thus a primitive ring acts faithfully on the simple module X := R/M (since
Annih(X) = [M : R] = 0). (Conversely, if X is a simple module, R/Annih(X)
is a primitive ring.)

Of course, primitive rings are prime rings and semi-primitive (Jac(R) =
⋂

M max[M : R] = 0). A prime ring R acting faithfully on a module of finite
length must be primitive; let In := Annih(Mi/Mi−1). Mn(R) is again primitive
([Mn(I) : Mn(R)] =Mn[I : R] = 0).

The action of a semi-primitive ring gives a semi-primitive module. R acts
faithfully on a semi-simple module (e.g. on

∑

iXi where Xi are non-isomorphic
simple modules, so Annih(X) =

⋂

iAnnih(Xi) = Jac(R) = 0).

4.4.1 von Neumann ring

is a ring in which every element is regular a = aba, ∃b.
Equivalently, every 〈x1, . . . , xn〉 = Re for some idempotent e. Proof: If Ra =

Re, then a = be and e = ca; so aca = ae = be = a. Conversely, Given x = xax,
then e := ax is an idempotent and x = xe, so Re 6 Rx 6 Re. Given Re1+Re2,
then Re2(1 − e1) = Rf ; clearly, R(e1 + f) ⊆ Re1 +Re2(1− e1) ⊆ Re1 +Re2;

a1e1 + a2e2 = a1e1 + a2e2e1 + a2e2(1 − e1)
= r1e1 + rf

= r1(e1 + f) + (r − r1)f(e1 + f)

shows Re1 +Re2 = R(e1 + f).
They are semi-primitive (since a ∈ J ⇒ Ra = Re, so e ∈ J , 1 − e is

invertible, and thus e = (1− e)−10 = 0).
Examples: division rings; Mn(F ) (use Gaussian elimination to write any

matrix A = UJV , then A(UV )−1A = A); Boolean lattices.
HomF (X) is von Neumann, primitive, but not simple.

4.4.2 Simple Rings

have trivial ideals.

1. Simple rings are primitive (since the core of any maximal left ideal must
be 0).

2. The center Z(R) is a field (proof: if a ∈ Zr0, then the ideal Ra = R, so
1 = ba invertible; for any c ∈ R, (ca−1 − a−1c)a = 0, so ca−1 = a−1c).
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3. Ring-morphisms to/from a simple ring are 0 or 1-1/onto.

4. Mn(R) is again simple.

5. Similarly to semi-primitive rings, a ring with a trivial Br(R) ideal is em-
bedded in a product of simple rings.

(Note: simple rings need not be Artinian or Noetherian or semi-simple,
e.g. the Weyl algebra.)

4.5 Noetherian Rings

when R is Noetherian as a (left) module.

1. (Levitzky) Nilp = Prime = Nil

Proof: The number of nilpotent ideals in the sum N := Nilp(R) must be
finite, hence N is a nilpotent ideal. Let I be a nil ideal which is not in N ;
pick a ∈ IrN which makes [N : a] maximal. If [N : a] = R then a ∈ N ;
otherwise for any x ∈ R, if ax ∈ IrN , then there is an n such that (ax)n ∈
N but (ax)n−1 /∈ N since ax is nilpotent; so ax ∈ [N : (ax)n−1] = [N : a];

in any case, axa ∈ N , so 〈a〉2 ⊆ N making 〈a〉 nilpotent and a ∈ N . Thus
I ⊆ N .

Hence prad(I)n = I, ∃n (working in R/I).

2. R/I and I are again Noetherian, but subrings need not be.

3. Every finitely generated R-module is Noetherian.

4. A Noetherian ring is isomorphic to R〈x1, . . . , xn〉/I for some finitely gen-
erated left ideal I (so has a presentation).

5. (Hilbert basis theorem) R[x1, . . . , xn] is again Noetherian (also R[[x]]).

Proof: Let I be a left ideal of R[x]; choose polynomials pn+1 ∈ I, each of
minimal degree in Jn := 〈p1, . . . , pn〉. Then the left ideal of their leading
coefficients 〈a1, a2, . . . 〉 ⊆ R is finitely generated, say by the first n terms.
Then an+1 =

∑n
i=1 biai; let q(x) :=

∑n
i=1 bix

r(i)pi(x) ∈ Jn, where r(i) =
deg(pn+1) − deg(pi). Yet q − pn+1 ∈ Jn has degree less than pn+1. Thus
I = Jn is finitely generated.

6. Mn(R) is again Noetherian.

7. (Jacobson’s conjecture:
⋂

n Jac
n = 0.)

8. Z is Noetherian semi-primitive but not Artinian.

(

Z Q

0 Q

)

is right, but not

left, Noetherian.
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4.5.1 Artinian/Finite-Length Rings

when R is Artinian as a module.

1. Every element is either invertible or a two-sided zero divisor.

Proof: R > Ra > Ra2 > · · · > Ran = Ran+1. So for some b ∈ R,
(1 − ba)an = 0; either 1 = ba or a is a right zero divisor. (Similarly for
b, but b cannot be a right zero divisor, so 1 = cb, and a is invertible.)
Similarly, a is either right invertible or a left zero divisor.

2. Nilp = Prime = Nil = Jac = Br, so nil ideals are nilpotent, prime ideals
are maximal, and quasi-nilpotents are nilpotents.

Proof: For J := Jac(R), J > J2 > · · · > Jn = Jn+1. Suppose Jn 6= 0,
then let I be minimal among those ideals with J · I = I 6= 0. So there
is an a ∈ I, Ja 6= 0; J · Jna = Jna implies I = Jna, so a = ba with
b ∈ Jn ⊆ J . Thus (1−b)a = 0, hence a = 0 since b is quasi-nilpotent. This
contradiction gives Jn = 0. Now R/J is semi-primitive so Br(R/J) = 0,
i.e., there are no maximal ideals that contain J properly, and Br(R) = J .

3. Every Artinian R-module is Noetherian (and so of finite length). In par-
ticular, Artinian rings are Noetherian.

Proof: For J := Jac(R), X > JX > J2X > · · ·JnX = 0. If Y = J iX
is Artinian and JY = J i+1X is Noetherian, then the semi-primitive ring
R/J acts on Y/JY as an Artinian semi-primitive module, so is Noetherian.
Thus Y is Noetherian, and by induction, X is too.

4. Every finitely generated R-module is of finite length.

5. Semi-prime Artinian rings are semi-simple; and prime rings are simple
(since semi-simple).

6. For R Artinian,Mn(R) and R[G] for G finite (Connel), are again Artinian,
e.g. F [x]/〈xn〉.

4.5.2 Semi-simple rings

when R is a sum of minimal left ideals.
R is of finite length (since 1 ∈ ∑n

i=1 Ii). Every left ideal is Re for some
(central) idempotent (hence von Neumann).

1. Equivalently, a semi-prime Artinian ring, or a von Neumann Noetherian
ring.

Proof: If R is semi-simple then R ∼= HomR(R) is von Neumann and semi-
primitive. Conversely, every left ideal I of a Noetherian ring is finitely
generated, hence of the type Re where e is an idempotent (von Neumann);
so I is complemented by R(1 − e). Otherwise,semi-prime Artinian rings
are semi-primitive Artinian, thus semi-simple.
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2. An R-module is again semi-simple (X =
∑

x∈X Rxwith Rx ∼= R/Annih(x)
semi-simple, so X is a sum of simple modules.)

3. Mn(R) is again semi-simple.

Proof: Mn(R) = I1 ⊕ · · · ⊕ In where Ii consists of matrices that are zero
except for ith column. Ii ∼= Rn which is semi-simple.

4. Every primitive Artinian ring is of the type Mn(F ), where F is a division
ring, thus simple.

Proof: A primitive Artinian ring is prime, hence simple, of finite length
R ∼= In for some minimal left ideal I = Re; so R ∼= HomR(I

n) = Mn(F )
where F = HomR(I) = eRe is a division ring with e as identity.

5. Proposition 3

(Wedderburn)

A semi-simple ring is the finite product of ma-
trix rings over division rings

R ∼= HomR(R) ∼=Mn1
(F1)× · · · ×Mnk

(Fk)

Each matrix ring is different unless the ring is simple Artinian. That is,
R ∼= B1×· · ·×Br whereBi = Ini

i = Ii⊕· · ·⊕Ii ∼=Mni
(Fi), Fi = HomR(Ii),

each Ii is a vector space over Fi. All the simple left ideals of R are
isomorphic to one of Ii (since I = Ra ∼= R/Annih(a), so R = I⊕Annih(a),
so I appears in the sum of R).

6. If R has no nil ideals, then R[x] is semi-simple.

7. (Maschke) R[G] (G group) is semi-simple iff G is finite and |G| is invertible
in R. Thus, Z[G] is not semi-simple, C[G] ∼= Mn(C) × · · · × Mm(C)
(irreducible representations of G, one for each conjugacy class).

4.5.3 Finite rings

The simple finite rings are Mn(Zp). A finite ring R of size n = pr11 · · · prkk is
the product of rings of size prii (each Ri

∼= { a ∈ R : pmi a = 0, ∃m }). So the
classification of finite rings depends on finding those of size pn.

1. p – only one ring (field) Zp.

2. p2 – Zp2 , Zp × Zp, [[a : p1 = 0, a2 = 0]], Fp2 .

3. p3 – 12 rings for p > 2, 11 for p = 2.

(There are many more ‘rings’ without an identity.)
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5 Commutative Rings

xy = yx

Products and subrings are obviously commutative. For example, Zn.

1. Binomial theorem:

(x+ y)n = xn + nxn−1y + · · ·+
(

n

k

)

xkyn−k + · · ·+ nxyn−1 + yn

For example, if the prime sub-ring is Zp (p prime), then x 7→ xp is a
morphism.

2. There is no distinction between ideals and left/right ideals; so I ·J = J · I,
Br(R) = Jac(R).

3. 〈a〉 = Ra; 〈a〉〈b〉 = 〈ab〉; 〈a〉 = R ⇔ a is invertible ⇔ ∀x, a|x.
4. P is a prime ideal when xy ∈ P ⇒ x ∈ P or y ∈ P (i.e., X/P has no

zero-divisors).

p is called prime when 〈p〉 is prime, i.e., p|xy ⇒ p|x or p|y.
5. If I 6 P1 ∪ · · · ∪ Pn then I 6 Pi for some i.

Proof: Take n to be minimal, i.e., ∃ai ∈ I ∩ Pi, ai /∈ Pj (j 6= i). Then
a2 · · · an ∈ I ∩ P2 ∩ · · · ∩ Pn but not in P1, so a1 + a2 · · · an ∈ I but not in
P1 ∪ · · · ∪ Pn; hence n = 1.

6. S is a semi-prime ideal when xn ∈ S ⇒ x ∈ S, that is when S is a radical
ideal.

7. 〈a〉 is nilpotent iff a is nilpotent.

8. The sum of two nilpotents is again nilpotent (by the binomial theorem),
so the set of all nilpotents is an ideal, in fact Nil(R) = Prime(R) (since
an = 0 ∈ P ⇒ a ∈ P ).
More generally, r(I) is an ideal, so prad(I) = r(I).

9. If Ii are mutually co-prime, then I1 · · · In = I1 ∩ · · · ∩ In (by induction
on I ∩ J = I · J + J · I = I · J). In particular, for p, q co-prime, i.e.,
〈p〉+ 〈q〉 = R, pq|x ⇔ p|x and q|x.
For modules, IX ∩ JX = (I · J)X (since x ∈ IX ∩ JX ⇒ x = ax+ bx ∈
IJX + JIX = IJX), so X/(IJX) ∼= X/IX ×X/JX .

If I + J = R and I · J = Kn then I = Ln (with L = I +K).

10. For a regular element, a = a2u with u invertible. The regular elements
are closed under multiplication; there are no regular nilpotent elements
except 0.

Proof: If a = a2b, take u := 1 − ab + ab2, with u−1 = 1 − ab + a.ac =
a2bc2d = (ac)2(bd). an−1 = a2(n−1)bn−1 = 0.
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11. a is said to be irreducible when a = xy ⇒ a ≈ x or a ≈ y (i.e., equality
up to invertible elements); equivalently, 〈a〉 is maximal with respect to
principal ideals, 〈a〉 ⊂ 〈x〉 ⇒ 〈x〉 = R. Otherwise a is called composite
when 〈a〉 ⊂ 〈b〉.

12. r〈pm1

1 · · · pmn
n 〉 = 〈p1 · · · pn〉 for pi co-prime primes.

Proof: pq ∈ r〈psqt〉 since (pq)max(s,t) ∈ 〈psqt〉; conversely, if xm ∈ 〈psqt〉 ⊆
〈p〉 ∩ 〈q〉, then x ∈ 〈p〉 ∩ 〈q〉 = 〈pq〉.

13. A primary ideal is defined as one such that

ab ∈ Q ⇒ a ∈ Q or b ∈ Q or a, b ∈ r(Q)

ab ∈ Q ⇒ a ∈ Q or b ∈ r(Q)

i.e., R/Q has invertibles or nilpotents only (so is a local ring).

Examples include prime ideals and 〈pn〉 for any prime element.

(a) Q primary ⇒ r(Q) prime.

Proof: ab ∈ r(Q) ⇒ anbn ∈ Q, so if a /∈ r(Q) then an /∈ Q, so
bn ∈ r(Q), i.e., b ∈ r(Q).

(b) But various primary ideals Q may induce the same prime r(Q). If
a /∈ Q then [Q : a] is also primary and r[Q : a] = r(Q).

