JOSEPH MUSCAT 2015

1

Topological Vector Spaces and

Algebras

joseph.muscat@um.edu.mt

1 June 2016

Topological Vector Spaces over R or C

Examples:

« R4, such as sequences RY, with pointwise convergence.

Recall that a topological vector space is a vector space with a T topology such
that addition and the field action are continuous. When the field is F := R or
C, the field action is called scalar multiplication.

+ Sequence spaces ¢P (real or complex) with topology generated by B, =

{(an) : X, ¥/an|” <r}, where p > 0.

« Lebesgue spaces LP(A) with B, = { f : A — F, measurable, [ {/|f|" <r}

(p > 0).

« Products and quotients by closed subspaces are again topological vector

spaces.

If m; : Y — X, are linear maps, then the vector space Y with the ini-
tial topology is a topological vector space, which is Ty when the m; are

collectively 1-1.

The set of (continuous linear) morphisms is denoted by B(X,Y’). The mor-

phisms B(X,F) are called ‘functionals’.
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1. A set is balanced when |A\| <1 = A C A

(a) The image and pre-image of balanced sets are balanced.

(b) The closure and interior are again balanced (if A € To; since AA° =
(AA)° C A°); as are the union, intersection, sum, scaling, and prod-
uct A x B of balanced sets.
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(©)

(d)

Hence every set generates largest and smallest balanced sets,

U V =:Dbal(A) C A C Bal(A) := ﬂ V={la:|\<l,ae A}

VCA VDA
Vbal. Vbal.

Bal(A) is open if A is, and |J;, V° is balanced open in A; hence X
has a topological base of balanced open sets.

Balanced sets are star-shaped hence path-connected.

2. X is path-connected and locally connected. There are no open subspaces
(clopen) except for X.

3. Connected open sets are path-connected (since a boundary point of a
path-connected component would be surrounded by a balanced open set).

4. A convex set is one which contains every line segment joining any two of
its points,

0<t<1l = (1-t)C+tC=C
& 0<s,t = sCH+tC=(s+1t)C

For example, subspaces.

b)
(©)
(d)

(a)
(

()

Convexity is preserved by linear images and pre-images.

Convex sets are connected.

Convex(A 4+ AB) = Convex(A) + AConvex(B)

The closure, interior, sum, scaling, and product are convex (e.g. tC°+
(1 —t)C* is open in C).

The intersection of convex sets is again convex; hence every set gen-
erates its conver hull, the smallest convex set containing it,

Convex(A) = {t1a1 + -+ + thay, : Zti =1,t; 20,a; € A}.

If A open or balanced, then so is Convex(A) (but Convex(A)° #
Convex(A°)).

If A is convex, then so is bal(A) (not Bal(A)).

If K7, Ko are compact convex, then so is Convex(K1UKs) = Ute[o,l] (1-
t) K1 + tK> (as the continuous image of [0,1] x K1 x Ka).

A polyhedron is Convex(F) of a finite set F; a simplex is when F is
independent. A cone is Convex(A U {x }) where A is of dimension n — 1.

But the convex hull, even of a compact set, need not be closed (e.g. the
compact set of sequences z,, := (1,...,2,0,...) and 0; then 25:1 ZTn /N =

n

'

(1)); convex sets (# X) may be dense in X (e.g. coo in £, { f € C[0,1] :

f(0) =1} in L0,1]).



JOSEPH MUSCAT 2015 3

5. An extreme subset A of a convex set C satisfies Convex(C~A) C CNA;
the intersection of extreme sets is extreme. In particular extreme points
do not lie on proper line segments in C, e ¢ Convex(C~e), equivalently,
e=>,tia; = F,e=a; (= Vi,e=a;).

If C = Convex(E), then F is minimal < F is the set of extreme points.

There need not exist any extreme points, and the set of extreme points
need not be closed.

6. Recall that a set is bounded when A\A — 0 as A\ — 0, i.e.,
YU € To,3r >0, B,LACU.

For a balanced set this is equivalent to 3\, A C AU. The only bounded
subspace is 0.

Given a fixed open set U € 7Ty, the extent of a bounded set can be gauged
by
Ny(A) :=inf{r>0: ACrU}
(a) Ny(AA) = |A| Ny(A) when U is balanced
(b) Ny(A+ B) < Ny(A) + Ny(B) when U is convex
(¢) Nu(A)=0 & A={0} when U is bounded

7. Any balanced convex open neighborhood of 0 generates a semi-norm N¢ ()
and conversely, C = {x € X : No(z) < 1}. (But there need not exist any
non-trivial ones.)

8. If T; : X — Y are morphisms such that | J, T;x is bounded for all z € K a
non-meagre bounded convex subset, then | J, T; K is bounded.
Proof: Let A, := {x € K : Vi,T;x € ¢cW } closed; then K = |J, A, so
some A. contains an interior point zg + V. But K C z¢ + V/t for some
t<l,somy:=tx+(1—t)zo € KN(xo+V), then tK C A. + (1 —t)A,,
s0 tT,K C eW + W C cU.

Dual Space

1. The dual space is X* := B(X,F). A linear map ¢ : X — F is continuous
iff 3V € 7o, [pV] < 1.
For any balanced convex C € Ty, let No(¢) := inf{r > 0:|¢C| < r} =
SUP N (2)<1 [#(2)[; then |¢(x)] < No(¢)No (x)-
(X xY)* 2 X*xY* via (¢, ¢)(z,y) := ¢z + y.

Note: When F = C, the real and imaginary parts of a functional are not
independent: Im ¢(z) = — Re ¢(ix).
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2. Every linear map Y — T, which is bounded with respect to some semi-

norm, N¢(¢@) < oo, can be extended to all of X with No(¢) = N (o).

Proof: ¢ can be extended from Y to Y + [v] by ¢(y + Av) = ¢(y) +
Ac for some ¢ € F. Given |¢(y)] < N(¢)N(y); require a ¢ such that
|o(y) + ¢| < N(¢p)N(y + v), which is possible when ¢ is real-valued since

d(y1) — d(y2) < N()(N(y1 +v) + N(y2 +v)). For complex ¢ = ¢1 +ig2,
then ¢o(y) = —¢1(iy), so both can be extended. Let ¢ be a maximal
extension of ¢ (exists by Hausdorfl’s maximality); its domain is X else
can extend further by the above.

3. Weak convergence: Every pair (z,¢) € X X Y* gives a functional on
operators: (x,¢) — ¢Tx. Hence they induce a ‘weak’ convergence

T,—~T & Vee X VoeY” ¢Tix — ¢Tx,
In particular,

T = x & Voe X", d(x;) = ¢(x),
i =~ ¢ & Ve e X, ¢i(x) = ¢(x) (weak-*).

The topology induced by this convergence is generated from the sub-basic
balanced convex open subsets Uy 5 ¢ 1= {T : |¢Tz| < r }, hence is locally
convex but not necessarily Tp, nor locally bounded (U, 5 4 2 ker ¢) except
when finite dimensional. However, X™* is a Tj topological vector space
since X separates points of X*.

Morphisms preserve weak convergence, x; — x = Tx; — Tx.
p p ,

Note that if T; — T in Y, pointwise, i.e., Yz, Tjx — Tz, then T; — T
Ty = T & X, = x AND {2, : n € N} is totally bounded; A C A
Many properties of subsets have weak analogues e.g. weakly bounded when
Vo € X*, ¢A is bounded in F (A bounded = A weakly bounded).

4. If T; = T and S;x — Sz,Vzr then T;5 — T'S; if ¢S; — ¢S then S;T; —
ST.

5. There are links between a space and its dual, via the adjointly related

polar of a subset in X and the pre-polar of a subset in X*,

A®:={pe X" : Ny(¢) =sup|pA| <1} = ConvexBal(A)®
P :={ze X :sup|Px| <1}
PCA® & |PA|K<1 & AC DD

A® is balanced, convex, and weak-closed in X* (and ®® in X).
When U € To(X), U?® is weak*-compact.
Proof: J:U® — B_]FX (compact), ¢ — (¢x)zcx is clearly an embedding.

J(U®) is closed: J(¢;) = f & Va,¢;x — f(x), hence f is linear with
Ve e U,|f(z)| <1, s0 f € U®P. Thus U?® is compact in X*.
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6. Similarly, annihilator and pre-annihilator

AL = {peX*:6A=0}=TA] ,
Lo={zeX :dzx=0}="1[0], ®CA' «dA=0s AC'D
(AUB)t =AtnBY, At 4Bt C(AnB)*.

They are weak-closed subspaces of X* and X respectively. For A un-
bounded, A® = A+,

7. Every morphism 7' : X — Y has an adjoint morphism 7" : Y* — X*
defined by T%¢ := ¢ o T.

Then

TACB = T*B*+ C At
ker T* = (imT)%, (S +A\T)* = S* +\T*,
imT* C (kerT)*,  (ST)* =T*S".

T — T* is not weakly continuous but 7;" =~ T* = T; = T.

8. A continuous projection (idempotent) on a complete space decomposes
it into the product of closed subspaces X = M x N (M = ker P, N =
im P = ker(1 — P)).

9. If M is a closed subspace of finite codimension, then X = M x N (using
representatives m,z, = en).

Separability
The size of a space can be assessed by the minimum cardinality of a set A

such that X = [A].

1. X is separable & A is countable.

Proof: For any x + U, let V+ .-+ V+W CU, Y0  Na; € x + W;
then Je;, Be,a; €V, and 3¢ € Q 4+ 1iQ, ¢; € A + Be; thus >, gia; €
YA+ Ba; Ca+ W+ . VCx+U.

