Topological Vector Spaces and Algebras

joseph.muscat@um.edu.mt 1 June 2016

1 Topological Vector Spaces over \mathbb{R} or \mathbb{C}

Recall that a topological vector space is a vector space with a T_0 topology such that addition and the field action are continuous. When the field is $\mathbb{F} := \mathbb{R}$ or \mathbb{C} , the field action is called **scalar multiplication**.

Examples:

- \mathbb{R}^A , such as sequences $\mathbb{R}^{\mathbb{N}}$, with pointwise convergence.
- Sequence spaces ℓ^p (real or complex) with topology generated by $B_r = \{(a_n) : \sum_n \sqrt[p]{|a_n|^p} < r\}$, where p > 0.
- Lebesgue spaces $L^p(A)$ with $B_r = \{ f : A \to \mathbb{F}, \text{ measurable}, \int \sqrt[p]{|f|^p} < r \}$ (p > 0).
- Products and quotients by closed subspaces are again topological vector spaces.

If $\pi_i : Y \to X_i$ are linear maps, then the vector space Y with the initial topology is a topological vector space, which is T_0 when the π_i are collectively 1-1.

The set of (continuous linear) morphisms is denoted by B(X, Y). The morphisms $B(X, \mathbb{F})$ are called 'functionals'.

+,*, ightarrow	Finitely-	Locally Bounded		First	
	Generated	Separable		countable	
Top. Vec. Spaces	////	$L^p \ 0$	$\ell^p[0,1]$	$(\ell^p)^{\mathbb{N}}$	$(\ell^p)^{\mathbb{R}}$
Locally Convex	////	$L^p \ p \ge 1$	L^{∞}	$\mathbb{R}^{\mathbb{N}}, C(\mathbb{R}^n)$	$\mathbb{R}^{\mathbb{R}}$ pointwise, ℓ^2_{weak}
Inner Product	////	L^2	$\ell^{2}[0,1]$	////	////
Locally Compact	\mathbb{R}^{n}	////	////	////	////

- 1. A set is balanced when $|\lambda| \leq 1 \Rightarrow \lambda A \subseteq A$.
 - (a) The image and pre-image of balanced sets are balanced.
 - (b) The closure and interior are again balanced (if A ∈ T₀; since λA° = (λA)° ⊆ A°); as are the union, intersection, sum, scaling, and product A × B of balanced sets.

(c) Hence every set generates largest and smallest balanced sets,

$$\bigcup_{\substack{V \subseteq A \\ V \text{ bal.}}} V =: \text{bal}(A) \subseteq A \subseteq \text{Bal}(A) := \bigcap_{\substack{V \supseteq A \\ V \text{ bal.}}} V = \{ \lambda a : |\lambda| \leqslant 1, a \in A \}$$

Bal(A) is open if A is, and $\bigcup_V V^\circ$ is balanced open in A; hence X has a topological base of balanced open sets.

- (d) Balanced sets are star-shaped hence path-connected.
- 2. X is path-connected and locally connected. There are no open subspaces (clopen) except for X.
- 3. Connected open sets are path-connected (since a boundary point of a path-connected component would be surrounded by a balanced open set).
- 4. A **convex** set is one which contains every line segment joining any two of its points,

$$0 \leqslant t \leqslant 1 \implies (1-t)C + tC = C$$
$$\Leftrightarrow \quad 0 \leqslant s, t \implies sC + tC = (s+t)C$$

For example, subspaces.

- (a) Convexity is preserved by linear images and pre-images.
- (b) Convex sets are connected.
- (c) $\operatorname{Convex}(A + \lambda B) = \operatorname{Convex}(A) + \lambda \operatorname{Convex}(B)$
- (d) The closure, interior, sum, scaling, and product are convex (e.g. $tC^{\circ} + (1-t)C^{\circ}$ is open in C).
- (e) The intersection of convex sets is again convex; hence every set generates its *convex hull*, the smallest convex set containing it,

Convex
$$(A) = \{ t_1 a_1 + \dots + t_n a_n : \sum_i t_i = 1, t_i \ge 0, a_i \in A \}.$$

(f) If A open or balanced, then so is Convex(A) (but $Convex(A)^{\circ} \neq Convex(A^{\circ})$).

If A is convex, then so is bal(A) (not Bal(A)).

If K_1, K_2 are compact convex, then so is $\operatorname{Convex}(K_1 \cup K_2) = \bigcup_{t \in [0,1]} (1-t)K_1 + tK_2$ (as the continuous image of $[0,1] \times K_1 \times K_2$).

A polyhedron is $\operatorname{Convex}(F)$ of a finite set F; a simplex is when F is independent. A cone is $\operatorname{Convex}(A \cup \{x\})$ where A is of dimension n-1. But the convex hull, even of a compact set, need not be closed (e.g. the compact set of sequences $x_n := (1, \ldots, \frac{1}{n}, 0, \ldots)$ and 0; then $\sum_{n=1}^{N} x_n/N \to (\frac{1}{n})$; convex sets $(\neq X)$ may be dense in X (e.g. c_{00} in ℓ^1 , $\{f \in C[0, 1] : f(0) = 1\}$ in $L^1[0, 1]$). 5. An extreme subset A of a convex set C satisfies $\operatorname{Convex}(C \setminus A) \subseteq C \setminus A$; the intersection of extreme sets is extreme. In particular extreme points do not lie on proper line segments in $C, e \notin \operatorname{Convex}(C \setminus e)$, equivalently, $e = \sum_i t_i a_i \Rightarrow \exists i, e = a_i \ (\Rightarrow \forall i, e = a_i).$

If C = Convex(E), then E is minimal $\Leftrightarrow E$ is the set of extreme points. There need not exist any extreme points, and the set of extreme points need not be closed.

6. Recall that a set is *bounded* when $\lambda A \to 0$ as $\lambda \to 0$, i.e.,

$$\forall U \in \mathcal{T}_0, \exists r > 0, \ B_r A \subseteq U.$$

For a balanced set this is equivalent to $\exists \lambda, A \subseteq \lambda U$. The only bounded subspace is 0.

Given a fixed open set $U \in \mathcal{T}_0$, the extent of a bounded set can be gauged by

$$N_U(A) := \inf\{r > 0 : A \subseteq rU\}$$

- (a) $N_U(\lambda A) = |\lambda| N_U(A)$ when U is balanced
- (b) $N_U(A+B) \leq N_U(A) + N_U(B)$ when U is convex
- (c) $N_U(A) = 0 \Leftrightarrow A = \{0\}$ when U is bounded
- 7. Any balanced convex open neighborhood of 0 generates a semi-norm $N_C(x)$ and conversely, $C = \{x \in X : N_C(x) < 1\}$. (But there need not exist any non-trivial ones.)
- 8. If $T_i: X \to Y$ are morphisms such that $\bigcup_i T_i x$ is bounded for all $x \in K$ a non-meagre bounded convex subset, then $\bigcup_i T_i K$ is bounded.

Proof: Let $A_c := \{x \in K : \forall i, T_i x \in c\overline{W}\}$ closed; then $K = \bigcup_c A_c$, so some A_c contains an interior point $x_0 + V$. But $K \subseteq x_0 + V/t$ for some t < 1, so $x_t := tx + (1 - t)x_0 \in K \cap (x_0 + V)$, then $tK \subseteq A_c + (1 - t)A_c$, so $tT_i K \subseteq c\overline{W} + c\overline{W} \subseteq cU$.

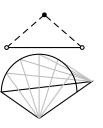
Dual Space

1. The dual space is $X^* := B(X, \mathbb{F})$. A linear map $\phi : X \to \mathbb{F}$ is continuous iff $\exists V \in \mathcal{T}_0, |\phi V| \leq 1$.

For any balanced convex $C \in \mathcal{T}_0$, let $N_C(\phi) := \inf\{r > 0 : |\phi C| \leq r\} = \sup_{N_C(x) < 1} |\phi(x)|$; then $|\phi(x)| \leq N_C(\phi)N_C(x)$.

 $(X\times Y)^*\cong X^*\times Y^* \text{ via } (\phi,\psi)(x,y):=\phi x+\psi y.$

Note: When $\mathbb{F} = \mathbb{C}$, the real and imaginary parts of a functional are not independent: Im $\phi(x) = -\operatorname{Re} \phi(ix)$.



2. Every linear map $Y \to \mathbb{F}$, which is bounded with respect to some seminorm, $N_C(\phi) < \infty$, can be extended to all of X with $N_C(\tilde{\phi}) = N_C(\phi)$.

Proof: ϕ can be extended from Y to $Y + \llbracket v \rrbracket$ by $\phi(y + \lambda v) = \phi(y) + \lambda c$ for some $c \in \mathbb{F}$. Given $|\phi(y)| \leq N(\phi)N(y)$; require a c such that $|\phi(y) + c| \leq N(\phi)N(y + v)$, which is possible when ϕ is real-valued since $\phi(y_1) - \phi(y_2) \leq N(\phi)(N(y_1 + v) + N(y_2 + v))$. For complex $\phi = \phi_1 + i\phi_2$, then $\phi_2(y) = -\phi_1(iy)$, so both can be extended. Let $\tilde{\phi}$ be a maximal extension of ϕ (exists by Hausdorff's maximality); its domain is X else can extend further by the above.

3. Weak convergence: Every pair $(x, \phi) \in X \times Y^*$ gives a functional on operators: $(x, \phi) \mapsto \phi Tx$. Hence they induce a 'weak' convergence

$$T_i \rightarrow T \Leftrightarrow \forall x \in X, \forall \phi \in Y^*, \ \phi T_i x \rightarrow \phi T x,$$

In particular,

$$\begin{array}{ll} x_i \rightharpoonup x \, \Leftrightarrow \, \forall \phi \in X^*, \ \phi(x_i) \rightarrow \phi(x), \\ \phi_i \rightharpoonup \phi \, \Leftrightarrow \, \forall x \in X, \ \phi_i(x) \rightarrow \phi(x) & (\text{weak-}^*) \end{array}$$

The topology induced by this convergence is generated from the sub-basic balanced convex open subsets $U_{r,x,\phi} := \{T : |\phi Tx| < r\}$, hence is locally convex but not necessarily T_0 , nor locally bounded $(U_{r,x,\phi} \supseteq \ker \phi)$ except when finite dimensional. However, X^* is a T_0 topological vector space since X separates points of X^* .

Morphisms preserve weak convergence, $x_i \rightharpoonup x \Rightarrow Tx_i \rightharpoonup Tx$.

Note that if $T_i \to T$ in Y^X , pointwise, i.e., $\forall x, T_i x \to T x$, then $T_i \to T$. $x_n \to x \Leftrightarrow x_n \to x$ AND $\{x_n : n \in \mathbb{N}\}$ is totally bounded; $\overline{A} \subseteq \overline{A}^w$.

Many properties of subsets have *weak* analogues e.g. weakly bounded when $\forall \phi \in X^*, \phi A$ is bounded in \mathbb{F} (A bounded $\Rightarrow A$ weakly bounded).

- 4. If $T_i \rightharpoonup T$ and $S_i x \rightarrow S x, \forall x$ then $T_i S \rightharpoonup T S$; if $\phi S_i \rightarrow \phi S$ then $S_i T_i \rightharpoonup S T$.
- 5. There are links between a space and its dual, via the adjointly related *polar* of a subset in X and the *pre-polar* of a subset in X^* ,

$$A^{\oplus} := \{ \phi \in X^* : N_A(\phi) = \sup |\phi A| \leq 1 \} = \text{ConvexBal}(A)^{\oplus}$$
$${}^{\oplus}\Phi := \{ x \in X : \sup |\Phi x| \leq 1 \}$$
$$\Phi \subseteq A^{\oplus} \Leftrightarrow |\Phi A| \leq 1 \Leftrightarrow A \subseteq {}^{\oplus}\Phi$$

 A^{\oplus} is balanced, convex, and weak-closed in X^* (and ${}^{\oplus}\Phi$ in X). When $U \in \mathcal{T}_0(X)$, U^{\oplus} is weak*-compact.

Proof: $J: U^{\oplus} \to \overline{B_{\mathbb{F}}}^X$ (compact), $\phi \mapsto (\phi x)_{x \in X}$ is clearly an embedding. $J(U^{\oplus})$ is closed: $J(\phi_i) \to f \Leftrightarrow \forall x, \phi_i x \to f(x)$, hence f is linear with $\forall x \in U, |f(x)| \leq 1$, so $f \in U^{\oplus}$. Thus U^{\oplus} is compact in X^* . 6. Similarly, annihilator and pre-annihilator

$$\begin{split} A^{\perp} &:= \{ \phi \in X^* : \phi A = 0 \} = \overline{\llbracket A \rrbracket}^{\perp}, \\ {}^{\perp} \Phi &:= \{ x \in X : \Phi x = 0 \} = {}^{\perp} \overline{\llbracket \Phi \rrbracket}, \qquad \Phi \subseteq A^{\perp} \Leftrightarrow \Phi A = 0 \Leftrightarrow A \subseteq {}^{\perp} \Phi \\ (A \cup B)^{\perp} = A^{\perp} \cap B^{\perp}, \qquad A^{\perp} + B^{\perp} \subseteq (A \cap B)^{\perp}. \end{split}$$

They are weak-closed subspaces of X^* and X respectively. For A unbounded, $A^{\oplus} = A^{\perp}$.

7. Every morphism $T: X \to Y$ has an **adjoint** morphism $T^*: Y^* \to X^*$ defined by $T^*\phi := \phi \circ T$.

Then

$$TA \subseteq B \implies T^*B^{\perp} \subseteq A^{\perp},$$

ker $T^* = (\operatorname{im} T)^{\perp}, \qquad (S + \lambda T)^* = S^* + \lambda T^*,$
im $T^* \subseteq (\operatorname{ker} T)^{\perp}, \qquad (ST)^* = T^*S^*.$

 $T \mapsto T^*$ is not weakly continuous but $T_i^* \to T^* \Rightarrow T_i \to T$.

- 8. A continuous projection (idempotent) on a complete space decomposes it into the product of closed subspaces $X \cong M \times N$ $(M = \ker P, N = \lim P = \ker(1-P)).$
- 9. If M is a closed subspace of finite codimension, then $X \cong M \times N$ (using representatives $\pi_n x_n = e_n$).

Separability

The size of a space can be assessed by the minimum cardinality of a set A such that $X = \overline{[A]}$.

1. X is separable \Leftrightarrow A is countable.

Proof: For any x + U, let $V + \cdots + V + W \subseteq U$, $\sum_{i=1}^{n} \lambda_i a_i \in x + W$; then $\exists \epsilon_i, B_{\epsilon_i} a_i \subseteq V$, and $\exists q_i \in \mathbb{Q} + i\mathbb{Q}, q_i \in \lambda_i + B_{\epsilon}$; thus $\sum_i q_i a_i \in \sum_i (\lambda_i + B_{\epsilon}) a_i \subseteq x + W + \sum_i V \subseteq x + U$.