Proof: If bc ∈ [Q : a] but c /∈ [Q : a] then abc ∈ Q, ac /∈ Q, so
bn ∈ Q ⊆ [Q : a]. If b ∈ [Q : a] (ab ∈ Q) then b ∈ r(Q), so
Q ⊆ [Q : a] ⊆ r(Q), and r(Q) = r[Q : a].

(c) r(I) maximal ⇒ I primary.

Proof: If ab ∈ I but b /∈ r(I) then r(I)+〈b〉 = R, so 1 = cb+d, dn ∈ I,
and a(1 − d) ∈ I. Let r := 1 + d+ · · ·+ dn−1, so r(1 − d) = 1 − dn;
then a = ra(1 − d) + adn ∈ I.

(d) Thus powers of maximal ideals are primary: r(Mn) = r(M) =M .

14. Primitive ideals are maximal (since a maximal ‘left’ ideal is its own core),
and primitive rings are simple.

15. A simple commutative ring is called a field. A commutative

(a) semi-primitive ring is embedded in a product of fields,

(b) semi-simple ring is a finite product of fields,

(c) von Neumann ring is reduced, and localizes at any maximal ideal to
a field.

16. R[x] is again commutative but Mn(R) is only commutative for n = 1 or

R = 0 since

(

0 1
0 0

)(

0 0
1 0

)

6=
(

0 0
1 0

)(

0 1
0 0

)
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5.0.4 Modules over Commutative Rings

1. In a free module X , if A is linearly independent and B spans, then
|A| 6 |B|. Hence any two bases of X have the same cardinality, called its
dimension dimX .

Proof: Let I be a maximal ideal of R, then V := X/(I · X) is a vector
space over the field R/I; also xi+I ·X (xi ∈ B) generates V and yi+I ·X
(yi ∈ A) remain linearly independent, hence |A| 6 |B|.

2. A torsion element x of a module is one such that there is a cancellative
a ∈ R, ax = 0. The set of torsion elements is a sub-module Xtor. X/Xtor

is torsion-free.

Proof: ax = 0 (mod Xt) implies ax = y ∈ Xt, so bax = by = 0; but ba is
cancellative, so x = 0 (mod Xt).

3. A sub-module Y is primary when ax ∈ Y ⇒ x ∈ Y or anX ⊆ Y . Then
Annih(X/Y ) is a primary ideal.

4. The dual space X⊤ := HomR(X,R) is an R-module. There are dual
concepts for subsets A ⊆ X , Φ ⊆ X⊤, and linear maps T ∈ HomR(X,Y ):

A◦ := {φ ∈ X⊤ : φA = 0 }, sub-module of X⊤,

Φ◦ := { x ∈ X : Φx = 0 }, sub-module of X,

T⊤ : Y ⊤ → X⊤, φ 7→ φ ◦ T, linear map.

(a) Φ 6 A◦ ⇔ A 6 Φ◦, so the dual maps are adjoints; hence A ⊆
B ⇒ B◦ ⊆ A◦; [[A]] ⊆ A◦◦, [[A]]

◦
= A◦; (A ∪ B)◦ = A◦ ∩ B◦;

(A ∩B)◦ ⊇ A◦ +B◦;

(b) (A×B)◦ = A◦ ×B◦; X⊤/A◦ ∼= [[A]]
⊤

, (X/Y )⊤ ∼= Y ◦;

(c) T 7→ T⊤ is a linear map; (ST )⊤ = T⊤S⊤; (T−1)⊤ = (T⊤)−1;
kerT⊤ = (ImT )◦;

(d) the map X → X⊤⊤, x⊤⊤(φ) := φ(x) is linear, and then it also maps
A→ A◦◦, and T 7→ T⊤⊤;

5. Given T : X → X linear, we can consider the action of R[T ] on X (a
submodule); Y is a submodule of X in this action ⇔ TY ⊆ Y ; then T
can be defined on X/Y via T (x+ Y ) = Tx+ Y .

5.0.5 Polynomials

1. Polynomials become functions: they can be evaluated at any element a
using the morphism R[x]→ R, p 7→ p(a).

2. Division algorithm: Every polynomial p can be divided by a monic poly-
nomial s to leave unique quotient and remainder

p = qs+ r, deg r < deg s.
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In particular, p(x) = q(x)(x − a) + p(a), and p(a) = 0 ⇔ p ∈ 〈x− a〉.
Proof: Let s(x) := xm + bm−1x

m−1 + · · ·+ b0, then

p(x) = anx
n + · · ·+ a0

= anx
n−m(xm + · · ·+ b0) + (cn−1x

n−1 + · · ·+ c0),

= anx
n−ms(x) + rn−1(x)

where rn−1 = q′s+ r by induction, so p = (anx
n−m + q′)s+ r.

3. Translation τa : x 7→ x+ a is an automorphisms on R[x]:

p(x+ a) = p(a) + b1(a)x+ b2(a)x
2 + · · ·+ bn(a)x

n,

where br(a) =
n
∑

k=r

(

k

r

)

aka
k−r

4. When (x − α1) · · · (x − αn) is expanded out, its (n − i)th coefficient is a
symmetric polynomial in αi, (−1)i

∑

j1<···<ji
αj1 · · ·αji .

5. A polynomial is nilpotent iff the ideal generated by its coefficients is nilpo-
tent. A monic polynomial is invertible only when it has degree 0.

6. a is called a root or zero of p 6= 0 when p(a) = 0. It is said to be a multiple
root of p when p ∈ 〈(x − a)r〉, i.e., bi(a) = 0 for i = 0, . . . , r − 1.

Polynomials may have any number of roots, e.g. in Z6[x], x
2 + 1 has no

roots, xn has one root, x2 + x = x(x + 1) = (x − 2)(x − 3) has 4, x3 − x
has 6 roots; in H[x], x2 + 1 has an infinite number of roots ai + bj + ck
with a2 + b2 + c2 = 1).

7. (a) If p is of degree > 2 and has a root then it is reducible.

(b) If it is monic of degree 6 3 and has no roots, then it is irreducible
(otherwise a factor must have degree 1);

(c) Monic polynomials of degree > 4 may be reducible yet have no roots,
e.g. x4 + 4 = (x2 + 2x + 2)(x2 − 2x + 2), x4 + x2 + 1 = (x2 + x +
1)(x2 − x+ 1) in Z[x].

8. If a satisfies a monic polynomial with coefficients bi, then a is said to be
integral over the sub-ring [[b0, . . . , bn]]. For example, an algebraic integer
is an element that satisfies some p ∈ Z[x].

5.0.6 Ring of Fractions

Given any subset S ⊆ R that is cancellative (contains no zero divisors), the ring
is embedded in a larger ring in which elements of S become invertible: extend S
to contain all its products and 1 (it will not contain 0) and take the localization
ring S−1R to be R×S, with element pairs (x, a) denoted by x/a or x

a , in which

x

a
=
y

b
⇔ bx = ay
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x

a
+
y

b
:=

xb+ ya

ab
,

x

a

y

b
:=

xy

ab

so (a/1)−1 = 1/a, and the map x 7→ x/1 is an embedding of R. The same
construction applies to localization of a module S−1X , with X replacing R and
S ⊆ R not annihilating any element of X (∀a ∈ S, ax = 0 ⇒ x = 0). Typical
localizations are:

• The ring of fractions Frac(R) is the localization of the (multiplicative) set
of all cancellative elements (thus all non zero divisors become invertible).
For example, the ring of fractions of Z is Q; that of Z[

√
d] is Q[

√
d], of

F[x] consists of the ‘rational’ functions p(x)/q(x).

• The localization RP at a prime ideal P , with S := RrP (multiplicative);
S−1R is a local ring with radical S−1P . The sub-ideals of P remain intact
in S−1R but all sup-ideals vanish. For example, S−1

p Z with Sp = ‖r〈p〉
gives Q(p).

• The localization at a single cancellative element x is R[x−1] (using S :=
{ 1, x, x2, . . . }); e.g. Z at n 6= 0 gives Z[1/n].

1. S−1(X+Y ) = S−1X+S−1Y , S−1(X∩Y ) = S−1X∩S−1Y , S−1(X/Y ) ∼=
S−1X/S−1Y .

2. Spec(S−1R) ⊆ Spec(R).

3.
⋂

M maximalRM = R.

4. The ring of fractions of a local ring with radical P can be given a natural
uniform topology from the base Pm, making it a topological ring, called
the P -adic ring; when the ring is Noetherian, the topology is T2.

5. Elements of a commutative ring R can be thought of as continuous func-
tions C(Spec(R)), with fa(P ) := a+ P ∈ Frac(R/P ).

5.1 Noetherian commutative rings

1. Irreducible ideals are primary.

Proof: Let I be irreducible and ab ∈ I; then

[I : b] 6 [I : b2] 6 · · · 6 [I : bn] = [I : bn+1]

so I = (〈a〉+ I) ∩ (〈bn〉+ I) since c = ra = sbn (mod I) implies cb = 0 =
sbn+1 = sbn = c (mod I), so c ∈ I; thus either I = 〈a〉+I or I = 〈bn〉+I.

2. Every primary ideal Q satisfies r(Qn) ⊆ Q for some n (since nil ideals are
nilpotent).

3. S−1R is Noetherian/Artinian when R is.
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4. For any R-module X , the maximal elements in the set of annihilators
Annih(x), x 6= 0, are prime ideals Annih(x0), called the associated prime
ideals of X .

Proof: If ab ∈ P := Annih(x0) but b /∈ P , then bx0 6= 0 yet abx0 = 0, but
Annih(bx0) > Annih(x0) = P , so a ∈ Annih(bx0) = P .

Proposition 4

(Lasker-Noether)

Every proper ideal has a decomposition into primary ide-
als, I = Q1∩· · ·∩Qn, with distinct and unique r(Qi), and no
Qi contains the intersection of the other primary ideals.

Proof: Every such ideal can be decomposed into a finite number of irreducible
ideals, since R is Noetherian; if r(Q1) = r(Q2) = P then Q1∩Q2 is still primary
and r(Q1 ∩ Q2) = P ∩ P = P , so one can assume each Q has a different r(Q);
if Qi ⊇

⋂

j 6=iQj then remove it.
More generally, given a finitely generated R-module, every sub-module is

the finite intersection of primary sub-modules: decompose Y = M1 ∩M2 and
continue until the remaining sub-modules cannot be written as an intersection;
for such “irreducible” sub-modules X/Mi is primary.

5.1.1 Finite Length (Artinian) commutative rings

1. Prime ideals = Maximal (since R/P is Artinian but has no zero divisors,
so is simple, i.e., P is maximal).

2. Their spectrum is finite.

3. They are a finite product of local Artinian rings (since Jac is the finite
intersection of maximal ideals; so 0 =

∏

iM
k
i =

⋂

iM
k
i , so R is isomorphic

to a finite product of R/Mk
i which are local, by CRT).

4. R/Jac(R) is isomorphic to a finite product of fields (since primitive com-
mutative rings are fields).

5.2 Integral Domains

are cancellative commutative rings, so without proper zero divisors,

xy = 0 ⇒ x = 0 or y = 0

Equivalently, [[0]] is prime, i.e., a commutative prime ring.
(More generally, semi-prime commutative rings have Nil = 0; equivalently

reduced commutative rings.)



Joseph Muscat 2015 36

Subrings are again integral domains. The smallest sub-ring is either Z or
Zp, called the characteristic of R (Zpq has zero divisors).

Examples include Z, and the center of any prime ring.

1. There are no non-trivial idempotents, so indecomposable. There are no
proper nilpotents, so Nil = 0.

2. All ideals are isomorphic as modules, using Ra→ Rb, xa 7→ xb.

3. Divisibility becomes an order (mod the invertible elements) i.e., x|y and y|x ⇒
x ≈ y; an inf of two elements is called their greatest common divisor, a
sup is called their lowest common multiple.

4. Prime elements are irreducible (p = ab ⇒ p|a (say) ⇒ pr = a ⇒ prb =
ab = p ⇒ rb = 1).

5. The ring of fractions Frac(R) is a field; so integral domains are subrings
of fields.

6. R[x] is again an integral domain; its field of fractions is R(x); that of R[[x]]
is R((x)) (Laurent series). The invertibles of R[x] are the invertibles of R.

7. Any polynomial of degree n has at most n roots.

Proof: By the division algorithm, p(x) = q(x)(x − a1)r1 , so q(a2) = 0;
repeating this process must end after at most n steps since the degree of
q decreases each time.

8. Every polynomial in R[x1, . . . , xn] can be rewritten with highest degree

ymn , under the change of variables yi := xi+x
ri

n , yn := xn for large enough
r.

9. ForX finitely generated,X is torsion-free iff it is embedded in some finitely
generated free module.

Proof: X = [[x1, . . . , xn]], split them into x1, . . . , xs linearly independent
and the rest depend on them; so Y := [[x1, . . . , xs]] ∼= Rs is free; as+ixs+i ∈
Y , so Tas···ar

X ⊆ Y with T 1-1; so X is embedded in Y .

10. Finite Integral Domains are fields (see later).

5.2.1 GCD Domains

are integral domains in which divisibility is a semi-lattice relation (up to invert-
ible elements): any two elements have a gcd x ∧ y and an lcm x ∨ y.

1. (a) (ax) ∧ (ay) = a(x ∧ y), (since a|ax, ay so ab = (ax ∧ ay), so ab|ax, ay
and b|x, y, hence ab|a(x ∧ y)), so they are lattice monoids,

(b) x ∧ y = 1 and x|yz ⇒ x|z (since x|(xz ∧ yz) = z),

(c) (xy)∧ z = 1 ⇔ (x∧ z) = 1 = (y∧ z) (since a|xy, z ⇒ a|(xz ∧xy) =
x(z ∧ y) = x, so a|(x ∧ z) = 1),
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(d) x ∧ (y + xz) = x ∧ y.

