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1 Topological Vector Spaces over R or C

Recall that a topological vector space is a vector space with a T0 topology such
that addition and the field action are continuous. When the field is F := R or
C, the field action is called scalar multiplication.

Examples:

• RA, such as sequences RN, with pointwise convergence.

• Sequence spaces ℓp (real or complex) with topology generated by Br =

{ (an) :
∑

n
p
√
|an|p < r }, where p > 0.

• Lebesgue spaces Lp(A) with Br = { f : A→ F, measurable,
∫

p
√
|f |p < r }

(p > 0).

• Products and quotients by closed subspaces are again topological vector
spaces.
If πi : Y → Xi are linear maps, then the vector space Y with the ini-
tial topology is a topological vector space, which is T0 when the πi are
collectively 1-1.

The set of (continuous linear) morphisms is denoted by B(X,Y ). The mor-
phisms B(X,F) are called ‘functionals’.

+, ∗,→ Finitely-

Generated

Locally Bounded First

countableSeparable

Top. Vec. Spaces ///// Lp 0 < p < 1 ℓp[0, 1] (ℓp)N (ℓp)R

Locally Convex ///// Lp p > 1 L∞ RN, C(Rn) RR pointwise, ℓ2weak
Inner Product ///// L2 ℓ2[0, 1] ///// /////
Locally Compact Rn ///// ///// ///// /////

1. A set is balanced when |λ| 6 1 ⇒ λA ⊆ A.

(a) The image and pre-image of balanced sets are balanced.

(b) The closure and interior are again balanced (if A ∈ T0; since λA◦ =
(λA)◦ ⊆ A◦); as are the union, intersection, sum, scaling, and prod-
uct A×B of balanced sets.



Joseph Muscat 2015 2

(c) Hence every set generates largest and smallest balanced sets,

⋃

V⊆A
V bal.

V =: bal(A) ⊆ A ⊆ Bal(A) :=
⋂

V⊇A
V bal.

V = {λa : |λ| 6 1, a ∈ A }

Bal(A) is open if A is, and
⋃
V V

◦ is balanced open in A; hence X
has a topological base of balanced open sets.

(d) Balanced sets are star-shaped hence path-connected.

2. X is path-connected and locally connected. There are no open subspaces
(clopen) except for X .

3. Connected open sets are path-connected (since a boundary point of a
path-connected component would be surrounded by a balanced open set).

4. A convex set is one which contains every line segment joining any two of
its points,

0 6 t 6 1 ⇒ (1− t)C + tC = C

⇔ 0 6 s, t ⇒ sC + tC = (s+ t)C

For example, subspaces.

(a) Convexity is preserved by linear images and pre-images.

(b) Convex sets are connected.

(c) Convex(A+ λB) = Convex(A) + λConvex(B)

(d) The closure, interior, sum, scaling, and product are convex (e.g. tC◦+
(1− t)C◦ is open in C).

(e) The intersection of convex sets is again convex; hence every set gen-
erates its convex hull, the smallest convex set containing it,

Convex(A) = { t1a1 + · · ·+ tnan :
∑

i

ti = 1, ti > 0, ai ∈ A }.

(f) If A open or balanced, then so is Convex(A) (but Convex(A)◦ 6=
Convex(A◦)).
If A is convex, then so is bal(A) (not Bal(A)).
IfK1,K2 are compact convex, then so is Convex(K1∪K2) =

⋃
t∈[0,1](1−

t)K1 + tK2 (as the continuous image of [0, 1]×K1 ×K2).

A polyhedron is Convex(F ) of a finite set F ; a simplex is when F is
independent. A cone is Convex(A ∪ { x }) where A is of dimension n− 1.

But the convex hull, even of a compact set, need not be closed (e.g. the

compact set of sequences xn := (1, . . . , 1
n , 0, . . .) and 0; then

∑N
n=1 xn/N →

( 1
n )); convex sets (6= X) may be dense in X (e.g. c00 in ℓ1, { f ∈ C[0, 1] :
f(0) = 1 } in L1[0, 1]).
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5. An extreme subset A of a convex set C satisfies Convex(CrA) ⊆ CrA;
the intersection of extreme sets is extreme. In particular extreme points
do not lie on proper line segments in C, e /∈ Convex(Cre), equivalently,
e =

∑
i tiai ⇒ ∃i, e = ai ( ⇒ ∀i, e = ai).

If C = Convex(E), then E is minimal ⇔ E is the set of extreme points.

There need not exist any extreme points, and the set of extreme points
need not be closed.

6. Recall that a set is bounded when λA→ 0 as λ→ 0, i.e.,

∀U ∈ T0, ∃r > 0, BrA ⊆ U.

For a balanced set this is equivalent to ∃λ, A ⊆ λU . The only bounded
subspace is 0.

Given a fixed open set U ∈ T0, the extent of a bounded set can be gauged
by

NU (A) := inf{ r > 0 : A ⊆ rU }

(a) NU (λA) = |λ|NU (A) when U is balanced

(b) NU (A+B) 6 NU (A) +NU (B) when U is convex

(c) NU (A) = 0 ⇔ A = { 0 } when U is bounded

7. Any balanced convex open neighborhood of 0 generates a semi-normNC(x)
and conversely, C = { x ∈ X : NC(x) < 1 }. (But there need not exist any
non-trivial ones.)

8. If Ti : X → Y are morphisms such that
⋃
i Tix is bounded for all x ∈ K a

non-meagre bounded convex subset, then
⋃
i TiK is bounded.

Proof: Let Ac := { x ∈ K : ∀i, Tix ∈ cW̄ } closed; then K =
⋃
cAc, so

some Ac contains an interior point x0 + V . But K ⊆ x0 + V/t for some
t < 1, so xt := tx + (1 − t)x0 ∈ K ∩ (x0 + V ), then tK ⊆ Ac + (1− t)Ac,
so tTiK ⊆ cW̄ + cW̄ ⊆ cU .

Dual Space

1. The dual space is X∗ := B(X,F). A linear map φ : X → F is continuous
iff ∃V ∈ T0, |φV | 6 1.

For any balanced convex C ∈ T0, let NC(φ) := inf{ r > 0 : |φC| 6 r } =
supNC(x)<1 |φ(x)|; then |φ(x)| 6 NC(φ)NC(x).

(X × Y )∗ ∼= X∗ × Y ∗ via (φ, ψ)(x, y) := φx+ ψy.

Note: When F = C, the real and imaginary parts of a functional are not
independent: Imφ(x) = −Reφ(ix).
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2. Every linear map Y → F, which is bounded with respect to some semi-
norm, NC(φ) <∞, can be extended to all of X with NC(φ̃) = NC(φ).

Proof: φ can be extended from Y to Y + [[v]] by φ(y + λv) = φ(y) +
λc for some c ∈ F. Given |φ(y)| 6 N(φ)N(y); require a c such that
|φ(y) + c| 6 N(φ)N(y + v), which is possible when φ is real-valued since
φ(y1)−φ(y2) 6 N(φ)(N(y1 + v) +N(y2 + v)). For complex φ = φ1 + iφ2,
then φ2(y) = −φ1(iy), so both can be extended. Let φ̃ be a maximal
extension of φ (exists by Hausdorff’s maximality); its domain is X else
can extend further by the above.

3. Weak convergence: Every pair (x, φ) ∈ X × Y ∗ gives a functional on
operators: (x, φ) 7→ φTx. Hence they induce a ‘weak’ convergence

Ti ⇀ T ⇔ ∀x ∈ X, ∀φ ∈ Y ∗, φTix→ φTx,

In particular,

xi ⇀ x ⇔ ∀φ ∈ X∗, φ(xi)→ φ(x),

φi ⇀ φ ⇔ ∀x ∈ X, φi(x)→ φ(x) (weak-*).

The topology induced by this convergence is generated from the sub-basic
balanced convex open subsets Ur,x,φ := {T : |φTx| < r }, hence is locally
convex but not necessarily T0, nor locally bounded (Ur,x,φ ⊇ kerφ) except
when finite dimensional. However, X∗ is a T0 topological vector space
since X separates points of X∗.

Morphisms preserve weak convergence, xi ⇀ x ⇒ Txi ⇀ Tx.

Note that if Ti → T in Y X , pointwise, i.e., ∀x, Tix → Tx, then Ti ⇀ T .
xn → x ⇔ xn ⇀ x and { xn : n ∈ N } is totally bounded; Ā ⊆ Aw.
Many properties of subsets have weak analogues e.g. weakly bounded when
∀φ ∈ X∗, φA is bounded in F (A bounded ⇒ A weakly bounded).

4. If Ti ⇀ T and Six → Sx, ∀x then TiS ⇀ TS; if φSi → φS then SiTi ⇀
ST .

5. There are links between a space and its dual, via the adjointly related
polar of a subset in X and the pre-polar of a subset in X∗,

A©⊥ := {φ ∈ X∗ : NA(φ) = sup |φA| 6 1 } = ConvexBal(A)
©⊥

©⊥Φ := { x ∈ X : sup |Φx| 6 1 }

Φ ⊆ A©⊥ ⇔ |ΦA| 6 1 ⇔ A ⊆ ©⊥Φ

A©⊥ is balanced, convex, and weak-closed in X∗ (and ©⊥Φ in X).

When U ∈ T0(X), U©⊥ is weak*-compact.

Proof: J : U©⊥ → BF

X
(compact), φ 7→ (φx)x∈X is clearly an embedding.

J(U©⊥) is closed: J(φi) → f ⇔ ∀x, φix → f(x), hence f is linear with
∀x ∈ U, |f(x)| 6 1, so f ∈ U©⊥. Thus U©⊥ is compact in X∗.
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6. Similarly, annihilator and pre-annihilator

A⊥ := {φ ∈ X∗ : φA = 0 } = [[A]]
⊥
,

⊥Φ := { x ∈ X : Φx = 0 } = ⊥[[Φ]], Φ ⊆ A⊥ ⇔ ΦA = 0 ⇔ A ⊆ ⊥Φ

(A ∪B)⊥ = A⊥ ∩B⊥, A⊥ +B⊥ ⊆ (A ∩B)⊥.