- 2. A topological basis is a list of vectors e_n such that every $x = \sum_n \alpha_n e_n$ for some unique α_n . More strongly, e_n is a Schauder basis when $x \mapsto \alpha_n(x)$ are continuous. Such spaces are essentially sequence spaces $x \leftrightarrow (a_n)$. A functional is then of the form $\phi x = \sum_n b_n a_n$ (where $b_n = \phi e_n$).
- 3. For a separable vector space, U^{\oplus} ($U \in \mathcal{T}_0$) is a compact metric space.

Proof: If x_n are dense in U, then $\|\phi\|_w := \sum_n \frac{1}{2^n} |\phi x_n|$ is a metric on U^{\oplus} , with $\phi_i \rightharpoonup \phi \Leftrightarrow \|\phi_i - \phi\|_w \rightarrow 0$.

1.1 Quasi-Normed Spaces

are vector spaces with topology induced by a translation-invariant metric d(x, y) = |x - y|, equivalently, first countable; axiomatically, this quasi-norm satisfies

$$\begin{split} |x+y| \leqslant |x|+|y|, & |-x| = |x|, & |x| = 0 \Leftrightarrow x = 0\\ \lambda_n \to \lambda \text{ and } x_n \to x \Rightarrow |\lambda_n x_n| \to |\lambda x| \end{split}$$

This last condition can be achieved if, for example, $|\lambda x| \leq |\lambda| |x|$. Note that by starting with a balanced local base, the quasi-norm can be chosen to also be balanced, i.e., $|\lambda| \leq 1 \Rightarrow |\lambda x| < |x|$ (see the construction of the norm in topological groups). As in groups, can be completed. A topological vector space may have more than one inequivalent quasi-norm.

- $\mathbb{R}^{\mathbb{N}}$. More generally, arrays of real numbers such that $|(a_{nm})| := \sum_{n \frac{1}{2^n} \frac{|(a_{nm})|_1}{1+|(a_{nm})|_1}}$, where $|(a_{nm})|_1 := \sum_{m} |a_{nm}|$ are finite.
- $L^0(A)$ with $|f|_E := \int_E (|f| \wedge 1)$, i.e., sub-basic open sets $V_{\epsilon,\delta} := \{ f : \mu \{ x : |f(x)| > \delta \} < \epsilon \}.$
- If $\pi_i : Y \to X_i$ are linear maps to a finite number of quasi-normed spaces (one of the π_i is 1-1), then the vector space Y can be given the quasi-norm $|y| := \sum_i |\pi_i y|$.
- Products have the quasi-norm |(x, y)| = |x| + |y| (among others); for countable products can take $|x| = \sum_{n} \frac{1}{2^n} \frac{|x|_n}{1+|x|_n}$.
- Quotients have the quasi-norm $|x + M| = \inf_{a \in M} |x + a|$.
- 1. As in all normed groups, the quasi-norm is continuous and $B_r + B_s \subseteq B_{r+s}$. The norm constant of concavity is

$$c := \sup \frac{|x+y|}{|x| \vee |y|} \leqslant 2.$$

(But $x_i \rightharpoonup x \not\Rightarrow ||x_i|| \rightarrow ||x||$.)

- 2. By continuity of scalar multiplication, $\forall r, \exists \epsilon, s, t < \epsilon \Rightarrow tB_s \subseteq B_r$.
- 3. The open mapping theorem of topological groups applies between complete quasi-normed spaces even if not separable: $TX = \bigcup_n nTB_r$, so $\overline{TB_r}$ contains some open ball; the remaining part of the proof remains valid. In particular, a bijective morphism is an isomorphism.
- 4. Closed Graph Theorem: A linear map is continuous iff its graph is closed in $X \times Y$, i.e., $x_n \to x$ AND $Tx_n \to y \Rightarrow y = Tx$.

Proof: The graph is itself complete quasi-normed; the projection $\pi_X : G \to X$ is an isomorphism by the open mapping theorem, and $T = \pi_Y \circ \pi_X^{-1}$.

5. Isomorphism Theorems for complete spaces: $X/\ker T \cong \operatorname{im} T$ if $\operatorname{im} T$ is closed (via the continuous map $x + \ker T \mapsto Tx$).

Hence $\frac{X+Y}{Y} \cong \frac{X}{X \cap Y}, \ \frac{X \times Y}{Y} \cong X, \ \frac{X/Z}{Y/Z} \cong \frac{X}{Y}.$

6. The totally bounded sets are the metrically bounded sets that are arbitrarily close to finite-dimensional subspaces.

Proof: $K \subseteq F + B_{\epsilon} \subseteq \llbracket F \rrbracket + B_{\epsilon}$. Conversely, if $K \subseteq B_r$ and $K \subseteq Y + B_{\epsilon}$, then $K \subseteq Y \cap B_{r+\epsilon} + B_{\epsilon} \subseteq F + B_{2\epsilon}$ since in finite dimensions balls are totally bounded.

1.2 Locally Bounded Spaces

when there is a bounded open set; equivalently, a single (balanced bounded) set B generates the topology by translations and scalar multiplications, $x + \lambda B$ ($\lambda \neq 0$). Hence is first countable.

Examples:

• ℓ^p and $L^p(A)$ (p > 0).

Quotients are again locally bounded. An infinite product of topological vector spaces is not locally bounded.

- 1. $X = \mathbb{N}B = \bigcup_n nB$
- 2. There is a c > 0 such that $B + B \subseteq cB$; $rB + sB \subseteq c(r \lor s)B$.

Proof: $V + V \subseteq B$, and $rB \subseteq V$, so $r(B + B) \subseteq B$.

3. There is an equivalent quasi-norm satisfying $|\lambda x| = |\lambda|^p |x|$ (0 \leq 1, $c^p = 2$).

Proof: Let $|x| := \inf\{\sum_{i=1}^{n} \nu(x_i) : \sum_i x_i = x\}, \nu(x) := N_B(x)^p, \bar{\nu}(x) := 2^r \ge \nu(x)$. Note $\nu(x + y) \le 2(\nu(x) \lor \nu(y))$. Claim: $\nu(\sum_{i=1}^{n} x_i) \le 2\sum_i \bar{\nu}(x_i)$, since take $\nu(x_i)$ in decreasing order; if $\nu(x_j) \le 2\nu(x_{j+1})$ then $\nu(x_j + x_{j+1}) \le 2\nu(x_j) \le \bar{\nu}(x_j) + \bar{\nu}(x_{j+1})$; if $2\nu(x_{i+1}) \le \nu(x_i)$ for all i, then $\nu(x_1 + \dots + x_n) \le 2\nu(x_1) \lor 2^2\nu(x_2) \lor \dots \lor 2^n\nu(x_n) = 2\nu(x_1) \le 2\sum_i \bar{\nu}(x_i)$. Hence $\nu(\sum_i x_i) \le 4\sum_i \nu(x_i)$ and $\frac{1}{4}\nu(x) \le |x| \le \nu(x)$.

- 4. A subset is bounded iff metrically bounded, i.e., covered by some x + rB.
- 5. Every vector has a magnitude and direction (unit vector): $x = |x|^{1/p} \frac{x}{|x|^{1/p}}$.
- 6. If e_n are bounded and $(a_n) \in \ell^p$ then $\sum_n a_n e_n$ converges absolutely.
- 7. A linear map is continuous iff
 - (a) $\exists c > 0, TB_X \subseteq cB_Y$. It can be measured by $N(T) := N_{B_Y}(TB_X)$
 - (b) T maps bounded sets to bounded sets ("bounded map").

$$\begin{split} N(0) &= 0, \, N(I) = 1, \, N(T^{-1}) \geqslant N(T)^{-1}. \\ \text{Proof: If } x_n \to 0 \text{ then } Tx_n &= |x_n|^{\frac{1}{p}} T \frac{x_n}{|x_n|^{1/p}} \to 0. \end{split}$$

8. For every proper closed subspace Y and $0 \le c < 1$, there is a unit x such that |x + Y| = c. The cosets of Y up to a distance of 1 intersect the unit sphere.

Proof: Let |y+Y| = c; the image of the map $z \mapsto |y+z|, Y \to \mathbb{R}$, contains $|c, \infty[$, hence some |y+z| = 1.

9. The boundary of B_r is $S_r := \{x : |x| = r\}$, so $\overline{B}_r = \{x : |x| \leq r\}$; moreover $\overline{S}_r^w = \overline{B}_r$ in infinite dimensions.

Proof: Any neighborhood $\bigcap_{i=1}^{n} V_{\epsilon_i,\phi_i}$ of $x \in B$ contains the infinite dimensional subspace $Y := \bigcap_i \ker \phi_i$. So there is a unit $y \in S$ such that y + Y = x + Y.

10. Balls are not totally bounded except in finite dimensions. Infinite dimensional totally bounded sets have no interior.

Proof: If $B \subseteq Y + \epsilon B$ and $Y \neq X$ then there is $x \in B$, $|x + Y| > \epsilon$.

2 Locally Convex Spaces

when there is a base of convex open sets (can be assumed balanced).

Examples:

- \mathbb{R}^A with sub-base $V_{x,n} := \{ f : A \to \mathbb{R}, |f(x)| < \frac{1}{n} \}.$
- $C(\Omega)$ with $\Omega = \bigcup_n K_n$ a σ -compact topological space, and with the subbase $V_{n,m} := \{ f \in C(\Omega) : |fK_n| < \frac{1}{m} \}.$
- $C^{\infty}(\Omega)$, with sub-base $V_{n,k,m} := \{ f \in C^{\infty}(\Omega) : |f^{(k)}K_n| < \frac{1}{m} \}.$
- B(X, Y) for topological vector spaces, with weak topology (and indistinguishable morphisms identified). In particular, dual spaces X^* .
- 1. If A is bounded or totally bounded, then so is Convex(A).

Proof: $A \subseteq F + V$; Convex $(F) \subseteq F' + V$ as a compact set; so Convex $(A) \subseteq F' + V + V \subseteq F' + U$.

2. Separating hyperplanes: A compact convex set K and a disjoint closed convex set C can be separated by a real functional, $\phi K < \alpha < \phi C$. In particular X^* separates points from closed subspaces.

Proof: A point x can be separated from an open convex set $U \in \mathcal{T}_0$ using an extension of the functional $\phi(\lambda x) := \lambda$; ϕ is continuous since $|\phi \text{bal}(U)| \leq 1$. K and C can be separated by $(K+V) \cap (C+V) = \emptyset$, V convex; let $x_0 \in K$, $y_0 \in C$; $x_0 - y_0$ can be separated from the open convex neighborhood $U := (K - x_0 + V) - (C - y_0 + V)$. Hence $\phi(K + V) - \phi(C + V) = \phi U - 1 < 0$, so $\phi(K + V) < \phi(C + V)$.

3. A closed convex set is weakly closed (if $x \notin \overline{C}$ then can find ϕ that separates x from C).

Hence, if $x_i \rightarrow x$ then $\exists y_i \in \operatorname{Convex}(x_i), y_i \rightarrow x$.

4. ${}^{\oplus}(A^{\oplus}) = \overline{\operatorname{ConBal}(A)}, {}^{\perp}(A^{\perp}) = \overline{\llbracket A \rrbracket},$ $({}^{\oplus}\Phi)^{\oplus} = \overline{\operatorname{ConBal}(\Phi)}^{w}, ({}^{\perp}\Phi)^{\perp} = \overline{\llbracket \Phi \rrbracket}^{w}; \text{ hence } \overline{\operatorname{Im} T^{*}}^{w} = (\ker T)^{\perp}.$

Proof: If $x \notin \overline{CB(A)} =: F \ni 0$, it can be separated from it by a functional, $\phi F < \alpha < \phi x$; so $\psi := \phi/\alpha$ extended to \mathbb{F} , satisfies $|\psi F| < 1 < |\psi x|$ since F is balanced; so $\psi \in A^{\oplus}$ and $x \notin {}^{\oplus}(A^{\oplus})$.

5. Weakly bounded subsets iff bounded.

Proof: $|x^{**}\phi| \leq c_{\phi}$ for each $x \in A$; for $\phi \in V^{\oplus}$ compact convex, $|V^{\oplus}x| = |x^{**}V^{\oplus}| \leq c$; $\therefore \frac{1}{c}A \subseteq {}^{\oplus}(V^{\oplus}) = \bar{V} \subseteq U$.

6. A functional achieves its largest value on a compact convex subset (as $|\phi|$ or Re ϕ) at an extreme point.

Proof: If $|\phi|$ takes its max value α at b, and $x = sa + tb \in K$ then $\phi(x) \leq s\phi(a) + t\alpha$, so $\phi(a) = a = \phi(b)$.

7. A compact convex set has extreme points and they generate the set: $\overline{\text{Convex}(E)} = K.$

Proof: For any extreme set A (starting with K), as long as it has distinct points, can find $\phi \in X^*$ which separates them. Let ϕ achieve its maximum α on the closed set F; then F is an extreme subset. Hence can form a maximal nested chain of extreme closed sets; $\bigcap_i F_i$ is closed extreme and minimal, hence contains a single (extreme) point. If $x \in K \setminus \overline{C(E)}$ then a functional separates them, $\phi(x) > \phi \overline{C(E)}$, so the max of ϕ contains an extreme point not in E.

- 8. Every finite dimensional subspace M induces a decomposition $X \cong M \times N$ (using the dual functionals δ_i).
- 9. A linear map $T: X \to Y$ is continuous when for any open convex $D \subseteq Y$, there is an open convex $U \subseteq X$, such that $N_V(TU) < \infty$.
- 10. X is embedded in X^{**} .

Proof: $x \mapsto x^{**}$ is 1-1 since for $x \neq 0$, let $x \neq U$ convex, so separate x from U by a functional ϕ ; $x^{**}(\phi) = \phi(x) \neq 0$, so $x^{**} \neq 0$.

- 11. $(\sum_i X_i)^* \cong \prod_i X_i^*$, via $(\phi_i) \mapsto \sum_i \phi_i$.
- 12. If there is a countable base of convex balanced sets C_n , then the space is quasi-normed by $|x| := \sum_n \frac{1}{2^n} \frac{N_{C_n}(x)}{1+N_{C_n}(x)}$.