2. Irreducibles = Primes (If p is irreducible then either p|x or p ∧ x = 1 for
any x, so p|ab and p 6 |a ⇒ p|b.)

3. The ‘content’ of a polynomial is con(p) := gcd(a0, . . . , an). Every polyno-
mial can be written as p = con(p)p̃ where con(p̃) = 1; such a p̃ is called a
primitive polynomial.

con(ap) = gcd(aa0, · · · , aan) = a con(p)

4. The product of primitive polynomials is primitive,

con(pq) ≈ con(p)con(q)

Proof: Let p(x) = a0 + · · · + anx
n and q(x) = b0 + · · · + bmx

m be prim-
itive polynomials; let c := con(pq), d := c ∧ an, then d|c|pq and d|an,
so d|(p − anx

n)q which has a lower degree; so by induction, d|con(p −
anx

n)con(q); hence d|(p− anxn) and so d|con(p) ≈ 1. Thus c ∧ an ≈ 1 ≈
c ∧ bm; but c|anbm, so c ≈ 1. More generally, for any p, q not necessarily
primitive,con(pq) ≈ con(con(p)con(q)p̃q̃) ≈ con(p)con(q).

5. A polynomial p(x) ∈ R[x] is irreducible iff it is primitive and it is irre-
ducible over its field of fractions, F [x].

Proof: If p is reducible in R[x] then either it is so in F [x] or p = con(p)p̃.
Suppose p(x) = r(x)s(x) with r, s ∈ F [x]; then p(x) = a

b r̃(x)
c
d s̃(x) where

r̃, s̃ ∈ R[x] are primitive. But then bd|con(acr̃s̃) = ac, so ac
bd ∈ R and r, s

can be taken to be in R[x].

Thus, a primitive polynomial p(x) ∈ R[x] has no roots that are in the field
of fractions F that are not in R.

6. (Eisenstein) A convenient test that checks whether a primitive polynomial
p(x) = a0 + · · · + anx

n is irreducible is: Find a prime ideal P such that
a0, . . . , an−1 ∈ P , an /∈ P , a0 /∈ P 2.

Proof: If p = gh, then gh = anx
n (mod P ), so b0, c0 = 0 (mod P ) and

a0 = b0c0 ∈ P 2.

Examples include xn − p (p prime), 1 + x+ · · ·+ xp
n−1 (first translate by

1 to get p+
(

p
2

)

x+ · · ·+ xp−1).

7. R[x] is again a GCD.

Proof: Let d := p∧ q in F [x]; then d|p, d|q in F [x], hence in R[x]; and c|p,
c|q in R[x] implies c|d in F [x], hence in R[x].
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5.2.2 Unique Factorization Domains

In general, one can try to decompose an element into factors x = yz, and
repeat until perhaps one reaches irreducible elements. An integral domain has a
factorization of every element into irreducibles iff its principal ideals satisfy ACC
(e.g. commutative Noetherian); such factorizations are unique iff irreducibles are
prime.

∀x, ∃!p1, . . . , pm prime, x ≈ p1 . . . pm
Proof: 〈x1〉 < 〈x2〉 < · · · is equivalent to x1 = a1x2 = a1a2x3 = · · · with ai

not invertible. Such an x1 can only have a finite factorization iff the principal
ideals eventually stop. See Factorial Monoids for uniqueness.

Equivalently a UFD is an integral domain in which every prime ideal contains
a prime.

1. UFDs are GCD domains: the gcd is the product of the common primes
(pmin(ra,rb) · · · ), the lcm is the product of all the primes without repetition
(pmax(ra,rb) · · · ).

2. R[x] is a UFD.

Proof: F [x] is a UFD (since it is an ER), so p ∈ R[x] has a factorization
in irreducible polynomials qi ∈ F [x], which are in R[x]. This factorization
is unique since irreducibles of R[x] are primes.

5.2.3 Principal Ideal Domains

are integral domains in which every ideal is principal 〈x〉.

1. 〈x〉+ 〈y〉 = 〈 gcd(x, y)〉, 〈x〉∩ 〈y〉 = 〈 lcm(x, y)〉. So the gcd can be written
as a ∧ b = sa + tb for some s, t ∈ R. For example, 〈x〉, 〈y〉 are co-prime
when gcd(x, y) = 1.

2. ax+ by = c has a solution in R ⇔ gcd(a, b)|c.

3. If R ⊆ S are PIDs, then gcd(a, b) is the same in both R and S (since
(a ∧ b)S |sa+ tb = (a ∧ b)R).

4. PIDs are Noetherian, hence UFDs.

Proof: For any increasing sequence of ideals

〈x1〉 6 〈x2〉 6 · · · 6
⋃

i

〈xi〉 = 〈y〉,

so y ∈ 〈xn〉, implying 〈xn〉 = 〈xn+1〉 = · · · = 〈y〉.

5. p is irreducible/prime ⇔ 〈p〉 is maximal; i.e., prime ideals = maximal.

Proof: If 〈p〉 6 〈a〉, then p = ab so either a or b is invertible, i.e., 〈a〉 = R
or 〈a〉 = 〈p〉.

http://staff.um.edu.mt/jmus1/groups.pdf
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6. But 〈a〉 is irreducible iff primary iff 〈pn〉 for some prime p.

Proof: If 〈a〉 is primary, then r〈a〉 = 〈p〉 prime; if a = pnqm · · · is its prime
decomposition, then q ∈ r〈a〉 = 〈p〉, so a = pn.

The decomposition of ideals into primary ideals becomes 〈a〉 = 〈pr〉 · · · 〈qs〉.

7. In general, R[x] need not be a PID (unless R is a field), e.g. 〈1, x〉 is not
principal in Z[x].

8. Smith Normal form: Every matrix in Mn(R) has a unique form for a

suitable generating set of elements,







λ1 0
0 λ2

. . .






. Hence can solve linear

equations in PIDs efficiently.

Proof: Use Gaussian elimination of row/column subtractions and swaps
to reduce to gcd.

9. The ideal Annih(X) of a module is principal 〈r〉, with r called the order
of X .

Important examples of PIDs are Euclidean Domains, defined as integral
domains with a ‘norm’ |·| : Rr0→ N and a division:

∀x, y 6= 0, ∃a, r, x = ay + r, where 0 6 |r| < |y| or r = 0

Proof: Let I be a non-trivial ideal; pick y ∈ I with smallest norm; then
∀x ∈ I, x = ay + r and r 6= 0 ⇒ r = x − ay ∈ I impossible, so r = 0 and
x = ay, i.e., I = 〈y〉.

Examples include Z with |n| :=
{

n n > 0

−n n < 0
, and F [x] with |p| := deg(p).

5.2.4 Finitely-Generated PID Modules

1. Submodules of finitely-generated free modules are also free.

Proof: Let Y1 := { x = (a1, 0, . . .) ∈ RA : x ∈ Y } and Y2 = { x =
(0, a2, . . .) ∈ RA : x ∈ Y }, both submodules of RA; in fact Y1 = [[e1]] ∼= R
(or Y1 = 0); by induction Y2 = RC , so that Y ∼= R×RC = R1+C .

2. X is torsion-free ⇔ free.

Proof: Let e1, . . . , en be generators with the first k being linearly indepen-
dent; suppose k 6= n, then for i > k, aiei =

∑

j λjej , let a := ak+1 · · ·an 6=
0, so [[a]] is a submodule of the free module [[e1, . . . , ek]], so itself must be
free; but x 7→ ax is an isomorphism, so X = [[a]] is free.

3. A finitely generated module over a PID is isomorphic to

X ∼= Rn × R

〈pm〉 × . . .×
R

〈qk〉
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where p, . . . , q are unique primes.

Proof: Let X be indecomposable. The order of X is pn since r = ab co-
prime gives sa+ tb = 1, so x = (sa+ tb)x ∈ Mb +Ma where Ma = { x ∈
X : ax = 0 }; if x ∈ Ma ∩Mb then ax = 0 = bx, so x = (sa + tb)x = 0.
Suppose x 6= 0, then X = [[x]] ∼= R/Annih(x) = R/〈pn〉.

5.3 Fields

are commutative rings in which every x 6= 0 has an inverse xx−1 = 1. Equiva-
lently, they are

• simple commutative rings (since the only possible ideals are 0 and F );

• finite-length integral domains (since elements of Artinian rings are either
invertible or zero divisors; this can be seen directly for finite integral do-
mains as 0x, 1x, r3x, . . . , rnx are all distinct, so must contain 1).

• von Neumann integral domains (since regular cancellatives are invertible).

The smallest subfield in F , called its prime subfield, is isomorphic to Fp := Zp

or Q (depending on whether the prime sub-ring is Zp or Z); it is fixed by any 1-1
morphism. Thus every field is a vector space (algebra) over its prime subfield.

Examples include fields of fractions of an integral domain, such as Q, the
center of any division ring, and R/I with R commutative and I maximal, such
as F [x]/〈p〉 with p irreducible.

1. Every finite (multiplicative) sub-group of Fr0 is cyclic.

Proof: Being a finite abelian group, G ∼= Zpn × Zqr × · · · ; so all elements
satisfy xm = 1 where m = lcm(pn, qr, . . .). But the number of roots of
xm = 1 is at most m. Hence p, q, . . . are distinct primes, so G is cyclic.

2. The polynomials F [x] form a Euclidean domain with |p(x)| := deg(p).

3. F [x]
〈p(x)〉

∼= F [x]

〈pr1
1

〉 × · · · ×
F [x]
〈prn

n 〉 with pi(x) irreducible (Lasker).

4. If the prime subfield is Fp, then x 7→ xp is a 1-1 morphism which preserves
Fp (since a ∈ Fp ⇒ ap = a, xp = 0 ⇒ x = 0).

5. The finite fields are of the type Fpn := Fp[x]/〈q(x)〉, where q is an irre-
ducible polynomial in Fp[x] of degree n. Its dimension over Fp is n, so it
has pn elements.

Existence: take the splitting field for xp
n

= x (see later); its pn roots form
a field since (a + b)p

n

= ap
n

+ bp
n

= a + b, and similarly (−a)pn

= −a
(even if p = 2), (ab)p

n

= ab, (a−1)p
n

= a−1. Uniqueness: every non-zero
element satisfies xp

n−1 = 1, so every element satisfies xp
n

= x and there
are no multiple roots (derivative is −1); F is thus the splitting field for a
polynomial.
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6. For Mn(F ), the Smith normal form is

(

I 0
0 0

)

for suitable bases.

Formally real fields : those such that
∑

i a
2
i = 0 ⇒ ai = 0.

Perfect fields : has prime subfield either Q or Fp with x 7→ xp an automor-
phism.

5.3.1 Algebraically Closed Fields

when every non-constant polynomial in F [x] has a root in F (hence has deg(p)
roots, i.e., ‘splits’); equivalently, when its irreducible polynomials are of degree
1, i.e., x+ a.

Every field has an algebraically closed extension, unique up to isomorphisms
(e.g. list all irreducible polynomials, if possible, and keep extending by roots).

6 Algebras

Definition An algebra is a ring R with a sub-field F in its center,

λ(xy) = (λx)y = x(λy)

They are vector spaces with an associative bilinear product. Examples in-
clude

• Integral domains or division rings, at least over their prime sub-field Q or
Zp;

• HomF (X) when F is a field acting on a vector space X ;

• Group algebras F [G] (for example, H := R[Q] where Q is the quaternion
group i2 = j2 = k2 = −1; F [Cn] ∼= F [x]/〈xn − 1〉).

Morphisms preserve +, ·, F :

φ(x+ y) = φ(x) + φ(y), φ(xy) = φ(x)φ(y), φ(λx) = λφ(x), φ(1) = 1.

Note that as φ(λ) = λ, morphisms fix F .
Subalgebras are sub-rings that contain F ; e.g. the center. The subalgebra

generated by A is the smallest subalgebra that contains F and A, denoted F [A].
Every algebra is a subalgebra of HomF (X) for some vector space (take X =

R and the isomorphism x 7→ Tx where Tx(y) = xy).

1. A free algebra with a basis ei is characterized by its structure constants
γkij ∈ F , defined by eiej = γkijek.
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2. Every element is either algebraic, i.e., satisfies a non-zero polynomial
in F [x], or transcendental wrt F (otherwise). If a is algebraic, the
polynomials it satisfies form an ideal 〈pa〉, where pa is called its minimal
polynomial. The roots of pa are called the ‘eigenvalues’ of a. Idempotents
x2 = x and nilpotents xn = 0 are algebraic.

3. Morphisms between algebras over F map φ(p(a)) = p(φ(a)), so they pre-
serve algebraic and transcendental numbers.

4. If a is algebraic, then F [x] → F [a], q(x) 7→ q(a), is an algebra morphism
with kernel 〈pa〉. So F [a] has dimension deg(pa).

5. The set of algebraic elements form an algebra Ralg. The minimal polyno-
mials of a+ α, αa, a−1, an, b−1ab are related to that of a (but not so for
a+ b and ab).

Proof: If a is algebraic, then so is the ring F [a] ⊆ R since it is finite
dimensional. Hence for a, b algebraic, a+ b, ab ∈ F [a][b] are algebraic.

6. The algebraic elements of Jac(R) are the nilpotents (since for r ∈ J , 1+ar
is invertible, so the minimal polynomial must be 0 = akr

k + · · ·+ anr
n =

akr
k(1 + ar) hence rk = 0).