They are weak-closed subspaces of X∗ and X respectively. For A un-
bounded, A©⊥ = A⊥.

7. Every morphism T : X → Y has an adjoint morphism T ∗ : Y ∗ → X∗

defined by T ∗φ := φ ◦ T .
Then

TA ⊆ B ⇒ T ∗B⊥ ⊆ A⊥,

kerT ∗ = (im T )⊥, (S + λT )∗ = S∗ + λT ∗,

imT ∗ ⊆ (kerT )⊥, (ST )∗ = T ∗S∗.

T 7→ T ∗ is not weakly continuous but T ∗
i ⇀ T ∗ ⇒ Ti ⇀ T .

8. A continuous projection (idempotent) on a complete space decomposes
it into the product of closed subspaces X ∼= M × N (M = kerP , N =
imP = ker(1− P )).

9. If M is a closed subspace of finite codimension, then X ∼= M ×N (using
representatives πnxn = en).

Separability

The size of a space can be assessed by the minimum cardinality of a set A
such that X = [[A]].

1. X is separable ⇔ A is countable.

Proof: For any x + U , let V + · · · + V +W ⊆ U ,
∑n
i=1 λiai ∈ x +W ;

then ∃ǫi, Bǫiai ⊆ V , and ∃qi ∈ Q + iQ, qi ∈ λi + Bǫ; thus
∑

i qiai ∈∑
i(λi +Bǫ)ai ⊆ x+W +

∑
i V ⊆ x+ U .

2. A topological basis is a list of vectors en such that every x =
∑
n αnen for

some unique αn. More strongly, en is a Schauder basis when x 7→ αn(x)
are continuous. Such spaces are essentially sequence spaces x ↔ (an). A
functional is then of the form φx =

∑
n bnan (where bn = φen).

3. For a separable vector space, U©⊥ (U ∈ T0) is a compact metric space.

Proof: If xn are dense in U , then ‖φ‖w :=
∑

n
1
2n |φxn| is a metric on U©⊥,

with φi ⇀ φ ⇔ ‖φi − φ‖w → 0.
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1.1 Quasi-Normed Spaces

are vector spaces with topology induced by a translation-invariantmetric d(x, y) =
|x− y|, equivalently, first countable; axiomatically, this quasi-norm satisfies

|x+ y| 6 |x|+ |y|, |−x| = |x|, |x| = 0 ⇔ x = 0

λn → λ and xn → x ⇒ |λnxn| → |λx|

This last condition can be achieved if, for example, |λx| 6 |λ||x|. Note that
by starting with a balanced local base, the quasi-norm can be chosen to also
be balanced, i.e., |λ| 6 1 ⇒ |λx| < |x| (see the construction of the norm in
topological groups). As in groups, can be completed. A topological vector space
may have more than one inequivalent quasi-norm.

• RN. More generally, arrays of real numbers such that |(anm)| :=
∑

n
1
2n

|(anm)|1
1+|(anm)|1

,

where |(anm)|1 :=
∑

m |anm| are finite.

• L0(A) with |f |E :=
∫
E
(|f | ∧ 1), i.e., sub-basic open sets Vǫ,δ := { f : µ{ x :

|f(x)| > δ } < ǫ }.
• If πi : Y → Xi are linear maps to a finite number of quasi-normed spaces
(one of the πi is 1-1), then the vector space Y can be given the quasi-norm
|y| := ∑

i |πiy|.
• Products have the quasi-norm |(x, y)| = |x|+|y| (among others); for count-

able products can take |x| =
∑

n
1
2n

|x|n
1+|x|n

.

• Quotients have the quasi-norm |x+M | = infa∈M |x+ a|.

1. As in all normed groups, the quasi-norm is continuous andBr+Bs ⊆ Br+s.
The norm constant of concavity is

c := sup
|x+ y|
|x| ∨ |y| 6 2.

(But xi ⇀ x 6⇒ ‖xi‖ → ‖x‖.)

2. By continuity of scalar multiplication, ∀r, ∃ǫ, s, t < ǫ ⇒ tBs ⊆ Br.

3. The open mapping theorem of topological groups applies between com-
plete quasi-normed spaces even if not separable: TX =

⋃
n nTBr, so TBr

contains some open ball; the remaining part of the proof remains valid.

In particular, a bijective morphism is an isomorphism.

4. Closed Graph Theorem: A linear map is continuous iff its graph is closed
in X × Y , i.e., xn → x and Txn → y ⇒ y = Tx.

Proof: The graph is itself complete quasi-normed; the projection πX : G→
X is an isomorphism by the open mapping theorem, and T = πY ◦ π−1

X .
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5. Isomorphism Theorems for complete spaces: X/ kerT ∼= imT if imT is
closed (via the continuous map x+ kerT 7→ Tx).

Hence X+Y
Y
∼= X

X∩Y , X×Y
Y
∼= X , X/ZY/Z

∼= X
Y .

6. The totally bounded sets are the metrically bounded sets that are arbi-
trarily close to finite-dimensional subspaces.

Proof: K ⊆ F +Bǫ ⊆ [[F ]] +Bǫ. Conversely, if K ⊆ Br and K ⊆ Y +Bǫ,
then K ⊆ Y ∩ Br+ǫ + Bǫ ⊆ F + B2ǫ since in finite dimensions balls are
totally bounded.

1.2 Locally Bounded Spaces

when there is a bounded open set; equivalently, a single (balanced bounded)
set B generates the topology by translations and scalar multiplications, x+λB
(λ 6= 0). Hence is first countable.

Examples:

• ℓp and Lp(A) (p > 0).

Quotients are again locally bounded. An infinite product of topological
vector spaces is not locally bounded.

1. X = NB =
⋃
n nB

2. There is a c > 0 such that B +B ⊆ cB; rB + sB ⊆ c(r ∨ s)B.

Proof: V + V ⊆ B, and rB ⊆ V , so r(B +B) ⊆ B.

3. There is an equivalent quasi-norm satisfying |λx| = |λ|p|x| (0 < p 6 1,
cp = 2).

Proof: Let |x| := inf{∑n
i=1 ν(xi) :

∑
i xi = x }, ν(x) := NB(x)

p, ν̄(x) :=
2r > ν(x). Note ν(x + y) 6 2(ν(x) ∨ ν(y)). Claim: ν(

∑n
i=1 xi) 6

2
∑
i ν̄(xi), since take ν(xi) in decreasing order; if ν(xj) 6 2ν(xj+1) then

ν(xj+xj+1) 6 2ν(xj) 6 ν̄(xj)+ ν̄(xj+1); if 2ν(xi+1) 6 ν(xi) for all i, then
ν(x1+ · · ·+xn) 6 2ν(x1)∨22ν(x2)∨· · ·∨2nν(xn) = 2ν(x1) 6 2

∑
i ν̄(xi).

Hence ν(
∑

i xi) 6 4
∑
i ν(xi) and

1
4ν(x) 6 |x| 6 ν(x).

4. A subset is bounded iff metrically bounded, i.e., covered by some x+ rB.

5. Every vector has a magnitude and direction (unit vector): x = |x|1/p x
|x|1/p

.

6. If en are bounded and (an) ∈ ℓp then
∑
n anen converges absolutely.

7. A linear map is continuous iff

(a) ∃c > 0, TBX ⊆ cBY . It can be measured by N(T ) := NBY (TBX)

(b) T maps bounded sets to bounded sets (“bounded map”).
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N(0) = 0, N(I) = 1, N(T−1) > N(T )−1.

Proof: If xn → 0 then Txn = |xn|
1
pT xn

|xn|1/p
→ 0.

8. For every proper closed subspace Y and 0 6 c < 1, there is a unit x such
that |x+ Y | = c. The cosets of Y up to a distance of 1 intersect the unit
sphere.

Proof: Let |y + Y | = c; the image of the map z 7→ |y + z|, Y → R,
contains ]c,∞[, hence some |y + z| = 1.

9. The boundary of Br is Sr := { x : |x| = r }, so Br = { x : |x| 6 r };
moreover S

w

r = Br in infinite dimensions.

Proof: Any neighborhood
⋂n
i=1 Vǫi,φi of x ∈ B contains the infinite di-

mensional subspace Y :=
⋂
i kerφi. So there is a unit y ∈ S such that

y + Y = x+ Y .

10. Balls are not totally bounded except in finite dimensions. Infinite dimen-
sional totally bounded sets have no interior.

Proof: If B ⊆ Y + ǫB and Y 6= X then there is x ∈ B, |x+ Y | > ǫ.

2 Locally Convex Spaces

when there is a base of convex open sets (can be assumed balanced).

Examples:

• RA with sub-base Vx,n := { f : A→ R, |f(x)| < 1
n }.

• C(Ω) with Ω =
⋃
nKn a σ-compact topological space, and with the sub-

base Vn,m := { f ∈ C(Ω) : |fKn| < 1
m }.

• C∞(Ω), with sub-base Vn,k,m := { f ∈ C∞(Ω) : |f (k)Kn| < 1
m }.

• B(X,Y ) for topological vector spaces, with weak topology (and indistin-
guishable morphisms identified). In particular, dual spaces X∗.

1. If A is bounded or totally bounded, then so is Convex(A).

Proof: A ⊆ F+V ; Convex(F ) ⊆ F ′+V as a compact set; so Convex(A) ⊆
F ′ + V + V ⊆ F ′ + U .

2. Separating hyperplanes : A compact convex set K and a disjoint closed
convex set C can be separated by a real functional, φK < α < φC. In
particular X∗ separates points from closed subspaces.