- 13. Let K be a compact convex subset of X, and $T: K \to K$ is continuous and affine, then T has a fixed point Tx = x (proof: let $T_n := (1 + \ldots + T^{n-1})/n$, so $T_n K$ is compact; so $\exists x \in K, \forall n, x \in T_n K$ ie $\exists x_n, x = T_n x_n$; so $x Tx = (x_n T^n x_n)/n \to 0$ since $x_n T^n x_n \in K + K$ is compact). CHECK
- 14. If K convex compact and $f: K \to K$ continuous then f has a fixed point f(x) = x; (also, amenable locally compact T_2 groups acting continuously on a convex compact set has a fixed point Gx = x)

Proof: $K \subseteq F + V \subseteq \llbracket F \rrbracket + V$; let $f_V := \pi_V \circ f : \overline{\text{Convex}(F)} \to \overline{\text{Convex}(F)}$. Then by Brouwer's fixed point theorem, $f_V(x_V) = x_V \in \overline{\text{Convex}(F)}$. For some subsequence, $x_n \to x_*$, hence

$$x_* - f(x_*) = x_* - x_n + f_{V_n}(x_n) - f(x_n) + f(x_n) - f(x_*) \in V + V + fV \subseteq U$$

3 Normed Spaces

have scale-homogeneous norms $\|\lambda x\| = |\lambda| \|x\|$; equivalently they are the locally convex locally bounded vector spaces (with norm $N_B(x)$). The unit ball B_X generates the topology via the convex bounded balls $B_r(x) = x + rB_X$. As in quasi-normed spaces, can be completed (called a Banach space).

Examples:

- ℓ^{∞} , the space of bounded sequences, with $||(a_n)||_{\infty} := \sup_n |a_n|$; its closed subspace c_0 of sequences that converge to 0.
- ℓ^1 , the space of absolutely summable sequences, with $||(a_n)||_1 := \sum_n |a_n|$.
- $L^p(A), p \ge 1$
- $L^{\infty}(A)$, and its closed subspace of bounded continuous functions $C_b(A)$.
- C(K) with sup norm, K compact T_2 . Every Banach space is embedded in some C(K).

Quotients and finite products are also normed.

- 1. $T: X \to Y$ linear is continuous iff it is Lipschitz, $||Tx|| \leq c ||x||$.
- 2. B(X, Y) is a normed space with $||T|| = \sup_{||x||=1} ||Tx||$,

$$||Tx|| \leq ||T|| ||x||$$

It is complete when Y is. In particular, X^* is also a complete normed space.

$$||S + T|| \leq ||S|| + ||T||, \quad ||\lambda T|| = |\lambda|||T||, \quad ||I|| = 1, \quad ||ST|| \leq ||S||||T||$$

Proof: If T_n is Cauchy, then so are $(T_n x)$.

- 3. X is isometrically embedded in B(X): fix unit $a \in X$, $\phi \in X^*$, $\phi a = 1$, let $P_x := x\phi$; so $x = P_x a$, $TP_x = P_{Tx}$.
- 4. im T is closed \Leftrightarrow im T^* is closed, in which case im $T^* = (\ker T)^{\perp}$ (weak*-closed). So T invertible $\Rightarrow T^*$ invertible.

Proof: If $\phi \in (\ker T)^{\perp}$, then can define $\psi(Tx) := \phi x$, extended to all of Y; $T^*\psi = \phi$. Conversely, let $\tilde{T} : X \to \overline{\operatorname{im} T}$, $\tilde{T}x := Tx$, so \tilde{T}^* is 1-1. Separate $C := \overline{\tilde{T}B_X}$ from any other y by ψ , $|\psi \tilde{T}x| \leq r < |\psi y|$ for $x \in \overline{B}_X$; so $r < ||\psi|| ||y|| \leq \frac{1}{c} ||\tilde{T}^*\psi|| ||y|| \leq \frac{r}{c} ||y||$, so ||y|| > c; hence $\tilde{T}B_X$ contains some open ball, so \tilde{T} is onto, i.e., im T is closed.

5. T is onto $\Leftrightarrow ||T^*\phi|| \ge c||\phi||$,

T is an embedding $\Leftrightarrow ||Tx|| \ge c||x||$.

Proof: T is onto implies $\operatorname{im}(T^*)$ is closed and T^* 1-1, hence by the open mapping theorem, $||T^*\phi|| \ge c ||\phi||$.

- 6. $\overline{B}_{X^*} = B_X^{\oplus}$, hence weak*-closed bounded subsets of X^* are weak*-compact. (So X^* is meagre when infinite dimensional.) Similarly, $\overline{B}_X = {}^{\oplus}B_X$; its weak topology is metrizable when X^* is separable (using $||x||_w := \sum_n \frac{1}{2^n} |\phi_n x|$).
- 7. (Krein) If K is weakly compact, then so is Convex(K).
 (Eberlein-Shmulian) Weakly compact iff every sequence has a weakly convergent subsequence.
- 8. Every Banach space is embedded in C(K) for some compact T_2 space K (take $K = \overline{B}_{X^*}$) and hence embedded in some $\ell^{\infty}(A)$; and covered by some $\ell^1(A)$ (via $(a_i)_{i \in A} \mapsto \sum_i a_i x_i$, x_i dense in \overline{B}). For example, separable Banach spaces are embedded in $C(2^{\mathbb{N}})$ (Cantor space) and ℓ^{∞} , and covered by ℓ^1 .
- 9. X^* is not separable if X isn't.

Proof: If ϕ_n is dense in X^* , then $|\phi_n x_n| \ge (\|\phi_n\| - \epsilon)$ for some unit x_n . If $M := \overline{[x_n]} \ne X$, then $\psi M = 0$ with $\|\psi - \phi_n\| < \epsilon$, so $|\phi_n x_n| = |(\psi - \phi_n)x_n| \le \epsilon$.

10. $\begin{aligned} \|x + \ker \phi\| &= |\phi x| / \|\phi\| \text{ (since } \|\phi\| = \sup_{a \in \ker \phi} |\lambda| |\phi x| / \|\lambda x + a\|). \\ \|x\| &= \sup_{\|\phi\|=1} |\phi x| = \|x^{**}\|, \text{ hence } X \text{ is isometrically embedded in } X^{**}. \\ T^{**} \text{ extends } T. \end{aligned}$

$$|T|| = \sup_{\substack{\|\phi\|=1\\\|x\|=1}} |\phi Tx| = ||T^*||$$

- 11. If Y is a closed subspace, then $(X/Y)^* \cong Y^{\perp}$ (via $\phi(x+Y) := \phi x$) and $X^*/Y^{\perp} \cong Y^*$ (via $\phi \mapsto \phi|_Y$).
- 12. If T_i satisfy $||T_ix|| \leq c_x$ then T_i are equicontinuous, hence $||T_i|| \leq c$.

13. If T_i are weakly bounded, $|\phi T_i x| \leq c_{\phi,x}$, then T_i are bounded, $||T_i|| \leq c$. In particular if $T_n \rightharpoonup T$ then $||T|| \leq \liminf ||T_n||$.

Proof: $||T|| = \sup |\phi Tx| = \sup \lim_{n \to \infty} |\phi T_n x| \leq \lim_{n \to \infty} ||T_n||.$

- 14. A morphism is called a **compact** operator when it maps bounded sets to totally bounded sets; equivalently, if x_n is a bounded sequence in X, then Tx_n has a Cauchy subsequence; or $x_n \rightarrow x \Rightarrow Tx_n \rightarrow Tx$.
 - (a) The space of compact operators forms a closed *-ideal in B(X, Y).
 - (b) $\operatorname{im} T$ is separable.

Proof: $TB \subseteq T_nB + (T - T_n)B \subseteq F + \epsilon B + \epsilon B$. im $T = T \bigcup_n nB = \bigcup_n nTB$ separable.

Examples include finite rank operators $T: X \to \mathbb{F}^N$: they are the only compact operators with closed range (by open mapping theorem, TB is open and totally bounded in im T).

15. A *Fredholm* operator is a morphism whose kernel is finite dimensional and image is finite co-dimensional. Its *index* is

 $\operatorname{index}(T) := \dim \ker T - \dim (\operatorname{im} T)^{\perp}$

 $T: X \xrightarrow{\pi} X/\ker T \xrightarrow{R} \operatorname{im} T \xrightarrow{\iota} Y$ with R an isomorphism.

The product and adjoint are again Fredholm,

 $\operatorname{index}(ST) = \operatorname{index}(S) + \operatorname{index}(T), \quad \operatorname{index}(T^*) = -\operatorname{index}(T).$

T is Fredholm \Leftrightarrow it is invertible up to compact operators (since $TR^{-1} = I$, $R^{-1}T = I - P$).

If index(T) = 0 then T is $1-1 \Leftrightarrow T$ is onto.

16. In a space with a Schauder basis, the coefficients depend continuously on x.

Proof: Let $||x|| := \sup_n ||\sum_{i=1}^n \alpha_i e_i|| \ge ||x||$, complete; hence $I : X_{|||||} \to X_{||||}$ has continuous inverse and $|\alpha_n(x)| = ||\sum^n \alpha_i e_i - \sum^{n-1} \alpha_i e_i|| \le 2||x|| \le c||x||$.

 T^{\top} is defined on the space $B = \{\phi : \phi \circ T$ continuous $\} \subseteq Y^*$; when B is dense in Y^* , then T and T^{\top} are closed, $T^{\top \top} = T$; if T is 1-1 and densely onto, then T^{\top} is 1-1 and $T^{\top -1} = T^{-1^{\top}}$;

3.1 Reflexive Banach Spaces

are spaces for which $x \mapsto x^{**}$ is an isomorphism $X^{**} \cong X$.

Example: Arrays of numbers with $a_{ij} = 0$ for j > i and $||(a_{ij})|| := \sqrt{\sum_j (\sum_i |a_{ij}|)^2} < \infty$.

Closed subspaces, the dual space X^* , quotients, countable products with $||(x_n)|| := \sqrt{\sum_n ||x_n||^2_{X_n}} < \infty$ are again reflexive.

- 1. $\underline{A^{\perp}}$ can be identified with ${}^{\perp}A$; and T^{**} with T, since $T^{**}x^{**} = (Tx)^{**}$. $\overline{\operatorname{im} T^*} = (\ker T)^{\perp}$.
- 2. X reflexive iff X^{\ast} reflexive. (The weak and weak-* topologies of X^{\ast} coincide.)

Proof: If $\phi^{**} \in X^{\perp}$ then $\phi x = \phi^{**}(x^{**}) = 0$, so $\phi = 0$.

3. Weakly closed bounded subsets are weakly compact.

Proof: $\overline{B}_X = \overline{B}_{X^{**}}$ is weak*-compact in X^{**} , hence weak compact in X.

4. $\overline{S}^w = \overline{B}$ using sequences.

Proof: Let $v_n \in S$, $||v_n - v_m|| \ge \frac{1}{2}$. Then $\exists v_n \rightharpoonup v$; $y_n := v_{n+1} - v_n \rightharpoonup 0$, $x_n := x + \frac{\lambda_n}{\|y_n\|} y_n \ (\lambda_n \le 2)$ such that $\|x_n\| = 1$; then $x_n \rightharpoonup x$.

5. Any functional attains its norm somewhere on S.

Proof: Let $|\phi x_n| \to ||\phi||$, $x_n \in \overline{B}$; then for a subsequence, $x_n \rightharpoonup x$, so $\phi x_n \to \phi x$ and $|\phi x| = ||\phi||$; ||x|| = 1.

6. A weakly closed subset has a closest point to any other point.

Proof: Let $||y_n - x|| \to d := \inf\{||y - x|| : y \in F\}$; y_n bounded, so $\exists y_n \to y; \therefore |\phi(y - x)| = \lim_{n \to \infty} |\phi(y_n - x)| \leq d ||\phi||$ and $||y - x|| \leq d$.

7. X is weakly complete, i.e., every weakly Cauchy sequences converges weakly (let $\Psi(\phi) := \lim_{i \to i} \phi x_i$, so $\Psi = x^{**}$; then $x_i \rightharpoonup x$).

8.
$$T_i \rightharpoonup T \implies T_i^* \rightharpoonup T^*$$
.

3.2 Uniformly Convex Banach Spaces

are Banach spaces such that $\|x+y\|/2\to 1 \ \Rightarrow \ \|x-y\|\to 0$ uniformly on unit vectors,

$$\forall \epsilon > 0 \; \exists \delta > 0, \; \forall x, y \in \overline{B}_X, \; 1 - \delta < \left\| \frac{x + y}{2} \right\| \; \Rightarrow \; \left\| x - y \right\| < \epsilon$$

Example:

- ℓ^p and $L^p(A) \ 1 < p$.
- 1. The set of extreme points of a closed ball is its sphere.
- 2. $x_n \to x \Leftrightarrow x_n \rightharpoonup x \text{ AND } ||x_n|| \to ||x||.$

Proof: $y_n := \frac{x_n}{\|x_n\|} \xrightarrow{} \frac{x}{\|x\|} =: y$; let $\phi y = 1 = \|\phi\|$. Then $1 \ge |\phi(\frac{y_n + y_m}{2})| \rightarrow 1$, so $\left\|\frac{y_n + y_m}{2}\right\| \rightarrow 1$, $\|y_n - y_m\| \rightarrow 0$, and $y_n \rightarrow y$. Hence $x_n = \|x_n\|y_n \rightarrow \|x\|y = x$.

3. For any closed convex set, the point closest to x is unique.

Proof: $y_n \to y$, ||y|| = d; so $y_n \to y$. If v is another closest point then $1 \leq \left\|\frac{y+v}{2d}\right\| \leftarrow \frac{1}{2} \|\hat{y}_n + \hat{v}_n\| \leq 1$; hence $\|\hat{y}_n - \hat{v}_n\| \to 0$ and y = v.

4. X is reflexive.

Proof: Given unit $\Psi \in X^{**}$; let $\|\phi_k\| = 1$, $\Psi(\phi_k) \to 1$. \overline{B}_X is dense in $\overline{B}_{X^{**}}$, so $\exists x_n$, unit, $\phi(x_n) \to \Psi(\phi)$. Then $1 \ge |\phi(\frac{x_n + x_m}{2})| \to 1$, so $\left\|\frac{x_n + x_m}{2}\right\| \to 1$, $\|x_n - x_m\| \to 0$, $x_n \to x$.

3.3 Inner Product Spaces

have a norm induced by an inner product, $||x|| = \sqrt{\langle x, x \rangle}$, where

$$\begin{array}{l} \langle x,y+z\rangle = \langle x,y\rangle + \langle x,z\rangle, \quad \langle y,x\rangle = \overline{\langle x,y\rangle}, \\ \langle x,\lambda y\rangle = \lambda \langle x,y\rangle, \quad \langle x,x\rangle = 0 \Leftrightarrow x = 0, \\ \langle x,x\rangle \ge 0. \end{array}$$

Equivalently, a normed space that satisfies the parallelogram law

$$||x + y||^{2} + ||x - y||^{2} = 2||x||^{2} + 2||y||^{2}.$$

Can be completed by taking $\langle [x_n], [y_n] \rangle := \lim_{n \to \infty} \langle x_n, y_n \rangle$ (called a *Hilbert* space).