7. Every set of group morphisms G→ Rr0 is F -linearly independent.

Proof: If a1σ1 + · · ·+ anσn = 0, then also for all g ∈ G,

a1σ1(g)σ1(x) + · · ·+ anσn(g)σn(x) = 0,

∴ a1(σ1(g)− σn(g))σ1 + · · ·+ an(σn−1(g)− σn(g))σn−1 = 0,

so by induction, ai(σi(g) − σn(g)) = 0; but for each i there is a g such
that σi(g) 6= σn(g), so ai = 0. Hence also an = 0.

Let G := AutF (R) be the group of algebra automorphisms of R. To each
subalgebra F 6 S 6 R there is a group

Gal(S) := { σ ∈ G : ∀x ∈ S, σ(x) = x }

and for a subgroup H 6 G, there is a subalgebra of R,

Fix(H) := { x ∈ R : ∀σ ∈ H,σ(x) = x }

They are adjoints,
H 6 Gal(S) ⇔ Fix(H) > S

1. Writing S′ := Gal(S), H ′ := Fix(H), it follows, as for all adjoints, that
S1 6 S2 ⇒ S′

2 6 S′
1, H1 6 H2 ⇒ H ′

2 6 H ′
1; S 6 S′′, H 6 H ′′; S′′′ = S′,

H ′′′ = H ′.

2. Fix(σHσ−1) = σFix(H) (since σHσ−1(x) = x ⇔ σ−1(x) ∈ Fix(H)).

3. σGal(S)σ−1 = Gal(σS) (since στσ−1 = ω ⇔ σ−1ωσ(x) = x, ∀x ∈ S, so
ωσ(x) = σ(x)).
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6.1 Algebraic Algebras

are algebras in which every element is algebraic, i.e., satisfies some polynomial
in F [x]. For example, Ralg.

1. If R is algebraic on E which is algebraic on F , then R is algebraic on F

Proof: Every r ∈ R satisfies a poly p =
∑

i aix
i ∈ E[x]; so F 6 F [a0, . . . , an] 6

F [a0, . . . , an, r], each extension being finite dimensional; hence the last al-
gebra is algebraic.

2. Jac(R) = Nil(R) (since all algebraic numbers in J are nilpotent).

3. Non-commutative algebraic algebras over Fpn have non-trivial nilpotents,
e.g. algebraic division algebras over Fpn are fields.

4. The algebraic division algebras over R are R, C, or H.

Proof: For any a /∈ R, R[a] ∼= C; so R is a vector space over C; now R splits
into two subspaces: those that anti/commute with i, x = (ix + xi)/2i +
(ix − xi)/2i. If all commute then R ∼= C; otherwise choose a that anti-
commutes, the map x 7→ a−1x converts anti-commuting to commuting;
hence R ∼= C+aC; note that a2 commutes, so a2 ∈ C, yet is also algebraic
over R, hence 0 > a2 ∈ R; let j := a/|a|, so R ∼= C+ jC = H.

6.2 Finite-dimensional Algebras

1. An algebra is finite-dimensional iff it is algebraic (of bounded degree) and
finitely generated.

Proof: For any a ∈ R, then 1, a, a2, . . . are linearly dependent, so a is
algebraic. F [a1] < F [a1, a2] < · · · where an /∈ F [a1, . . . , an−1]; for finite
dimensions, R = F [a1, . . . , an]. Conversely, F [a] is finite dimensional
over F , since a is algebraic, hence by induction F [a1, . . . , an] is finite
dimensional over F .

2. Every finite-dimensional algebra can be represented by matrices inMn(F );
each element has corresponding ‘trace’ and ‘determinant’. For example,
for Q(i), the trace of z is Re(z), the determinant is |z|2.
If xixj = γkijxk, then xi corresponds to the matrix xj 7→ xixj , i.e., [γ

k
ij ]

(fixed i).

3. Every simple finite-dimensional algebra is isomorphic toMn(H), where H
is a division ring (Wedderburn).

4. (Noether normalization lemma) Every finite-dimensional commutative al-
gebra over F is a finitely generated module over F [x1, . . . , xn], where xi
are not algebraic in the rest of the variables.

Proof: If p(x1, . . . , xn) =
∑

k
akx

k = 0 (not algebraically independent)
then define new variables yi := xi−xrn, yn := xn to get a new polynomial
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xmn +qm−1(x1, . . . , xn−1)x
m−1
n +· · · = 0, satisfied by xn. The result follows

by induction on n.

5. (Zariski lemma) If R is a field which is a finitely generated algebra over
F , then it is a finite dimensional field extension of F . (since R is a finitely
generated module over F [x1, . . . , xn], yet R is a field (simple), so n = 0).

6. Recall the adjoint maps connecting subsets of FN and ideals in F [x1, . . . , xN ],

I 6 Annih(A) ⇔ A 6 Zeros(I)

If F is algebraically closed, then every maximal ideal in F [x1, . . . , xn] is
the kernel of an evaluation F -morphism p(x1, . . . , xn) 7→ p(a1, . . . , an),
i.e., the ideal generated by (x− a1) · · · (x− an). Thus each maximal ideal
M corresponds to a point in Fn, M = Annih(a).

Proof: Let R := F [x1, . . . , xn]; F → R → R/M is an isomorphism, since
R/M is finitely generated algebra over F and is a field, so it is a finite-
dimensional (algebraic) extension of F ; but F is algebraically closed, so
R/M ∼= F and M is the kernel of the morphism φ : R → R/M → F ;
ai = φ(xi).

7. (Weak Nullstellensatz) If F is algebraically closed, and I is a proper ideal of
F [x1, . . . , xn], then I has a zero, i.e., Zeros(I) 6= ∅. (since I 6M maximal
ideal, which corresponds to (a1, . . . , an). Thus Zeros(I) ⊇ Zeros(M) =
{a }.)

8. (Strong Nullstellensatz) For an algebraically closed field, Annih◦Zeros(I) =
r(I).

Proof: If p(x)n ∈ I and a ∈ Zeros(I), then p(a)n = 0, so p(a) = 0, i.e., p ∈
Annih◦Zeros(I). Conversely, let q(x1, . . . , xn+1) := 1−p(x1, . . . , xn)xn+1;
then I + 〈q〉 has no zeros in Fn+1, so I + 〈q〉 = F [x1, . . . , xn+1]. Thus
1 = r1q1+· · ·+rnqn+rn+1q; the map F [x1, . . . , xn+1]→ F [x1, . . . , xn][p

−1]
that takes xn+1 7→ p−1 but fixes xi, gives 1 = (r1/p

k1)q1+· · ·+(rn/p
kn)qn+

rn+1(1− p/p), hence pN =
∑n

k=1 skqk ∈ I.

6.3 Field Extensions

A field E with a subfield F form an algebra, called a field extension. (Note:
F [x] is a subalgebra of E[x].)

The field generated by a subset A is the smallest field in E containing F
and A, denoted F (A); it equals the field of fractions of F [A], thus ‘independent’
of E. F (a) is called a simple extension, and a a primitive element. Note that
F (A ∪B) = F (A)(B).

1. If a ∈ E are algebraic numbers which are roots of an irreducible (minimal)
polynomial p(x) ∈ F [x], then

F (a) ∼= F [x]

〈p〉
∼= F [a]



Joseph Muscat 2015 45

which has dimension deg(p).

Proof: The morphism q 7→ q(a) has kernel 〈p〉 and its image contains F and
a. Every polynomial q = sp + r = r (mod p) with deg(r) < deg(p) = n,
and 1, a, . . . , an−1 are linearly independent. Thus a corresponds to the
polynomial x; p(x+ 〈p〉) = p(x) + 〈p〉 = 〈p〉.
For example, ‘quadratic algebras’ are algebras of dimension 2 obtained
from irreducible quadratic polynomials.

F (a) need not include the other roots of p(x) and may include other
linearly independent non-roots such as perhaps a2.

Note that the generators of a field extension need not, in general, be a ba-
sis: e.g.Q(

√
2,
√
3) = Q(

√
2+
√
3) has dimension 4 with basis { 1,

√
2,
√
3,
√
6 };

Q(i,
√
n) = Q(i+

√
n).

2. If a is transcendental, F (a) ∼= { p(x)/q(x) : p, q ∈ F [x], q 6= 0 } is an
infinite-dimensional extension.

3. If a is algebraic over F , then

(a) the coefficients of its minimal polynomial generate F ,

Proof: Suppose they generateK ⊆ F . Since p(x) remains minimal in
K[x] ⊆ F [x], its degree equals dimK F (a) = dimF F (a), so K = F .

(b) there are only a finite number of subfields F 6 E 6 F (a) (since the
minimal polynomial q(x) of a in E[x] is a factor of that in F [x], of
which there are a finite number; and E is generated by the coefficients
of q).

4. (a) An algebra morphism φ : E1 → E2 sends roots of p(x) in E1 to roots
in E2, since

p(φ(a)) = φ(p(a)) = 0

If φ : E → E is 1-1, it permutes these roots.

(b) A 1-1 algebra morphism on E is an automorphism on Ealg (since
for a ∈ Ealg with p(a) = 0, φ permutes its roots in E, in particular
φ(b) = a and φ(a) ∈ Ealg).

(c) If a, b have the same minimal polynomial p(x), then F (a) ∼= F (b),
a 7→ b (since a ↔ x ↔ b). Thus there are deg(p) 1-1 algebra mor-
phisms F (a)→ E, each mapping a to a different root of p(x).

5. Two co-prime polynomials in F [x] cannot have a common root in E[x]
(since their gcd is 1 in both). Roots of the same irreducible polynomial
are called conjugates ; they partition Ealg. Conjugates must satisfy the
same algebraic properties because of the morphisms between them.

6. There is a field E > F in which a given polynomial p has all deg(p) roots
(possibly repeated), called a splitting field of p: when extending to F (a),
p decomposes but may still contain irreducible factors; keep extending
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to contain all the roots, so the polynomial splits into linear factors. For
example

Q x3 − 2
Q(α) (x− α)(x2 + αx + α2)

splitting field Q(α, β) (x− α)(x − β)(x + α+ β)

Of course, every irreducible quadratic polynomial splits with the addition
of one root, e.g. x2 + 1 splits in Q(i).

Note that a field may split several polynomials, for example, Q(
√
2,
√
3) =

Q(
√
2+
√
3) splits x2− 2 = (x−

√
2)(x+

√
2), x2− 3 = (x−

√
3)(x+

√
3),

and x4−10x2+1 =
∏

(x±
√
2±
√
3); Q(i) splits both x2+1 and x2+2x+2;

Q(
√
3) splits x2 + 2nx+ (n2 − 3) (n ∈ Z).

A field extension which is closed for conjugates is called normal. The
normal closure of E is the smallest normal extension containing E, namely
the splitting field for its generators (e.g. the normal closure of Q( 3

√
2) is

Q( 3
√
2, ω)).

7. It is quite possible for an irreducible polynomial to have a multiple root in
an extension: all roots are then equally multiple; so the number of roots
divides the degree of p. But for this to happen, p(a) = 0 = p′(a), so p′ = 0
since p is irreducible, hence nan = 0 for each n, so n = 0 (mod p) prime
and

p(x) = a0 + a1x
p + · · ·+ an(x

p)n,

For ‘perfect’ fields, such as those with Q as prime subfield, or finite fields
(xp = x), or algebraically closed fields, this is not possible, i.e., every
irreducible polynomial has simple roots, called separable.

8. If p(x) splits into simple roots a, . . ., then the splitting field is a simple ex-
tension. More generally, every separable finite-dimensional field extension
is a simple extension.

Proof: Let p, q be minimal polynomials for a, b, and letK be their splitting
field, so p has roots a, a2, . . . , an, and q has roots b, b2, . . . , bm. Pick a c ∈ F
such that α := a + cb 6= ai + cbj for any i, j. Then F (a, b) = F (α) since
the only common root of q(x) and p(α− cx) is b: q(x) = 0 = p(α− cx) ⇒
α − cbi = aj ⇒ x = b; thus b and a = α − cb ∈ F (α). By induction
F (a1, . . . , an) = F (β).

9. If p(x) ∈ F ′′[x] splits in E then it has simple roots.

Proof: If p(x) ∈ F ′′[x] is an irreducible factor with roots a1, . . . , an ∈ E,
let q(x) := (x− a1) · · · (x− an). Any σ ∈ G = F ′ fixes F ′′ hence permutes
the roots of p, hence fixes q; the coefficients of q must be in F ′′. But q|p,
so p = q is separable.

10. Translations and scalings of polynomials p(ax + b) (a 6= 0) are automor-
phisms, and have corresponding effects on their roots. Indeed, AutF [x]
consists precisely of these affine automorphisms.
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11. The automorphism group of F (x) is PGL2(F ), i.e., p(x) 7→ p(ax+b
cx+d ) (ad−

bc 6= 0) with kernel consisting of a = d, b = c = 0.

6.3.1 Algebraic Extensions

are extensions all of whose elements are algebraic over F .

1. Every subring F 6 R 6 E is a subfield (since any a ∈ R is algebraic, so
the field F (a) = F [a] 6 R, so a is invertible in R).

2. Every 1-1 algebra morphism E → E is onto.

3. The algebraic closure of a field, F̄ , contains all the roots of all the poly-
nomials in F̄ [x]. The algebraic closure of E is the same as that of F .

Proof: Let p ∈ F̄ [x] be irreducible; then there is a field B > F̄ which
has a root b of p(x) =

∑n
i=1 aix

i; so F < F [a0, . . . , an, b] 6 B are finite-
dimensional, hence algebraic, over F , so b ∈ F̄ is algebraic, and p is of
degree 1.