Proof: A point x can be separated from an open convex set U ∈ T0 using an
extension of the functional φ(λx) := λ; φ is continuous since |φbal(U)| 6 1.
K and C can be separated by (K+V )∩(C+V ) = ∅, V convex; let x0 ∈ K,
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y0 ∈ C; x0 − y0 can be separated from the open convex neighborhood
U := (K−x0+V )−(C−y0+V ). Hence φ(K+V )−φ(C+V ) = φU−1 < 0,
so φ(K + V ) < φ(C + V ).

3. A closed convex set is weakly closed (if x /∈ C̄ then can find φ that sepa-
rates x from C).

Hence, if xi ⇀ x then ∃yi ∈ Convex(xi), yi → x.

4. ©⊥(A©⊥) = ConBal(A), ⊥(A⊥) = [[A]],

(©⊥Φ)©⊥ = ConBal(Φ)
w
, (⊥Φ)⊥ = [[Φ]]

w
; hence imT ∗w = (kerT )⊥.

Proof: If x /∈ CB(A) =: F ∋ 0, it can be separated from it by a functional,
φF < α < φx; so ψ := φ/α extended to F, satisfies |ψF | < 1 < |ψx| since
F is balanced; so ψ ∈ A©⊥ and x /∈ ©⊥(A©⊥).

5. Weakly bounded subsets iff bounded.

Proof: |x∗∗φ| 6 cφ for each x ∈ A; for φ ∈ V ©⊥ compact convex, |V ©⊥x| =
|x∗∗V ©⊥| 6 c; ∴ 1

cA ⊆ ©⊥(V ©⊥) = V̄ ⊆ U .

6. A functional achieves its largest value on a compact convex subset (as |φ|
or Reφ) at an extreme point.

Proof: If |φ| takes its max value α at b, and x = sa + tb ∈ K then
φ(x) 6 sφ(a) + tα, so φ(a) = a = φ(b).

7. A compact convex set has extreme points and they generate the set:
Convex(E) = K.

Proof: For any extreme set A (starting with K), as long as it has distinct
points, can find φ ∈ X∗ which separates them. Let φ achieve its maximum
α on the closed set F ; then F is an extreme subset. Hence can form a
maximal nested chain of extreme closed sets;

⋂
i Fi is closed extreme and

minimal, hence contains a single (extreme) point. If x ∈ KrC(E) then
a functional separates them, φ(x) > φC(E), so the max of φ contains an
extreme point not in E.

8. Every finite dimensional subspaceM induces a decompositionX ∼=M×N
(using the dual functionals δi).

9. A linear map T : X → Y is continuous when for any open convex D ⊆ Y ,
there is an open convex U ⊆ X , such that NV (TU) <∞.

10. X is embedded in X∗∗.

Proof: x 7→ x∗∗ is 1-1 since for x 6= 0, let x 6= U convex, so separate x
from U by a functional φ; x∗∗(φ) = φ(x) 6= 0, so x∗∗ 6= 0.

11. (
∑

iXi)
∗ ∼=

∏
iX

∗
i , via (φi) 7→

∑
i φi.

12. If there is a countable base of convex balanced sets Cn, then the space is

quasi-normed by |x| :=
∑

n
1
2n

NCn (x)
1+NCn (x) .
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13. LetK be a compact convex subset of X , and T : K → K is continuous and
affine, then T has a fixed point Tx = x (proof: let Tn := (1+. . .+T n−1)/n,
so TnK is compact; so ∃x ∈ K, ∀n, x ∈ TnK ie ∃xn, x = Tnxn; so x−Tx =
(xn − T nxn)/n→ 0 since xn − T nxn ∈ K +K is compact). CHECK

14. If K convex compact and f : K → K continuous then f has a fixed point
f(x) = x; (also, amenable locally compact T2 groups acting continuously
on a convex compact set has a fixed point Gx = x)

Proof: K ⊆ F+V ⊆ [[F ]]+V ; let fV := πV ◦f : Convex(F )→ Convex(F ).
Then by Brouwer’s fixed point theorem, fV (xV ) = xV ∈ Convex(F ). For
some subsequence, xn → x∗, hence

x∗−f(x∗) = x∗−xn+fVn(xn)−f(xn)+f(xn)−f(x∗) ∈ V +V +fV ⊆ U

3 Normed Spaces

have scale-homogeneous norms ‖λx‖ = |λ| ‖x‖; equivalently they are the locally
convex locally bounded vector spaces (with norm NB(x)). The unit ball BX
generates the topology via the convex bounded balls Br(x) = x + rBX . As in
quasi-normed spaces, can be completed (called a Banach space).

Examples:

• ℓ∞, the space of bounded sequences, with ‖(an)‖∞ := supn |an|; its closed
subspace c0 of sequences that converge to 0.

• ℓ1, the space of absolutely summable sequences, with ‖(an)‖1 :=
∑

n |an|.
• Lp(A), p > 1

• L∞(A), and its closed subspace of bounded continuous functions Cb(A).

• C(K) with sup norm, K compact T2. Every Banach space is embedded
in some C(K).

Quotients and finite products are also normed.

1. T : X → Y linear is continuous iff it is Lipschitz, ‖Tx‖ 6 c‖x‖.

2. B(X,Y ) is a normed space with ‖T ‖ = sup‖x‖=1 ‖Tx‖,

‖Tx‖ 6 ‖T ‖‖x‖

It is complete when Y is. In particular, X∗ is also a complete normed
space.

‖S + T ‖ 6 ‖S‖+ ‖T ‖, ‖λT ‖ = |λ|‖T ‖, ‖I‖ = 1, ‖ST ‖ 6 ‖S‖‖T ‖

Proof: If Tn is Cauchy, then so are (Tnx).
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3. X is isometrically embedded in B(X): fix unit a ∈ X , φ ∈ X∗, φa = 1,
let Px := xφ; so x = Pxa, TPx = PTx.

4. imT is closed ⇔ im T ∗ is closed, in which case imT ∗ = (kerT )⊥ (weak*-
closed). So T invertible ⇒ T ∗ invertible.

Proof: If φ ∈ (kerT )⊥, then can define ψ(Tx) := φx, extended to all of Y ;
T ∗ψ = φ. Conversely, let T̃ : X → im T , T̃ x := Tx, so T̃ ∗ is 1-1. Separate

C := T̃BX from any other y by ψ, |ψT̃x| 6 r < |ψy| for x ∈ BX ; so
r < ‖ψ‖‖y‖ 6 1

c‖T̃ ∗ψ‖‖y‖ 6 r
c‖y‖, so ‖y‖ > c; hence T̃BX contains some

open ball, so T̃ is onto, i.e., imT is closed.

5. T is onto ⇔ ‖T ∗φ‖ > c‖φ‖,
T is an embedding ⇔ ‖Tx‖ > c‖x‖.
Proof: T is onto implies im(T ∗) is closed and T ∗ 1-1, hence by the open
mapping theorem, ‖T ∗φ‖ > c‖φ‖.

6. BX∗ = B©⊥

X , hence weak*-closed bounded subsets ofX∗ are weak*-compact.
(So X∗ is meagre when infinite dimensional.)
Similarly, BX = ©⊥BX ; its weak topology is metrizable when X∗ is sepa-
rable (using ‖x‖w :=

∑
n

1
2n |φnx|).

7. (Krein) If K is weakly compact, then so is Convex(K).
(Eberlein-Shmulian) Weakly compact iff every sequence has a weakly con-
vergent subsequence.

8. Every Banach space is embedded in C(K) for some compact T2 space
K (take K = BX∗) and hence embedded in some ℓ∞(A); and covered
by some ℓ1(A) (via (ai)i∈A 7→

∑
i aixi, xi dense in B). For example,

separable Banach spaces are embedded in C(2N) (Cantor space) and ℓ∞,
and covered by ℓ1.

9. X∗ is not separable if X isn’t.

Proof: If φn is dense in X∗, then |φnxn| > (‖φn‖ − ǫ) for some unit
xn. If M := [[xn]] 6= X , then ψM = 0 with ‖ψ − φn‖ < ǫ, so |φnxn| =
|(ψ − φn)xn| 6 ǫ.

10. ‖x+ kerφ‖ = |φx|/‖φ‖ (since ‖φ‖ = supa∈kerφ |λ||φx|/‖λx + a‖).
‖x‖ = sup‖φ‖=1 |φx| = ‖x∗∗‖, hence X is isometrically embedded in X∗∗.
T ∗∗ extends T .

‖T ‖ = sup
‖φ‖=1

‖x‖=1

|φTx| = ‖T ∗‖

11. If Y is a closed subspace, then (X/Y )∗ ∼= Y ⊥ (via φ(x + Y ) := φx) and
X∗/Y ⊥ ∼= Y ∗ (via φ 7→ φ|Y ).

12. If Ti satisfy ‖Tix‖ 6 cx then Ti are equicontinuous, hence ‖Ti‖ 6 c.



Joseph Muscat 2015 12

13. If Ti are weakly bounded, |φTix| 6 cφ,x, then Ti are bounded, ‖Ti‖ 6 c.
In particular if Tn ⇀ T then ‖T ‖ 6 lim inf ‖Tn‖.
Proof: ‖T ‖ = sup |φTx| = sup limn→∞ |φTnx| 6 limn→∞ ‖Tn‖.

14. A morphism is called a compact operator when it maps bounded sets to
totally bounded sets; equivalently, if xn is a bounded sequence in X , then
Txn has a Cauchy subsequence; or xn ⇀ x ⇒ Txn → Tx.

(a) The space of compact operators forms a closed *-ideal in B(X,Y ).

(b) imT is separable.

Proof: TB ⊆ TnB+(T−Tn)B ⊆ F+ǫB+ǫB. imT = T
⋃
n nB =

⋃
n nTB

separable.