2. A topological basis is a list of vectors e,, such that every z = En ay ey for
some unique «,. More strongly, e, is a Schauder basis when © +— ay, ()
are continuous. Such spaces are essentially sequence spaces x <> (a,). A
functional is then of the form ¢z =", bna, (where b, = de,).

3. For a separable vector space, U® (U € Tp) is a compact metric space.

Proof: If z,, are dense in U, then |¢||,, := >, 5=|¢an| is a metric on U,
with ¢i — (]5 = H(bl — (b”w — 0.
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1.1 Quasi-Normed Spaces

are vector spaces with topology induced by a translation-invariant metric d(z, y) =
| — y|, equivalently, first countable; axiomatically, this quasi-norm satisfies

lz+yl <lz[+yl, |-z[=lz, [z/=0&2=0
An = A AND Z, =5 2 = | Apx,| — | A2

This last condition can be achieved if, for example, |Az| < |A||z|. Note that
by starting with a balanced local base, the quasi-norm can be chosen to also
be balanced, i.e., |A\] <1 = |Az| < |z| (see the construction of the norm in
topological groups). As in groups, can be completed. A topological vector space
may have more than one inequivalent quasi-norm.

« RY. More generally, arrays of real numbers such that |(anm,)| == Y. o [(@nm)|2

n 2% T4 [(@nm)1’

where |(@nm)|1 := Y, |@nm| are finite.

« L(A) with |f|p := [L(If]| A1), ie., sub-basic open sets Ve 5 := { f : p{ x :
[f(@)] > 6} <e}.

o If m; : Y — X; are linear maps to a finite number of quasi-normed spaces
(one of the m; is 1-1), then the vector space Y can be given the quasi-norm

[yl =225 Imiyl-
+ Products have the quasi-norm |(z, y)| = |x|+|y| (among others); for count-
able products can take |z| =Y, 5~ 1f‘|x"| .

+ Quotients have the quasi-norm |z + M| = inf,epr |z + al.

1. Asin all normed groups, the quasi-norm is continuous and B+ Bs C Bj.ys.
The norm constant of concavity is

|z + y|
= - 7 <L 2.
TPV S

(But z; =z # [zl = [|=[.)
2. By continuity of scalar multiplication, Vr,de, s, t < e = tBs C B,.

3. The open mapping theorem of topological groups applies between com-
plete quasi-normed spaces even if not separable: TX = | J,, nT B,, so T B,
contains some open ball; the remaining part of the proof remains valid.

In particular, a bijective morphism is an isomorphism.
4. Closed Graph Theorem: A linear map is continuous iff its graph is closed
in XxY, ie,z, >x AND T2, >y = y="Tx.

Proof: The graph is itself complete quasi-normed; the projection 7x : G —
X is an isomorphism by the open mapping theorem, and T' = 7y o 71';(1.
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5. Isomorphism Theorems for complete spaces: X/kerT = imT if im7T is
closed (via the continuous map x + ker T — T'z).

X+Y o X XxY oy X/Z 0 X
Hence =3~ = x5y, v~ =X, 977 = 3

6. The totally bounded sets are the metrically bounded sets that are arbi-
trarily close to finite-dimensional subspaces.
Proof: K C F+ B. C [F] + B.. Conversely, if K C B, and K CY + B,
then K C Y N B,4¢ 4+ Be C I + By since in finite dimensions balls are
totally bounded.

1.2 Locally Bounded Spaces

when there is a bounded open set; equivalently, a single (balanced bounded)
set B generates the topology by translations and scalar multiplications, x + AB
(A #0). Hence is first countable.

Examples:

« (P and LP(A) (p > 0).

Quotients are again locally bounded. An infinite product of topological
vector spaces is not locally bounded.

1. X =NB={J,nB

2. There is a ¢ > 0 such that B+ B C ¢B; rB + sB C ¢(r V s)B.
Proof: V4+V C B,and rB CV,sor(B+ B) C B.

3. There is an equivalent quasi-norm satisfying [Az| = [A|Plz] (0 < p < 1,
P =2).
Proof: Let |z| :=inf{ Y[, v(z;) : >, 2; =z}, v(z) := Np(a)?, v(z) :=
2" > v(z). Note v(z +y) < 2(v(z) Vr(y). Claim: v(> L, z;) <
2>, v(x;), since take v(x;) in decreasing order; if v(x;) < 2v(xj41) then
v(izj+xjp) < 2v(z;) < U(x;)+0(xj41); if 20(z41) < v(z;) for all 4, then
vz +- -+ xn) <2v(x)V22u(ze) V- V2 W(3,) = 2v(zy) < 2, v(x).
Hence v(}, z;) <43, v(z;) and jv(z) < |z < v(z).

4. A subset is bounded iff metrically bounded, i.e., covered by some x + rB.

1/p x
ml/p'

5. Every vector has a magnitude and direction (unit vector): = = ||

6. If e,, are bounded and (a,) € ¢? then En aneén converges absolutely.
7. A linear map is continuous iff

(a) 3¢ >0, TBx C ¢By. It can be measured by N(T') := Np, (T'Bx)
(b) T maps bounded sets to bounded sets (“bounded map”).
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N(0) =0, N(I) =1, N(T~%) > N(T)~..

Proof: If z,, — 0 then Tz, = IIn|%T””—n 0.

|z, |L/P

8. For every proper closed subspace Y and 0 < ¢ < 1, there is a unit x such
that |x + Y| = ¢. The cosets of Y up to a distance of 1 intersect the unit
sphere.

Proof: Let |y +Y]| = ¢; the image of the map z — |y+z|, Y — R,
contains |¢, oo[, hence some |y + z| = 1.

9. The boundary of B, is S, := {x : |[z] = r}, so B, ={x:|z| <r};
moreover S;U = B, in infinite dimensions.

Proof: Any neighborhood (;_, V¢, 4, of € B contains the infinite di-
mensional subspace Y := (), ker¢;. So there is a unit y € S such that
y+Y=z+Y.

10. Balls are not totally bounded except in finite dimensions. Infinite dimen-
sional totally bounded sets have no interior.

Proof: f BCY +eB and Y # X then thereis z € B, [t + Y| > e.

2 Locally Convex Spaces

when there is a base of convex open sets (can be assumed balanced).

Examples:
« R* with sub-base Vo n :={ f: A > R,[f(z)| < 1}.

« C(Q) with Q = J,, K, a o-compact topological space, and with the sub-
base Vom = {f € C(Q): |fKn| <L }.

« C=(Q), with sub-base V,, pm = { f € C=®(Q) : |[fWEK,| < L}

« B(X,Y) for topological vector spaces, with weak topology (and indistin-
guishable morphisms identified). In particular, dual spaces X*.

1. If A is bounded or totally bounded, then so is Convex(A).

Proof: A C F4V; Convex(F) C F'+V as a compact set; so Convex(A) C
F+V+VCF+U.

2. Separating hyperplanes: A compact convex set K and a disjoint closed
convex set C' can be separated by a real functional, oK < a < ¢C. In
particular X* separates points from closed subspaces.

Proof: A point x can be separated from an open convex set U € 7 using an
extension of the functional ¢(Ax) := A; ¢ is continuous since |pbal(U)| < 1.
K and C can be separated by (K+V)N(C+V) = &, V convex; let zg € K,
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10.

11.
12.

yo € C; xog — yo can be separated from the open convex neighborhood
U:=(K—-2zo+V)—(C—yo+V). Hence p(K+V)—p(C+V) =opU—-1 <0,
so p(K +V) < dp(C+V).

A closed convex set is weakly closed (if # ¢ C then can find ¢ that sepa-
rates z from C).

Hence, if 2; — 2 then Jy; € Convex(x;), y; — .

©(A®) = ConBal A) LA =14],

(©$)® = ConBal(®) , (+®)L =[@] ; hence im T*" = (ker T)*.

Proof: If z ¢ CB(A) =: F 3 0, it can be separated from it by a functional,
OF < a < ¢x; so 1 := ¢/« extended to F, satisfies [ F| < 1 < |¢z| since
F' is balanced; so ¢ € A® and z ¢ ®(A®).

A,_\

Weakly bounded subsets iff bounded.

Proof: [2**¢| < ¢y for each x € A; for ¢ € V' compact convex, [V Pz| =
|2 Ve| <. LACO(VE) =V CU.

A functional achieves its largest value on a compact convex subset (as |¢|
or Re¢) at an extreme point.

Proof: If |¢| takes its max value « at b, and = sa + tb € K then
¢(z) < s¢(a) + ta, so ¢(a) = a = $(b).

A compact convex set has extreme points and they generate the set:
Convex(E) = K.

Proof: For any extreme set A (starting with K'), as long as it has distinct
points, can find ¢ € X* which separates them. Let ¢ achieve its maximum
« on the closed set F'; then F' is an extreme subset. Hence can form a
maximal nested chain of extreme closed sets; (), F; is closed extreme and
minimal, hence contains a single (extreme) point. If z € K~C(E) then
a functional separates them, ¢(z) > ¢C(FE), so the max of ¢ contains an
extreme point not in F.

Every finite dimensional subspace M induces a decomposition X = M x N
(using the dual functionals ;).

A linear map T : X — Y is continuous when for any open convex D C Y,
there is an open convex U C X, such that Ny (TU) < oc.

X is embedded in X**.

Proof: = — x** is 1-1 since for = # 0, let x # U convex, so separate x
from U by a functional ¢; z**(¢) = ¢(z) # 0, so x** #£ 0.