Isometric morphisms preserve the inner product, $\langle Px, Py \rangle = \langle x, y \rangle$. Unitary morphisms are the automorphisms, i.e., invertible isometries. Conformal morphisms preserve orthogonality $\langle x, y \rangle = 0 \Rightarrow \langle Tx, Ty \rangle = 0$; hence are multiples of isometries.

Example: ℓ^2 and $L^2(A)$.

Subspaces, products have inner products:

$$\langle (x_1, y_1), (x_2, y_2) \rangle_{X \times Y} := \langle x_1, x_2 \rangle_X + \langle y_1, y_2 \rangle_Y$$

For a 'complexified' real inner product space, X + iX, $\langle x, y \rangle = g(x, y) + i\omega(x, y)$ with g, ω real bilinear non-degenerate forms on X^2 , but g is symmetric and ω skew-symmetric.

- 1. (a) $||x+y||^2 = ||x||^2 + 2 \operatorname{Re} \langle x, y \rangle + ||y||^2$. (b) $\langle x, y \rangle = \frac{1}{4} (||y+x||^2 + i||y+ix||^2 - ||y-x||^2 - i||y-ix||^2)$.
 - (c) $|\langle x, y \rangle| \leq ||x|| ||y||$, so the inner product is continuous (but not necessarily weakly continuous). (Take $x = \frac{\langle y, x \rangle}{\langle y, y \rangle} y + z$ with $\langle z, y \rangle = 0$.)
 - (d) Uniformly convex (since for $x, y \in \overline{B}$, $\left\|\frac{x+y}{2}\right\|^2 + \left\|\frac{x-y}{2}\right\|^2 = 1$).
- 2. $X^* \cong X$ via $x \mapsto \langle x, \cdot \rangle$ (onto since $\phi(x)y \phi(y)x \in \ker \phi = x^{\perp}$). Hence $A^{\perp} = \{ x \in X : \langle a, x \rangle = 0, \forall a \in A \}; A \cap A^{\perp} \subseteq 0$. T^* acts on X as $\langle T^*x, y \rangle = \langle x, Ty \rangle; (\lambda T)^* = \overline{\lambda}T^*$.

3. There are linear orthogonal projections onto closed subspaces, so closed subspaces are complemented, $X \cong Y \times Y^{\perp}$.

If M, N are complete orthogonal subspaces, then so is $M + N \cong M \times N$. To find the best approximate solution for Tx = y in x, solve $T^*Tx = T^*y$ (since $y - Tx \in (\operatorname{im} T)^{\perp}$).

- 4. T^*T has kernel ker T, closed image $\overline{\operatorname{im} T^*}$ and norm $||T||^2$.
- 5. A *frame* is a set of (unit) vectors e_i such that the norm $\|\langle e_i, x \rangle\|_{\ell^2(I)}$ is equivalent to $\|x\|$. Then $\overline{\|e_i\|} = X$.

The associated Fourier series operator $F: X \to \ell^2(I), x \mapsto (\langle e_i, x \rangle)_{i \in I}$ is 1-1; its adjoint is $F^*(a_i) = \sum_i a_i e_i; F^*F \ge c > 0$ hence has a continuous inverse.

Each frame has a dual 'biorthogonal' frame $\tilde{e}_i := (F^*F)^{-1}e_i$, with an associated Fourier operator $\tilde{F} = F(F^*F)^{-1}$, and $\langle e_i, \tilde{e}_j \rangle = \delta_{ij}$

$$\forall x \in X, \ x = \sum_i \langle e_i, x \rangle \tilde{e_i} = \sum_i \langle \tilde{e}_i, x \rangle e_i$$

 $\tilde{F}F^*$ is an orthogonal projection onto im $F \subseteq \ell^2$, so among all $\sum_i \alpha_i e_i = x$, $\|\tilde{F}x\|_{\ell^2} \leq \|(\alpha_i)\|_{\ell^2}$.

Proof: $\langle \tilde{e}_i, x \rangle = \langle e_i, (F^*F)^{-1}x \rangle = F(F^*F)^{-1}x$. $F = \tilde{F}F^*F$, so im $F = \operatorname{im} \tilde{F}$.

A *Riesz frame* is a linearly independent frame (equivalent to an unconditional Schauder basis)

6. An **orthonormal basis** is a maximal set of orthonormal vectors e_i , $\langle e_i, e_j \rangle = \delta_{ij}$ (exists). Hence $\overline{\llbracket E \rrbracket} = X$ (since $E^{\perp} = 0$).

 $\sum_i a_i e_i$ converges $\Leftrightarrow (a_i) \in \ell^2 \Leftrightarrow \sum_i a_i e_i$ converges weakly; hence e_i is a self-dual frame and F is an isomorphism:

$$x = \sum_{i} \langle e_i, x \rangle e_i, \qquad \langle x, y \rangle = \langle Fx, Fy \rangle_{\ell^2}$$

Hence every Hilbert space is isomorphic to some $\ell^2(I)$, via $x \mapsto Fx$; the separable Hilbert spaces are ℓ^2 and \mathbb{F}^n .

7. Any compact operator is diagonalizable $T = VDU^*$, $X \xrightarrow{U^*} \ell^2 \xrightarrow{D} \ell^2 \xrightarrow{V} Y$; $Tu_n = \lambda_n v_n$, $T^*v_n = \lambda_n u_n$. Thus, any compact operator can be approximated by a matrix.

Proof: T^*T and TT^* share the same non-zero (positive) eigenvalues $\lambda_n^2 \to 0$, with orthonormal eigenvectors u_n ; $v_n := Tu_n$ are also orthonormal.

Any solution of Tx = y is given by $\langle u_n, x \rangle = \langle v_n, y \rangle / \lambda_n$, assuming the latter coefficients are in ℓ^2 .

3.4 Symplectic Spaces

are vector spaces with a *symplectic* form $\omega: X^2 \to \mathbb{R}$ such that

$$\begin{split} & \omega(x,y+z) = \omega(x,y) + \omega(x,z), \qquad \omega(y,x) = -\omega(x,y), \\ & \omega(x,\lambda y) = \lambda \omega(x,y), \qquad \forall y, \ \omega(x,y) = 0 \Leftrightarrow x = 0. \end{split}$$

The symplectic morphisms preserve this form

$$\omega(Tx, Ty) = \omega(x, y)$$

- 1. Every symplectic space is isomorphic to some $V \times V^*$ with $\omega((u, \phi), (v, \psi)) := \psi(u) \phi(v)$.
- 2. $A^{\perp} := \{ x : \omega(a, x) = 0 \ \forall a \in A \}$. $A \subseteq B^{\perp} \Leftrightarrow B \subseteq A^{\perp}$, so $A \subseteq A^{\perp \perp}$. *Y* is *isotropic* when $Y \subseteq Y^{\perp}$; in this case, Y^{\perp}/Y is also symplectic. It can be extended to a Lagrangian subspace, $Y = Y^{\perp}$.
- 3. Y is a symplectic subspace of X iff $Y \cap Y^{\perp} = 0$.

4 Finite Dimensional Spaces, \mathbb{R}^N

They are the locally compact topological vector spaces; equivalently, a totally bounded open set exists.

Proof: Let K be a compact (bounded) balanced neighborhood of 0; then $K \subseteq F + \frac{1}{2}K$ for some finite F with $M := \overline{\llbracket F \rrbracket}$; so $K \subseteq \frac{1}{2}K + M \subseteq \frac{1}{2^r}K + M$, so $K \subseteq \bigcap_r (M + \frac{1}{2^r}K) = M$ and $X = \bigcup_r 2^r K \subseteq M$.

X is isomorphic to *Euclidean* space \mathbb{F}^N with the inner product $\langle x, y \rangle = \sum_{n=1}^N \bar{a}_n b_n$. In particular, all norms are equivalent and complete. Proof: $T : \mathbb{F}^N \to X$, $(a_k) \mapsto \sum_{k=1}^N a_k e_k$ is continuous, since $(a_k) \mapsto a_i \mapsto a_k \mapsto a_k = a_k$.

Proof: $T : \mathbb{F}^N \to X$, $(a_k) \mapsto \sum_{k=1}^N a_k e_k$ is continuous, since $(a_k) \mapsto a_i \mapsto a_i e_i$ is continuous. Conversely, let f(v) := ||Tv|| continuous; then $0 \notin fS$ compact, where S is the unit sphere of \mathbb{F}^N , i.e., $[0, c] \subseteq fS, c \leq ||Tv|| / ||v||$.

1. Totally bounded \Leftrightarrow bounded

Compact \Leftrightarrow closed and bounded $x_n \to x \Leftrightarrow x_n \rightharpoonup x$ T linear are compact and Fredholm.

- 2. If K is compact then so is Convex(K).
 - Proof: Let $x = \sum_i t_i v_i$; the matrix $\begin{pmatrix} 1 & \cdots & 1 \\ v_1 & \cdots & v_k \end{pmatrix}$ has a null vector if k > n+1, i.e., $\exists \alpha_i, \sum_i \alpha_i = 0, \sum_i \alpha_i v_i = 0$; $\beta := \min t_i / |\alpha_i|$; then $\sum_i (t_i \beta \alpha_i) v_i = x$ but has less terms.
- 3. $A^* = \overline{A}^{\top}$. Unitary matrices have orthonormal columns.

4. The Hausdorff measure satisfies $\mu_{\alpha}(\lambda E) = |\lambda|^{\alpha} \mu_{\alpha}(E)$. Also $\mu_{\alpha+\beta}(E \times F) \ge c_{\alpha,\beta}\mu_{\alpha}(E)\mu_{\beta}(F)$. Borel sets are μ_{α} -measurable; countable sets are μ_{α} -null.

Normalized μ_n $(n \in \mathbb{N})$ are called Lebesgue measures: cardinality, length, area, volume, etc..

5. The dimension of E is dim $(E) := \inf\{\alpha : \mu_{\alpha}(E) = 0\}.$

$$\begin{split} \dim(A\cup B) &= \max(\dim A, \dim B), \\ A \subseteq B \; \Rightarrow \; \dim A \leqslant \dim B, \\ \dim(E\times F) \leqslant \dim E + \dim F. \end{split}$$

5 Topological Algebras over \mathbb{R} or \mathbb{C}

A **topological algebra** is a topological ring $+, \lambda, \cdot$ that contains \mathbb{F} in its center. Thus it is a topological vector space with continuous $+, \lambda, \cdot$.

The morphisms are those maps which preserve $+, \lambda, \cdot, \cdot$

$$\phi(x+y) = \phi(x) + \phi(y), \ \phi(\lambda x) = \lambda \phi(x), \ \phi(xy) = \phi(x)\phi(y)$$

must be continuous with $\|\phi\| = 1$ (the automorphisms form a closed Lie subgroup of GL(X) with Lie algebra Der(X)). The morphisms $X \to \mathbb{C}$ (if there are any) are called *characters*; they form the set \widehat{X} .

Examples:

- \mathbb{R}^A with fg(x) := f(x)g(x).
- B(X) for X a topological vector space.

Products are again a topological algebra.

1. 1

6 Normed Algebras

A normed algebra is a topological algebra with a norm such that

$$\begin{aligned} \|x+y\| &\leq \|x\| + \|y\|, \quad \|\lambda x\| = |\lambda| \|x\| \\ \|xy\| &\leq \|x\| \|y\|, \quad \|1\| = 1 \end{aligned}$$

,

Can be completed so that $[x_n][y_n] = [x_n y_n]$; it is then called a *Banach* algebra. If $||xy|| \leq c ||x|| ||y||$ then there is an equivalent norm with c = 1.

Examples:

- 1. C(K) with K compact.
- 2. $L^1(G)$ with convolution; in particular, $\ell^1 = L^1(\mathbb{Z})$.
- 3. \mathbb{C}^n with convolution and 1-norm.
- 4. B(X) for X a Banach space; contains the closed ideal of compact operators. Every normed algebra is embedded in some B(X) via $a \mapsto L_a$, $L_a(x) := ax$.
- 5. \mathbbm{H} quaternions, with absolute value as norm.

Products are again normed algebras (with ∞ -norm).

1. The state space is $S(X) := \{ \phi \in X^* : \phi 1 = 1 = ||\phi|| \}$, a weak*-compact convex set.

$$\mathcal{S}(x+y) \subseteq \mathcal{S}x + \mathcal{S}y, \quad \mathcal{S}(x+\lambda) = \mathcal{S}(x) + \lambda, \quad \mathcal{S}(\lambda x) = \lambda \mathcal{S}x, \quad \mathcal{S}1 = \{1\}$$

Proof: S is weak*-closed in the weak*-compact \overline{B}_{X^*}

2. The **spectrum** of an element is $\sigma(x) := \{ \lambda \in \mathbb{C} : x - \lambda \text{ is not invertible} \}$. It is a non-empty compact subset of \mathbb{C} , with largest extent $\rho(x)$ and smallest extent $\rho(x^{-1})^{-1}$ (or 0). It depends continuously on x:

Proof: $\sigma(x)^{\mathsf{c}} = f^{-1}GL(X)$ open; if $|\lambda| > \rho(x)$ then $\rho(x/\lambda) < 1$, so $x - \lambda = -\lambda(1-x/\lambda)$ is invertible. If $x_n \to x$, then $\sigma(x_n)$ is eventually in $\sigma(x) + \epsilon B$. $\|(x-\lambda)^{-1}\| \ge 1/d(\lambda, \sigma(x))$. When an algebra is enlarged, the interior of $\sigma(x)$ decreases, and its boundary increases; ultimately, the result is the 'singular spectrum' of $x - \lambda$ that are topological divisors of zero.

3. The character set \widehat{X} is weak*-compact in \mathcal{S} ,

$$\begin{split} \widehat{X}(x+y) &\subseteq \widehat{X}x + \widehat{X}y, \quad \widehat{X}(xy) \subseteq (\widehat{X}x)(\widehat{X}y), \quad \widehat{X}1 = \{1\}\\ \widehat{X}x &\subseteq \sigma(x) \subseteq \mathcal{S}x \subseteq \|x\|\bar{B} \end{split}$$

Proof: \widehat{X} is weak*-closed. If $y := x - \lambda$ is not invertible, then $1 \notin \llbracket y \rrbracket$, so there is a $\phi \in \mathcal{S}$, $\phi \llbracket y \rrbracket = 0$, i.e., $\phi x = \lambda$. If $\phi \in \widehat{X}$ and y is invertible, then $\phi x - \lambda = \phi y \neq 0$.