Examples include finite rank operators T : X → FN : they are the only
compact operators with closed range (by open mapping theorem, TB is
open and totally bounded in im T ).

15. A Fredholm operator is a morphism whose kernel is finite dimensional and
image is finite co-dimensional. Its index is

index(T ) := dimkerT − dim(imT )⊥

T : X
π→ X/ kerT

R→ imT
ι→ Y with R an isomorphism.

The product and adjoint are again Fredholm,

index(ST ) = index(S) + index(T ), index(T ∗) = −index(T ).

T is Fredholm ⇔ it is invertible up to compact operators (since TR−1 = I,
R−1T = I − P ).
If index(T ) = 0 then T is 1-1⇔ T is onto.

16. In a space with a Schauder basis, the coefficients depend continuously on
x.

Proof: Let |||x||| := supn ‖
∑n
i=1 αiei‖ > ‖x‖, complete; hence I : X|||||| →

X‖‖ has continuous inverse and |αn(x)| = ‖
∑n

αiei −
∑n−1

αiei‖ 6

2|||x||| 6 c‖x‖.

T⊤ is defined on the space B = {φ : φ ◦ T continuous} ⊆ Y ∗; when B is
dense in Y ∗, then T and T⊤ are closed, T⊤⊤ = T ; if T is 1-1 and densely onto,
then T⊤ is 1-1 and T⊤−1 = T−1⊤

;

3.1 Reflexive Banach Spaces

are spaces for which x 7→ x∗∗ is an isomorphism X∗∗ ∼= X .

Example: Arrays of numbers with aij = 0 for j > i and ‖(aij)‖ :=
√∑

j(
∑

i |aij |)2 <
∞.
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Closed subspaces, the dual space X∗, quotients, countable products with

‖(xn)‖ :=
√∑

n ‖xn‖
2
Xn

<∞ are again reflexive.

1. A⊥ can be identified with ⊥A; and T ∗∗ with T , since T ∗∗x∗∗ = (Tx)∗∗.
imT ∗ = (kerT )⊥.

2. X reflexive iff X∗ reflexive. (The weak and weak-* topologies of X∗ coin-
cide.)

Proof: If φ∗∗ ∈ X⊥ then φx = φ∗∗(x∗∗) = 0, so φ = 0.

3. Weakly closed bounded subsets are weakly compact.

Proof: BX = BX∗∗ is weak*-compact in X∗∗, hence weak compact in X .

4. S
w
= B using sequences.

Proof: Let vn ∈ S, ‖vn − vm‖ > 1
2 . Then ∃vn ⇀ v; yn := vn+1 − vn ⇀ 0,

xn := x+ λn

‖yn‖
yn (λn 6 2) such that ‖xn‖ = 1; then xn ⇀ x.

5. Any functional attains its norm somewhere on S.

Proof: Let |φxn| → ‖φ‖, xn ∈ B; then for a subsequence, xn ⇀ x, so
φxn → φx and |φx| = ‖φ‖; ‖x‖ = 1.

6. A weakly closed subset has a closest point to any other point.

Proof: Let ‖yn − x‖ → d := inf{ ‖y − x‖ : y ∈ F }; yn bounded, so
∃yn ⇀ y; ∴ |φ(y − x)| = limn→∞ |φ(yn − x)| 6 d‖φ‖ and ‖y − x‖ 6 d.

7. X is weakly complete, i.e., every weakly Cauchy sequences converges
weakly (let Ψ(φ) := limi φxi, so Ψ = x∗∗; then xi ⇀ x).

8. Ti ⇀ T ⇒ T ∗
i ⇀ T ∗.

3.2 Uniformly Convex Banach Spaces

are Banach spaces such that ‖x+ y‖/2→ 1 ⇒ ‖x− y‖ → 0 uniformly on unit
vectors,

∀ǫ > 0 ∃δ > 0, ∀x, y ∈ BX , 1− δ <
∥∥x+ y

2

∥∥ ⇒ ‖x− y‖ < ǫ

Example:

• ℓp and Lp(A) 1 < p.

1. The set of extreme points of a closed ball is its sphere.

2. xn → x ⇔ xn ⇀ x and ‖xn‖ → ‖x‖.
Proof: yn := xn

‖xn‖
⇀ x

‖x‖ =: y; let φy = 1 = ‖φ‖. Then 1 > |φ(yn+ym2 )| →
1, so

∥∥ yn+ym
2

∥∥→ 1, ‖yn − ym‖ → 0, and yn → y. Hence xn = ‖xn‖yn →
‖x‖y = x.
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3. For any closed convex set, the point closest to x is unique.

Proof: yn ⇀ y, ‖y‖ = d; so yn → y. If v is another closest point then
1 6

∥∥ y+v
2d

∥∥← 1
2‖ŷn + v̂n‖ 6 1; hence ‖ŷn − v̂n‖ → 0 and y = v.

4. X is reflexive.

Proof: Given unit Ψ ∈ X∗∗; let ‖φk‖ = 1, Ψ(φk) → 1. BX is dense
in BX∗∗ , so ∃xn, unit, φ(xn) → Ψ(φ). Then 1 > |φ(xn+xm

2 )| → 1, so∥∥xn+xm

2

∥∥→ 1, ‖xn − xm‖ → 0, xn → x.

3.3 Inner Product Spaces

have a norm induced by an inner product, ‖x‖ =
√
〈x, x〉, where

〈x, y + z〉 = 〈x, y〉+ 〈x, z〉, 〈y, x〉 = 〈x, y〉,
〈x, λy〉 = λ〈x, y〉, 〈x, x〉 = 0 ⇔ x = 0,

〈x, x〉 > 0.

Equivalently, a normed space that satisfies the parallelogram law

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Can be completed by taking 〈[xn], [yn]〉 := limn→∞ 〈xn, yn〉 (called a Hilbert

space).
Isometric morphisms preserve the inner product, 〈Px, Py〉 = 〈x, y〉. Unitary

morphisms are the automorphisms, i.e., invertible isometries. Conformal mor-
phisms preserve orthogonality 〈x, y〉 = 0 ⇒ 〈Tx, T y〉 = 0; hence are multiples
of isometries.

Example: ℓ2 and L2(A).

Subspaces, products have inner products:

〈(x1, y1), (x2, y2)〉X×Y := 〈x1, x2〉X + 〈y1, y2〉Y
For a ‘complexified’ real inner product space, X+ iX , 〈x, y〉 = g(x, y)+ iω(x, y)
with g, ω real bilinear non-degenerate forms on X2, but g is symmetric and ω
skew-symmetric.

1. (a) ‖x+ y‖2 = ‖x‖2 + 2Re 〈x, y〉+ ‖y‖2.
(b) 〈x, y〉 = 1

4 (‖y + x‖2 + i‖y + ix‖2 − ‖y − x‖2 − i‖y − ix‖2).
(c) |〈x, y〉| 6 ‖x‖‖y‖, so the inner product is continuous (but not neces-

sarily weakly continuous). (Take x = 〈y,x〉
〈y,y〉y + z with 〈z, y〉 = 0.)

(d) Uniformly convex (since for x, y ∈ B,
∥∥x+y

2

∥∥2 +
∥∥x−y

2

∥∥2
= 1).

2. X∗ ∼= X via x 7→ 〈x, ·〉 (onto since φ(x)y − φ(y)x ∈ kerφ = x⊥).

Hence A⊥ = { x ∈ X : 〈a, x〉 = 0, ∀a ∈ A }; A ∩ A⊥ ⊆ 0.

T ∗ acts on X as 〈T ∗x, y〉 = 〈x, T y〉; (λT )∗ = λ̄T ∗.
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3. There are linear orthogonal projections onto closed subspaces, so closed
subspaces are complemented, X ∼= Y × Y ⊥.

If M,N are complete orthogonal subspaces, then so is M +N ∼=M ×N .

To find the best approximate solution for Tx = y in x, solve T ∗Tx = T ∗y
(since y − Tx ∈ (imT )⊥).

4. T ∗T has kernel kerT , closed image imT ∗ and norm ‖T ‖2.

5. A frame is a set of (unit) vectors ei such that the norm ‖〈ei, x〉‖ℓ2(I) is

equivalent to ‖x‖. Then [[ei]] = X .

The associated Fourier series operator F : X → ℓ2(I), x 7→ (〈ei, x〉)i∈I is
1-1; its adjoint is F ∗(ai) =

∑
i aiei; F

∗F > c > 0 hence has a continuous
inverse.

Each frame has a dual ‘biorthogonal’ frame ẽi := (F ∗F )−1ei, with an
associated Fourier operator F̃ = F (F ∗F )−1, and 〈ei, ẽj〉 = δij

∀x ∈ X, x =
∑

i

〈ei, x〉ẽi =
∑

i

〈ẽi, x〉ei.

F̃F ∗ is an orthogonal projection onto imF ⊆ ℓ2, so among all
∑
i αiei = x,

‖F̃ x‖ℓ2 6 ‖(αi)‖ℓ2 .
Proof: 〈ẽi, x〉 = 〈ei, (F ∗F )−1x〉 = F (F ∗F )−1x. F = F̃F ∗F , so imF =
im F̃ .

A Riesz frame is a linearly independent frame (equivalent to an uncondi-
tional Schauder basis)

6. An orthonormal basis is a maximal set of orthonormal vectors ei, 〈ei, ej〉 =
δij (exists). Hence [[E]] = X (since E⊥ = 0).
∑

i aiei converges ⇔ (ai) ∈ ℓ2 ⇔
∑
i aiei converges weakly; hence ei is

a self-dual frame and F is an isomorphism:

x =
∑

i

〈ei, x〉ei, 〈x, y〉 = 〈Fx, Fy〉ℓ2

Hence every Hilbert space is isomorphic to some ℓ2(I), via x 7→ Fx; the
separable Hilbert spaces are ℓ2 and Fn.