(2 Xo)* =1 X7, via (é) = D2 ¢

If there is a countable base of convex balanced sets C),, then the space is
1 _Ney(2)

quasi-normed by |z| := )" TN, ()
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13.

14.

3

Let K be a compact convex subset of X, and T : K — K is continuous and
affine, then T has a fixed point Tx = z (proof: let T}, := (1+...+T" 1) /n,
so T, K is compact; so dz € K,Vn,z € T, K ie z,,x = T xp;s0ox—Tx =
(xp — T"xy)/n — 0 since z,, — T"x,, € K + K is compact). CHECK

If K convex compact and f : K — K continuous then f has a fixed point
f(x) = z; (also, amenable locally compact Ty groups acting continuously
on a convex compact set has a fixed point Gz = x)

Proof: K C F+V C [F]+V;let fy := myof : Convex(F) — Convex(F).
Then by Brouwer’s fixed point theorem, fy (xy) = zy € Convex(F). For
some subsequence, x,, — T, hence

T = f(24) = Te =20+ fv, (€n) = f(2n) + f(2n) = f(2:) €VHV SV CU

Normed Spaces

have scale-homogeneous norms || \z|| = |A| ||z]|; equivalently they are the locally
convex locally bounded vector spaces (with norm Np(x)). The unit ball Bx
generates the topology via the convex bounded balls B, (z) = x + rBx. As in
quasi-normed spaces, can be completed (called a Banach space).

Examples:

£>°, the space of bounded sequences, with |[(a, )|, := sup, |an[; its closed
subspace ¢y of sequences that converge to 0.

', the space of absolutely summable sequences, with ||(a,)||, := >, [an|-
LP(A), p>1
L>(A), and its closed subspace of bounded continuous functions Cjy(A).

C(K) with sup norm, K compact T. Every Banach space is embedded
in some C(K).

Quotients and finite products are also normed.

1.
2.

T : X — Y linear is continuous iff it is Lipschitz, ||Tz|| < ¢||z]|.
B(X,Y) is a normed space with ||T'[| = sup 1 [|Tz||,
[T]| < [IT[/]]]|

It is complete when Y is. In particular, X* is also a complete normed
space.

IS +TN<ISH+ITI, (AT = AT, =1 1STI < ST

Proof: If T}, is Cauchy, then so are (T,,x).



JOSEPH MUSCAT 2015 11

10.

11.

12.

. X is isometrically embedded in B(X): fix unit a € X, ¢ € X*, ¢a = 1,
let P, := x¢; so x = Pya, TP, = Pr,.

im 7 is closed < im T* is closed, in which case im T* = (ker T)* (weak*-
closed). So T invertible = T™* invertible.

Proof: If ¢ € (ker T')*, then can define ¢(T'z) := ¢z, extended to all of Y';
T* = ¢. Conversely, let T': X — im T, Twx := Tx, so T* is 1-1. Separate
C := TBy from any other y by 1, |WTz| < r < [yy| for z € Byx: so
r < 9yl < 21T*¢ )yl < Zllyll, so [lyll > ¢; hence TBx contains some

open ball, so T is onto, i.e., im T is closed.

T is onto & [|T*¢| = c| 4|,
T is an embedding < || Tx| > c|lz|.

Proof: T is onto implies im(7™) is closed and T* 1-1, hence by the open
mapping theorem, [[T*6| > ¢l

Bx- = B, hence weak*-closed bounded subsets of X * are weak*-compact.
(So X* is meagre when infinite dimensional.)

Similarly, Bx = ®By; its weak topology is metrizable when X* is sepa-
rable (using ||z||,, ==Y, 5=|¢nz|).

. (Krein) If K is weakly compact, then so is Convex(K).
(Eberlein-Shmulian) Weakly compact iff every sequence has a weakly con-
vergent subsequence.

Every Banach space is embedded in C(K) for some compact T» space
K (take K = Bx~) and hence embedded in some ¢*°(A); and covered
by some ('(A) (via (a;)ica — >; a;xi, z; dense in B). For example,
separable Banach spaces are embedded in C(2V) (Cantor space) and £°°,
and covered by £*.

. X* is not separable if X isn’t.
Proof: If ¢, is dense in X*, then |¢pz,| = (||¢n] — €) for some unit
Tn. I M = [z,] # X, then Y M = 0 with || — ¢n|| < €, s0 |pnn| =

& +ker ¢l = |¢z|/[|¢] (since [|§] = subgerer g [AllGz]/[|Az + all).
2]l = supy4=1 |¢z| = [[2**||, hence X is isometrically embedded in X**.

T** extends T'.

IT|| = sup [¢Tz| = |T™]|

If Y is a closed subspace, then (X/Y)* = Y+ (via ¢(z +Y) := ¢x) and
X*)YL2Y* (via ¢ = ¢ly).

If T; satisfy || T;z|| < ¢, then T; are equicontinuous, hence ||T;|| < e.
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13. If T; are weakly bounded, |¢T;z| < ¢4 o, then T; are bounded, ||T;|| < c.
In particular if T,, — T then ||T|| < liminf ||T,]|.

Proof: ||T|| = sup |¢Tz| = sup limy,_ye0 [¢Tn2| < limp oo ||T0 -
14. A morphism is called a compact operator when it maps bounded sets to

totally bounded sets; equivalently, if z,, is a bounded sequence in X, then
Tz, has a Cauchy subsequence; or z,, =~ ¢z = Tz, — Tz.

(a) The space of compact operators forms a closed *-ideal in B(X,Y).
(b) im T is separable.
Proof: TB C T,,B+(T-T,)B C F+eB+eB. imT =TJ,nB = J,, nTB
separable.

Examples include finite rank operators 7 : X — F: they are the only
compact operators with closed range (by open mapping theorem, T'B is
open and totally bounded in im 7).

15. A Fredholm operator is a morphism whose kernel is finite dimensional and
image is finite co-dimensional. Its index is

index(7T) := dimker T’ — dim(im T')*
T:X 5 X/kerT B imT % Y with R an isomorphism.
The product and adjoint are again Fredholm,

index(ST) = index(S) + index(T), index(T™) = —index(T).

T is Fredholm < it is invertible up to compact operators (since TR~ = I,
R™IT=1-P).
If index(7T") = 0 then T is 1-1< T is onto.

16. In a space with a Schauder basis, the coefficients depend continuously on

.
Proof: Let [lz]| := sup, || Y27 ases]| > |||, complete; hence I : Xy —
X has continuous inverse and |ay,(z)] = || X" auei — 3" ase]| <

2|l < cll]-

T7 is defined on the space B = {¢ : ¢ o Tcontinuous } C Y*; when B is
dense in Y*, then T and T" are closed, T7" = T if T'is 1-1 and densely onto,
then T7is 1-land 77 ' =717,

3.1 Reflexive Banach Spaces

*

are spaces for which x — x** is an isomorphism X** & X

Example: Arrays of numbers with a;; = 0for j > i and ||(ai;)[| := /22,32, [ai;])? <
0.
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Closed subspaces, the dual space X*, quotients, countable products with

|(@n)ll == 1/>n Hani{n < oo are again reflexive.

1.

A% can be identified with +A; and T** with T, since T**x** = (Tx)**.
imT* = (kerT)* .

. X reflexive iff X* reflexive. (The weak and weak-* topologies of X* coin-

cide.)

Proof: If ¢** € X+ then ¢x = ¢**(2**) = 0, s0 ¢ = 0.

Weakly closed bounded subsets are weakly compact.

Proof: Bx = B+« is weak™-compact in X**, hence weak compact in X.
SY"=B using sequences.

Proof: Let v, € S, ||vn — U]l = % Then Jv, — v; Yyp 1= Vpg1 — vV — 0,
Xy =T+ myn (A < 2) such that ||z, || = 1; then x, — x.

. Any functional attains its norm somewhere on S.

Proof: Let |¢x,| — ||¢|, z» € B; then for a subsequence, x,, — z, so
¢xn — ¢z and |pz| = ||9]]; ||z| = 1.

A weakly closed subset has a closest point to any other point.

Proof: Let |lyn — x| — d := inf{|ly—=z| : y € F}; y, bounded, so
Yy = y; Dy — )| = im0 [¢(yn — 2)| < d|¢] and ||y —z|| < d.

X is weakly complete, i.e., every weakly Cauchy sequences converges
weakly (let U(¢) := lim; ¢z;, so ¥ = **; then x; — z).

8. T, =T = TF —T"
3.2 Uniformly Convex Banach Spaces
are Banach spaces such that ||z +y||/2 =+ 1 = ||z — y|| — 0 uniformly on unit
vectors,
Ve>036 >0, Yo,y € By, 1 -6 <|| 5 | = llz—yll<e
Example:

P and LP(A) 1 < p.

. The set of extreme points of a closed ball is its sphere.

Ty, — T S Ty, — T AND ||z || — [z

Proof: y, := HZEC—ZH — =y let gy =1= |¢]l. Then 1 > |¢(ettm)| —

1, so || 2522 || = 1, [lyn — Ym| — 0, and y, — y. Hence @y = ||@nllyn —
lzlly = .
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3. For any closed convex set, the point closest to x is unique.
Proof: y, — v, |ly|l = d; so y, — y. If v is another closest point then

1< || 2| + 3ll9n + Onll < 1; hence [|§n — bn]| = 0 and y = v.