4. If F 6 K 6 E, every 1-1 algebra morphism φ : K → F̄ extends to E → F̄ .

Proof: By Zorn’s lemma any chain of extensions is capped by
⋃

iKi =: L;
if a ∈ ErL, its minimal polynomial maps to an irreducible polynomial
in F̄ , so has a root b ∈ F̄ and φ̃(a) = b; in particular, L(a) → F̄ is an
extension; hence L = E.

6.3.2 Finite Dimensional Extensions

1. F (A) = F [A] (since F [a1] · · · [an] = F (a1) · · · (an) = F (a1, . . . , an)).

2. E is a normal extension of F ⇔ E is the splitting field of some polynomial
in F [x] ⇔ every F -automorphism F̄ → F̄ restricts to an F -automorphism
of E.

Proof: E = F (a1, . . . , an), each ai has a minimal polynomial pi(x) whose
conjugates belong to E (since normal), so pi(x) splits in E. Thus the
polynomial p(x) := p1(x) · · · pn(x) splits in E, and has roots ai. Any
σ : F̄ → F̄ maps roots of p(x) to roots, so σE = F (σ(a1), . . . , σ(an)) =
F (a1, . . . , an) = E. Finally, let a ∈ E with minimal polynomial p(x); any
conjugate root is obtained from a via ai = σi(a), σi ∈ Aut F̄ ; if σE = E,
then ai ∈ E and E is normal.

Hence conjugate roots are connected via automorphisms in G.

3. For E separable finite dimensional, the number of 1-1 algebra morphisms
E → F̄ is dimE.

Proof: For any subfield, |AutF K| = |G|/|K ′|. For a simple extension K,
the number of 1-1 algebra morphisms K → F̄ equals dimK, one for each
distinct root; hence the number of such morphisms on E = F (a1, . . . , an)
equals dimF (a1) dimF (a1) F (a1, a2) · · · = dimE.
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6.3.3 Galois extensions

A field E is called a Galois extension of F when it is finite dimensional and is
closed under the adjoint maps Fix and Gal,

F = G′ = F ′′ = Fix ◦Gal(F )

Every finite dimensional extension is Galois over F ′′.

1. For any subfield, K ′′ = K (since a /∈ K has a minimal polynomial p(x)
with some conjugate root σ(a) = b 6= a, where σ ∈ K ′; so a /∈ K ′′).

2. A subfield K is Galois ⇔ K ′ E G. Then AutF K ∼= G/K ′.

Proof: IfK is Galois, σ ∈ G, a ∈ K,τ ∈ K ′, then τσ(a) = σ(a) ∈ K ′′ = K,
so σ−1τσ ∈ K ′. If K ′ E G, σ ∈ G then σK = σK ′′ = K ′′ = K, so K is a
normal extension wrt E. The map σ 7→ σ|K (valid since K is normal) is
a morphism with kernel σ|K = I ⇔ σ ∈ AutK E = K ′.

3. E is a Galois extension iff E is the splitting field for some separable poly-
nomial in F [x], iff E is a normal separable extension of F .

Proof: G = AutF (E) is finite since E is finite dimensional. Let a ∈ E
and take the orbit ai := σi(a) for σi ∈ G. Then G fixes the polynomial
p(x) := (x − a1) · · · (x − an) ∈ F ′′[x]. It is the minimal polynomial for
a since q(a) = 0 ⇒ q(ai) = σiq(a) = 0, so p|q. Thus every minimal
polynomial splits into simple factors, so E is normal and separable.

If E is normal separable, thenG′′ = G (see below) so dimF ′′ E = |AutG′(E)| =
|G′′| = |G| = |AutF (E)| = dimF E, hence F = F ′′.

The Galois group of a separable polynomial p(x) is denoted Gal(p) :=
Gal(E) where E is the splitting field of p. Note that p has exactly deg(p)
roots in E, which form a basis for E.

4. For a Galois extension E, |G| = dimE; |K ′| = dimE/K.

Proof: For E normal, every algebra automorphism F̄ → F̄ restricts to an
automorphism in G. When E is also separable, there are exactly dimE
of them; hence |G| = dimE. For any subfield K, E remains a Galois
extension of K, so |AutK E| = dimK E.

5. Any separable polynomial p(x) with roots ai, satisfies ai = φi(a) for φi all
the 1-1 algebra morphisms F (a)→ F̄ , so p(x) = (x− a) · · · (x− φn(a)).

6. H ′′ = H , in particular G′′ = G.

Proof: E = H ′(a) (simple extension since E is separable), let p(x) :=
(x − σ1(a)) · · · (x − σn(a)) for σi ∈ H , then p(x) ∈ H ′[x] since any σ ∈
H permutes the roots and fixes p’s coefficients. Therefore, dimE/H ′ =
dimH′ H ′(a) 6 deg(p) = |H | 6 |H ′′| = dimH′ E. So H ′′ = H .
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Proposition 5

Galois

The subfields of a Galois extension correspond to the sub-
groups of its Galois group, via the maps K 7→ Gal(K),
H 7→ Fix(H). The Galois subfields correspond to the nor-
mal subgroups.

Proof: The map K 7→ K ′ is onto since H ′′ = H and 1-1 since K ′
1 = K ′

2 ⇒
K1 = K ′′

1 = K ′′
2 = K2.

So given a subgroup H of G, its largest normal subgroup corresponds to
the smallest normal extension of F that contains H ′.

7. If p has only simple roots, then each irreducible factor corresponds to an
orbit of the roots (under Gal(p)); the degree of the factor equals the size
of the orbit.

Proof: Each irreducible factor corresponds to a selection of roots, (x −
ai) · · · (x − aj). For any two roots a, b, there is an isomorphism a ↔ b;
thus an isomorphism F (a)→ F (a1, . . . , an), which can be extended to an
automorphism of F (a1, . . . , an).

The stabilizer subgroup which fixes a root α has |G|/ deg(p) elements; this
is non-trivial precisely when E = F (α).

8. Example: the Q-automorphisms of x4 − 10x2 +1 form the group C2 ×C2

generated by
√
2 ↔ −

√
2,
√
3 ↔ −

√
3; each automorphism fixes one of

Q(
√
2), Q(

√
3), Q(

√
2 +
√
3), Q(

√
6).

9. The discriminant of a polynomial p(x) with roots αi is ∆(p) :=
∏

i<j(αi−
αj) (defined up to a sign), which can be written in terms of the coefficients
of p. It determines when there are repeated roots, ∆(p) = 0. Since each
transposition of roots introduces a minus sign (unless the characteristic
is 2, when −1 = +1), then σ∆ = sign(σ)∆; thus ∆(p) is invariant under
Gal(p) ⇔ Gal(p) 6 An.

10. Example: The irreducible polynomial x4 − 2 has roots ± 4
√
2, ±i 4

√
2, so

its splitting field is Q( 4
√
2, i), which is Galois. It has dimension 8, with a

Galois group D4, generated by i 7→ −i and 4
√
2 7→ i 4

√
2. The subgroups

of D4, namely two C2 × C2, C4, and five C2, correspond to the fields
(respectively) Q(

√
2) (normal) and Q(i

√
2) (normal), Q(i) (normal), and

Q(i 4
√
2), Q( 4

√
2), Q(i,

√
2), Q((1 + i) 4

√
2), Q((1 − i) 4

√
2).

Radical Extensions
Let F be a perfect field, so irreducible polynomials do not have multiple

roots. A polynomial is solvable by radicals when its roots are given by formulas
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of elements of F that use +,×, n
√
; this means that there is a radical extension

field F (a1, . . . , an) and r1, . . . , rn ∈ N such that

arnn ∈ F (a1, . . . , an−1)

. . .

ar22 ∈ F (a1)
ar11 ∈ F

1. The roots of xn − a ∈ F [x] are of the form αβ where α is a single root of
xn−a, and β are the roots of xn−1. If xn−a is irreducible, so α 6∈ F , then
also αk 6∈ F for gcd(k, n) = 1 (else a = ask+tn = αsknatn = (αksat)n).

2. The polynomial xn−1 contains the factor xm−1 iffm|n; so it decomposes
into “cyclotomic” polynomials φm. For example,

x3 − 1 = φ1φ3 = (x − 1)(x2 + x+ 1),

x4 − 1 = φ1φ2φ4 = (x− 1)(x+ 1)(x2 + 1),

x6 − 1 = φ1φ2φ3φ6 = (x− 1)(x+ 1)(x2 + x+ 1)(x2 − x+ 1).

Of course, whether φn is irreducible or not depends on the field; they are
in Q, but x2 + 1 = (x+ 1)2 in F2.

3. The splitting field of xn − 1 = (x− 1)(x− ζ) · · · (x− ζn−1) is F (ζ), where
ζ is a root of φn. If the characteristic of F is p and p|n, then xn −
1 = (x − 1)p(x − ζ)p · · · (x − ζn/p−1)p; otherwise all ζi are distinct. The
automorphisms are ζ 7→ ζk with gcd(k, n) = 1, i.e., the Galois group is a
subgroup of Φn := Z∗

n; it equals Φn if φn is irreducible and F does not
have characteristic p|n because then φn is the minimal polynomial of ζ.

4. The splitting field of xn − a is F (ζ, α) where α is a single root of xn − a.
The automorphisms that fix F (ζ) are σ(α) = αζi (the other roots), so the
Galois group over F (ζ) is Cn since σ 7→ ζi is an isomorphism (its image is
a subgroup of Cn, i.e., Cm, m|n, so ζim = 1 for all i, hence σ(αm) = αm

for all σ, so αm ∈ F , a contradiction unless m = n).

5. The Galois group of a radical Galois extension is solvable.

Proof: The Galois group of each extension F ( r
√
a) = F (ζ, α) is cyclic over

F (ζ), whose group is abelian over F . Hence AutF (ζ, α) is abelian; by
induction, the Galois group of E gives normal subgroups 1 E G1 E · · · E
Gk each with abelian factors.

6. Example: For x7−1, the splitting field is Q(ζ); its subfields correspond to
the subgroups of C6, namely C3 : ζ 7→ ζ2 associated with Q(ζ + ζ2 + ζ4),
and C2 : ζ 7→ ζ−1 associated with Q(ζ + ζ−1).

The splitting field for x5 − 2 is Q(ζ, 5
√
2); its roots are ζi 5

√
2. The Galois

group is generated by σ : ζ 7→ ζ, 5
√
2 7→ ζ 5

√
2, and τ : ζ 7→ ζ2, 5

√
2 7→ 5

√
2,

i.e., σ = (12345) and τ = (2345); their corresponding fixed subfields are
Q(ζ) and Q( 5

√
2).
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7. If K is a radical extension, then so is K ′′.

Proof: K = F (a1, . . . , an) with each ai having pi(x) as minimal polyno-
mial; thus K ′′ splits

∏

i pi(x); but a
ni

i ∈ F (a1, . . . , aj) so the other roots of
pi(x) also belong to it by applying σ : ai 7→ b; hence every root of

∏

i pi(x)
is radical, so K ′′ is radical.

8. If Q ⊂∼ F then a polynomial is solvable by radicals iff it has a solvable
Galois group.

9. Knowing the abstract Galois group allows us to solve for the roots (if
possible). For example, if there are 4 roots with group C2 × C2, then
C2 × C1 fixes roots γ, δ but switches α, β; so it fixes α + β and αβ, so
α+β, αβ ∈ Q(γ, δ) and α, β can be found by solving x2−(α+β)x+αβ = 0;
similarly γ + δ, γδ ∈ Q (because they are fixed by C1 × C2).

10. By translating, every monic polynomial can be written in reduced form

xn + an−2x
n−2 + · · ·+ a0

The discriminant and Galois group for the low degree reduced polynomials
in Q[x] are:

(a) Quadratics x2 + a; ∆2 = −4a, S2 = C2 ⊲ 1 depending on whether
∆ ∈ Q, e.g. x2 − 2, x2 − 1;

(b) Cubics x3 + bx + a; ∆2 = −4b3 − 27a2, S3 ⊲ A3, e.g. x
3 − x + 1,

x3 − 3x+ 1, depending on ∆ ∈ Q if irreducible;

(c) Quartics x4 + cx2 + bx + a; 27∆2 = 4I3 − J2 where I = 12a + c2,
J = 72ac− 27b2 − 2c3, S4 ⊲ A4 ⊲ C2 × C2.

(d) If p(x) ∈ Q[x] is irreducible with degree p prime with p− 2 real roots
and 2 complex roots, then its Galois group is Sp, e.g. x

5 − 6x + 3
(proof: i ↔ −i is an automorphism; but there must be a p-cycle by
Cauchy’s theorem, so the whole group is Sp). So, in general, quintic
polynomials or higher are not solvable since An ⊳ Sn are not solvable
groups for n > 5.

For example, the roots of x7 = 1 cannot be written in radicals (but
those of xn = 1, n < 7 can).

11. Let Fn represent the space of polynomials of degree n (in reduced form).
In general factoring out the permutations of the roots, Fn → Fn/Sn, maps
the roots to the coefficients; the ‘discriminant’ subset of Fn is a number of
hyperplanes, maps to a variety, whose complement has fundamental group
equal to the braid group with n strands.

12. Examples: x2+x+1 over Z2: it is irreducible, and has a simple extension
Z2(ζ) where ζ

2 = ζ + 1, in which x2 + x+ 1 = (x+ ζ)(x + 1 + ζ).

x2− (1+ i) over Z2(1+ i): extension Z2(1+ i, α), so (x−α)2 = x2−α2 =
x2 − (1 + i), so there are no other roots; so x2 − (1 + i) is irreducible in
Z2(1 + i) since there are no other roots and it is non-separable.
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13. A number α is constructible by ruler and compasses iff Q(α) is a radical
extension of dimension dimQ Q(α) = 2n (since intersections of lines and
circles are points x such that x2 ∈ Q(β, . . . , γ) and dimQ(β,...,γ)Q(x) = 2).