7. Any compact operator is diagonalizable T = V DU∗, X
U∗

7→ ℓ2
D7→ ℓ2

V7→
Y ; Tun = λnvn, T

∗vn = λnun. Thus, any compact operator can be
approximated by a matrix.

Proof: T ∗T and TT ∗ share the same non-zero (positive) eigenvalues λ2n →
0, with orthonormal eigenvectors un; vn := Tun are also orthonormal.

Any solution of Tx = y is given by 〈un, x〉 = 〈vn, y〉/λn, assuming the
latter coefficients are in ℓ2.
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3.4 Symplectic Spaces

are vector spaces with a symplectic form ω : X2 → R such that

ω(x, y + z) = ω(x, y) + ω(x, z), ω(y, x) = −ω(x, y),
ω(x, λy) = λω(x, y), ∀y, ω(x, y) = 0 ⇔ x = 0.

The symplectic morphisms preserve this form

ω(Tx, T y) = ω(x, y)

1. Every symplectic space is isomorphic to some V×V ∗ with ω((u, φ), (v, ψ)) :=
ψ(u)− φ(v).

2. A⊥ := { x : ω(a, x) = 0 ∀a ∈ A }. A ⊆ B⊥ ⇔ B ⊆ A⊥, so A ⊆ A⊥⊥.

Y is isotropic when Y ⊆ Y ⊥; in this case, Y ⊥/Y is also symplectic. It
can be extended to a Lagrangian subspace, Y = Y ⊥.

3. Y is a symplectic subspace of X iff Y ∩ Y ⊥ = 0.

4 Finite Dimensional Spaces, RN

They are the locally compact topological vector spaces; equivalently, a totally
bounded open set exists.

Proof: Let K be a compact (bounded) balanced neighborhood of 0; then
K ⊆ F + 1

2K for some finite F with M := [[F ]]; so K ⊆ 1
2K +M ⊆ 1

2rK +M ,
so K ⊆

⋂
r(M + 1

2rK) =M and X =
⋃
r 2

rK ⊆M .

X is isomorphic to Euclidean space FN with the inner product 〈x, y〉 =∑N
n=1 ānbn. In particular, all norms are equivalent and complete.

Proof: T : FN → X , (ak) 7→
∑N
k=1 akek is continuous, since (ak) 7→ ai 7→

aiei is continuous. Conversely, let f(v) := ‖Tv‖ continuous; then 0 /∈ fS
compact, where S is the unit sphere of FN , i.e., [0, c[ ⊆ fS, c 6 ‖Tv‖/‖v‖.

1. Totally bounded ⇔ bounded
Compact ⇔ closed and bounded
xn → x ⇔ xn ⇀ x
T linear are compact and Fredholm.

2. If K is compact then so is Convex(K).

Proof: Let x =
∑
i tivi; the matrix

(
1 · · · 1
v1 · · · vk

)
has a null vector if k >

n + 1, i.e., ∃αi,
∑

i αi = 0,
∑

i αivi = 0; β := min ti/|αi|; then
∑
i(ti −

βαi) = 1,
∑
i(ti − βαi)vi = x but has less terms.

3. A∗ = Ā⊤. Unitary matrices have orthonormal columns.
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4. The Hausdorff measure satisfies µα(λE) = |λ|α µα(E). Also µα+β(E ×
F ) > cα,βµα(E)µβ(F ). Borel sets are µα-measurable; countable sets are
µα-null.

Normalized µn (n ∈ N) are called Lebesgue measures: cardinality, length,
area, volume, etc..

5. The dimension of E is dim(E) := inf{α : µα(E) = 0 }.
dim(A ∪B) = max(dimA, dimB),
A ⊆ B ⇒ dimA 6 dimB,
dim(E × F ) 6 dimE + dimF .
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5 Topological Algebras over R or C

A topological algebra is a topological ring +, λ, · that contains F in its center.
Thus it is a topological vector space with continuous +, λ, ·.

The morphisms are those maps which preserve +, λ, ·,

φ(x + y) = φ(x) + φ(y), φ(λx) = λφ(x), φ(xy) = φ(x)φ(y)

must be continuous with ‖φ‖ = 1 (the automorphisms form a closed Lie sub-
group of GL(X) with Lie algebra Der(X)). The morphisms X → C (if there

are any) are called characters ; they form the set X̂.

Examples:

• RA with fg(x) := f(x)g(x).

• B(X) for X a topological vector space.

Products are again a topological algebra.

1. 1

6 Normed Algebras

A normed algebra is a topological algebra with a norm such that

‖x+ y‖ 6 ‖x‖+ ‖y‖, ‖λx‖ = |λ|‖x‖,

‖xy‖ 6 ‖x‖‖y‖, ‖1‖ = 1

Can be completed so that [xn][yn] = [xnyn]; it is then called a Banach

algebra. If ‖xy‖ 6 c‖x‖‖y‖ then there is an equivalent norm with c = 1.

Examples:

1. C(K) with K compact.

2. L1(G) with convolution; in particular, ℓ1 = L1(Z).

3. Cn with convolution and 1-norm.

4. B(X) for X a Banach space; contains the closed ideal of compact oper-
ators. Every normed algebra is embedded in some B(X) via a 7→ La,
La(x) := ax.

5. H quaternions, with absolute value as norm.

Products are again normed algebras (with ∞-norm).
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1. The state space is S(X) := {φ ∈ X∗ : φ1 = 1 = ‖φ‖ }, a weak*-compact
convex set.

S(x+ y) ⊆ Sx+ Sy, S(x+ λ) = S(x) + λ, S(λx) = λSx, S1 = { 1 }

Proof: S is weak*-closed in the weak*-compact BX∗

2. The spectrum of an element is σ(x) := {λ ∈ C : x−λ is not invertible }.
It is a non-empty compact subset of C, with largest extent ρ(x) and small-
est extent ρ(x−1)−1 (or 0). It depends continuously on x:

Proof: σ(x)c = f−1GL(X) open; if |λ| > ρ(x) then ρ(x/λ) < 1, so x−λ =
−λ(1−x/λ) is invertible. If xn → x, then σ(xn) is eventually in σ(x)+ǫB.

‖(x− λ)−1‖ > 1/d(λ, σ(x)). When an algebra is enlarged, the interior of
σ(x) decreases, and its boundary increases; ultimately, the result is the
‘singular spectrum’ of x− λ that are topological divisors of zero.

3. The character set X̂ is weak*-compact in S,

X̂(x+ y) ⊆ X̂x+ X̂y, X̂(xy) ⊆ (X̂x)(X̂y), X̂1 = { 1 }

X̂x ⊆ σ(x) ⊆ Sx ⊆ ‖x‖B̄

Proof: X̂ is weak*-closed. If y := x − λ is not invertible, then 1 /∈ [[y]], so

there is a φ ∈ S, φ[[y]] = 0, i.e., φx = λ. If φ ∈ X̂ and y is invertible, then
φx − λ = φy 6= 0.

4. The extreme points of S are called pure states, SE , and their weak*-closure
W̄ . They generate the state space

S = Convex(SE)
w
, Sx = Convex(SEx)

Thus the largest value of Sx is achieved by a pure state.

5. Except for X = C, there are non-zero topological divisors of zero (else as
σ(x) has non-empty boundary, x = λ ∈ C).

6. a is a quasi-nilpotent (or radical element), i.e., 1− xa is invertible for all
x, iff ρ(xa) = 0, ∀x. Then σ(x+ a) = σ(x).

Proof: y + a = y(1 + y−1a) is invertible since ρ(y−1a) = 0, so λ /∈ σ(x +
a) ⇔ 0 /∈ σ(x − λ).

7. If f is analytic on an open set around σ(x), then define

f(x) :=
1

2πi

∮
f(z)(z − x)−1 dz

(a) ax = xb ⇒ f(a)x = xf(b), so f(x−1ax) = x−1f(a)x

(b) xy = yx ⇒ f(x)g(y) = g(y)f(x).
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(c) The map f 7→ f(x) is a Banach-algebra-morphism Cω(σ(x))→ X .

(d) σ(f(x)) = f(σ(x)); for ψ ∈ X̂, ψf(x) = f(ψx).

Proof: If d(λ, fσ(x)) > 0, then (f(z) − λ)−1 is analytic. If f(x) − f(λ)
has an inverse y, then (x − λ)F (x)y = 1 = yF (x)(x − λ), where F (z) =
(f(z)− f(λ))/(z − λ).
If x satisfies f(x) = 0, then σ(x) ⊆ {λ : f(λ) = 0 }. For example,
idempotents have spectrum { 0, 1 }; nilpotents { 0 }.

8. If f is analytic on an open annulus Rr then it is a Laurent series with

coefficients an = 1
2πi

∮
f(z)z−1−n dz (so |an| 6 ‖f‖∞

Rn for n ∈ N).
For σ(x) ⊂ Rr,

f(x) =

∞∑

n=−∞

anx
n

Proof: (z − x)−1 =
∑
n x

n/z1+n.

9. If σ(x) = σ1 ∪ · · · ∪ σn, each enclosed by a simple curve, then there are
idempotents ei := 1σi(x), such that 1 = e1 + · · ·+ en, σ(xei) = σi.

10. Exponential function

ex := 1 + x+
x2

2
+ · · ·+ xn

n!
+ · · · = lim

n→∞
(1 +

x

n
)n

(a) e0 = 1, (ex)−1 = e−x, enx = (ex)n, d
dte

tx = etxx.

(b) ex+y = limn→∞((1 + x
2n )(1 +

y
2n ))

n; exey = ex+y+
1
2
[x,y]+...;

if xy = yx then ex+y = exey.

(c) ex = coshx+ sinhx, even/odd parts. tanhx := sinhx(coshx)−1.