4. The extreme points of S are called *pure* states, S_E , and their weak*-closure \overline{W} . They generate the state space

$$S = \overline{\operatorname{Convex}(S_E)}^w, \qquad Sx = \overline{\operatorname{Convex}(S_Ex)}$$

Thus the largest value of Sx is achieved by a pure state.

- 5. Except for $X = \mathbb{C}$, there are non-zero topological divisors of zero (else as $\sigma(x)$ has non-empty boundary, $x = \lambda \in \mathbb{C}$).
- 6. *a* is a quasi-nilpotent (or radical element), i.e., 1 xa is invertible for all x, iff $\rho(xa) = 0$, $\forall x$. Then $\sigma(x + a) = \sigma(x)$.

Proof: $y + a = y(1 + y^{-1}a)$ is invertible since $\rho(y^{-1}a) = 0$, so $\lambda \notin \sigma(x + a) \Leftrightarrow 0 \notin \sigma(x - \lambda)$.

7. If f is analytic on an open set around $\sigma(x)$, then define

$$f(x) := \frac{1}{2\pi i} \oint f(z)(z-x)^{-1} dz$$

(a)
$$ax = xb \implies f(a)x = xf(b)$$
, so $f(x^{-1}ax) = x^{-1}f(a)x$

(b) $xy = yx \Rightarrow f(x)g(y) = g(y)f(x)$.

(c) The map f → f(x) is a Banach-algebra-morphism C^ω(σ(x)) → X.
(d) σ(f(x)) = f(σ(x)); for ψ ∈ X̂, ψf(x) = f(ψx).

Proof: If $d(\lambda, f\sigma(x)) > 0$, then $(f(z) - \lambda)^{-1}$ is analytic. If $f(x) - f(\lambda)$ has an inverse y, then $(x - \lambda)F(x)y = 1 = yF(x)(x - \lambda)$, where $F(z) = (f(z) - f(\lambda))/(z - \lambda)$.

If x satisfies f(x) = 0, then $\sigma(x) \subseteq \{\lambda : f(\lambda) = 0\}$. For example, idempotents have spectrum $\{0, 1\}$; nilpotents $\{0\}$.

8. If f is analytic on an open annulus Rr then it is a Laurent series with coefficients $a_n = \frac{1}{2\pi i} \oint f(z) z^{-1-n} dz$ (so $|a_n| \leq \frac{\|f\|_{\infty}}{R^n}$ for $n \in \mathbb{N}$). For $\sigma(x) \subset Rr$,

$$f(x) = \sum_{n = -\infty}^{\infty} a_n x^n$$

Proof: $(z - x)^{-1} = \sum_n x^n / z^{1+n}$.

- 9. If $\sigma(x) = \sigma_1 \cup \cdots \cup \sigma_n$, each enclosed by a simple curve, then there are idempotents $e_i := 1_{\sigma_i}(x)$, such that $1 = e_1 + \cdots + e_n$, $\sigma(xe_i) = \sigma_i$.
- 10. Exponential function

$$e^x := 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + \dots = \lim_{n \to \infty} (1 + \frac{x}{n})^n$$

(a)
$$e^0 = 1, (e^x)^{-1} = e^{-x}, e^{nx} = (e^x)^n, \frac{\mathrm{d}}{\mathrm{d}t}e^{tx} = e^{tx}x.$$

- (b) $e^{x+y} = \lim_{n \to \infty} ((1 + \frac{x}{2n})(1 + \frac{y}{2n}))^n$; $e^x e^y = e^{x+y+\frac{1}{2}[x,y]+\dots}$; if xy = yx then $e^{x+y} = e^x e^y$.
- (c) $e^x = \cosh x + \sinh x$, even/odd parts. $\tanh x := \sinh x (\cosh x)^{-1}$.
- (d) The exponential function is periodic with purely imaginary period τi ; $\pi := \tau/2$. Then

$$e^{i\pi} + 1 = 0$$

- (e) $e^{2\pi i x} = \cos(2\pi x) + i \sin(2\pi x)$, so $\sin(x+y) = \sin x \cos y + \cos x \sin y$, $\cos(x+y) = \cos x \cos y - \sin x \sin y$;
- 11. For any continuous derivative D, e^{tD} is an automorphism of X; in particular $e^{tD_x}y = e^{tx}ye^{-tx}$.

Proof:
$$e^{tD}(xy) = \sum_n \frac{1}{n!} t^n (D^n xy + \dots + xD^n y) = \sum_n \frac{1}{n!} t^n D^n x \sum_m \frac{1}{m!} t^m D^m y.$$

12. Logarithm function For $\rho(x) < 1$, let $\ln(1+x) := x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^{n+1}}{n} x^n + \dots$

Then $e^{n \ln(1+x)} = (1+x)^n$, so let $(1+x)^p := e^{p \ln(1+x)}$ $(p \in \mathbb{C})$, then

$$(1+x)^p = 1 + px + \frac{p(p-1)}{2!}x^2 + \dots + \binom{p}{n}x^n + \dots$$

More generally, given any simple path "branch cut" from 0 to ∞ (typically $-\mathbb{R}^+$), let $\ln z := \int_1^z \frac{1}{w} dw$ (along a path that does not intersect the branch cut). Then $e^{\ln x} = x = \ln e^x$, $x^p := e^{p \ln x}$

13. Gelfand Transform: $\mathcal{F}: X \to C(\widehat{X})$, where $\mathcal{F}(x) = \hat{x}, \hat{x}(\psi) := \psi x \in \sigma(x)$, is a morphism,

$$\widehat{x+y} = \hat{x} + \hat{y}, \quad \widehat{\lambda x} = \lambda \hat{x}, \quad \widehat{xy} = \hat{x}\hat{y}, \quad \widehat{1} = 1, \quad \widehat{f(x)} = f \circ \widehat{x}.$$

The kernel of \mathcal{F} contains all elements with $\rho(x) = 0$ and all commutators.

6.1 B(X)

1. An morphism $J : B(X) \to B(Y)$ induces a morphism $L : X \to Y$; if J is an isomorphism, then so is L, with $J(T) = LTL^{-1}$. Hence all automorphisms of B(X) are inner; they form the Lie group GL(X).

Proof: $X \subseteq B(X)$ via $x \mapsto P_x$. $J(P_a) = b\psi = P_b$ for some unit $b, \psi, \psi b = 1$, since they have the same kernel and image. Hence $J(P_x) = J(P_x P_a) = J(P_x)P_b = P_{J(P_x)b}$; $L(x) := J(P_x)b$; invertible when J is.

2. The center of B(X) is \mathbb{F} .

Proof: $T(x\phi) = (x\phi)T$, so $Tx = \lambda x$.

- 3. There are no proper radical elements: For every $T \neq 0$ there is $S := x\phi$ such that (1 ST)x = 0, so $1 \in \sigma(ST)$.
- 4. There are no characters unless $X = \mathbb{C}$.

Proof: Let M be a two-dimensional (complemented) subspace, and E_{ij} a basis for B(M). Then $E_{ii}E_{jj} = 0$, $E_{ii}E_{ij} = E_{ij}$, $E_{jj} = E_{ij}E_{ji}$, so $\psi E_{ij} = 0$, $\forall i, j$.

- 5. The spectrum of $T \in B(X)$ splits into the
 - eigenvalues when $T \lambda$ is not 1-1 (a left divisor of zero);
 - the continuous spectrum with $T \lambda$ 1-1 and dense (a left topological divisor of zero);
 - the *residual spectrum* (otherwise; a right divisor of zero).

It includes approximate eigenvalues, i.e., $(T - \lambda)x_n \to 0$ for some unit x_n (i.e., $T - \lambda$ is a left topological divisor of zero).

6. Distinct eigenvalues have linearly independent eigenspaces.

Proof: If
$$v := \sum_{n \in A} \alpha_n e_n = 0$$
 then $0 = \prod_{n \neq k} (T - \lambda_n) v = \alpha_k \prod_{n \neq k} (\lambda_k - \lambda_n) e_k$.

7. $\sigma(T^*) = \sigma(T), \ \sigma_r(T) \subseteq \sigma_p(T^*) \subseteq \sigma_p(T) \cup \sigma_r(T), \ \sigma_c(T^*) \subseteq \sigma_c(T).$ When X is reflexive, $\sigma_r(T^*) \subseteq \sigma_p(T)$ and $\sigma_c(T^*) = \sigma_c(T).$

- 8. Recall that if $T \in B(X)$ has finite ascent and descent (see Universal Algebras) then every $x \in X$ can be represented uniquely by some $T^n y$, modulo ker T^n , i.e., $X = \ker T^n \oplus \operatorname{im} T^n$.
- 9. The compact operators form a closed ideal, so $B(X)/\mathcal{K}$ is a Banach algebra; contains the ideal F(X) of finite-rank operators.
- 10. If K is a compact operator, then 1 + K is Fredholm of finite ascent and descent, its spectrum is a countable set of eigenvalues whose only possible limit point is 0, and each non-zero eigenvalue has a finite dimensional extended eigenspace.

Proof: If 1+K has infinite ascent/descent, then can choose separated unit $x_n \in \ker(1+K)^n$ or $\operatorname{im}(1+K)^n$, so Kx_n is not Cauchy. $T-\lambda = \lambda(1-T/\lambda)$. Similarly, can choose separated unit eigenvectors, so $Te_n = \lambda_n e_n \to \lambda e_n$ has no Cauchy subsequence unless $\lambda = 0$. $(T-\lambda)^n$ is still Fredholm.

 T^* has the same non-zero eigenvalues and eigenspace dimensions as T, $\ker(S^*) = \operatorname{im}(S)^{\perp} \cong Y / \operatorname{im} S \cong \ker S$.

6.2 Commutative Banach algebras

Example: Z(Z(x)) for any $x \in X$.

- 1. The only simple commutative Banach algebra is \mathbb{C} (the closed ideal Xa is 0 or contains 1).
- 2. The radical consists of elements with zero spectrum, $\rho(x) = 0$ (since $\rho(xy) \leq \rho(x)\rho(y)$).
- 3. Any maximal ideal is the kernel of some character; so $\widehat{X} \neq \emptyset$. Proof: $I = \ker \pi$ for $\pi : X \to X/I$; if I is maximal, X/I is simple, i.e., \mathbb{C} .
- 4. $\sigma(x+y) \subseteq \sigma(x) + \sigma(y), \ \sigma(xy) \subseteq \sigma(x)\sigma(y) \ (\text{in } Z(Z(x,y))).$
- 5. X/\mathcal{J} is embedded in $C(\widehat{X})$, since ker $\mathcal{F} = \mathcal{J}$.

$$\operatorname{im} \widehat{x} = \widehat{X} x = \sigma(x), \quad \|\widehat{x}\|_{C(\widehat{X})} = \sup |\widehat{X} x| = \rho(x), \quad \widehat{x^{-1}} = \widehat{x}^{-1}.$$

Proof: If $\lambda \in \sigma(x)$ then $x - \lambda \in I = \ker \phi$ maximal, $\phi x = \lambda$.

6. The Banach algebras that are embedded in some C(K) are those that satisfy $||x||^2 \leq c ||x^2||$ for all x. In particular, they are commutative and have trivial \mathcal{J} .

Proof: $||x|| \leq c ||x^{2^n}||^{2^{-n}} \rightarrow c\rho(x) = c ||\widehat{x}||$, so $\mathcal{J} = 0$; $||xy|| \leq c\rho(yx) \leq c ||yx||$; let $F(z) := e^{-zx} a e^{zx}$, analytic, then $||F(z)|| \leq c ||a||$, hence F(z) = a, i.e., xa = ax.

Those that are isometrically embedded in $C(\hat{X})$ are the commutative semisimple Banach algebras, equivalently $||x^2|| = ||x||^2$. 7. $De^x = e^x$, $D\cosh x = \sinh x$, $D\sinh x = \cosh x$, $D\cos x = -\sin x$, $D\sin x = -\cos x$.

7 Involution algebras

are the normed algebras with an **involution** $*: X \to X$,

$$\begin{split} x^{**} &= x, \\ (x+y)^* &= x^* + y^*, \quad (xy)^* = y^* x^*, \quad i^* = -i, \\ \|x^*\| &= \|x\| \end{split}$$

So * is a (continuous) anti-automorphism. A complete involution algebra is called a C^* -algebra. The *-morphisms preserve involution $\phi(x^*) = \phi(x)^*$.

Example: $C_b(\mathbb{R})$ with $f^*(t) := f(-t)$. Products are again involutive with $(x, y)^* = (x^*, y^*)$.

A *-sub-algebra/ideal has to be closed under involution.

An element is called **normal** when $x^*x = xx^*$, i.e., $x^* \in Z(x)$; e.g. $x + e^{i\theta}x^*$. It is called **self-adjoint** when $a^* = a$; e.g. x^*x , $x + x^*$, $i(x - x^*)$. It is **unitary** when $u^* = u^{-1}$; e.g. x^*x^{-1} when x is normal, in particular e^{ia} when a is self-adjoint.

- 1. $1^* = 1^*1 = (1^*1)^* = 1$, so the involution on \mathbb{C} is conjugation.
- 2. (x⁻¹)* = (x*)⁻¹, σ(x*) = σ(x)*. If x is nilpotent, radical, divisor of zero, or topological divisor of zero, then so is x*. If x*x and xx* are both invertible then so is x: x⁻¹ = (x*x)⁻¹x* = x*(xx*)⁻¹.
- 3. Any element can be written as a + ib, with a, b self-adjoint, called the real and imaginary parts; $||a||, ||b|| \leq ||x||$.

 $\begin{array}{l} x^* = a - ib, x^*x = (a^2 + b^2) + i[a,b], xx^* = (a^2 + b^2) - i[a,b];\\ x \text{ is normal } \Leftrightarrow ab = ba, \text{ unitary } \Leftrightarrow ab = ba \text{ AND } a^2 + b^2 = 1. \end{array}$

4. Polarization identity: For $\omega := e^{2\pi i/N}$,

$$x^*y = \frac{1}{N} \sum_{n=1}^N \omega^n (x + \omega^n y)^* (x + \omega^n y)$$
$$x^*x + y^*y = \frac{1}{N} \sum_{n=1}^N (x + \omega^n y)^* (x + \omega^n y)$$

5. (a) The closed *-sub-algebra generated by x is $\overline{\mathbb{C}[x, x^*]}$ (non-commuting polynomials).

(b) $Z(A^*) = Z(A)^*$, so Z(A) is a closed *-sub-algebra when $A^* = A$.

- 6. The kernel of a *-morphism and the radical \mathcal{J} are closed *-ideals.
- 7. The normal elements form a closed subset containing \mathbb{C} : if x is normal, so are x^* , αx , $x + \alpha$, $x^{\pm n}$.