(a) 3
√
2 is not constructible since dimQ( 3

√
2) = 3; so no doubling of the

cube.

(b) e2πi/n is not constructible unless n = 2rp1 · · · ps where pi are distinct
Fermat primes p = 2k +1 (since dimQ(e2πi/n) = φ(n) =

∏

pr |n φ(p
r)

and 2k = φ(pr) = (p − 1)pr−1 ⇔ p = 2 or p = 2k + 1). A Fermat
prime must be of the form 22

r

+1 (since xmn+1 = (xm+1)(xm(n−1)−
xm(n−2)+ · · ·+1) for n odd); the five known Fermat primes have r =
0, . . . , 4. So the regular heptagon and nonagon are not constructible,
and in general angles cannot be trisected.

(c)
√
π is not constructible since it is transcendental; so no squaring of

the circle.

7 Lie Rings

The product xy of a ring in which 2 6= 0 splits into two invariant bilinear non-
associative products:

xy =
1

2
(xy + yx) +

1

2
(xy − yx) =: x ◦ y + [x, y]

The first symmetric part of the product gives a Jordan ‘ring’, the second anti-
symmetric part of the product gives a Lie ‘ring’.

Jordan rings: y ◦ x = x ◦ y, (x ◦ x) ◦ (y ◦ x) = ((x ◦ x) ◦ y) ◦ x;
Lie rings: [y, x] = −[x, y], [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0;
Although these are not associative rings, much of the theory of rings can be

applied to them. Every Lie ring, but not every Jordan ring, is induced from a
ring.

Morphisms preserve the respective products, e.g. φ([x, y]) = [φ(x), φ(y)], an
ideal satisfies [x, I] ⊆ I. Products are again Jordan/Lie rings.

1. A derivation on a ring is a map d on R such that

d(x + y) = d(x) + d(y), d(xy) = d(x)y + x d(y),

so

d(1) = 0, d(nx) = nd(x),

d(xyz) = d(x)yz + x d(y)z + xy d(z),

d(xn) = d(x)xn−1 + x d(x)xn−2 + · · ·+ xn−1d(x),

d(x) = 1 ⇒ d(xn) = nxn−1,

dn(xy) =
∑

k

(

n

k

)

dk(x)dn−k(y) (Leibniz)
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The derivations form a Lie ring Der(R) with [d1, d2] = d1d2 − d2d1.
2. The inner derivation associated with a is £a(x) := [a, x]. The rest are

called outer derivations. An outer derivation becomes an inner derivation
in some larger ring.

3. A Lie ideal of a Lie ring is a subset that is an ideal wrt [, ], i.e., is closed
under +,£a. Examples include any ring ideal, and the center. The inner
derivations form a Lie ideal in the Lie ring of derivations, i.e., [d,£x] =
£d(x); in particular, [£x,£y] = £[x,y]. Quotients by a Lie ideal form a Lie
ring.

4. The map R → Der(R), x 7→ £x is a morphism from a ring to its Lie ring
of derivations, whose kernel is the center.

5. The ring of differentiation operators of an R-algebra is defined as that
generated by left multiplication and derivations. For example, the Weyl
algebra is the algebra of differentiation operators on polynomials R[x],
where xa = ax+ d(a).

6. The derivations of an algebra must satisfy in addition d(λx) = λd(x);
Lie ideals must be invariant under scalar multiplication. The statements
above remain valid for Lie algebras.

7. The derived algebra of a Lie algebra is the ideal A′ := [A,A]; A/A′ is the
largest abelian image of A; [A,A′]/[A,A′′] E Z(A/[A,A′′]).

For example, gl(n)′ = sl(n) (traceless matrices, sl(n) = ker tr).

For any Lie algebra, the following ‘derived series’ can be formed:

· · · 6 A′′′
E A′′

E A′
E A

Solvable Lie algebras have a finite derived series ending in 0. The last
ideal 0 ⊳ A(n) is abelian. Subalgebras and images are solvable. The sum of
solvable ideals is again solvable (since both J and (I + J)/J ∼= I/(I ∩ J) are
solvable). Hence the sum of all solvable ideals is the largest solvable ideal in A,
called the radical.

Nilpotent Lie algebras have a finite central series of ideals

0 E . . . E [A,A′] E [A,A] E A
⇔ ∀xi, [x1, [x2, . . . [xn−1, xn] . . .]] = 0

Note that A′′ = [A′,A′] ⊆ [A,A′], so nilpotent Lie algebras are solvable; sub-
algebras and images are nilpotent; the series can be built up using the centers
(as in groups); A is nilpotent iff x 7→ [x, ·] is nilpotent (Engel).

Abelian Lie algebras: [x, y] = 0.
Semi-simple Lie algebras have no solvable ideals (except 0), thus no

abelian ideals, no radical, no center. Every derivation is inner. They are iso-
morphic to a product of non-abelian simple Lie algebras.

Simple Lie algebras are either abelian or semi-simple (since the radical is
either 0 or A with A′ = 0). The only simple abelian Lie algebras are 0 and F .
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7.0.4 Finite-Dimensional Lie algebras over an Algebraically Closed
Field that contains Q

1. Every finite-dimensional Lie algebra can be represented by matrices with
[S, T ] = ST − TS, via x 7→ Lx := [x, ·]. Every such representation has a
dual representation x 7→ −L⊤

x .

2. The trace map tr : A → F is a Lie morphism since tr[S, T ] = 0.

3. Let γ be the structure constants1: [ei, ej ] = γkijek. There is a Killing form
(Cartan metric) 〈x, y〉 := tr(LxLy) = γtisγ

s
jt; so

γijk = gksγ
s

ij = tr[Xi, Xj ]Xk = γ s
ij γ

r
kt γ

t
sr

is completely anti-symmetric.

(a) 〈[x, y], z〉 = 〈x, [y, z]〉
(b) If I is an ideal, then so is I⊥ := { x : ∀a ∈ I, 〈x, a〉 = 0 } (since for

b ∈ I⊥, a ∈ I, 〈[x, b], a〉 = 〈[x, a], b〉 = 0).

(c) If I ∩ J = 0 then I ⊥ J .
(d) A Lie algebra is semi-simple when its Killing form is non-degenerate,
A⊥ = 0; it is solvable when A ⊥ A′.

Proof: If A has an abelian Lie ideal I 6= 0 then for a ∈ I, x ∈ A,
[a, x] ∈ I, so [x, [a, x]] ∈ I, so (LaLx)

2 = [a, [x, [a, x]]] = 0, so 〈a, x〉 =
0.

4. For a semi-simple Lie algebra, the Casimir (or Laplacian) element
∑

i eie
i

(for any basis) is in the center.

5. Every finite-dimensional solvable Lie algebra can be represented by upper
triangular matrices.

Proof: A′ < A, so there is a maximal ideal I ⊇ A′, A = I ⊕ FT . By
induction, Sv = λSv for all S ∈ I. Then STv = TSv + [S, T ]v = λSTv
(λ[S,T ] = 0 since by induction, S is upper triangular with respect to the
vectors v, T v, T 2v, . . ., so nλ = tr[S, T ] = 0). In fact, any w generated by
these vectors is a common eigenvector of I; choosing it to be an eigenvector
of T shows there is a common eigenvector for all of A; hence, by induction,
every matrix is triangulizable.

6. Every finite-dimensional nilpotent Lie algebra is represented by nilpotent
matrices (i.e., strictly upper triangular) since Ln

xy = [x, . . . , [x, y]] = 0.

7. The Cartan subalgebra of A is the maximal subalgebra H which is abelian
and consists of diagonalizable elements. It has the property [x,H] = 0 ⇒
x ∈ H.

1The Einstein convention suppresses the summation sign
∑

over repeated indices, so the

given formula means
∑

k γ
k
ijekγ

k
ijek
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The rest of A is generated by “step operators” eα, such that [hi, eα] =
λi,αeα (this is essentially a diagonalization of γγiβ to give the ‘Cartan-Weyl’
basis).

8. (Cartan) Each eigenvalue λi,α corresponds to a unique eigenvector eα, so
λi can be written instead of λi,α, i.e., [hi, eα] = λieα (since from the Lie
sum, [hi, [hj, eα]] = λi[hj , eα]). Each eα has an associated root vector
α = (λi):

(a) [hi, eα] = αeα,

[hi, e−α] = [hi, e
∗
α] = −λie−α,

[eα, e−α] = α · h =: |α|2hα,

[eα, eβ ] =

{

(α + β)eα+β α+ β is a root,

0 α+ β is not a root

[hα, hβ] = 0, [hα, eβ] = nαβeβ , (nαα = 1)

(since by the Lie sum again, [hi, [eα, eβ]] = (αi + βi)[eα, eβ]; and
〈hi, [eα, e−α]〉 = 〈e−α, [hi, eα]〉 = αi).

(b) For this basis,

〈hi, hj〉 = 0, 〈hi, eα〉 = 0, 〈eα, eβ〉 = 0,

but 〈eα, e−α〉 6= 0 (since αj〈hi, eα〉 = 〈hi, [hj , eα]〉 = trhi[hj , eα] =
tr[hi, hj ]eα = 0, and λ〈eα, eβ〉 = 〈eα, [eα−β, eβ ]〉 = tr eα[eα−β, eβ ] =
tr[eα, eα−β]eβ = 0);

(c) For each α, hα and eα form an su(2) algebra, with eα/|α| raising the
eigenvalues of hα by 1/2; so the eigenvalues of hα are half-integers,
[hα, eβ] = nαeβ , where nα := α · β/|α|2 ∈ 1

2Z.

(d) Any two roots have an angle of π/2 or π/3 or π/4 or π/6 or 0.

Proof: α ·β 6 |α||β| implies that nαnβ 6 4 where nα = 2α ·β/|α|2; so
nα, nβ can take the values 0, 0, or 1, 1, or 2, 1, or 3, 1, or 2, 2); if j is
the eigenvalue of hβ , there are roots between α− (j+nα/2)β,. . . ,α+
(j − nα/2)β.

9. Finite-dimensional Lie algebras are products of simple and abelian alge-
bras (take the maximal ideal at each stage).

The semi-simple ones are the direct product of non-abelian simple Lie
algebras; A′ = A (to avoid being solvable).

Proof: If A is semi-simple, then I ∩ I⊥ = 0 else it would be solvable; thus
A = I ⊕ I⊥, with each again semi-simple.

10. Every Lie algebra modulo its radical is semi-simple.

11. The non-abelian simple finite-dimensional Lie algebras over an algebraically
closed field are classified:
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Lie algebra Dynkin diagram Representation

An, b b b b b sl(n+ 1), su(n+ 1),

Bn (n > 2), b b b b b b so(2n+ 1),

Cn (n > 3), b b b b b b sp(2n)

Dn (n > 4), b b b b b
b

b
so(2n)

E6, b b b b b

b

E7, b b b b b b

b

E8, b b b b b b b

b

F4, b b b b4

G2, b bn

Proof: A root system can be drawn as a Dynkin diagram: circles are
simple roots (ie extremal roots), pairs are joined by nα lines. Disconnected
diagrams correspond to a decompositionA = I⊕I⊥, so simple Lie algebras
have connected Dynkin diagrams.

8 Examples

Size Rings (with 1) Commutative Rings Fields
1 F1

2 F2

3 F3

4 Z4 F4

Z2 × Z2

Z2[a]/〈a2〉
5 F5

6 Z6

7 F7

8 U2(F2) =

(

F2 F2

0 F2

)

Z8 F8

Z2 × Z4

Z2 × Z2 × Z2

Z2 × F4

Z2[a]/〈a3〉
Z2[a, b : a

2 = ab = b2 = 0]
Z2[a, b : a

2 = ab = 0, b2 = b]
Z2[a : 2a = 0 = a2]
Z2[a : 2a = 0, a2 = 2]
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Size Rings (with 1) Commutative Rings Fields
9 Z9 F9

Z3 × Z3

Z3[a]/〈a3〉
10 Z10

11 F11

12 Z12

Z3 × Z4

Z3 × F4

Z3 × (Z2[a]/〈a2〉)
13 F13

14 Z14

15 Z15

16 13 23 1

1. N is a commutative semi-ring without invertibles (except 1). The prime
ideals of N are 2N+ 3N and pN (p prime or 1).

Proof: Let p be the smallest non-zero element of P ; then p is prime or 1;
if PrpN has a smallest element q, then pN+ qN ⊆ P contains all numbers
at least from (pq)2 onwards; so must contain all primes, so p = 2, q = 3.

There are no proper automorphisms of N: f(1) = f(0 + 1) = f(0) + f(1)
and f(1) = f(1 · 1) = f(1)2, so f(0) = 0, f(1) = 1, and f(n) = f(1+ · · ·+
1) = n.

2. Z is a Euclidean Domain.

(a) The primes are infinite in number (otherwise p1 · · · pn + 1 is not di-
visible by any pi).

(b) If m,n are co-prime then m+ nZ has infinitely many primes.

(c) Jac(Z) = 0 = Soc(Z).

3. Zm, m = prqs · · · , is a commutative ring:

(a) The invertibles are the coprimes gcd(n,m) = 1; the zero divisors are
multiples of p,. . . ; the nilpotents are multiples of pq · · · .

(b) The maximal/prime ideals are 〈p〉,. . . ; the irreducible ideals are 〈pi〉,. . . ;
so Jac = 〈pq · · · 〉 = Nilp.

(c) The minimal ideals are 〈n/p〉,. . . ; so Soc = 〈n/pq · · · 〉.
(d) Zm

∼= Zpr ⊕ · · · ⊕ Zqs .