(d) The exponential function is periodic with purely imaginary period
τi; π := τ/2. Then

eiπ + 1 = 0

(e) e2πix = cos(2πx) + i sin(2πx), so sin(x+ y) = sinx cos y+ cosx sin y,
cos(x+ y) = cosx cos y − sinx sin y;

11. For any continuous derivative D, etD is an automorphism of X ; in partic-
ular etDxy = etxye−tx.

Proof: etD(xy) =
∑
n

1
n! t

n(Dnxy+· · ·+xDny) =
∑

n
1
n! t

nDnx
∑

m
1
m! t

mDmy.

12. Logarithm function For ρ(x) < 1, let ln(1 + x) := x − x2

2 + x3

3 + · · · +
(−1)n+1

n xn + · · · .
Then en ln(1+x) = (1 + x)n, so let (1 + x)p := ep ln(1+x) (p ∈ C), then

(1 + x)p = 1 + px+
p(p− 1)

2!
x2 + · · ·+

(
p

n

)
xn + · · ·
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More generally, given any simple path “branch cut” from 0 to∞ (typically
−R+), let ln z :=

∫ z
1

1
w dw (along a path that does not intersect the branch

cut). Then elnx = x = ln ex, xp := ep ln x

13. Gelfand Transform: F : X → C(X̂), where F(x) = x̂, x̂(ψ) := ψx ∈ σ(x),
is a morphism,

x̂+ y = x̂+ ŷ, λ̂x = λx̂, x̂y = x̂ŷ, 1̂ = 1, f̂(x) = f ◦ x̂.

The kernel of F contains all elements with ρ(x) = 0 and all commutators.

6.1 B(X)

1. An morphism J : B(X)→ B(Y ) induces a morphism L : X → Y ; if J is an
isomorphism, then so is L, with J(T ) = LTL−1. Hence all automorphisms
of B(X) are inner; they form the Lie group GL(X).

Proof: X ⊂∼ B(X) via x 7→ Px. J(Pa) = bψ = Pb for some unit b, ψ,
ψb = 1, since they have the same kernel and image. Hence J(Px) =
J(PxPa) = J(Px)Pb = PJ(Px)b; L(x) := J(Px)b; invertible when J is.

2. The center of B(X) is F.

Proof: T (xφ) = (xφ)T , so Tx = λx.

3. There are no proper radical elements: For every T 6= 0 there is S := xφ
such that (1 − ST )x = 0, so 1 ∈ σ(ST ).

4. There are no characters unless X = C.

Proof: Let M be a two-dimensional (complemented) subspace, and Eij
a basis for B(M). Then EiiEjj = 0, EiiEij = Eij , Ejj = EijEji, so
ψEij = 0, ∀i, j.

5. The spectrum of T ∈ B(X) splits into the

• eigenvalues when T − λ is not 1-1 (a left divisor of zero);

• the continuous spectrum with T −λ 1-1 and dense (a left topological
divisor of zero);

• the residual spectrum (otherwise; a right divisor of zero).

It includes approximate eigenvalues, i.e., (T − λ)xn → 0 for some unit xn
(i.e., T − λ is a left topological divisor of zero).

6. Distinct eigenvalues have linearly independent eigenspaces.

Proof: If v :=
∑
n αnen = 0 then 0 =

∏

n6=k

(T − λn)v = αk
∏

n6=k

(λk − λn)ek.

7. σ(T ∗) = σ(T ), σr(T ) ⊆ σp(T ∗) ⊆ σp(T ) ∪ σr(T ), σc(T ∗) ⊆ σc(T ).
When X is reflexive, σr(T

∗) ⊆ σp(T ) and σc(T ∗) = σc(T ).
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8. Recall that if T ∈ B(X) has finite ascent and descent (see Universal Algebras)
then every x ∈ X can be represented uniquely by some T ny, modulo
kerT n, i.e., X = kerT n ⊕ imT n.

9. The compact operators form a closed ideal, so B(X)/K is a Banach alge-
bra; contains the ideal F (X) of finite-rank operators.

10. If K is a compact operator, then 1 +K is Fredholm of finite ascent and
descent, its spectrum is a countable set of eigenvalues whose only possible
limit point is 0, and each non-zero eigenvalue has a finite dimensional
extended eigenspace.

Proof: If 1+K has infinite ascent/descent, then can choose separated unit
xn ∈ ker(1+K)n or im(1+K)n, soKxn is not Cauchy. T−λ = λ(1−T/λ).
Similarly, can choose separated unit eigenvectors, so Ten = λnen → λen
has no Cauchy subsequence unless λ = 0. (T − λ)n is still Fredholm.

T ∗ has the same non-zero eigenvalues and eigenspace dimensions as T ,
ker(S∗) = im(S)⊥ ∼= Y/ imS ∼= kerS.

6.2 Commutative Banach algebras

Example: Z(Z(x)) for any x ∈ X .

1. The only simple commutative Banach algebra is C (the closed ideal Xa is
0 or contains 1).

2. The radical consists of elements with zero spectrum, ρ(x) = 0 (since
ρ(xy) 6 ρ(x)ρ(y)).

3. Any maximal ideal is the kernel of some character; so X̂ 6= ∅.

Proof: I = kerπ for π : X → X/I; if I is maximal, X/I is simple, i.e., C.

4. σ(x + y) ⊆ σ(x) + σ(y), σ(xy) ⊆ σ(x)σ(y) (in Z(Z(x, y))).

5. X/J is embedded in C(X̂), since kerF = J .

im x̂ = X̂x = σ(x), ‖x̂‖C(X̂) = sup |X̂x| = ρ(x), x̂−1 = x̂−1.

Proof: If λ ∈ σ(x) then x− λ ∈ I = kerφ maximal, φx = λ.

6. The Banach algebras that are embedded in some C(K) are those that

satisfy ‖x‖2 6 c‖x2‖ for all x. In particular, they are commutative and
have trivial J .
Proof: ‖x‖ 6 c‖x2n‖2

−n

→ cρ(x) = c‖x̂‖, so J = 0; ‖xy‖ 6 cρ(yx) 6

c‖yx‖; let F (z) := e−zxaezx, analytic, then ‖F (z)‖ 6 c‖a‖, hence F (z) =
a, i.e., xa = ax.

Those that are isometrically embedded in C(X̂) are the commutative semi-

simple Banach algebras, equivalently ‖x2‖ = ‖x‖2.
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7. Dex = ex, D coshx = sinhx, D sinhx = coshx, D cosx = − sinx,
D sinx = − cosx.

7 Involution algebras

are the normed algebras with an involution ∗ : X → X ,

x∗∗ = x,

(x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗, i∗ = −i,
‖x∗‖ = ‖x‖

So ∗ is a (continuous) anti-automorphism. A complete involution algebra is
called a C∗-algebra. The ∗-morphisms preserve involution φ(x∗) = φ(x)∗.

Example: Cb(R) with f∗(t) := f(−t). Products are again involutive with

(x, y)∗ = (x∗, y∗).
A ∗-sub-algebra/ideal has to be closed under involution.

An element is called normal when x∗x = xx∗, i.e., x∗ ∈ Z(x); e.g. x+eiθx∗.
It is called self-adjoint when a∗ = a; e.g. x∗x, x+ x∗, i(x− x∗). It is unitary
when u∗ = u−1; e.g. x∗x−1 when x is normal, in particular eia when a is self-
adjoint.

1. 1∗ = 1∗1 = (1∗1)∗ = 1, so the involution on C is conjugation.

2. (x−1)∗ = (x∗)−1, σ(x∗) = σ(x)∗.
If x is nilpotent, radical, divisor of zero, or topological divisor of zero, then
so is x∗.
If x∗x and xx∗ are both invertible then so is x: x−1 = (x∗x)−1x∗ =
x∗(xx∗)−1.

3. Any element can be written as a+ ib, with a, b self-adjoint, called the real
and imaginary parts; ‖a‖, ‖b‖ 6 ‖x‖.
x∗ = a− ib, x∗x = (a2 + b2) + i[a, b], xx∗ = (a2 + b2)− i[a, b];
x is normal ⇔ ab = ba, unitary ⇔ ab = ba and a2 + b2 = 1.

4. Polarization identity: For ω := e2πi/N ,

x∗y =
1

N

N∑

n=1

ωn(x+ ωny)∗(x+ ωny)

x∗x+ y∗y =
1

N

N∑

n=1

(x+ ωny)∗(x + ωny)

5. (a) The closed ∗-sub-algebra generated by x is C[x, x∗] (non-commuting
polynomials).
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(b) Z(A∗) = Z(A)∗, so Z(A) is a closed ∗-sub-algebra when A∗ = A.

6. The kernel of a ∗-morphism and the radical J are closed ∗-ideals.

7. The normal elements form a closed subset containing C: if x is normal, so
are x∗, αx, x+ α, x±n.

Z(x∗) = Z(x). If q ∈ Z(x) is a quasi-nilpotent, then x + q is not normal
unless q = 0.

Proof: For y ∈ Z(x∗), let αx = a+ib, F (α) := e−αxyeαx = e−a−ibyea+ib =
e−2ibye2ib is bounded ‖F (z)‖ 6 ‖y‖, so constant; i.e., eᾱx

∗

y = yeᾱx
∗

.

8. The self-adjoints form a real closed sub-space (Jordan algebra) containing
R: a+ b, (ab+ ba)/2 (e.g. b ∈ R), a±n, i[a, b], are again self-adjoint.

9. The unitaries form a closed sub-group of the invertible elements G(X)
(closed under ∗ but not a normal sub-group), containing eiR.

8 C∗-algebras

are ∗-algebras such that ‖x∗x‖ = ‖x‖2.

1. For normal elements, ‖x2‖ =
√
‖x∗xx∗x‖ = ‖x‖2, so ρ(x) = ‖x‖.

Sx = Convex(σ(x)). The only normal quasi-nilpotent is 0.