 $Z(x^*) = Z(x)$. If $q \in Z(x)$ is a quasi-nilpotent, then x + q is not normal unless q = 0.

 $\begin{array}{l} \text{Proof: For } y \in Z(x^*), \text{let } \alpha x = a + ib, F(\alpha) := e^{-\alpha x} y e^{\alpha x} = e^{-a - ib} y e^{a + ib} = e^{-2ib} y e^{2ib} \text{ is bounded } \|F(z)\| \leqslant \|y\|, \text{ so constant; i.e., } e^{\bar{\alpha} x^*} y = y e^{\bar{\alpha} x^*}. \end{array}$

- 8. The self-adjoints form a real closed sub-space (Jordan algebra) containing \mathbb{R} : a + b, (ab + ba)/2 (e.g. $b \in \mathbb{R}$), $a^{\pm n}$, i[a, b], are again self-adjoint.
- 9. The unitaries form a closed sub-group of the invertible elements $\mathcal{G}(X)$ (closed under * but not a normal sub-group), containing $e^{i\mathbb{R}}$.

8 C*-algebras

are *-algebras such that $||x^*x|| = ||x||^2$.

- 1. For normal elements, $||x^2|| = \sqrt{||x^*xx^*x||} = ||x||^2$, so $\rho(x) = ||x||$. $Sx = \overline{\text{Convex}(\sigma(x))}$. The only normal quasi-nilpotent is 0. Proof: If $\lambda \notin \overline{\text{Convex}(\sigma(x))}$ then can separate by a ball $z + r\overline{B}$. So $|\phi x - z| = |\phi(x - z)| \leq ||x - z|| < |\lambda - z|$ for $\phi \in S$.
- 2. $||x|| = \sqrt{\rho(x^*x)}$, so the norm is unique. The involution is also unique.
- 3. Semi-simple: There are no radical elements, as $||q|| = \sqrt{\rho(q^*q)} = 0$.
- 4. S preserves involution, $\phi(x^*) = \phi(x)^*$, $\|\phi\| \leq 1$, and separates points. $Sx^* = (Sx)^*$. Proof: If $a^* = a$ and $\phi(a) = \alpha + i\beta$, then $|\beta + t| \leq |\phi(a + it)| \leq ||a + it|| = \rho(a+it) = \sqrt{\|a\|^2 + t^2}$, so $(2t+\beta)\beta \leq \|a\|^2$ and $\beta = 0$. $\phi(x^*) = \phi(a-ib) = \phi(x)^*$. $\sigma(a) \subseteq S(a) = 0 \Rightarrow a = 0$. $\|\phi x\|^2 = \rho(\phi(x^*x)) \leq \rho(x^*x) = \|x\|^2$.
- 5. The Gelfand transform preserves involution: $\widehat{x^*} = \widehat{x}^*$.
- 6. If x is normal, $\overline{\mathbb{C}}[x, x^*] \equiv C(\sigma(x))$, via $\mathcal{F} : p(x, x^*) \mapsto p(\widehat{x}, \widehat{x}^*)$. In particular, can define f(x) for any $f \in C(\sigma(x))$ via $f(x) := \mathcal{F}^{-1}f\mathcal{F}x$. Then $f^*(x) = f(x)^*$, $\sigma(f(x)) = f(\sigma(x))$, and if xy = yx then f(x)g(y) = g(y)f(x). For example, |x|.
- 7. The self-adjoints are the normal elements with $Sa \subseteq \mathbb{R}$ (since $\phi(a^* a) = 0$).

Let $a \leq b$ when $\mathcal{S}(b-a) \geq 0$. Then

- (a) $\alpha \leq a \leq \beta \Leftrightarrow Sa \subseteq [\alpha, \beta]$
- (b) $a + c \leq b + c$; if $a, b \geq 0$ commute, then $ab \geq 0$.
- (c) $a = a_+ + a_-, |a| = a_+ a_-, a_+a_- = 0, a_- \leq a \leq a_+ \leq |a| \leq ||a||.$
- (d) $a \lor b = a + (b-a)_+, a \land b = a (a-b)_+$; hence a $(+, \lor)$ -group lattice.
- (e) $a \leq b \Rightarrow x^*ax \leq x^*bx$, in particular $x^*x \geq 0$.
- (f) For $\phi \in S$, $\phi(x^*y)$ is a semi-inner product, $\phi(x^*ax) \leq \phi(x^*x) ||a||$ and $|\phi(x)|^2 \leq \phi(x^*x)$ (since $a \leq ||a||$).
- (g) If $\phi \leq \psi, \phi \in \mathcal{S}, \psi \in \widehat{X}$, then $\phi = \psi$.
- (h) \widehat{X} is part of the extreme points of \mathcal{S} .

Proof: $x^*x = a_+ + a_-$, so $(xa_-)^*(xa_-) = a_-^3 \leq 0$; let $xa_- = b + ic$, then $0 \leq 2(b^2 + c^2) = (xa_-)^*(xa_-) + (xa_-)(xa_-)^* \leq 0$ and $xa_- = 0$; hence $a_-^3 = (xa_-)^*(xa_-) = 0$, and $x^*x = a_+ \geq 0$. $a \geq 0 \Rightarrow x^*ax = (\sqrt{a}x)^*(\sqrt{a}x)$. If $\phi \leq \psi$ then $|\phi(x)|^2 \leq \phi(x^*x) \leq |\psi(x)|^2$, so ker $\psi \subseteq \ker \phi$ and $\psi = \phi$. If $\psi = \frac{1}{2}(\phi_1 + \phi_2) \in \widehat{X}$, then $|\phi_1(x)|^2 + |\phi_2(x)|^2 \leq \phi_1(x^*x) + \phi_2(x^*x) = 2\psi(x^*x) = \frac{1}{2}|\phi_1(x) + \phi_2(x)|^2$, hence $|\phi_1(x) - \phi_2(x)|^2 = 0$ and $\phi_1 = \phi_2 = \psi$.

For example, $0 \leq a \leq b \Rightarrow b^{-\frac{1}{4}}a^{\frac{1}{2}}b^{-\frac{1}{2}}a^{\frac{1}{2}}b^{-\frac{1}{4}} \leq 1 \Rightarrow 0 \leq b^{-\frac{1}{4}}a^{\frac{1}{2}}b^{-\frac{1}{4}} \leq 1 \Rightarrow 0 \leq a^{\frac{1}{2}}b^{-\frac{1}{4}} \leq 1 \Rightarrow 0 \leq a^{\frac{1}{2}}b^{-\frac{1}{4}} \leq a^{\frac{1}{2}}b^{-\frac{1}{4}}b^{-\frac{1}{4}} \leq a^{\frac{1}{2}}b^{-\frac{1}{4}}b^{-\frac{1}{4}} \leq a^{\frac{1}{2}}b^{-\frac{1}{4}}b^{-\frac{1}{4}} \leq a^{\frac{1}{2}}b^{-\frac{1}{4}}b^{-\frac$

- 8. For unitary u,
 - (a) ||u|| = 1, ||ux|| = ||x|| = ||xu||.
 - (b) They are the normal elements with $\sigma(u) \subseteq e^{i\mathbb{R}}$.
 - (c) The inner automorphism by αu is a *-automorphism.

Proof: $\sigma(u^{-1}) = \sigma(u^*) = \sigma(u)^*$

- 9. A normal element is idempotent iff self-adjoint with $\sigma(e) \subseteq \{0, 1\}$.
- 10. Polar decomposition: Every invertible element can be written uniquely as x = ur, where $r = \sqrt{x^*x} \ge 0$, $u := xr^{-1}$ unitary.
- 11. Every C^* -algebra is embedded in some B(H).

Proof: Map $a \in X$ to $J_a : (x_{\phi})_{\phi \in S} \mapsto (ax_{\phi})_{\phi \in S}$, where x_{ϕ} is a coset of $M_{\phi} := \{x : \phi(x^*x) = 0\}$. Hence X embeds in $B(\ell^2(X/M_{\phi}))$. Note $\langle xy, z \rangle = \langle y, x^*z \rangle$.

A state ψ is pure iff for any state ϕ , $0 \leq \lambda \phi \leq \psi \Rightarrow \phi = \alpha \psi$.

Proof. If $\psi = t\psi_1 + (1-t)\psi_2$, then $0 \leq t\psi_1 \leq \psi$, so $t\psi_1 = \lambda \psi$ so $\psi_1 = \psi = \psi_2$.

Conversely, if $0 \leq \phi \leq \psi$ then $0 \leq \phi 1 \leq 1$; if $\phi 1 = 0$ then $|\phi T| \leq \phi ||T|| = 0$ so $\phi = 0$; if $\phi 1 = 1$ then $(\psi - \phi)1 = 0$ so $\psi - \phi = 0$; if $0 < \phi 1 < 1$ then $\psi = (1 - \phi 1)\frac{\psi - \phi}{1 - \phi 1} + \phi 1\frac{\phi}{\phi 1}$, so $\phi/\phi 1 = \psi$.

- 12. A *tensor algebra* is the free (unital) algebra generated by a vector space V, so that any morphism from V extends to tensors on it.
 - (a) Every element decomposes into sub-components of different grades $x = \alpha + v + v_2 + \cdots +$ with $\alpha \in \mathbb{F}$, $v \in V$, $v_2 \in V \otimes V$, etc. The grade-0 part is called its *real* part: $\operatorname{Re}(x) := \alpha$; $\operatorname{Re}(xy) = \operatorname{Re}(yx)$.
 - (b) Exterior product: $v_1 \wedge \cdots \wedge v_n := \frac{1}{n!} \sum_{\sigma} \operatorname{sgn}(\sigma) v_{\sigma(1)} \cdots v_{\sigma(n)}$)

$$w \wedge v = \frac{wv - vw}{2} = -v \wedge w, \ v \wedge v = 0$$

 $T(v_1 \wedge \cdots \wedge v_n) := Tv_1 \wedge \cdots \wedge Tv_n \text{ (in finite dimensions } T\omega = \det(T)\omega).$

(c) Inversion (an involution) $(v_r^* = (-1)^{r(r-1)/2} v_r)$

 $(\alpha + v + v_2 + \cdots)^* := \alpha + v - v_2 - v_3 + \cdots$

- (d) The algebra splits in two parts $X^+ \oplus X^-$, i.e., the even and odd grades: $x = \frac{x+n(x)}{2} + \frac{x-n(x)}{2}$, where $n : v \mapsto -v$. A product of r vectors gives an element in X^{\pm} depending on whether r is even/odd, so X^+ is a sub-algebra.
- (e) The symmetric algebra is the commutative algebra of the quotient of tensors by the ideal generated by the commutators; it is isomorphic to $\mathbb{F}[V]$.
- 13. Conjecture: The only closed *-sub-algebra that separates extreme points of ${\mathcal S}$ is X

8.1 B(H)

- 1. A *-automorphism is of type $T \mapsto LTL^{-1}$ where L is non-zero multiple of a Hilbert space isomorphism. The isometric ones are the unitary operators.
- 2. Distinct eigenvalues in $\sigma(T)$ and $\sigma(T^*)^*$ have orthogonal eigenspaces. Proof: $(\lambda - \mu)\langle x, y \rangle = \langle x, Ty \rangle - \langle T^*x, y \rangle = 0.$
- 3. The mean value of T in the direction x is $\langle x, Tx \rangle$ (it minimizes $||Tx \lambda x||$; a functional on T). The numerical range W(T) is the set of mean values of T. $W(I) = \{1\}, W(\lambda T + z) = \lambda W(T) + z, W(T^*) = W(T)^*, W(S+T) \subseteq W(S) + W(T).$

W(T) is a convex subset of $\mathbb C$ satisfying

$$\sigma(T) \subseteq \overline{W(T)} \subseteq \mathcal{S}(T)$$

Proof: Let $0 < \alpha := d(\lambda, W(T)) \leq ||(T - \lambda)x||$, so $T - \lambda$ is 1-1 with closed image; as is $T^* - \lambda^*$; so $T - \lambda$ is invertible.

4. Uncertainty principle: For a fixed unit x, there is a semi-inner-product,

$$\operatorname{Cov}(S,T) := \langle Sx, Tx \rangle - \langle Sx, x \rangle \langle x, Tx \rangle$$

and semi-norm $\sigma_T := \sqrt{\operatorname{Cov}(T,T)}$, then

 $|\operatorname{Cov}(S,T)| \leqslant \sigma_S \sigma_T$

 $\sigma_T \leq \frac{1}{2} \operatorname{diam}(\sigma(T)), \ \sigma_T = 0 \Leftrightarrow x \text{ is an eigenvector of } T.$

- 5. Normal operators:
 - (a) $||T^*x|| = ||Tx||$
 - (b) $\ker T^* = \ker T = \ker T^2$ are T and T^* invariant.
 - (c) im T is dense \Leftrightarrow T is 1-1
 - (d) T is an embedding \Leftrightarrow invertible
 - (e) $\mathcal{S}(T) = \overline{W(T)} = \overline{\mathrm{Convex}(\sigma(T))}$
 - (f) $\sigma(T)$ has no residual spectrum, and isolated points are eigenvalues.
 - (g) Eigenvalues of T and T^* are conjugate; no extended eigenvectors.
- 6. Self-adjoint: $S \leq T \Leftrightarrow \langle x, Sx \rangle \leq \langle x, Tx \rangle, \forall x$.
- 7. Polar decomposition: Every T = UR, where $R = \sqrt{T^*T}$ and U(Rx) := Tx is an isometry on im T. Then $T^* = RU^* = U^*TU^*$, ||R|| = ||T||. T is normal $\Leftrightarrow R = TU^*$, unitary $\Leftrightarrow T = U$ invertible.

Hence ideals are automatically *-ideals since $T^* = U^*TU^*$.

8. Unitaries: Every unitary is of the type e^{iA} with A self-adjoint. $(U = B + iC, C = V|C|, A := V \arccos(B))$

 $U_n \rightarrow U \Leftrightarrow U_n x \rightarrow Ux \text{ (since } \|U_n x - Ux\|^2 = \|U_n x\|^2 + \|Ux\|^2 - 2\operatorname{Re} \langle Ux, U_n x \rangle \rightarrow 2\|x\|^2 - 2\operatorname{Re} \|Ux\|^2 = 0).$

(Stone): any one-parameter group of normal operators which is weakly continuous in t must be of the type e^{tT} with T normal and $\operatorname{Re}(\sigma(T))$ bounded above; for unitary operators, e^{itA} ; more generally any unitary representation of a locally compact T_2 abelian group which is weakly continuous in t is of the form $U_x = \int \chi(x) dE_{\chi}$).