4. X is reflexive.

Proof: Given unit ¥ € X**; let [|¢x]| = 1, ¥(¢r) — 1. Bx is dense
in Bxe«, 80 3y, unit, ¢(zn) — V(¢). Then 1 > |p(Lat2n)| — 1, so
”w%” =1, |zn — 2m| — 0, z, — .

3.3 Inner Product Spaces

have a norm induced by an inner product, ||z| = \/(z, z), where

(,y+2) = (x,y) + (z,2), (y,2) = (x,9),
(2, Ay) = Mz, y), (z,2) =0 & 2 =0,
(x,z) > 0.

Equivalently, a normed space that satisfies the parallelogram law
2 2 2 2
= +yll” + lle = ylI” = 2[l=]” + 2[ly[I"-

Can be completed by taking ([z,], [yn]) := limy e (Tn,yn) (called a Hilbert
space).

Isometric morphisms preserve the inner product, (Pz, Py) = (x,y). Unitary
morphisms are the automorphisms, i.e., invertible isometries. Conformal mor-
phisms preserve orthogonality (z,y) =0 = (Tz,Ty) = 0; hence are multiples
of isometries.

Example: (2 and L?(A).

Subspaces, products have inner products:

((z1,91), (T2, ¥2)) x50y = (T1,22) x + (Y1, Y2)y

For a ‘complexified’ real inner product space, X +iX, (z,y) = g(z,y) +iw(z,y)
with g,w real bilinear non-degenerate forms on X2, but g is symmetric and w
skew-symmetric.
2 2 2
L (a) = +yll” = [[=l]” + 2Re (z,y) + [ly]".
2, . 2 2 2
(b) (z,y) = 1(ly + " +illy + iz|” = lly — 2" — illy — iz[]%).

(¢) Kx,y)| < llzll|lyll, so the inner product is continuous (but not neces-

sarily weakly continuous). (Take z = Eziiy + z with (z,y) = 0.)

S+ [l =0,

(d) Uniformly convex (since for x,y € B,
2. X* = X via z +— (z,-) (onto since ¢(z)y — ¢p(y)z € ker ¢ = z+).
Hence At ={z € X : {(a,2) =0,Ya € A}; An AL C0.
T* acts on X as (T*x,y) = (x, Ty); (\T)* = XT*.
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3. There are linear orthogonal projections onto closed subspaces, so closed
subspaces are complemented, X =Y x Y.
If M, N are complete orthogonal subspaces, then sois M + N =2 M x N.

To find the best approximate solution for Tx = y in x, solve T*Tx = T*y
(since y — Tz € (imT)1).

4. T*T has kernel ker T, closed image im T* and norm ||T||°.

5. A frame is a set of (unit) vectors e; such that the norm [[(e;, )| p2(;) is

equivalent to ||z||. Then [e;] = X.

The associated Fourier series operator F : X — (2(I), z +— ({e;, x))ics is
1-1; its adjoint is F*(a;) = >, ase;; F*F > ¢ > 0 hence has a continuous
inverse.

Each frame has a dual ‘biorthogonal’ frame é; := (F*F)'e;, with an
associated Fourier operator F' = F(F*F)™!, and (e;, é;) = d;;

Vee X, x= Z (e;, x)é; = Z (€;,x)e;.
FF* is an orthogonal projection onto im F' C ¢2, so among all Yo e =,
1Pz < [1(ei)ll o
Proof: (&;,x) = (e;, (F*F) 'x) = F(F*F) 'z. F = FF*F, so imF =
im F'.
A Riesz frame is a linearly independent frame (equivalent to an uncondi-

tional Schauder basis)

6. An orthonormal basis is a maximal set of orthonormal vectors e;, (e;, e;) =

8;j (exists). Hence [E] = X (since E+ = 0).

>, aie; converges < (a;) € 2 < . ae; converges weakly; hence e; is
a self-dual frame and F' is an isomorphism:

T = Z (ei, x)eq, (z,y) = (Fx, Fy)

%

Hence every Hilbert space is isomorphic to some ¢2(I), via  — Fu; the
separable Hilbert spaces are £? and F".

7. Any compact operator is diagonalizable T = VDU*, X SeRel
Y; Tu, = Avn, T"v, = Au,. Thus, any compact operator can be
approximated by a matrix.

Proof: T*T and TT* share the same non-zero (positive) eigenvalues \2 —
0, with orthonormal eigenvectors u,; v, := Tu, are also orthonormal.

Any solution of Tz = y is given by (un,z) = (vn,y)/A\n, assuming the
latter coefficients are in £2.
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3.4 Symplectic Spaces

are vector spaces with a symplectic form w : X2 — R such that

w(z,y+2) =w@,y) tw(z,z), wyz)=-wxy),
w(z, \y) = w(z,y), Yy, w(z,y) =0 & = =0.

The symplectic morphisms preserve this form
w(Tz,Ty) = w(z,y)

1. Every symplectic space is isomorphic to some V x V* with w((u, ¢), (v,9)) :=
P(u) = ¢(v).

2. At ={r:wla,r)=0Va€ A}. ACBt & BC At so AC AL+
Y is dsotropic when Y C Y; in this case, Y1 /Y is also symplectic. It

)

can be extended to a Lagrangian subspace, Y = Y.

3. Y is a symplectic subspace of X if Y N Y+ = 0.

4 Finite Dimensional Spaces, RY

They are the locally compact topological vector spaces; equivalently, a totally
bounded open set exists.

Proof: Let K be a compact (bounded) balanced neighborhood of 0; then
K C F + LK for some finite F with M = [F[;s0 K C 1K + M C =K + M,
so KCN,(M+5K)=Mand X =J,2"K C M.

X is isomorphic to Euclidean space FV with the inner product (z,y) =
Eﬁle anby. In particular, all norms are equivalent and complete.

Proof: T : FN — X, (ay) — Zivzl arey, is continuous, since (ar) — a; —
a;e; is continuous. Conversely, let f(v) := ||Tv|| continuous; then 0 ¢ fS
compact, where S is the unit sphere of FV, i.e., [0,¢[ C £S5, ¢ < |[|Tv|/||v|.

1. Totally bounded < bounded
Compact < closed and bounded
Ty =T S Ty — T
T linear are compact and Fredholm.

2. If K is compact then so is Convex(K).

Proof: Let = ), t;v;; the matrix (vl vl has a null vector if k£ >
L U

n+1,ie, oy, >, 00 =0, >, 0v; = 0; B := mint;/|a;|; then ), (t; —
Bay) =1, Zl(tz — Ba;)v; = x but has less terms.

3. A* = A7. Unitary matrices have orthonormal columns.
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4. The Hausdorff measure satisfies po(AE) = [N o (E). Also poip(E X
F) > captia(E)ug(F). Borel sets are pio-measurable; countable sets are
Lho-null.

Normalized p,, (n € N) are called Lebesgue measures: cardinality, length,
area, volume, etc..

5. The dimension of E is dim(F) := inf{ o : uo(E) =0}.

dim(A U B) = max(dim A, dim B),
ACB = dimA <dimB,
dim(F x F) < dim E + dim F.
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5 Topological Algebras over R or C

A topological algebra is a topological ring +, A, - that contains F in its center.
Thus it is a topological vector space with continuous +, A, .
The morphisms are those maps which preserve +, A, -,

o(x +y) = o(x) + 9(y), d(A\x) = Ap(x), ¢(zy) = d(2)d(y)

must be continuous with ||¢|| = 1 (the automorphisms form a closed Lie sub-
group of GL(X) with Lie algebra Der(X)). The morphisms X — C (if there

are any) are called characters; they form the set X.

Examples:
- R* with fg(z) := f(z)g(x).
« B(X) for X a topological vector space.

Products are again a topological algebra.

1.1

6 Normed Algebras

A normed algebra is a topological algebra with a norm such that
Iz +yll <zl +llyll, 1Azl = [Alll]],

eyl < llzllllyll, (1]} =1

Can be completed so that [2,][yn] = [znyn]; it is then called a Banach
algebra. If ||zy|| < c||z||||y|| then there is an equivalent norm with ¢ = 1.

Examples:

1. C(K) with K compact.

2. L'(G) with convolution; in particular, ¢! = L*(Z).
3. C™ with convolution and 1-norm.

4. B(X) for X a Banach space; contains the closed ideal of compact oper-
ators. Every normed algebra is embedded in some B(X) via a — Ly,
Lo(2) := ax.

5. H quaternions, with absolute value as norm.

Products are again normed algebras (with co-norm).
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1. The state space is S(X) :={¢ € X*: ¢l =1=|¢| }, a weak*-compact
convex set.

Sx+y) CSz+Sy, Sx+N)=8x)+A, SOx)=\Sz, S1={1}

Proof: S is weak*-closed in the weak*-compact B x-

2. The spectrum of an element is o(z) := { A € C: z — X is not invertible }.
It is a non-empty compact subset of C, with largest extent p(z) and small-
est extent p(x~1)~! (or 0). It depends continuously on x:

Proof: o(z)¢ = f7*GL(X) open; if |A\| > p(z) then p(z/\) < 1,50 z—\ =
—A(1—x/A) is invertible. If 2, — x, then o(x,,) is eventually in o(z)+e€B.

l(z — N7t = 1/d(\,o(z)). When an algebra is enlarged, the interior of
o(x) decreases, and its boundary increases; ultimately, the result is the
‘singular spectrum’ of x — A that are topological divisors of zero.