Proof: If λ /∈ Convex(σ(x)) then can separate by a ball z + rB. So
|φx − z| = |φ(x− z)| 6 ‖x− z‖ < |λ− z| for φ ∈ S.

2. ‖x‖ =
√
ρ(x∗x), so the norm is unique. The involution is also unique.

3. Semi-simple: There are no radical elements, as ‖q‖ =
√
ρ(q∗q) = 0.

4. S preserves involution, φ(x∗) = φ(x)∗, ‖φ‖ 6 1, and separates points.
Sx∗ = (Sx)∗.
Proof: If a∗ = a and φ(a) = α+ iβ, then |β+ t| 6 |φ(a+ it)| 6 ‖a+ it‖ =
ρ(a+it) =

√
‖a‖2 + t2, so (2t+β)β 6 ‖a‖2 and β = 0. φ(x∗) = φ(a−ib) =

φ(x)∗. σ(a) ⊆ S(a) = 0 ⇒ a = 0. ‖φx‖2 = ρ(φ(x∗x)) 6 ρ(x∗x) = ‖x‖2.

5. The Gelfand transform preserves involution: x̂∗ = x̂∗.

6. If x is normal, C[x, x∗] ≡ C(σ(x)), via F : p(x, x∗) 7→ p(x̂, x̂∗).

In particular, can define f(x) for any f ∈ C(σ(x)) via f(x) := F−1fFx.
Then f∗(x) = f(x)∗, σ(f(x)) = f(σ(x)), and if xy = yx then f(x)g(y) =
g(y)f(x). For example, |x|.

7. The self-adjoints are the normal elements with Sa ⊆ R (since φ(a∗− a) =
0).

Let a 6 b when S(b − a) > 0. Then
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(a) α 6 a 6 β ⇔ Sa ⊆ [α, β]

(b) a+ c 6 b+ c; if a, b > 0 commute, then ab > 0.

(c) a = a+ + a−, |a| = a+ − a−, a+a− = 0, a− 6 a 6 a+ 6 |a| 6 ‖a‖.
(d) a∨b = a+(b−a)+, a∧b = a− (a−b)+; hence a (+,∨)-group lattice.

(e) a 6 b ⇒ x∗ax 6 x∗bx, in particular x∗x > 0.

(f) For φ ∈ S, φ(x∗y) is a semi-inner product, φ(x∗ax) 6 φ(x∗x)‖a‖ and
|φ(x)|2 6 φ(x∗x) (since a 6 ‖a‖).

(g) If φ 6 ψ, φ ∈ S, ψ ∈ X̂, then φ = ψ.

(h) X̂ is part of the extreme points of S.

Proof: x∗x = a+ + a−, so (xa−)
∗(xa−) = a3− 6 0; let xa− = b + ic, then

0 6 2(b2+c2) = (xa−)
∗(xa−)+(xa−)(xa−)

∗ 6 0 and xa− = 0; hence a3− =
(xa−)

∗(xa−) = 0, and x∗x = a+ > 0. a > 0 ⇒ x∗ax = (
√
ax)∗(

√
ax).

If φ 6 ψ then |φ(x)|2 6 φ(x∗x) 6 |ψ(x)|2, so kerψ ⊆ kerφ and ψ = φ.

If ψ = 1
2 (φ1 + φ2) ∈ X̂, then |φ1(x)|2 + |φ2(x)|2 6 φ1(x

∗x) + φ2(x
∗x) =

2ψ(x∗x) = 1
2 |φ1(x)+φ2(x)|2, hence |φ1(x)−φ2(x)|2 = 0 and φ1 = φ2 = ψ.

For example, 0 6 a 6 b ⇒ b−
1
4 a

1
2 b−

1
2 a

1
2 b−

1
4 6 1 ⇒ 0 6 b−

1
4 a

1
2 b−

1
4 6

1 ⇒ 0 6 a
1
2 6 b

1
2 . A map which preserves + and ∗ automatically

preserves 6 (since a 6 b ⇔ b − a = x∗x). A bijective ∗-morphism is an
isomorphism.

8. For unitary u,

(a) ‖u‖ = 1, ‖ux‖ = ‖x‖ = ‖xu‖.
(b) They are the normal elements with σ(u) ⊆ eiR.
(c) The inner automorphism by αu is a ∗-automorphism.

Proof: σ(u−1) = σ(u∗) = σ(u)∗

9. A normal element is idempotent iff self-adjoint with σ(e) ⊆ { 0, 1 }.

10. Polar decomposition: Every invertible element can be written uniquely as
x = ur, where r =

√
x∗x > 0, u := xr−1 unitary.

11. Every C∗-algebra is embedded in some B(H).

Proof: Map a ∈ X to Ja : (xφ)φ∈S 7→ (axφ)φ∈S , where xφ is a coset
of Mφ := { x : φ(x∗x) = 0 }. Hence X embeds in B(ℓ2(X/Mφ)). Note
〈xy, z〉 = 〈y, x∗z〉.
A state ψ is pure iff for any state φ, 0 6 λφ 6 ψ ⇒ φ = αψ.

Proof. If ψ = tψ1 + (1 − t)ψ2, then 0 6 tψ1 6 ψ, so tψ1 = λψ so
ψ1 = ψ = ψ2.

Conversely, if 0 6 φ 6 ψ then 0 6 φ1 6 1; if φ1 = 0 then |φT | 6 φ‖T ‖ = 0
so φ = 0; if φ1 = 1 then (ψ − φ)1 = 0 so ψ − φ = 0; if 0 < φ1 < 1 then
ψ = (1− φ1) ψ−φ1−φ1 + φ1 φ

φ1 , so φ/φ1 = ψ.
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12. A tensor algebra is the free (unital) algebra generated by a vector space
V , so that any morphism from V extends to tensors on it.

(a) Every element decomposes into sub-components of different grades

x = α + v + v2 + · · ·+ with α ∈ F, v ∈ V , v2 ∈ V ⊗ V , etc. The
grade-0 part is called its real part: Re(x) := α; Re(xy) = Re(yx).

(b) Exterior product: v1 ∧ · · · ∧ vn := 1
n!

∑
σ sgn(σ)vσ(1) · · · vσ(n))

w ∧ v =
wv − vw

2
= −v ∧ w, v ∧ v = 0

T (v1∧· · ·∧vn) := Tv1∧· · ·∧Tvn (in finite dimensions Tω = det(T )ω).

(c) Inversion (an involution) (v∗r = (−1)r(r−1)/2vr)

(α+ v + v2 + · · · )∗ := α+ v − v2 − v3 + · · ·

(d) The algebra splits in two parts X+ ⊕ X−, i.e., the even and odd

grades: x = x+n(x)
2 + x−n(x)

2 , where n : v 7→ −v. A product of r
vectors gives an element in X± depending on whether r is even/odd,
so X+ is a sub-algebra.

(e) The symmetric algebra is the commutative algebra of the quotient of
tensors by the ideal generated by the commutators; it is isomorphic
to F[V ].

13. Conjecture: The only closed ∗-sub-algebra that separates extreme points
of S is X

8.1 B(H)

1. A ∗-automorphism is of type T 7→ LTL−1 where L is non-zero multiple of a
Hilbert space isomorphism. The isometric ones are the unitary operators.

2. Distinct eigenvalues in σ(T ) and σ(T ∗)∗ have orthogonal eigenspaces.

Proof: (λ− µ)〈x, y〉 = 〈x, T y〉 − 〈T ∗x, y〉 = 0.

3. The mean value of T in the direction x is 〈x, Tx〉 (it minimizes ‖Tx− λx‖;
a functional on T ). The numerical range W (T ) is the set of mean values of
T . W (I) = { 1 },W (λT +z) = λW (T )+z,W (T ∗) =W (T )∗,W (S+T ) ⊆
W (S) +W (T ).

W (T ) is a convex subset of C satisfying

σ(T ) ⊆W (T ) ⊆ S(T ).

Proof: Let 0 < α := d(λ,W (T )) 6 ‖(T − λ)x‖, so T −λ is 1-1 with closed
image; as is T ∗ − λ∗; so T − λ is invertible.
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4. Uncertainty principle: For a fixed unit x, there is a semi-inner-product,

Cov(S, T ) := 〈Sx, Tx〉 − 〈Sx, x〉〈x, Tx〉

and semi-norm σT :=
√
Cov(T, T ), then

|Cov(S, T )| 6 σSσT

σT 6 1
2diam(σ(T )), σT = 0 ⇔ x is an eigenvector of T .

5. Normal operators :

(a) ‖T ∗x‖ = ‖Tx‖
(b) kerT ∗ = kerT = kerT 2 are T and T ∗ invariant.

(c) imT is dense ⇔ T is 1-1

(d) T is an embedding ⇔ invertible

(e) S(T ) =W (T ) = Convex(σ(T ))

(f) σ(T ) has no residual spectrum, and isolated points are eigenvalues.

(g) Eigenvalues of T and T ∗ are conjugate; no extended eigenvectors.

6. Self-adjoint : S 6 T ⇔ 〈x, Sx〉 6 〈x, Tx〉, ∀x.

7. Polar decomposition: Every T = UR, where R =
√
T ∗T and U(Rx) := Tx

is an isometry on imT . Then T ∗ = RU∗ = U∗TU∗, ‖R‖ = ‖T ‖. T is
normal ⇔ R = TU∗, unitary ⇔ T = U invertible.

Hence ideals are automatically ∗-ideals since T ∗ = U∗TU∗.

8. Unitaries : Every unitary is of the type eiA with A self-adjoint.
(U = B + iC, C = V |C|, A := V arccos(B))

Un ⇀ U ⇔ Unx → Ux (since ‖Unx− Ux‖2 = ‖Unx‖2 + ‖Ux‖2 −
2Re 〈Ux,Unx〉 → 2‖x‖2 − 2Re ‖Ux‖2 = 0).