- 9. Ergodic theorem: If T normal, ||T|| = 1, then $T^n x \to y$ (Cesaro) such that Ty = y.
- 10. Compact operators
 - (a) B(H) contains the closed subalgebra $\mathbb{C} \oplus \mathcal{K}$.
 - (b) Every ideal contains the simple ideal \mathcal{K}_F of finite-rank operators.

- (c) The compact operators form the closed ideal $\mathcal{K} = \overline{\mathcal{K}_F}$; so $B(X)/\mathcal{K}$ is simple (its invertible elements are the Fredholm operators). It is maximal when $X \cong \ell^2$.
- (d) T has a matrix consisting of blocks of type

$$\begin{pmatrix} \lambda & & \\ 1 & \ddots & \\ & \ddots & \ddots & \\ & & 1 & \lambda \end{pmatrix}$$

Compact normal operators are diagonalizable.

(e) Tx = y, if $y \in (\ker T^*)^{\perp}$ and $\langle e_{\sigma}, y \rangle / \sigma \in \ell^2$, then the solutions are $x = \sum_{\sigma} \frac{1}{\sigma} \langle e_{\sigma}, y \rangle e_{\sigma} + \ker T$, else no solutions.

Proof: Given $T \in \mathcal{I}$ and Ta = b unit; let $E_{xy} := xy^*$ for any unit y. Then $E_{xy} = E_{xb}TE_{ay} \in \mathcal{I}$. As a compact operator, on each finite dimensional eigenspace, $T = \lambda + (T - \lambda)$. As kernel basis for the nilpotent $A := T - \lambda$ pick $u, Au, \ldots, A^{n-1}u$, etc.

- 11. There are various closed ideals contained in \mathcal{K} : Let the *trace* of an operator be defined by $\operatorname{tr}(T) := \sum_i \langle e_i, Te_i \rangle$; it is well-defined independently of e_i when $\operatorname{tr}(|T|) < \infty$.
 - (a) $\operatorname{tr}(S+T) = \operatorname{tr}(S) + \operatorname{tr}(T), \ \operatorname{tr}(\lambda T) = \lambda \operatorname{tr}(T), \ \operatorname{tr}(T^*) = \operatorname{tr}(T)^*.$
 - (b) Trace class operators: $||T||_1 := \text{tr} |T| < \infty, ||T||_1 = ||(\sigma_n)||_{\ell^1}.$
 - (c) Hilbert-Schmidt operators: $||T||_2^2 := \operatorname{tr}(T^*T) < \infty$; complete innerproduct $\langle S, T \rangle := \operatorname{tr}(S^*T)$; $||T||_2 = \sqrt{\sum_{ij} |\langle e_j, Te_i \rangle|^2} = ||(\sigma_n)||_{\ell^2}$.
 - (d) Schatten operators: $||T||_p := (\operatorname{tr} |T|^p)^{\frac{1}{p}} = ||(\sigma_n)||_{\ell^p} < \infty.$
 - (e) Hölder's inequality: $||ST||_r \leq ||S||_p ||T||_q$ where $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$.
- 12. Spectral Theorem: For T normal and $f \in L^{\infty}(\sigma(T))$,

$$f(T) := \int_{\sigma(T)} f(\lambda) dP_{\lambda} \in B(H)$$

meaning $\langle x, f(T)y \rangle = \int_{\sigma_T} f d\langle x, P(E)y \rangle$, where P(E) is an orthogonal projection measure, i.e., for any measurable subsets of σ_T , $P(E \cap F) = P(E)P(F), P(E \cup F) = P(E) + P(F)$ for E, F disjoint, $P(E_n) \rightarrow P(E)$ for $E_n \rightarrow E$, $P(\sigma(T)) = I$. $f(T) = U^{-1}f(\lambda)U$ where $U: H \rightarrow H$ is the unitary operator $x \mapsto P_{\lambda}x$; then

$$(f+g)(T) = f(T) + g(T), \quad (\lambda f)(T) = \lambda f(T), \quad (fg)(T) = f(T)g(T),$$

$$\bar{f}(T) = f(T)^*, \quad f \circ g(T) = f(g(T)), \quad \widehat{f(T)} = f \circ \hat{T}, \quad \|f(T)\| \le \|f\|_{L^{\infty}(\sigma(T))}$$

Finite Dimensions: Square Matrices

- 13. The nearest number to a matrix (in the 2-norm) is tr(T)/n.
- 14. The quasi-nilpotents (radical) are the nilpotents.
- 15. The matrices with distinct eigenvalues are dense and open in $M_n(\mathbb{C})$ (since T = D + N is close to D' + N where D' has distinct eigenvalues).
- 16. If $p(x) = \det(T x)$, then p(T) = 0(since $p(T) = \prod_i p_i(T_i) = \prod_i A_i^{n_i} = 0$, $p_i(x) = (x - \lambda)^n$).
- 17. Self adjoint matrices: If T, with eigenvalues λ_i , is restricted to PTP where P is a projection to a sub-space M of one dimension less than M (for example, by removing the kth row and column), then the new eigenvalues are interlaced

$$\lambda_1 \leqslant \mu_1 \leqslant \lambda_2 \leqslant \mu_2 \leqslant \lambda_3 \leqslant \dots \leqslant \lambda_n$$

- 18. Positive matrices, $a_{mn} \ge 0$. W(T) has its largest extent for a positive real x.
- 19. $\sqrt[n]{|\det T|} \leq \sqrt{n} \max_{i,j} |T_i^j|$; the maximum is achieved by the Hadamard matrices: $HH^* = nI, H_0 = [1], H_{k+1} = \begin{pmatrix} H_k & H_k \\ H_k & -H_k \end{pmatrix}$)

8.2 Commutative C*-algebras

Equivalently, every element is normal.

Examples:

- $\frac{L^{\infty}(A)}{f(a)}$ of bounded measurable functions, with usual product and $f^*(a) = \frac{f(a)}{f(a)}$.
- $C_b(X)$, bounded continuous functions, when X is a locally compact T_2 space; contains the closed ideal $C_0(X)$. For example, C(K) for K compact; e.g. $C(\mathbb{S})$, $\ell^{\infty} = C_b(\mathbb{N})$, $\mathbb{C}^n = C(n)$.
- The generated subalgebra $Z(A \cup A^*)$; Z(x) for a normal element.
- 1. $X \equiv C(K)$ via the Gelfand map. The state space consists of the positive Radon measures. The characters are the Dirac functionals $\delta_x(f) = f(x)$.
- 2. The self-adjoints form a real Banach lattice algebra. They correspond to the real-valued functions.
- 3. The unitaries correspond to unit-valued functions.
- 4. Stone-Weierstraß: Any *-subalgebra that separates points is dense in X.

8.3 Finite Dimensional Algebras

Equivalently a regular Banach algebra (i.e., every element is regular $\forall a, \exists x, axa = a$).

It can be given the non-degenerate bilinear form $\langle x, y \rangle := \operatorname{tr}(x^*y)$ where the elements are considered as matrices.

They are the reflexive C^* -algebras. Proof: If X is infinite dimensional then there an $x \in X$ with $K := \sigma(x) \supseteq A$ countably infinite; so $X \supseteq C^*(x) \cong C(K) \supseteq C(A) \cong c$, which is not reflexive.

The *-simple finite-dimensional C^* -algebras are $M_n(\mathbb{C})$ and $M_n(\mathbb{C})^2$ (with $(x, y)^* = (y^*, x^*)$.) Of these the only commutative ones are n = 1, i.e., \mathbb{C} and \mathbb{C}^2 .

8.3.1 Frobenius Algebras

are finite-dimensional algebras with a non-degenerate bilinear form such that $\langle xy, z \rangle = \langle x, yz \rangle$.

Examples: $M_n(\mathbb{F})$ with $\langle x, y \rangle := \operatorname{tr}(xy)$.

8.3.2 Geometric Algebras

A geometric algebra is the algebra generated by a real/complex finite-dimensional vector space V such that $v^2 \in \mathbb{R}$ for $v \in V$. Note that $q(v) := v^2$ is thus a quadratic form.

Let $g := [\langle a_i, a_j \rangle] = RDR^*$, with D consisting of p 1s, q -1s and r 0s; the orthogonal columns (in Euclidean sense) of R form an orthogonal basis e_i (wrt the bilinear form); so $e_j e_i = \pm e_i e_j$ or 0.

The algebra has dimension $2^{\dim V}$, generated by the orthogonal basis $e_i \cdots e_j$ $(1 \leq i < \cdots < j \leq n, \text{ adding 1 separately})$. As tensors, the elements are graded. The elements of grade r give an $\binom{n}{r}$ -dimensional subspace. The highest grade subspace is one-dimensional, called the *pseudo-scalars*, generated by $\omega = e_1 \cdots e_n$.

$$\langle x, y \rangle := \operatorname{Re}(x^*y) = \alpha\beta + \frac{vw + wv}{2} + \cdots$$

Note $vw + wv = (v + w)^2 - v^2 - w^2 \in \mathbb{R}$.

$$vw = \langle v, w \rangle + v \wedge w, \qquad \langle \alpha + v, \alpha + v \rangle = \alpha^2 + v^2$$

$$\langle 1, v \rangle = 0, \qquad \langle v, w \rangle = 0 \Leftrightarrow vw = -wv$$

$$\langle x, yz \rangle = \langle y^*x, z \rangle = \langle xz^*, y \rangle$$

$$vv_r = v \cdot v_r + v \wedge v_r$$

where $v \cdot v_r := \frac{vv_r - (-1)^r v_r v}{2}, v \wedge v_r = \frac{vv_r + (-1)^r v_r v}{2}$ (by induction); more generally

$$v_r v_s = v_r \cdot v_s + \dots + v_r \wedge v_s$$

where $v_r \cdot v_s$ has grade |r - s|, up by two grades, to the highest grade r + s.

- 1. X^+ is a geometric sub-algebra.
- 2. $\frac{1}{2}(uvw + wvu) = \langle v, w \rangle u \langle w, u \rangle v + \langle u, v \rangle w$
- 3. $u \cdot (v \wedge w) = \langle u, w \rangle v \langle u, v \rangle w,$ $u \cdot (v_1 \wedge v_2 \wedge v_3) = \langle u, v_1 \rangle v_2 \wedge v_3 - \langle u, v_2 \rangle v_1 \wedge v_3 + \langle u, v_3 \rangle v_1 \wedge v_2,$ etc.
- 4. Hodge duality: $*x := -\omega x$. $*v_r = v_{n-r} = -\omega v_r = -(-1)^{r(n-1)}v_r\omega$, so there is a correspondence between *r*-vectors and (n-r)-vectors.

 $\begin{aligned} *(xy) &= *(x)y; \text{ e.g. } v_r \times w_s := *(v_r \wedge w_s) = *v_r \cdot w_s, \, u \times (v \times w) = -u \cdot (v \wedge w), \\ *(v_r \cdot w_s) &= *(v_r) \wedge w_s. \end{aligned}$

- 5. For any morphism T, $y * T(x) = T^*(y) * x$. Eigenvectors can be extended to $Tv_r = \lambda v_r$.
- 6. Rotation by θ in e_1, e_2 plane: $x \mapsto rxr^*$, where $r = \pm e^{e_2 e_1 \theta/2}$ (called a 'rotor'). Reflection along direction e is $v \mapsto (eve)^* = -eve$. Inversion is $v \mapsto v^{-1} = v/v^2$.

Exterior algebra: $v^2 = 0$ for all $v \in V$. For all $u, v, \langle u, v \rangle = 0$, so $uv = u \wedge v$.

Non-degenerate geometric algebras: $v^2 = 0 \Rightarrow v = 0$. Hence the Clifford algebra is $\mathcal{C}\ell_{p,q}(\mathbb{R})$ or $\mathcal{C}\ell_n(\mathbb{C})$.

There is a conjugation $x \mapsto axa^{*-1}$.

$$\begin{array}{c|c} X = \mathcal{C}\!\ell_{p,q}(\mathbb{R}) & p & p+1 & p+2 \\ \hline Y = \mathcal{C}\!\ell_{q,p}(\mathbb{R}) & q & X & X^+_{p+1,q} \cong Y & \mathcal{C}\!\ell_{2,0} \otimes Y \\ \hline q & X & X^+_{p,q+1} \cong X & \mathcal{C}\!\ell_{1,1} \otimes X \\ q+2 & \mathcal{C}\!\ell_{0,2} \otimes Y \end{array}$$

 $\begin{array}{ll} \text{Proof: Use the maps } J \,:\, e_i \,\mapsto\, \begin{cases} e_i' \otimes e_1'' \otimes e_2'' & i \leqslant p \\ 1 \otimes e_{i-q}'' & i > q \end{cases} \text{for a basis } e_i' \text{ of} \\ \mathcal{C}\!\!\ell_{p,q}(\mathbb{R}) \text{ and } e_i'' \text{ of } \mathcal{C}\!\!\ell_{2,0}(\mathbb{R}) = M_2(\mathbb{R}); \text{ or } J : e_i \mapsto \begin{cases} e_i' \otimes e_1'' \otimes e_2'' & i \leqslant p \\ 1 \otimes e_{i-p}'' & i > p \end{cases}; \text{ or} \\ 1 \otimes e_{i-p}'' & i > p; \end{cases} \text{or} \\ J : e_i \mapsto \begin{cases} e_i' \otimes e_1'' e_2'' & i \leqslant p \text{ OR } p+1 < i \leqslant p+q+1 \\ 1 \otimes e_1'' & i = p+1 \\ 1 \otimes e_2'' & i = p+q+2 \end{cases} \end{array}$

It follows that $\mathcal{C}\ell_{p+1,q} \cong \mathcal{C}\ell_{q+1,p}$, $\mathcal{C}\ell_{p,q+4} \cong \mathcal{C}\ell_{p+4,q}$, $\mathcal{C}\ell_{p+8,q} \cong M_{16}(\mathcal{C}\ell_{p,q})$; if $p-q=1 \pmod{4}$ then $\mathcal{C}\ell_{p+i,q} \cong \mathcal{C}\ell_{p,q+i}$.

Hence the first few geometric algebras over \mathbb{R} are (note that $M_n(\mathbb{R}) \otimes \mathbb{F} \cong M_n(\mathbb{F}), \mathbb{C} \otimes \mathbb{H} \cong M_2(\mathbb{C}), \mathbb{H} \otimes \mathbb{H} \cong M_4(\mathbb{R})$)

$$\frac{p-q-1 \pmod{8}}{\mathcal{C}_{p,q}(\mathbb{R})} \frac{0 \pm 1 \pm 2 \pm 3 4}{\mathbb{R}(m)^2 \mathbb{R}(m) \mathbb{C}(m) \mathbb{H}(m) \mathbb{H}(m)^2}$$

where $\mathbb{F}(n) := M_{2^n}(\mathbb{F}).$

Similarly, $\mathcal{C}\ell_n(\mathbb{C}) \cong \mathbb{C}(n)$ OR $\mathbb{C}(n)^2$, $\mathcal{C}\ell_{n+2} \cong M_2(\mathcal{C}\ell_n)$.