3. The character set X is weak*-compact in S,
X(@+y) € Xo+ Xy, X(ay) C (X2)(Xy), X1={1}
Xz Co(x) C Sz C |z|B
Proof: X is weak*-closed. If y := 2 — \ is not invertible, then 1 ¢ [y], so

thereisa ¢ € S, ¢fy] =0, ie,pz =X I ¢ € X and y is invertible, then
b5 — X =y £0.

4. The extreme points of S are called pure states, Sg, and their weak*-closure
W. They generate the state space

S= Convex(SE)w, Sz = Convex(Spz)
Thus the largest value of Sz is achieved by a pure state.

5. Except for X = C, there are non-zero topological divisors of zero (else as
o(z) has non-empty boundary, x = A € C).

6. a is a quasi-nilpotent (or radical element), i.e., 1 — za is invertible for all
x, iff p(za) =0, V. Then o(x + a) = o(x).
Proof: y +a = y(1 +y~'a) is invertible since p(y~ta) =0, so A ¢ o(z +
a) & 0&o(x—A).

7. If f is analytic on an open set around o(z), then define

: 27”7{]“ (z—2) " dz
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10.

11.

12.

(¢) The map f — f(z) is a Banach-algebra-morphism C¥(o(z)) — X.
(@) o(f(x)) = flo(@)); for v € X, f(x) = f(wa).
Proof: If d(\, fo(z)) > 0, then (f(z) — A\)~! is analytic. If f(x) — f(\)
has an inverse y, then (z — A\)F(x)y = 1 = yF(x)(x — ), where F(z) =
(f(z) = FN))/(z = A).

If = satisfies f(x) = 0, then o(z) € {A : f(A\) = 0}. For example,
idempotents have spectrum { 0,1 }; nilpotents {0 }.

. If f is analytic on an open annulus Rr then it is a Laurent series with

coefficients a, = 5 § f(2)z7'7"dz (so |an| < % for n € N).
For o(x) C Rr,

f(z) = Z anx"”

n=—oo

Proof: (z —z)~t =3 /211

. If o(x) = 01 U---Uoy,, each enclosed by a simple curve, then there are

idempotents e; := 1,,(x), such that 1 =e; + -+ + e, o(ze;) = 0.

Ezxponential function

2 n
=l b= 1im(1+£)”
! n—00
2 n! — n
(a) el = ,(ez)fl :e’m, enm:(ez)n, %etz:etzx.

(b) €0 — Tty poo (14 )(1+ 42))7 eFel = et binaltons
if zy = yx then e®TY = e%e¥.

(c) e® = coshz + sinhz, even/odd parts. tanh z := sinh x(coshz)~!.

(d) The exponential function is periodic with purely imaginary period
7i; = 7/2. Then .
emT+1=0

(e) e*™® = cos(2mxw) + i sin(27x), so sin(z + y) = sinx cosy + cos x sin y,
cos(z + y) = cosx cosy — sinx sin y;

For any continuous derivative D, e*P is an automorphism of X; in partic-
ular etPry = et*ye~t,

Proof: e'P(zy) =Y, Lt"(D"ay+--+zD"y) =>, St"D "z LtmD™y.

Logarithm function For p(xz) < 1, let In(1 + z) = = — % + ””3—3 + -4

CO oy

Then e"(+2) = (1 4+ 2)", so let (1 + z)? := eP"(1F2) (p € C), then

-1
(1—1—:6)”214—]9904—%:624----4—(i)w"—f—---
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13.

6.1

More generally, given any simple path “branch cut” from 0 to oo (typically
—R*), let Inz := flz % dw (along a path that does not intersect the branch
cut). Then e? =z = Ine®, 2P 1= PIn®

Gelfand Transform: F : X — C(X), where F(z) = &, #(¢) := ¢z € o(x),
is a morphism,

p—

Try=i+3, A=\, =48, 1=1, f(z)=foi.

The kernel of F contains all elements with p(z) = 0 and all commutators.

B(X)

. An morphism J : B(X) — B(Y) induces amorphism L : X — Y if Jisan

isomorphism, then so is L, with J(T') = LTL~!. Hence all automorphisms
of B(X) are inner; they form the Lie group GL(X).

Proof: X C B(X) via ¢ — P,. J(P,) = by = P, for some unit b, 1,
b = 1, since they have the same kernel and image. Hence J(P,) =
J(PpPy) = J(Py)Py = Pyp,yp; L(x) := J(P,)b; invertible when J is.

. The center of B(X) is F.

Proof: T'(z¢) = (x¢)T, so Tz = Ax.

There are no proper radical elements: For every T # 0 there is S := x¢
such that (1 — ST)x =0, so 1 € o(ST).
There are no characters unless X = C.

Proof: Let M be a two-dimensional (complemented) subspace, and E;;
a basis for B(M) Then EiiEjj = 0, EiiEij = Eij, Ejj = EijEji, SO
YE;; =0, Vi, j.

The spectrum of 7' € B(X) splits into the

« eigenvalues when T — X is not 1-1 (a left divisor of zero);

« the continuous spectrum with T'— X 1-1 and dense (a left topological
divisor of zero);

« the residual spectrum (otherwise; a right divisor of zero).

It includes approzimate eigenvalues, i.e., (T — N)x,, — 0 for some unit x,,
(i.e., T — X is a left topological divisor of zero).

. Distinct eigenvalues have linearly independent eigenspaces.

Proof: If v := )" ape, =0 then 0 = H (T —X\p)v=ay H Ak — An)eék.
n#k n#k

o(T*) =o(T), 0r(T) C 0p(T*) C 0p(T) Vo (T), 0c(T*) C 0o(T).

When X is reflexive, 0,.(T*) C 0,(T') and o.(T*) = o.(T).
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8.

10.

6.2

Recall that if T € B(X) has finite ascent and descent (see Universal Algebras)
then every z € X can be represented uniquely by some 7"y, modulo
kerT™, i.e., X = kerT" @ imT".

The compact operators form a closed ideal, so B(X)/K is a Banach alge-
bra; contains the ideal F(X) of finite-rank operators.

If K is a compact operator, then 1 + K is Fredholm of finite ascent and
descent, its spectrum is a countable set of eigenvalues whose only possible
limit point is 0, and each non-zero eigenvalue has a finite dimensional
extended eigenspace.

Proof: If 14 K has infinite ascent/descent, then can choose separated unit
xn € ker(1+K)™ or im(1+K)", so Kx,, is not Cauchy. T—X = A\(1-T/\).
Similarly, can choose separated unit eigenvectors, so Te,, = A\pe, — Aey,
has no Cauchy subsequence unless A = 0. (T" — \)™ is still Fredholm.

T* has the same non-zero eigenvalues and eigenspace dimensions as 7T,
ker(S*) = im(S)* 2 Y/im S = ker S.

Commutative Banach algebras

Example: Z(Z(z)) for any = € X.

1.

The only simple commutative Banach algebra is C (the closed ideal Xa is
0 or contains 1).

. The radical consists of elements with zero spectrum, p(z) = 0 (since

p(xy) < p(x)p(y)).

. Any maximal ideal is the kernel of some character; so X #+ .

Proof: I =kern for m: X — X/I; if I is maximal, X/I is simple, i.e., C.

o(z +y) Cox)+0o(y), o(zy) Ca(z)o(y) (in Z(Z(z,y))).

. X/J is embedded in C(X), since ker F = 7.

—
-1

imz = Xz = o(z), ||§?HC()A() =sup|Xz| =p(z), = -1

=z

Proof: If A\ € o(z) then x — )\ € I = ker ¢ maximal, ¢z = A.

The Banach algebras that are embedded in some C'(K) are those that
satisfy [|z]|> < ¢||2?| for all . In particular, they are commutative and
have trivial J.

n, 27" ~
Proof: [lz]| < clla® ||” = cp(z) = |, so T = 0; [lzy| < cplyz) <
cllyz||; let F(z) :== e~ **ae**, analytic, then |F(z)|| < c||a||, hence F(z) =
a, ie., xa = ax.

Those that are isometrically embedded in C/(X) are the commutative semi-
simple Banach algebras, equivalently ||z2] = ||z||*.
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7. De®* = e®, Dcoshx = sinhz, Dsinhz = coshz, Dcosz = —sinz,
Dsinx = — cosx.

7 Involution algebras

are the normed algebras with an involution * : X — X,

So * is a (continuous) anti-automorphism. A complete involution algebra is
called a C*-algebra. The *-morphisms preserve involution ¢(z*) = ¢(x)*.

Example: C,(R) with f*(t) := f(—t). Products are again involutive with

(z,y)" = (", y").

A x-sub-algebra/ideal has to be closed under involution.

An element is called normal when z*2 = zz*, i.e., * € Z(); e.g. x+e"2*.
It is called self-adjoint when a* = a; e.g. x*z, x + a*, i(x — z*). It is unitary
when u* = u™'; e.g. ¥z~ ! when z is normal, in particular e’® when a is self-
adjoint.

1. 1* =1*1 = (1*1)* = 1, so the involution on C is conjugation.

2. (z7H* = (2*)71, o(z*) = o).
If  is nilpotent, radical, divisor of zero, or topological divisor of zero, then
so is x*.
If 2*z and xz* are both invertible then so is x: 7! = (z*z)"la* =
x*(zx*) L

3. Any element can be written as a + ib, with a, b self-adjoint, called the real
and imaginary parts; ||a, ||b]| < ||z]|.
x* = a—ib,x*x = (a® + b?) + i[a, b], z2* = (a® + b?) — ila, b];
x is normal < ab = ba, unitary < ab = ba AND a® + b% = 1.