(e) Special cases include Zpq··· (i.e., m square-free) which is semi-simple,
Zpn which is a local ring, and Zp which is a field.

(f) x = ai (mod mi) has a solution when mi are co-prime (Chinese
remainder theorem).
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(g) The Z-module-morphisms Zm → Zn are multiplications x 7→ rx
where r is a multiple of n/ gcd(m,n) (since mφ(1) = φ(m) = 0;
there are no ring morphisms except 0 and 1 if m = n).

(h) nφ(m) = 1 for n invertible; so, for n invertible, x = y (mod φ(m)) ⇒
nx = ny (mod m);

4. Fpn are the finite fields; they have size pn with p prime: its prime subfield
is Zp and Fpn is an n-dimensional vector space (Galois extension) over it.

(a) The generator ω of the cyclic group Fpnr0 is called a ‘primitive
root of unity’. All extensions are simple since Er0 is a cyclic group
generated by, say, a, so E = F (a) = F [a].

(b) Fpn ∼= Fp[x]/〈q〉 where q(x) is an irreducible polynomial of degree n
having ω as a root.

(c) The automorphism group GL(Fn
p ), i.e., the Galois group of Fpn over

Fp, is Cpn−1 generated by x 7→ xp (since σ(x) = x ⇔ xp = x ⇔ x ∈
Fp).

(d) The subfields of Fpn are Fpk = { x : xk = x } for each k|n; the
corresponding subgroups are Cpn−k .

Proof: Fpn is a vector space over Fpk i.e., dimF
pk

Fpn = n − k; con-
versely, for all x ∈ Fpk , xp

k

= x, so xp
n

= x.).

(e) The algebraic closure is the field
⋃

n∈N Fpn .

5. Fp

(a) The product of all the invertible pairs is (p− 2)! = 1 (mod p).

(b) The squares x2 are called ‘quadratic residues’; when p 6= 2 exactly
half of the non-zero numbers are squares.

(c)
× sq. non-sq.
sq. sq. non-sq.

non-sq. non-sq. sq.

(d) Quadratic reciprocity:

i. x2 = −1 has a solution ⇔ p = 1 (mod 4);

ii. x2 = 2 has a solution ⇔ p = ±1 (mod 8);

iii. x2 = −3 has a solution ⇔ p = 1 (mod 3);

iv. x2 = 5 ⇔ p = ±1 (mod 5);

v. For p, q odd primes, q is a square in Zp ⇔ p is a square in Zq

and −1 is a square in Zp or Zq, or p is a non-square in Zq and
−1 is a non-square in Zp and Zq.

vi. x2 = 2 ⇒ x4 = 2 when p = 3 (mod 4);

vii. x4 = 2 ⇔ p = a2 + 64b2 when p = 1 (mod 4).
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6. Q is a field: Hom(Q) ∼= Q. It has no proper automorphisms (since for
n ∈ N, f(n) = n, so 1 = f( 1n + · · ·+ 1

n ) = nf( 1n ) and f(
m
n ) = f( 1n + · · ·+

1
n ) =

m
n .

7. Z[
√
d]: invertibles of Z[i

√
d] are ±1; of Z[i] are ±1,±i; of Z[

√
d] are in-

finitely many (Pell’s equation). For d > 3, Z[
√
−d] is not a GCD (2 is

irreducible but not prime).

8. OF Ring of Algebraic Integers: these are those algebraic numbers over F
whose minimal polynomials are monic in Z[x].

O
Q(

√
d) =

{

Z[
√
d] when d = 0, 2, 3 (mod 4),

{ 1
2 (m+ n

√
d) : m,n both odd or both even } when d = 1 (mod 4)

For d square-free, O
Q(

√
d) is a UFD/PID only for (the italic are not EDs)

d =-163, -67, -43, -19,−11,−7,−3,−2,−1,
2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 29, 33, 37, 41, 57, 73, . . .

and (conjecture) for infinitely many d > 0.

For example, Fermat’s theorem: A prime can be expressed as a sum of
two squares iff p = 1 (mod 4) or p = 2 (since p = a2+ b2 = (a+ ib)(a− ib)
in Z[

√
−1]).

Every algebraic number over Q is a fraction times an algebraic inte-
ger: if x satisfies

∑

i
mi

ni
xi = 0 then multiplying by n := lcm(ni) gives

∑

imiri(nx)
i = 0. The only rational algebraic integers over Q are the

integers (since if m/n satisfies a polynomial, then multiply by nk to get
mk + q(m)n + a0n

k = 0, so p|n ⇒ p|m.) For example,
√
n (n not a

square) is irrational.

9. Q(2) (rationals without 2 in denominator) is a local ring and a PID. The
invertibles have odd numerator/denominator; the only irreducible/prime
element is 2; Jac = 〈2〉 and Nil = 0.

10. Z acting on Q: Jac = Q, Soc = 0; no maximal or minimal sub-modules;
not finitely generated; torsion-free; not free; HomZ(Q) ∼= Q.

11. Q[x] is a Euclidean domain.

(a) If a polynomial p is reducible in Q[x] then it is reducible in Fp[x] for
all p; but there are irreducible polynomials in Q[x] that are reducible
in all Fp[x].

(b) If a monic polynomial splits in Zp[x] into irreducible factors (having
simple roots) of degrees ni, then the Galois group of p(x) has a permu-
tation with cycle structure ni, e.g. x

5−x−1 is irreducible in Z3[x] so
there is a cycle (12345), but in Z2[x], it equals (x

2+x+1)(x3+x2+1)
so there is a cycle (ab)(cde), hence the Galois group is S5.
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(c) The cyclotomic polynomials are irreducible.

Proof: If φn(x) = p(x)q(x) with p irreducible, then ζ is a root of p(x)
but ζp is not a root, for some p 6 |n, wolog prime; so ζ is a root of both
p(x) and q(xp), so there is a common factor of p(x) and q(xp) = q(x)p

in Fp[x], hence p(x), q(x) have a common factor in Fp[x], so x
n − 1

has multiple factors, a contradiction.

Hence the root ζn of xn = 1 is an algebraic integer of degree φ(n)
(=degree of φn).

12. F [x, y]: 〈x, y〉 is maximal; 〈x〉, 〈x, y〉, . . . are prime; 〈xr, ys〉 are irreducible.
〈x, y〉2 ⊂ 〈x2, y〉 ⊂ 〈x, y〉, so 〈x2, y〉 does not have a factorization into prime
ideals.

8.1 Matrix Algebras Mn(V )

1. Idempotents are the projections P |kerP = 0 and P |imP = I, so X =
imP ⊕ kerP .

Proof: x = Py ⇒ Px = P 2y = Py = x, P 2x = P (Px) = Px; x =
(x− Px) + Px ∈ kerP + imP , x ∈ kerP ∩ imP ⇒ x = Px = 0.

2. The following definitions for a square matrix T are independent of a basis,

Trace trT := T i
i , tr(S + T ) = trS + trT,

tr(ST ) = tr(TS), trT⊤ = trT

Determinant detT :=
∑

σ∈Sn
signσ

∏n
i=1 T

σ(n)
i = ǫij···kT1iT2j · · ·Tnk,

(ǫij···k = sign(ij · · · k)
det(ST ) = detS detT,
detT⊤ = detT, detλ = λn

(expansion by co-factors; use Gaussian elimination).

Cauchy-Binet identity: for A : U → V , B : V →W ,

det
I,J

(BA) =
∑

|K|=n

(det
J,K

B)(det
K,I

A),

where detK,I A is the determinant of the square matrix with rows I and
columns K, and |I| = |J | = |K|.

3. A matrix T is invertible ⇔ T is 1-1 ⇔ T is onto ⇔ detT 6= 0 ⇔ T is not
a divisor of 0 (since dim imT = dimV ⇔ imT = V ), T−1 = 1

detT Adj(T );

4. For finite dimensions, Mn(V ) has no proper ideals, so Jac = 0.

5. Each eigenvalue λ of T has a corresponding eigenspace
⋃

i ker(T −λ)i that
is T -invariant.

(a) For each eigenvalue, Tx = λx, T−1x = λ−1x, p(T )x = p(λ)x.

Proof: m(x) = (x − λ)p(x) ⇒ 0 = m(T ) = (T − λ)p(T ) ⇒ ∃v 6=
0, (T − λ)v = 0. Conversely, ∀v, 0 = m(T )v = m(λ)v ⇒ m(λ) = 0,
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(b) Distinct eigenvectors are linearly independent.

Proof: If
∑

i aivi = 0 then
∑

i aiλivi = 0; if aj 6= 0, then
∑

i ai(λi −
λj)vi = 0 so by induction ai = 0, i < j, so ajvj = 0.

6. (a) T is said to be diagonalizable when there is a basis of eigenvec-
tors; equivalently the minimum polynomial has distinct roots, or each
eigenspace is ker(T − λ).

(b) Every matrix has a triangular form.

Proof: cT splits in the algebraic closure of F , so for any root λ and
eigenvector v, [[v]] is T -invariant, and so T can be defined on X/[[v]];
hence by induction).

(c) If S, T are invertible diagonalizable symmetric matrices, and S +
αT is non-invertible for n values of α, then S, T are simultaneously
diagonalizable.

Proof: S−1T − λi is non-invertible i.e., ∃vi, S−1Tvi = λivi for n
values of λi; so λiv

⊤

i Svj = (S−1Tvi)
⊤Svj = v⊤

i T
−1vj = λjv

⊤

i Svj ,
hence λi 6= λj ⇒ v⊤

i Svj = 0 = v⊤

i Tvj.

7. Nilpotent matrices have the form







0 1 0
0 0 1

...






(with respect to the following

basis: consider the T -invariant subspaces 0 6 T−10 6 T−20 6 . . . 6

T−n0 = X , so X = T−10 × T−20
T−10 × · · · × T−n0

T−n+10 ; then if ui + T−k0 are
linearly independent, then so are Tui + T−k+10; thus start with a basis
for T−n0/T−n+10, and extend for each subspace until T−10);

8. The (upper) triangular matrices form a subalgebra Un(F
n), which contains

the sub-algebra Diag of the diagonal matrices. The Jacobson radical of Un

consists of the strictly triangular matrices N (Fn) (since the map Un →
Diag, A 7→ D is a morphism with kernel being the (super-)nilpotents, i.e.,
Jac), Un/Jac is semi-simple with n simple sub-modules.

9. Jordan Canonical Form: If F is agebraically closed, the minimum polyno-
mial splits into factors (x−λ)k , consider the decomposition T = λ+(T−λ),
with (T − λ)k = 0, so that T is the sum of a diagonal and a nilpotent
matrix. So detT =

∏

i λi, trT =
∑

i λi;

10. Every matrix T decomposes into a ‘product’ of irreducible matrices







T1
T2

. . .







(via the decomposition of F [T ] into T -invariant submodules Mp, where
[[x]] = F [T ]x = [[x, Tx, . . . , Tm−1x]]). The minimum polynomial of such a
product is the lcm of the minimum polynomials of Ti; conversely, when

mT (x) = p1(x) . . . pr(x) is its irreducible decomposition, then Ti =







λ 1
λ

. . .






.
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The characteristic polynomial of this ‘product’ is the product of the char-
acteristic polynomials.

11. Linear Representations (in the group of automorphisms GL(n)): the num-
ber of inequivalent irreducible representations = number of conjugacy
classes;

∑

i n
2
i = |G|, where ni are the dimensions of the irreducible rep-

resentations; if the representation is irreducible then χ · χ = |G|; for two
irreducible representations, χT · χS = 0.

8.1.1 Tensor Algebras

A multi-linear map is a map on Xr × (X∗)s which is linear in each variable.
They form the tensor algebra T r

s (X), with product

T ⊗ S(x, . . . , y, . . .) := T (x, . . .)S(y, . . .),

or in coordinates, T i···
j···S

k···
l···. It is associative and graded, i.e., if S ∈ T r

s (X)

and T ∈ T r′

s′ (X) then S ⊗ T ∈ T r+r′

s+s′ (X).
Tensor algebras have dual tensor algebras, T (X)∗ ∼= T (X∗) (S∗⊗T ∗∗(x, y∗) =

S∗(x)T ∗∗(y∗) is an isomorphism).
Contraction: For each x ∈ X , the map Ai... 7→ Ai...x

j is a morphism
T r
s (X)→ T r+1

s (X); its dual map is contraction by x, Ai...x
j 7→ Ai...x

i, T r
s (X)→

T r
s−1(X), here generically denoted by A · x.

1. Every bilinear form splits into a symmetric and an anti-symmetric part
(if 2 6= 0) since T (x, y) = 1

2 (T (x, y) + T (y, x)) + 1
2 (T (x, y) − T (y, x));

the symmetric part is determined by the quadratic form T (x, x) since the
polarization identity holds:

1

2
(T (x, y) + T (y, x)) =

1

2
(T (x+ y, x+ y)− T (x, x)− T (y, y))

2. An inner product 〈·, ·〉 is a symmetric bilinear form gij .

(a) When invertible, there is a correspondence between vectors and co-
vectors (raising and lowering of indices), via Ai = gijA

j , so V ∗ ∼= V .

(b) It extends to act on tensors, 〈A,B〉 = Aij...B
ij... if of the same grade,

otherwise 0.

(c) Any 2-tensor can be decomposed into αgij + Aij + Bij where A is
anti-symmetric, B is traceless symmetric (spin-0+spin-1+spin-2).

3. A symplectic form is an anti-symmetric bilinear form. Example: X ×X∗

has a symplectic form ω(

(

x
φ

)

,

(

y
ψ

)

) := ψ(x) − φ(y); the canonical one-

form is θ

(

x
φ

)

= φ(x).
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8.1.2 Clifford Algebras and Exterior Algebras

Given a vector space X over F with an inner product 〈, 〉, then the Clifford
algebra Cℓ(X) is an algebra over F that contains X such that for x ∈ X ,

x2 = 〈x, x〉.