Proposition 1

The finite-dimensional real division algebras are \mathbb{R} , \mathbb{C} , and \mathbb{H} .

The only complex finite dimensional division algebra is \mathbb{C} .

PROOF: Any $x \in X$ satisfies a polynomial $0 = (x - \alpha) \cdots (x^2 - 2\beta x + \gamma)$; hence $x \in \mathbb{R}$ or it satisfies $x^2 - 2\beta x + \gamma = 0$. For $x \notin \mathbb{R}$, x has only two complex eigenvalues λ , $\overline{\lambda}$, so $x^2 \in \mathbb{R} \Leftrightarrow \lambda + \overline{\lambda} = 2\beta = 0 \Leftrightarrow \operatorname{tr}(x) = 0$. Hence X is a geometric algebra.

For a geometric division algebra, $e^2 = 0 \Rightarrow e = 0, e^2 = 1 \Rightarrow (e+1)(e-1) = 0 \Rightarrow e \in \mathbb{R}$; if $e_i^2 = -1$, then $(1 - e_1e_2e_3)(1 + e_1e_2e_3) = 0$. So the only possibilities are $\mathcal{C}_0 = \mathbb{R}, \mathcal{C}_{0,1} = \mathbb{C}, \mathcal{C}_{0,2} = \mathbb{H}$.

(There is also the octonion algebra \mathbb{O} which is weakly associative, $x^2y = x(xy), yx^2 = (yx)x$).

8.3.3 Finite-dimensional Complex Lie algebras

Example: The skew-adjoint matrices u(n), satisfying $A^*Q = -QA$, where Q(x, y) is linear in y and anti-linear in x.

Solvable Lie algebras are embedded in the upper-triangular matrices b(n). Semi-simple Lie algebras are products of simple Lie algebras. These are

Simple Lie algebra
$$sl(n)$$
 $so(2n+1)$ $so(2n)$ $sp(2n)$ g_2 f_4 e_6 e_7 e_8
Corresp. Weyl group A_{n-1} B_n D_n C_n G_2 F_4 E_6 E_7 E_8

(They are classified because the Weyl group of reflections along the root vectors form certain Coxeter groups). $so(3) \cong \mathbb{R}^3$ (with cross-product).

8.3.4 Finite-dimensional Jordan algebras

The formally real Jordan algebras (i.e., $\sum_i x_i^2 = 0 \Rightarrow x_i = 0$) are classified - they are the product of the simple ones, i.e.,

- 1. "Real", the self-adjoint operators on \mathbb{R}^N ;
- 2. "Complex", the self-adjoint operators on \mathbb{C}^N ;
- 3. "Quaternionic", the self-adjoint operators on \mathbb{H}^N ;

- 4. "Octonion", the self-adjoint operators on \mathbb{O}^3 (exceptional case);
- 5. "Spin factor", $\mathbb{R} \times \mathbb{R}^N$ with $(s, \boldsymbol{x}) * (t, \boldsymbol{y}) = (st + \boldsymbol{x} \cdot \boldsymbol{y}, s\boldsymbol{y} + t\boldsymbol{x})$.

The first 4 examples all have x * y = (xy + yx)/2. Their projections are $\mathbb{R}P^{N-1}$, $\mathbb{C}P^{N-1}$, $\mathbb{H}P^{N-1}$, $\mathbb{O}P^2$.

9 Examples

Finite Dimensional Spaces

- 1. Euclidean space with inner product $\langle \boldsymbol{x}, \boldsymbol{y} \rangle := \sum_{i=1}^{n} \bar{a}_{i} b_{i}$. Euclidean theorems apply.
- 2. Taxicab metric ||(a,b)|| := |a| + |b|. Although its topological properties are the same as the Euclidean case, its metric properties are different. There are many shortest paths between two points; the angle between two unit vectors can be taken to be the length of arc on the unit circle; equilateral triangles need not be equiangular, SAS triangles need not be congruent; 'conics' as d(x, a) = ed(x, b), as sum/difference of distances from two points being constant, or as distance from line d(x, L) = ed(x, a); circles may touch at a whole line.
- 3. Dual numbers: the exterior algebra on \mathbb{R} : $a + b\epsilon$ with $\epsilon^2 = 0$. $(a + b\epsilon)^* = a b\epsilon$. Isomorphic to $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. It is a local ring. For any differentiable function, $f(a + b\epsilon) = f(a) + f'(a)b\epsilon$.
- 4. $\mathcal{C}\ell_3(\mathbb{R}) = M_2(\mathbb{C})$, can be represented by the Pauli matrices $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ (they generate sl(2)). Contains the quaternions (as σ_i/i).
- 5. $\mathbb{H} = \mathcal{C}\ell_{0,2}(\mathbb{R})$, can be represented by $i = \begin{pmatrix} \sigma_i & 0 \\ 0 & \sigma_i \end{pmatrix}$ where $\sigma_i = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, and $j, k = \begin{pmatrix} 0 & -\sigma \\ \sigma & 0 \end{pmatrix}$ where $\sigma_j = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\sigma_k = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Sequence Spaces
- 6. $\mathbb{R}^{\mathbb{N}}$ with pointwise convergence. Has quasi-norm $\sum_{n \ge 1} \frac{|a_n|}{1+|a_n|}$. Locally convex, but not locally bounded.
- 7. ℓ^{∞} of bounded sequences with norm $\sup_n |a_n|$, and involution $(a_n)^* := (a_n^*)$, hence a C^* -algebra. Its dual is ba, so not reflexive; not separable. It is injective, i.e., it is complemented in any larger Banach space (via projection $x \mapsto (\pi_i x)$ where π_i are extensions of the coordinate projections). Weak convergence implies pointwise iff weak* convergence.

c is the closed subspace of convergent sequences (not complemented in ℓ^{∞}); isomorphic to c_0 , the subspace of sequences that converge to 0, a Banach algebra; isomorphic to c_s , the space of convergent series with norm

 $||(a_n)||_{cs} := \sup_n |\sum_{i \ge n} a_i| (cs^* \cong bv). ||(a_n) + c_0|| = \limsup_n |a_n|.$ Its dual is ℓ^1 , so not reflexive; Schauder basis e_n , so separable. Not weak complete, e.g. $(1, \ldots, 1, 0, \ldots)$ is weak Cauchy but does not converge weakly. $e_n \rightarrow 0$. It is the only separable injective Banach space. The closed unit ball of c_0 is not weak compact and has no extreme points; the closed unit ball of c has extreme points ± 1 . The character space consists of δ_i .

8. ℓ^1 , the space of absolutely summable series with norm $||(a_n)|| := \sum_n |a_n|$, a Banach algebra. Dual space is ℓ^{∞} , so not reflexive; Schauder basis e_n , so separable. Weak*-convergence iff pointwise convergence and bounded. Weak convergence of sequences iff norm convergence, implies pointwise convergence. The closed unit ball has extreme points $e^{i\theta}e_n$. The characters are $\overline{B}_{\mathbb{C}}$, with $\psi(a_n) = \sum_{n=0}^{\infty} a_n z^n$ 'generating function'.

 $\ell^1(\mathbb{Z})$ has characters S^1 and $\psi(\theta) = \sum_{n \in \mathbb{Z}} a_n z^n$; $\sigma(a_n) = \operatorname{im}(a_n)$; (a_n) has a *-inverse iff $\sum_n a_n e^{in\theta} \neq 0$ for all θ . Can be made into a C^* -algebra with $(a_n)^* = (\bar{a}_n)$ and norm $||x|| = ||L_x||$, embedded in $B(\ell^2)$.

9. ℓ^p , p > 1, with norm $||(a_n)|| := \sqrt[p]{\sum_n |a_n|^p}$. $I : \ell^p \to \ell^q$ is continuous for $q \leq p$; (Pitt) Every operator $\ell^p \to \ell^q$ is compact when q < p; hence $\ell^p \not\cong \ell^q$. Dual space is ℓ^{p^*} where $\frac{1}{p} + \frac{1}{p^*} = 1$, so reflexive; uniformly convex; Schauder basis e_n , so separable. Weak convergence iff pointwise convergence and bounded. The set $\{e_n : n \in \mathbb{N}\}$ is closed (discrete) but $e_n \to 0$; $\{e_n\} \cup \{0\}$ is weakly compact. $n^{1/p}e_n \not\to 0$ (since unbounded) but 0 is a weak limit point of the sequence $(\forall N, \exists n > N, n^{1/p}e_n \in V_{x,\epsilon})$. The compact operators form the only closed ideal $(p \geq 1)$.

 ℓ^2 has inner product $\langle (a_n), (b_n) \rangle := \sum_n \bar{a}_n b_n.$

- 10. ℓ^p , $0 , with quasi-norm <math>||(a_n)|| := \sum_n |a_n|^p$. Locally bounded, separable (via e_n), not locally convex. Dual space is isometric to ℓ^{∞} via usual $\boldsymbol{x} \mapsto \boldsymbol{x}^*$. The set $\frac{1}{n^{1-p}}e_n$ is totally bounded but its convex hull is unbounded (e.g. $\sum_{n=1}^N \frac{1}{n^{1-p}}e_n/N$).
- 11. James' space: subspace of c_0 with norm

$$\sup_{(n_i)\in\mathcal{O}} \|(a_{n_2}-a_{n_1},\cdots,a_{n_k}-a_{n_{k-1}},a_{n_{k+1}},0,\ldots)\|_{\ell^2},$$

where \mathcal{O} is any odd sequence of (increasing) integers. Complete, separable with e_n as a conditional Schauder basis. Not reflexive even though $X \cong X^{**}$.

12. ba, the space of finitely additive signed measures on \mathbb{N} , with norm $\|\mu\| := \sup_{E \subseteq \mathbb{N}} \mu(E) - \inf_{E \subseteq \mathbb{N}} \mu(E)$. Not separable. Although the unit ball is weak*-compact it is not sequentially compact, e.g. e_n^* acting on ℓ^{∞} has no weak*-convergent subsequence.

Contains the closed subspace bv, of sequences of bounded variation with norm $||(a_n)||_{bv} := |a_1| + \sum_n |a_{n+1} - a_n|$; isomorphic to ℓ^1 via $(a_n) \mapsto (a_1, \ldots, a_{n+1} - a_n, \ldots)$. $e_n \neq 0$.

Function Spaces

13. $L^1[0,1]$, space of functions with norm $||f||_1 := \int_0^1 |f|$. Dual space is $L^{\infty}[0,1]$, so not reflexive; separable by polynomials. Weakly sequentially complete: every weakly Cauchy sequence converges weakly. The closed unit ball has no extreme points.

 $L^1(S^1)$ has character space \mathbb{Z} , $\psi_n(a_n) = \int_0^{2\pi} e^{in\theta} f(\theta) \,\mathrm{d}\theta$; the Gelfand map are the Fourier coefficients.

 $L^1(\mathbb{R})$ has character space \mathbb{R} , $\psi_{\xi}(f) = \int e^{ix\xi} f(x) dx$; the Gelfand map is the Fourier transform.

 $L^1(\mathbb{R}^+)$ has character space $\mathbb{R}^+ \times i\mathbb{R}$, $\psi_z(f) = \int_0^\infty e^{-zx} f(x) \, dx$; the Gelfand map is the Laplace transform.

14. $L^p[0,1], 1 < p$, with norm $||f||_p := \sqrt[p]{\int_0^1 |f|^p}$. Dual space is L^{p^*} where $\frac{1}{p} + \frac{1}{p^*} = 1$, so reflexive; uniformly convex since

$$2(\|f\|^{p^*} + \|g\|^{p^*})^{p-1} \leq \|f + g\|^p + \|f - g\|^p \leq 2(\|f\|^p + \|g\|^p), \ (p \leq 2)$$

(reversed inequalities for $p \ge 2$); separable. $I : L^p[0,1] \to L^q[0,1]$ is continuous for $q \le p$, with meagre image (unit ball has no interior in L^q). The closed unit ball has its boundary as extreme points.

 $L^2[0,1]$ has inner product $\langle f,g \rangle := \int_0^1 \bar{f}g$; isomorphic to ℓ^2 . The Hilbert-Schmidt operators are the integral operators with kernel in $L^2[0,1]^2$.

- 15. $L^p[0,1]$, 0 . Locally bounded, but there are no non-trivial open convex subsets; hence trivial dual space (no morphisms into a locally convex space); the only weakly closed subspaces are 0 and X. No Schauder basis.
- 16. $L^{\infty}[0,1]$, space of bounded (ae) functions with norm $||f||_{\infty} := \sup_{x \text{ a.e.}} |f(x)|$. Isomorphic to ℓ^{∞} ; not separable. The closed unit ball has extreme points |f| = 1 a.e..
- 17. $L^0[0,1]$, the space of measurable functions with $f_n \to 0$ when $\forall \epsilon > 0$, $\mu\{x : |f_n(x)| \ge \epsilon\} \to 0$ as $n \to \infty$.
- 18. $C(\Omega)$, the space of continuous functions with complete quasi-norm: if (f_n) is Cauchy, then (f_n) is Cauchy in each $C(K_i)$, so $f_n \to f$ in K_i ; take f as patch of all these f's; then $|f_n f| = \sum_i \frac{1}{2^i} \frac{|f_n f|_i}{1 + |f_n f|_i} < \frac{1}{m}$, i.e., $f_n \to f$ in $C(\Omega)$.

C(K) is separable iff K is metrizable (similarly $C_0(X)$). Dual space consists of regular Borel measures of bounded variation (not separable: uncountable δ_t). Weak-convergence iff pointwise and bounded. The closed unit ball has extreme points δ_x , $x \in K$.

C[0,1] with involution $f^*(t) = \overline{f(t)}$, a C^* -algebra; has character space $[0,1], \delta_t$; its Gelfand map is the identity, $\sigma(f) = \operatorname{im} f$. The closed ideals correspond to closed subsets of [0,1] as $\mathcal{I}_A = \{f : fA = 0\}$. $\sigma(f) = \operatorname{im}(f)$.

 $C(\mathbb{R}^N)$. Locally convex but not locally bounded; not separable (contains ℓ^{∞}). The closed unit ball has extreme points ± 1 (or |f| = 1 if over \mathbb{C}).

Matrix Algebras

- 19. $B(\ell^2)$, not separable (contains ℓ^{∞}).
- 20. $B(c_0)$. Each eigenvalue belongs to a closed disk about T_{ii} of radius $\sum_{j \neq i} |T_{ji}|$.