4. Polarization identity: For w := e*™/N

N
* 1 n n, o\ * n
2y = YW@t W) (@)

n=1

5. (a) The closed #-sub-algebra generated by z is C[z, z*] (non-commuting
polynomials).
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6
7

8

9

8

(b) Z(A*) = Z(A)*, so Z(A) is a closed *-sub-algebra when A* = A.
. The kernel of a x-morphism and the radical J are closed *-ideals.

. The normal elements form a closed subset containing C: if = is normal, so

are =, ax, x + o, "

Z(x*) = Z(z). If ¢ € Z(x) is a quasi-nilpotent, then z + ¢ is not normal
unless ¢ = 0.
Proof: Fory € Z(z*), let ax = a+ib, F(a) := e~ ye®® = ¢~ yeatib —
e 2ye?® is bounded || F(2)|| < ||y, so constant; i.e., e y = ye®® .

. The self-adjoints form a real closed sub-space (Jordan algebra) containing
R: a+b, (ab+ ba)/2 (e.g. b € R), a™™, i[a,b], are again self-adjoint.

. The unitaries form a closed sub-group of the invertible elements G(X)
(closed under * but not a normal sub-group), containing e*®.

C*-algebras

are s-algebras such that ||z*z|| = ||z||.

1

[N)

W~

. For normal elements, ||22|| = \/[[z*zz*z]| = ||z, so p(z) = ||]|.

Sz = Convex(o(z)). The only normal quasi-nilpotent is 0.
Proof: If A ¢ Convex(c(x)) then can separate by a ball z + rB. So
g — 2 = |¢(x — 2)| < [lz — 2| < [A = z[ for g € S.

. =]l = v/p(x*x), so the norm is unique. The involution is also unique.

. Semi-simple: There are no radical elements, as ||q|| = \/p(g*q) = 0.

. S preserves involution, ¢(z*) = ¢(z)*, ||¢|| < 1, and separates points.
Sx* = (Sx)*.
Proof: If a* = a and ¢(a) = a+if, then |+ t| < |p(a+it)| < ||la +it]| =
pla+it) = \/|lal]® + 2, s0 (2t+8)8 < ||la|® and 8 = 0. ¢(z*) = ¢p(a—ib) =
$(z)*. 0(a) CS(a) =0 = a=0. |¢z]* = p(¢(z"x)) < p(a*z) = ||z|*.

. The Gelfand transform preserves involution: TF = 7%,

. If x is normal, Clz,z*] = C(o(z)), via F : p(z, z*) — p(Z, T*).
In particular, can define f(z) for any f € C(o(x)) via f(z) := F~1fFz.
Then f*(z) = f(2)*, o(f(2)) = f(o(x)), and if zy = yx then f(x)g(y) =
9(y) f(z). For example, |z|.

. The self-adjoints are the normal elements with Sa C R (since ¢(a* —a) =
0).

Let a < b when S(b—a) > 0. Then
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(a) a<a<f & Sallwf]
(b) a+e¢<b+¢if a,b> 0 commute, then ab > 0.
(¢c) a=ay+a_,lal=ay —a—,ara_=0,a_ < a<as <la| <a.
(d) avb=a+(b—a)y, aNb=a—(a—b)4; hence a (+, V)-group lattice.
) a<b = z*ax < 2*bx, in particular x*z > 0.
)

For (b €S, ¢( *y) is a semi-inner product, ¢(z*az) < ¢(z*z)||al| and
*z) (since a < ||al|).

() If¢\w,¢es,wef,then¢:w.

~

(h) X is part of the extreme points of S.

Proof: z*x = ay +a_, so (za_)*(zxa_) =a
0 <2(0*+c?) = (zva_)*(va_)+(va_)(za_)*
(ra_)*(za_) =0, and z*z = ay a >
2

2

< 0; let za_ = b+ ic, then
0

and za_ = 0; hence a® =

3
<
> 0. 0 = z*ax = (Vax)*(Vax).
If ¢ < 1/) then |¢(x)|* < ¢(z*z) < [1(x)|?, so keryp C ker¢p and ¢ = ¢.
If ¥ = 3(d1 + d2) € X, then |¢) ()| +)|¢ (@)]* < ¢1(z"x) + ¢a(x™x) =

20" ) = 311 (x) + 6 (@), hence |61 () — da()|? = 0 and 61 = 6o = v.

For example, 0 < a < b = b=Tazb 2azb 1 <1 = 0L b-iazb 7 <
1 = 0<a? <b2. A map which preserves + and * automatically
preserves < (s1nce a<b<e b—a=z*r). A bijective x-morphism is an
isomorphism.

For unitary wu,

(&) [lull =1, fJluz| = ||z]| = [Jzull
(b) They are the normal elements with o(u) C e™®.

(¢) The inner automorphism by au is a *-automorphism.
Proof: o(u™1) = o(u*) = o(u)*
A normal element is idempotent iff self-adjoint with o(e) € {0,1}.

Polar decomposition: Every invertible element can be written uniquely as
x = ur, where r = V2*x > 0, u := zr~—! unitary.

Every C*-algebra is embedded in some B(H).

Proof: Map a € X to J, : (Tg)pecs > (azg)gpes, where x4 is a coset
of My := {z : ¢(x*z) = 0}. Hence X embeds in B(¢{*(X/M,)). Note
(zy,z) = (y,272).

A state v is pure iff for any state ¢, 0 < Ap < ¢ = ¢ = a).

Proof. If v = tip1 + (1 — t)b, then 0 < t1 < 2, so tiy = M) so
Y1 =9 = s

Conversely, if 0 < ¢ < ¢ then 0 < ¢1 < 1; if ¢1 = 0 then |¢T| < ¢||T|| =0
so¢—01f¢1 1then(w ¢)1—Osow ¢ =0;if 0 < ¢1 < 1 then
b= (1— 1) =8 + ¢l 50 /91 =
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8.1

A tensor algebra is the free (unital) algebra generated by a vector space
V', so that any morphism from V extends to tensors on it.

(a) Every element decomposes into sub-components of different grades
r=a4+v4ve+---+withaeF,veV, v e VaV, etc. The
grade-0 part is called its real part: Re(x) := a; Re(zy) = Re(yz).

(b) Exterior product: vy A -+ Avy = 5 3 sgn(o)vy(1) -+ Vo(n))

wy — vw

w/\v:T:—v/\w, vAv=0

T(viA---Avy) := Tvi A+ - -ATvy, (in finite dimensions Tw = det(T)w).

(¢) Inversion (an involution) (v} = (—1)"("=1/2y,)

(a+v+ve+-- ) =a+v—vy—v3+---

(d) The algebra splits in two parts X @& X, i.e., the even and odd
grades: = = H+(z) + %(z), where n : v = —v. A product of r
vectors gives an element in X+ depending on whether 7 is even/odd,

so X T is a sub-algebra.

(e) The symmetric algebra is the commutative algebra of the quotient of
tensors by the ideal generated by the commutators; it is isomorphic
to F[V].

Conjecture: The only closed #-sub-algebra that separates extreme points
of Sis X

B(H)

. A x-automorphism is of type T — LT L~! where L is non-zero multiple of a

Hilbert space isomorphism. The isometric ones are the unitary operators.

Distinct eigenvalues in o(T") and o(T*)* have orthogonal eigenspaces.
Proof: (A — p){(z,y) = (2, Ty) — (T"z,y) =0

The mean value of T in the direction « is (x, T'z) (it minimizes |Tx — Az|[;
a functional on T'). The numerical range W (T') is the set of mean values of
T W) ={1}, WAT+2) = \W(T)+z W(T*) =W(T)", W(S+T) C
W (S)+ W(T).

W (T) is a convex subset of C satisfying

o(T) € W(T) € S(T).

Proof: Let 0 < o := d(A\, W(T)) < |[(T — N)z||, so T — A is 1-1 with closed
image; as is T* — A*; so T'— A is invertible.
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Uncertainty principle: For a fixed unit x, there is a semi-inner-product,
Cov(S,T) := (Sz,Tz) — (Sz,x){x, Tx)

and semi-norm op := /Cov(T,T), then

|Cov(S,T)| < osor

or < idiam(o(T)), o7 =0 < x is an eigenvector of 7.
Normal operators:

(a) |7z = |[T=|

(g) Eigenvalues of T and T™* are conjugate; no extended eigenvectors.
Self-adjoint: S < T < (x,Sx) < (z,Tx), V.

Polar decomposition: Every T = UR, where R = vVT*T and U(Rzx) :=Tx
is an isometry on im 7. Then T* = RU* = U*TU*, |R|| = ||T||. T is
normal < R =TU", unitary & T = U invertible.

Hence ideals are automatically *-ideals since T* = U*TU*.

Unitaries: Every unitary is of the type e*4 with A self-adjoint.
(U=B+iC,C=V|C|, A:=V arccos(B))

Uy, = U & U,z — Uz (since |Upz —Uz|® = ||Upz|® + |Uz|?* —
2Re(Uz,Uyx) — 2||:10H2 —2Re ||U:10H2 =0).

(Stone): any one-parameter group of normal operators which is weakly
continuous in ¢ must be of the type e'T with T normal and Re(o(T))
bounded above; for unitary operators, e**4; more generally any unitary
representation of a locally compact T abelian group which is weakly con-

tinuous in ¢ is of the form U, = [ x(z)dEy).

. Ergodic theorem: If T normal, |T|| = 1, then T"z — y (Cesaro) such

that Ty = y.
Compact operators

(a) B(H) contains the closed subalgebra C & K.