It is realized as the quotient of the tensor algebra T (X)/〈x2 − 〈x, x〉〉 (more
generally, for any ring, R〈x1, ..., xn〉/〈xixj + xjxi = 0, x2i = 〈xi, xi〉〉). Thus

〈x, y〉 = 1

2
(xy + yx), x ∧ y :=

1

2
(xy − yx) = −y ∧ x,

so xy = 〈x, y〉+ x ∧ y
(assuming throughout 2 6= 0; x, y, . . . denote vectors, a, b, . . . tensors).

Three special cases are:

1. The exterior algebra Λ(X) with 〈, 〉 = 0. It consists of the totally anti-
symmetric tensors, Aσ(i...) = sign(σ)Ai... (in indices it is written as A[i...]).

2. Euclidean algebra with g = 1, i.e., 〈ei, ej〉 = δij ,

3. Spinor algebra with g = −1, i.e., e2i = −1.

∧ is extended to tensors by taking it to be associative, and distributive over
+.

1. For example, for gij =





1
1
−1



,





1
1
1









1
−1
1









−1
−1
1



 = 3i − 3j + k −

4ijk.

2. Orthogonal vectors satisfy 〈x, y〉 = 0, so xy = x∧y = −yx; more generally,
x · · · y = x ∧ . . . ∧ y.

3. For an orthonormal basis,

x1 ∧ . . . ∧ xn =
1

n!
εi1···inxi1 · · ·xin = det[x1, . . . , xn]e1 . . . en,

where the matrix columns are the xi’s in terms of the basis.

4. (a) Vectors are invertible with x−1 = x/〈x, x〉, unless 〈x, x〉 = 0, when x
is called null.

(b) xyx = 2〈x, y〉x− x2y (since xy = 〈x, y〉+ xy−yx
2 ).

5. The algebra is graded : as a vector space it is isomorphic to
∑

k Λk(X)

(a) Λ0(X) = F , scalars,

(b) Λ1(X) = X , vectors,
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(c) Λ2(X) consists of 2-forms Aij ; for x, y linearly independent, x ∧ y
corresponds to the plane [[x, y]] (with an orientation),

(d) Λk(X) is generated by ei1 · · · eik (i1 < · · · < ik), so has dimension
(

n
k

)

where n = dimX . Each x1∧ . . .∧xk defines a sub-space [[x1, . . . , xk]],
which satisfies the equation x ∧ (x1 ∧ . . . ∧ xk) = 0.

(e) When finite-dimensional, the ‘highest’ space is a one-dimensional
space of pseudo-scalars, Λn(X) = [[ω]], generated by ω := e1 · · · en,
with indices εi...j .

The dimension of the algebra is thus 2n.

6. Cℓ(X) splits into the even and odd elements Λeven ⊕ Λodd; products of an

even/odd number of vectors is of even/odd grade:
even odd

even even odd
odd odd even

thus the even-graded elements form a sub-algebra, isomorphic to the Clif-
ford algebra on e⊥ with symmetric form −〈e, e〉g for any non-degenerate
e.

7. (a) a∧ b = ±b∧ a with + when a, b are both odd or both even; even and
odd elements are ‘invariant’, a ∧ b = c ∧ a.

(b) x ∧ y + · · ·+ x′ ∧ y′ = 0 ⇒ x, x′ ∈ [[y, . . . , y′]],

(c) x ∧ . . . ∧ y = 0 ⇔ x, . . . , y are linearly dependent;

(d) a∧ a = 0 ⇔ a = x∧ y (the set of such a is called the Klein quadric)

8. Contraction by x ∈ V maps Λk → Λk−1, and is the dual map of x∧.

(a) x · (y · a) = −y · (x · a), so double contraction by x gives 0.

(b) x · (a ∧ b) = (x · a) ∧ b ± a ∧ (x · b), with + when a is even.

9. The radical of ΛX is the ideal generated by the generators xi; the center
is generated by the even elements and the nth element. ΛX and its center
are local rings.

10. In finite dimensions, the Clifford group is the group of invertible elements
a for which ax(Pa)−1 is a vector for all x ∈ X ; it acts on X by x 7→
ax(Pa)−1. The subgroup of elements of norm 1 is called Pin(X), and its
subgroup of det = 1 is called Spin(X).

11. In finite dimensions,

(a) εab...εcd... =
∑

σ sign(σ)δ
a
σ(c)δ

b
σ(d), in particular εabcεade = δbdδ

c
e−δbeδcd,

εab...εab... = n!;

(b) Hodge-dual map ∗ : Λk(X)→ Λn−k(X), ai···k 7→ εi···k···nai···k = ωa?;
∗∗ = ± ± 1 with first − when n is even and k odd, and second +
when the number of −1s of the inner product g is even; ∗(α ∧ ∗.) =
(−1)nk(α∧)∗ (contraction with α).
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(c) Λk
∼= Λn−k via the Hodge map, ∗a · bε = a ∧ b;

12. Linear transformations T : X → Y extend to T : Cℓ(X) → Cℓ(Y ) (lin-
ear) by T (a ∧ b) := Ta ∧ Tb. Then Tω = (det T )ω, so det(ST ) =
detS detT (since det(ST )ω = (ST )(ω) = S(det Tω) = detT detSω).
T ∗ω(x1, . . . , xn) = ω(Tx1, . . . , T xn) = (det T )ω(x1, . . . , xn).

T−1 = 1
detT ωT

⊤ω−1.

13. Morphisms T (xy) = (Tx)(Ty) are the linear transformations that preserve
the inner product, 〈Tx, T y〉 = 〈x, y〉.

14. Reflections P have the property P 2 = I, Px = −x; they fix the even sub-
algebra but not the odd. For example, in Euclidean algebra, x 7→ −uxu
is a reflection along the normal u (since u 7→ −u, u⊥ 7→ u⊥u2 = u⊥).

15. There is a transpose, (x · · · y)⊤ := y · · ·x, e.g. 1⊤ = 1, x⊤ = x, a⊤ = ±a
for a even/odd; ω⊤ = ±ω (+ when n = 0, 1 (mod 4)).

(ab)⊤ = b⊤a⊤, a⊤⊤ = a.

Conjugation is then a 7→ a∗ := Pa⊤, so x∗ = −x, (xy)∗ = −yx.

16. A rotor in the plane a := xy, where x2y2 = ±1, is the map R : x 7→ a⊤xa.

〈Ru,Rv〉 = 1

2
(RuRv +RvRu) =

1

2
yx(uv + vu)xy = 〈u, v〉.

Over R, a = xy = cos θ
2 +sin θ

2 b = e
1
2
θb (b2 = −1); A spinor is of the type

a = α + βω; then R : v 7→ a⊤va gives Rv = (α2 + β2)v (for dimX = 0, 3
(mod 4)).

17. The inner product extends to a bilinear product on Cℓ(X) by 〈a, b〉 :=
(a⊤b)0 (the scalar term of a⊤b).

(a) For a, b of grades r, s, ab =: a ∗ b+ · · ·+ a ∧ b, where a ∗ b has grade
|r − s|; in particular, xa = x ∗ a+x∧a, a ∗x = ±x ∗ a; for a of grade
2, ab = a ∗ b+ [a, b] + a ∧ b.

(b) 〈a, b〉 = ∑n
k=0(a)k(b)k

(c) 〈x, y · · · z〉 = 1
2 (xy · · · z ± y · · · zx)

(d) 〈x · · · y, z〉 = 〈x, z〉 · · · 〈y, z〉.
(e) 〈x, y ∧ z〉 = −〈y ∧ z, x〉
(f) 〈x1 ∧ . . . ∧ xk, y1 ∧ . . . ∧ yl〉 := det[〈xi, yj〉] for k = l, and 0 otherwise.

(g) 〈x⊤y, z〉 = 〈y, xz〉, 〈yx⊤, z〉 = 〈y, zx〉
(h) a ∗ (bω) = (a ∧ b)ω for a, b of low enough grade (since (abω)k =

(ab)n−kω).
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18. The Clifford algebras over R and C are classified:

Over R, every non-degenerate symmetric form is equivalent to one with
‘signature’ p, q, i.e., e2i = ±1. The even sub-algebra of Cℓp,q(R) is Cℓp,q−1(R)
if q > 0, and Cℓq,p−1(R) if p > 0; so Cℓp,q(R) equals

Cℓp,q(R) s = p− q (mod 8)
n = p+ q −3 −2 −1 0 1 2 3 4

0 R

1 C R2

2 H M2(R) M2(R)
3 H2 M2(C) M2(R)

2 M2(C)
4 M2(H) M4(R) M4(R) M2(H)

· · ·
2m M2m−1(H) M2m(R) M2m(R) M2m−1(H)

2m+ 1 M2m−1(H)2 M2m(C) M2m(R)2 M2m(C)
.

(For example,Cℓ0,2(R) has basis 1, i, j, ω; the even sub-algebra is C. Cℓ0,3(R)
has basis 1, i, j,k, i := ij, j, k, ω; the even sub-algebra is H.).

Over C, every non-degenerate symmetric form is equivalent to I, so Cℓn(C)
equals

n 0 1 2 · · · 2m 2m+ 1
Cℓn(C) C C2 M2(C) M2m(C) M2m(C)2.

8.1.3 Weyl algebra

TheWeyl algebra over F ⊇ Q is the algebra of differential operators on F [x]; it is
that algebra generated by x, y such that [y, x] = 1; it is realized as F 〈x, y〉/[yx−
xy − 1], and is the smallest algebra that contains F [x] in which ∂x = £y.

For more variables it is similar: [xi, xj ] = 0 = [yi, yj ], yixj = 0, [yi, xi] = 1;
it acts on F [x1, ..., xn] via multiplication and differentiation.

1. A Weyl algebra is simple: every non-zero Lie ideal contains 1.

Proof: Elements of the form xayb generate the algebra since yx = xy+1.
£x = ∂x, £y = ∂y. But differentiation reduces the degree of a polyno-
mial, so if a ∈ I, a 6= 0, then £x(a) 6= 0, so a sequence of derivatives
£x£y...(a) 6= 0.

2. The same proof shows that the center of a Weyl algebra is F .

8.1.4 Incidence algebra N[6]

consists of functions f(m,n), where m|n, with

(f + g)(m,n) := f(m,n) + g(m,n), f ∗ g(m,n) :=
∑

m|i|n
f(m, i)g(i, n)
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The identity is the Kronecker delta function δ(m,n).
The inverse of the constant function 1 is µ′(m,n) := µ(n/m) where µ

is the Möbius function µ(n) =

{

(−1)k n = p1 · · · pk, square free

0 n not square-free
; µ(mn) =

µ(m)µ(n).
The incidence algebra on a (finite) ordered space Q[6] is isomorphic to the

algebra of upper triangular matrices in which Aij = 0 for i 66 j (in the ordered
space).

8.1.5 Lie algebras

1. so(n) the skew-symmetric matrices 〈Ax, y〉 = −〈x,Ay〉, i.e., A⊤g = −gA;
has basis of Fij := −i(Eij − Eji) and Hi := F2i−1,2i; dimension

(

n
2

)

;
[Hi, F2i−1,j ] = iF2i,j , [Hi, F2i,j ] = −iF2i−1,j . so(3) (g = 1) is generated by

l1 :=





0 −1 0
1 0 0
0 0 0



, l2 :=





0 0 −1
0 0 0
1 0 0



, l3 :=





0 0 0
0 0 −1
0 1 0



 with [li, lj ] = ǫijklk;

or Li := ili with [Li, Lj] = iǫijkLk. L
2 := L2

1 + L2
2 + L2

3 commutes with
each Li, so the eigenstates of L2 (with eigenvalues n(n+ 1)) are common
to all Li. But e

2πil = −1 not +1, so eitl really act on spinors, not vectors.
so(4) and so(5) have rank 2.

2. sl(n) the traceless matrices; basis of Hi := Eii−Ei+1,i+1 and Eij (i 6= j);
dimension n2−1; [Hi, Eij ] = Eij , [Hi, Ei+1,j ] = −Ei+1,j , [Hi, E

⊤] = −E⊤,
[Hi, Ei,i+1] = 2Ei,i+1, [Eij , Eji] = Eii − Ejj .

3. u(n) the skew-adjoint matrices A∗g = −gA. Contains su(n), the traceless
skew-adjoint matrices. The simplest, of rank 1, is su(2) ∼= so(3) (g = 1),

generated by the ‘Pauli’ matrices σ1 = i

(

0 1
1 0

)

, σ2 =

(

0 −1
1 0

)

, σ3 =

i

(

1 0
0 −1

)

, with [σi, σj ] = ǫijkσk; or by σ+ =

(

0 1
0 0

)

, σ− =

(

0 0
1 0

)

, σ3,

with [σ+, σ−] = σ3, [σ3, σ±] = 2σ±.

su(3) has rank 2, having Cartan subalgebra





1
−1

0



, 1√
3





1
1
−2



.

4. sp(2n) matrices A⊤Ω = −ΩA where Ω =

(

0 I
−I 0

)

; basis of Hi := Eii −
Ei+n,i+n, Aij := Eij − Ei+n,j+n, Bij := Ei+n,j+n + Ej+n,i+n, Cij =
2Ei+n,j+n; dimension

(

2n
2

)

.

5. Upper triangular matrices of dimension
(

n+1
2

)

; contains the sub-algebra of

Nilpotent matrices of dimension
(

n
2

)

, e.g. n = 3 is called the Heisenberg
algebra.
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