(b) Every ideal contains the simple ideal K of finite-rank operators.
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12.

(c) The compact operators form the closed ideal KX = Kr; so B(X)/K
is simple (its invertible elements are the Fredholm operators). It is
maximal when X = (2.

(d) T has a matrix consisting of blocks of type
A
K
1A
Compact normal operators are diagonalizable.
(e) Tx =y, if y € (ker T*)* and (e,,y)/o € €2, then the solutions are
z=3,2(es,y)es +kerT, else no solutions.

Proof: Given T' € Z and T'a = b unit; let E, := zy* for any unit y. Then
E.y = Ex/TE, € Z. As a compact operator, on each finite dimensional
eigenspace, T = A+ (T — \). As kernel basis for the nilpotent A :=T — A
pick u, Au, ..., A" 1y, etc.

There are various closed ideals contained in KC: Let the trace of an operator
be defined by tr(T') := >, (e;, Te;); it is well-defined independently of e;
when tr(|7]) < oo.

(a) tr(S+T) =tr(S) + tr(T), tr(AT) = Atr(T), tr(T*) = tr(T)*.

(b) Trace class operators: ||T'||, := tr|T| < oo, [|T]|; = [|(on) |-

(c) Hilbert-Schmidt operators: ||TH§ = tr(T*T) < oo; complete inner-

product (S, T) := tr(S™T); |Tly = /224 [{ej, Te)* = [[(on)ll -

(d) Schatten operators: ||T|, := (tr|T|p)% = ||(on)]p» < 0.
(e) Hélder’s inequality: ||ST'||,. < [IS][,[IT]l, where % + % =1

T

Spectral Theorem: For T normal and f € L (o(T)),
)= | ., fvap € )
o(T

meaning (x, f(T)y) = fGT fd{z, P(E)y), where P(F) is an orthogonal
projection measure, i.e., for any measurable subsets of op, P(ENF) =
P(E)P(F),P(E UF) = P(E) + P(F) for E, F disjoint, P(E,) — P(E)
for E, = E, P(o(T)) = 1. f(T) = U 'f(\)U where U : H — H is the
unitary operator x — Pyx; then

(f+9)(T) = F(T)+g(T), (AT)=A(T), (f9)(T) = f(T)g(T),
F(T) = f(T),  fog(T) = f(g(T), F(T)=fof, NSO <Iflpmioer

Finite Dimensions: Square Matrices
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16.

17.

18.

19.

8.2

The nearest number to a matrix (in the 2-norm) is tr(7")/n.
The quasi-nilpotents (radical) are the nilpotents.

The matrices with distinct eigenvalues are dense and open in M,,(C) (since
T =D+ N is close to D' + N where D’ has distinct eigenvalues).

If p(x) = det(T — x), then p(T) =0
(since p(T) = [T, pi(T5) = [1, A = 0, pi(a) = ( — \)").

Self adjoint matrices: If T, with eigenvalues \;, is restricted to P1T P where
P is a projection to a sub-space M of one dimension less than M (for
example, by removing the kth row and column), then the new eigenvalues
are interlaced

A S SA2<pe < A3

N

Positive matrices, am, = 0. W(T) has its largest extent for a positive real
T.

Y/|det T| < /nmax; ; |T/|; the maximum is achieved by the Hadamard

matrices: HH* =nl, Hy = [1], Hyy1 = (gk }Z >)
r —Hg

Commutative C*-algebras

Equivalently, every element is normal.

Examples:

L>°(A) of bounded measurable functions, with usual product and f*(a) =

f(a).

Cy(X), bounded continuous functions, when X is a locally compact T5
space; contains the closed ideal Cy(X). For example, C(K) for K compact;
e.g. C(S), £ = Cy(N), C™ = C(n).

The generated subalgebra Z(A U A*); Z(x) for a normal element.

. X = C(K) via the Gelfand map. The state space consists of the positive

Radon measures. The characters are the Dirac functionals §,(f) = f(x).

The self-adjoints form a real Banach lattice algebra. They correspond to
the real-valued functions.

The unitaries correspond to unit-valued functions.

Stone-Weierstraf: Any *-subalgebra that separates points is dense in X.
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8.3 Finite Dimensional Algebras

Equivalently a regular Banach algebra (i.e., every element is regular Va, 3z, aza =
a).

It can be given the non-degenerate bilinear form (z,y) := tr(z*y) where the
elements are considered as matrices.

They are the reflexive C*-algebras. Proof: If X is infinite dimensional then
there an x € X with K := o(z) D A countably infinite; so X D C*(z) =
C(K) 2 C(A) = ¢, which is not reflexive.

The *-simple finite-dimensional C*-algebras are M,,(C) and M,,(C)? (with
(z,y)* = (y*,2*).) Of these the only commutative ones are n = 1, i.e., C and

C2.

8.3.1 Frobenius Algebras

are finite-dimensional algebras with a non-degenerate bilinear form such that

(zy, z) = (z,yz).
Examples: M, (F) with (x,y) := tr(zy).

8.3.2 Geometric Algebras

A geometric algebra is the algebra generated by a real/complex finite-dimensional
vector space V such that v?> € R for v € V. Note that ¢(v) := v? is thus a
quadratic form.

Let g := [{ai,a;)] = RDR*, with D consisting of p 1s, ¢ —1s and r 0s; the
orthogonal columns (in Euclidean sense) of R form an orthogonal basis e; (wrt
the bilinear form); so e;e; = £e;e; or 0.

The algebra has dimension 24V generated by the orthogonal basis e; - - - e;
(1 €i< -+ < j< n, adding 1 separately). As tensors, the elements are
graded. The elements of grade r give an (:f)-dimensional subspace. The highest
grade subspace is one-dimensional, called the pseudo-scalars, generated by w =
€1 €n.

" VW + wWu
(@,y) = Re(a"y) = af + ————+---
Note vw +wv = (v + w)? —v? —w? € R.
vw = (v,w) + v A w, (a4v,a+v) =a?+ 02
(1,v) =0, (v,w) =0 & vw =—wv

(z,y2) = (y"z, 2) = (22", y)
VU, =V -V + VA Uy

Vv, —(—=1)"v,

- (=1)" 0y
where v-v, 1= =L ) ny, = w (

by induction); more generally
VpUs = Up - Vg + + -+ Up A Ug

where v,. - vs has grade |r — s|, up by two grades, to the highest grade r + s.
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1. X7 is a geometric sub-algebra.
2. (ww + wou) = (v, wyu — (w,u)v + (u, v)w

3. u- (vAw) = (u,w)v — (u, v)w,
- (v Avg Avg) = (u,v1)va Avg — (u,va)v1 Avs + (U, v3)v1 A va, ete.

4. Hodge duality: xx := —wz.
*Vp = Up_p = —WU, = —(—1)T("_1)vrw, so there is a correspondence
between r-vectors and (n — r)-vectors.
*(zy) = *(2)y; e.g. vp XWws 1= *(VpAWs) = *Vp-ws, uX (VXW) = —u-(VAW),
*(vy - ws) = *(vy) A ws.

5. For any morphism T', y x T'(z) = T*(y) * «. Eigenvectors can be extended

to Tv, = Av,.

6. Rotation by 0 in e, es plane: = — rar*, where r = +ec2€19/2 (called a
‘rotor’).
Reflection along direction e is v — (eve)* = —eve.

Inversion is v +— v™1 = v/v?.

Exterior algebra: v?> = 0 for all v € V. For all u,v, {(u,v) = 0, so
uv = u NAv.

Non-degenerate geometric algebras: v> = 0 = v = 0. Hence the
Clifford algebra is Cfp, 4(R) or ¢, (C).
There is a conjugation = — aza* .

X—C@oq(R)‘
: +1 +2
y=cy,®)| P b b
q X X1, ZY Uo®Y
g+1 | X =X UhaeX
qg+2 Cloo®Y

/ " 1! -
e; ®el Q ey 1< p

Proof: Use the maps J : e; — { for a basis e} of

l®el, i>q
/. 1 1 <
Clp.q(R) and € of Clyo(R) = Ma(R); or J : e; — i ®er e z'\p; or
l®el, i>p
el @ elel I<PpORpH+1<i<p+q+1
Jieg—= (1€l i=p+1
1®e) i=p+q+2

It follows that C€p+17q = C€q+17p, C€p7q+4 = C€p+47q, Cfp_,_&q = Mlﬁ(cgp)q); if
p—q=1 (mod 4) then Clpyy;q = Clp g+i-

Hence the first few geometric algebras over R are (note that M, (R) @ F =
M, (F), Co H= M(C), H® H = My(R))
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p—g—1 (mod8)| 0 +1 42 43 4
Up q(R) [R(m)* R(m) C(m) H(m) H(m)
where F(n) := Man (F).
Similarly, C/,,(C) = C(n) or C(n)?, Clpi2 = Ma(Cly).

Proposition 1

The finite-dimensional real division algebras are R, C, and H.

The only complex finite dimensional division algebra is C.

PROOF: Any z € X satisfies a polynomial 0 = (z — «)--- (22 — 2Bz + 7);
hence z € R or it satisfies 12 — 282+~ = 0. For # ¢ R, x has only two complex
eigenvalues A\, A\, so 22 € R & A+ X =28 =0 < tr(r) = 0. Hence X is a
geometric algebra.

For a geometric division algebra, ¢? =0 = e =0,e2 =1 = (e+1)(e—1) =
0 = e € R;ife? = —1, then (1 — ejezes)(1 + erezes) = 0. So the only
possibilities are C/yp = R, Cly,1 = C, Cly 2 = H.

O
(There is also the octonion algebra O which is weakly associative, %y =
z(zy), yz* = (yz)z).
8.3.3 Finite-dimensional Complex Lie algebras
Example: The skew-adjoint matrices u(n), satisfying A*Q = —QA, where

Q(z,y) is linear in y and anti-linear in x.

Solvable Lie algebras are embedded in the upper-triangular matrices b(n).
Semi-simple Lie algebras are products of simple Lie algebras. These are

Simple Lie algebra |sl(n) so(2n + 1) so(2n) sp(2n) g» fi es e7r es
Corresp. Weyl group|A,_, B, D, C, Gy Fy E¢ E; Eqg

(They are classified because the Weyl group of reflections along the root
vectors form certain Coxeter groups). so(3) & R? (with cross-product).

8.3.4 Finite-dimensional Jordan algebras

The formally real Jordan algebras (i.e., >, 27 =0 = z; = 0) are classified -
they are the product of the simple ones, i.e.,

1. “Real”, the self-adjoint operators on RY;
2. “Complex”, the self-adjoint operators on C%;

3. “Quaternionic”, the self-adjoint operators on HY;
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4. “Octonion”, the self-adjoint operators on O? (exceptional case);
5. “Spin factor”, R x RY with (s,z) * (t,y) = (st + = -y, sy + tx).

The first 4 examples all have z*y = (zy+yx)/2. Their projections are RPN 1,
CPN-', HPN-1, OP2.

9 Examples

Finite Dimensional Spaces

1. Euclidean space with inner product (z,y) := >, a;b;. Euclidean theo-
rems apply.

2. Taxicab metric ||(a,b)| := |a| + |b]. Although its topological properties
are the same as the Euclidean case, its metric properties are different.
There are many shortest paths between two points; the angle between
two unit vectors can be taken to be the length of arc on the unit circle;
equilateral triangles need not be equiangular, SAS triangles need not be
congruent; ‘conics’ as d(z,a) = ed(x,b), as sum/difference of distances
from two points being constant, or as distance from line d(x, L) = ed(z, a);
circles may touch at a whole line.

3. Dual numbers: the exterior algebra on R: a + be with €2 = 0. (a + be)* =
g 2 . It is a local ring. For any differentiable
function, f(a+ be) = f(a) + f'(a)be.

a — be. Isomorphic to

4. Cl3(R) = M5(C), can be represented by the Pauli matrices ((1) (1)), ((Z) _OZ),

((1] _01) (they generate si(2)). Contains the quaternions (as o; /7).

5. H = Clo2(R), can be represented by i = (Cg (S) where o; = ((1) _01), and

g, k= (2 _00) where 0; = ((1) _01), op = ((1) (1))
Sequence Spaces

1 ‘an‘
n 2" 1+|an|”

6. RY with pointwise convergence. Has quasi-norm Locally

convex, but not locally bounded.

7. £ of bounded sequences with norm sup,, |a,|, and involution (a,)* :=
(al), hence a C*-algebra. Its dual is ba, so not reflexive; not separable. It
is injective, i.e., it is complemented in any larger Banach space (via pro-
jection x — (m;x) where 7; are extensions of the coordinate projections).
Weak convergence implies pointwise iff weak* convergence.

¢ is the closed subspace of convergent sequences (not complemented in
£2°); isomorphic to ¢g, the subspace of sequences that converge to 0, a Ba-
nach algebra; isomorphic to cs, the space of convergent series with norm
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11.

12.

I(@n)lles = supy [ X5, ail (cs™ = bv). [[(an) + col| = limsup, [an]. Its
dual is £, so not reflexive; Schauder basis e,,, so separable. Not weak com-
plete, e.g. (1,...,1,0,...) is weak Cauchy but does not converge weakly.
en — 0. It is the only separable injective Banach space. The closed unit
ball of ¢y is not weak compact and has no extreme points; the closed unit
ball of ¢ has extreme points +1. The character space consists of ;.

', the space of absolutely summable series with norm ||(a,)|| := Y, |axl,
a Banach algebra. Dual space is £°°, so not reflexive; Schauder basis e,
so separable. Weak*-convergence iff pointwise convergence and bounded.
Weak convergence of sequences iff norm convergence, implies pointwise
convergence. The closed unit ball has extreme points ¢?e,,. The charac-
ters are Bc, with ¢(a,) = Y oo a,z™ ‘generating function’.

o~

('(Z) has characters ST and ¥(0) = Y, ., anz"; o(an) = im (an); (an)
has a *-inverse iff ) ane™® # 0 for all . Can be made into a C*-algebra
with (a,)* = (@n) and norm ||z|| = || L. ||, embedded in B(¢?).

(P, p > 1, with norm |[(a,)|| := />, |an|P. I : £P — (9 is continuous
for ¢ < p; (Pitt) Every operator ¢ — ¢9 is compact when ¢ < p; hence
P 2 ¢4, Dual space is 7 where + + L = 1, so reflexive; uniformly
convex; Schauder basis e,, so separable. Weak convergence iff pointwise
convergence and bounded. The set {e, : n € N} is closed (discrete) but
en — 0; {e, } U{0} is weakly compact. n'/Pe,, A 0 (since unbounded)
but 0 is a weak limit point of the sequence (VN,3n > N,n'/Pe,, € V, ).
The compact operators form the only closed ideal (p > 1).

% has inner product ((ay), (by)) := >, @nbn.

P, 0 < p < 1, with quasi-norm |[[(a,)| = >, |an|P. Locally bounded,
separable (via e, ), not locally convex. Dual space is isometric to £*° via
usual € — x*. The set nl—l,pen is totally bounded but its convex hull is

unbounded (e.g. ZN L_e,/N).

n=1 nl-»p

James’ space: subspace of ¢y with norm

sup |[[(any — @nyy 0 Gny — Ung_ys Ongyr 05 - ')H@m
(ny)€0O

where O is any odd sequence of (increasing) integers. Complete, separable
with e, as a conditional Schauder basis. Not reflexive even though X =
X

ba, the space of finitely additive signed measures on N, with norm ||u|| :=
suppey 4(E) — infgeny p(E). Not separable. Although the unit ball is
weak*-compact it is not sequentially compact, e.g. e* acting on > has no
weak*-convergent subsequence.
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14.

15.

16.

17.

18.

Contains the closed subspace bv, of sequences of bounded variation with
norm ||(an)|,, := lai] + >, |an+t1 — anl; isomorphic to ¢! via (a,) —
(a1, yQpy1 — Qpy-..). € 2 0.

Function Spaces

L*0,1], space of functions with norm || f||; := fol |f|. Dual space is
L]0, 1], so not reflexive; separable by polynomials. Weakly sequentially
complete: every weakly Cauchy sequence converges weakly. The closed
unit ball has no extreme points.

L'(SY) has character space Z, 1, (a,) = f02”
are the Fourier coefficients.

L*(R) has character space R, ¢¢(f) = [ €™ f(z)dz; the Gelfand map is
the Fourier transform.

L'(R™) has character space RTxiR, 1. (f) = [; e~** f(z) da; the Gelfand
map is the Laplace transform.

e £(0) do; the Gelfand map

L?[0,1], 1 < p, with norm |[/f|, := {/fol |f|P. Dual space is LP" where
% + p—l* =1, so reflexive; uniformly convex since

2 £17 + gl )P~ < I +gll” + 11F = gl” < 20 £1” + llgll”), (p < 2)

(reversed inequalities for p > 2); separable. I : LP[0,1] — L?[0,1] is con-
tinuous for ¢ < p, with meagre image (unit ball has no interior in L?).
The closed unit ball has its boundary as extreme points.

L?[0,1] has inner product (f,g) := fol fg; isomorphic to ¢2. The Hilbert-
Schmidt operators are the integral operators with kernel in L2[0, 1]%.

L?[0,1], 0 < p < 1. Locally bounded, but there are no non-trivial open
convex subsets; hence trivial dual space (no morphisms into a locally con-
vex space); the only weakly closed subspaces are 0 and X. No Schauder
basis.

L>10, 1], space of bounded (ae) functions with norm || f|| . = sup, .. |f(z)|.

Isomorphic to £°°; not separable. The closed unit ball has extreme points
/=1 ae.

L°[0,1], the space of measurable functions with f, — 0 when Ve >
0, p{z: |fu(x)| =2 €} > 0asn— oco.

C(€), the space of continuous functions with complete quasi-norm: if (f,)
is Cauchy, then (f,,) is Cauchy in each C(K;), so f, — f in K;; take f as
patch of all these f’s; then |f, — f| =, %% <L ie, fa>f
in C(Q).
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C(K) is separable iff K is metrizable (similarly Cy(X)). Dual space con-
sists of regular Borel measures of bounded variation (not separable: un-
countable d;). Weak-convergence iff pointwise and bounded. The closed
unit ball has extreme points §,, x € K.

C[0,1] with involution f*(¢) = f(¢), a C*-algebra; has character space
[0,1], &¢; its Gelfand map is the identity, o(f) = im f. The closed ideals
correspond to closed subsets of [0, 1] asZa ={ f: fA=0}. o(f) = im(f).

C(RM). Locally convex but not locally bounded; not separable (contains
£°). The closed unit ball has extreme points 1 (or |f| = 1 if over C).

Matrix Algebras
B(¢?), not separable (contains £>).

B(cp). Each eigenvalue belongs to a closed disk about Tj; of radius
Z j#i |T7z|
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