(Stone): any one-parameter group of normal operators which is weakly
continuous in t must be of the type etT with T normal and Re(σ(T ))
bounded above; for unitary operators, eitA; more generally any unitary
representation of a locally compact T2 abelian group which is weakly con-
tinuous in t is of the form Ux =

∫
χ(x)dEχ).

9. Ergodic theorem: If T normal, ‖T ‖ = 1, then T nx → y (Cesaro) such
that Ty = y.

10. Compact operators

(a) B(H) contains the closed subalgebra C⊕K.
(b) Every ideal contains the simple ideal KF of finite-rank operators.
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(c) The compact operators form the closed ideal K = KF ; so B(X)/K
is simple (its invertible elements are the Fredholm operators). It is
maximal when X ∼= ℓ2.

(d) T has a matrix consisting of blocks of type



λ

1
. . .

. . .
. . .

1 λ




Compact normal operators are diagonalizable.

(e) Tx = y, if y ∈ (kerT ∗)⊥ and 〈eσ, y〉/σ ∈ ℓ2, then the solutions are
x =

∑
σ

1
σ 〈eσ, y〉eσ + kerT , else no solutions.

Proof: Given T ∈ I and Ta = b unit; let Exy := xy∗ for any unit y. Then
Exy = ExbTEay ∈ I. As a compact operator, on each finite dimensional
eigenspace, T = λ+ (T − λ). As kernel basis for the nilpotent A := T − λ
pick u,Au, . . . , An−1u, etc.

11. There are various closed ideals contained in K: Let the trace of an operator
be defined by tr(T ) :=

∑
i 〈ei, T ei〉; it is well-defined independently of ei

when tr(|T |) <∞.

(a) tr(S + T ) = tr(S) + tr(T ), tr(λT ) = λ tr(T ), tr(T ∗) = tr(T )∗.

(b) Trace class operators: ‖T ‖1 := tr |T | <∞, ‖T ‖1 = ‖(σn)‖ℓ1 .
(c) Hilbert-Schmidt operators: ‖T ‖22 := tr(T ∗T ) < ∞; complete inner-

product 〈S, T 〉 := tr(S∗T ); ‖T ‖2 =
√∑

ij |〈ej , T ei〉|2 = ‖(σn)‖ℓ2 .

(d) Schatten operators: ‖T ‖p := (tr |T |p) 1
p = ‖(σn)‖ℓp <∞.

(e) Hölder’s inequality: ‖ST ‖r 6 ‖S‖p‖T ‖q where 1
p + 1

q = 1
r .

12. Spectral Theorem: For T normal and f ∈ L∞(σ(T )),

f(T ) :=

∫

σ(T )

f(λ)dPλ ∈ B(H)

meaning 〈x, f(T )y〉 =
∫
σT
f d〈x, P (E)y〉, where P (E) is an orthogonal

projection measure, i.e., for any measurable subsets of σT , P (E ∩ F ) =
P (E)P (F ), P (E ∪ F ) = P (E) + P (F ) for E,F disjoint, P (En) ⇀ P (E)
for En → E, P (σ(T )) = I. f(T ) = U−1f(λ)U where U : H → H is the
unitary operator x 7→ Pλx; then

(f + g)(T ) = f(T ) + g(T ), (λf)(T ) = λf(T ), (fg)(T ) = f(T )g(T ),

f̄(T ) = f(T )∗, f◦g(T ) = f(g(T )), f̂(T ) = f◦T̂ , ‖f(T )‖ 6 ‖f‖L∞(σ(T ))

Finite Dimensions: Square Matrices
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13. The nearest number to a matrix (in the 2-norm) is tr(T )/n.

14. The quasi-nilpotents (radical) are the nilpotents.

15. The matrices with distinct eigenvalues are dense and open inMn(C) (since
T = D +N is close to D′ +N where D′ has distinct eigenvalues).

16. If p(x) = det(T − x), then p(T ) = 0
(since p(T ) =

∏
i pi(Ti) =

∏
iA

ni

i = 0, pi(x) = (x− λ)n).

17. Self adjoint matrices : If T , with eigenvalues λi, is restricted to PTP where
P is a projection to a sub-space M of one dimension less than M (for
example, by removing the kth row and column), then the new eigenvalues
are interlaced

λ1 6 µ1 6 λ2 6 µ2 6 λ3 6 · · · 6 λn

18. Positive matrices, amn > 0. W (T ) has its largest extent for a positive real
x.

19. n
√
|detT | 6 √nmaxi,j |T ji |; the maximum is achieved by the Hadamard

matrices: HH∗ = nI, H0 = [1], Hk+1 =

(
Hk Hk

Hk −Hk

)
)

8.2 Commutative C∗-algebras

Equivalently, every element is normal.

Examples:

• L∞(A) of bounded measurable functions, with usual product and f∗(a) =
f(a).

• Cb(X), bounded continuous functions, when X is a locally compact T2
space; contains the closed ideal C0(X). For example, C(K) forK compact;
e.g. C(S), ℓ∞ = Cb(N), Cn = C(n).

• The generated subalgebra Z(A ∪ A∗); Z(x) for a normal element.

1. X ≡ C(K) via the Gelfand map. The state space consists of the positive
Radon measures. The characters are the Dirac functionals δx(f) = f(x).

2. The self-adjoints form a real Banach lattice algebra. They correspond to
the real-valued functions.

3. The unitaries correspond to unit-valued functions.

4. Stone-Weierstraß: Any ∗-subalgebra that separates points is dense in X .
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8.3 Finite Dimensional Algebras

Equivalently a regular Banach algebra (i.e., every element is regular ∀a, ∃x, axa =
a).

It can be given the non-degenerate bilinear form 〈x, y〉 := tr(x∗y) where the
elements are considered as matrices.

They are the reflexive C∗-algebras. Proof: If X is infinite dimensional then
there an x ∈ X with K := σ(x) ⊇ A countably infinite; so X ⊇ C∗(x) ∼=
C(K) ⊇ C(A) ∼= c, which is not reflexive.

The ∗-simple finite-dimensional C∗-algebras are Mn(C) and Mn(C)2 (with
(x, y)∗ = (y∗, x∗).) Of these the only commutative ones are n = 1, i.e., C and
C2.

8.3.1 Frobenius Algebras

are finite-dimensional algebras with a non-degenerate bilinear form such that
〈xy, z〉 = 〈x, yz〉.

Examples: Mn(F) with 〈x, y〉 := tr(xy).

8.3.2 Geometric Algebras

A geometric algebra is the algebra generated by a real/complex finite-dimensional
vector space V such that v2 ∈ R for v ∈ V . Note that q(v) := v2 is thus a
quadratic form.

Let g := [〈ai, aj〉] = RDR∗, with D consisting of p 1s, q −1s and r 0s; the
orthogonal columns (in Euclidean sense) of R form an orthogonal basis ei (wrt
the bilinear form); so ejei = ±eiej or 0.

The algebra has dimension 2dimV , generated by the orthogonal basis ei · · · ej
(1 6 i < · · · < j 6 n, adding 1 separately). As tensors, the elements are
graded. The elements of grade r give an

(
n
r

)
-dimensional subspace. The highest

grade subspace is one-dimensional, called the pseudo-scalars, generated by ω =
e1 · · · en.

〈x, y〉 := Re(x∗y) = αβ +
vw + wv

2
+ · · ·

Note vw + wv = (v + w)2 − v2 − w2 ∈ R.

vw = 〈v, w〉 + v ∧w, 〈α+ v, α+ v〉 = α2 + v2

〈1, v〉 = 0, 〈v, w〉 = 0 ⇔ vw = −wv
〈x, yz〉 = 〈y∗x, z〉 = 〈xz∗, y〉

vvr = v · vr + v ∧ vr

where v ·vr := vvr−(−1)rvrv
2 , v∧vr = vvr+(−1)rvrv

2 (by induction); more generally

vrvs = vr · vs + · · ·+ vr ∧ vs

where vr · vs has grade |r − s|, up by two grades, to the highest grade r + s.
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1. X+ is a geometric sub-algebra.

2. 1
2 (uvw + wvu) = 〈v, w〉u− 〈w, u〉v + 〈u, v〉w

3. u · (v ∧ w) = 〈u,w〉v − 〈u, v〉w,
u · (v1 ∧ v2 ∧ v3) = 〈u, v1〉v2 ∧ v3 − 〈u, v2〉v1 ∧ v3 + 〈u, v3〉v1 ∧ v2, etc.

4. Hodge duality: ∗x := −ωx.
∗vr = vn−r = −ωvr = −(−1)r(n−1)vrω, so there is a correspondence
between r-vectors and (n− r)-vectors.
∗(xy) = ∗(x)y; e.g. vr×ws := ∗(vr∧ws) = ∗vr ·ws, u×(v×w) = −u·(v∧w),
∗(vr · ws) = ∗(vr) ∧ws.

5. For any morphism T , y ∗ T (x) = T ∗(y) ∗ x. Eigenvectors can be extended
to Tvr = λvr.

6. Rotation by θ in e1, e2 plane: x 7→ rxr∗, where r = ±ee2e1θ/2 (called a
‘rotor’).
Reflection along direction e is v 7→ (eve)∗ = −eve.
Inversion is v 7→ v−1 = v/v2.

Exterior algebra: v2 = 0 for all v ∈ V . For all u, v, 〈u, v〉 = 0, so
uv = u ∧ v.

Non-degenerate geometric algebras: v2 = 0 ⇒ v = 0. Hence the
Clifford algebra is Cℓp,q(R) or Cℓn(C).

There is a conjugation x 7→ axa∗−1.

X = Cℓp,q(R)
Y = Cℓq,p(R) p p+ 1 p+ 2

q X X+
p+1,q

∼= Y Cℓ2,0 ⊗ Y
q + 1 X+

p,q+1
∼= X Cℓ1,1 ⊗X

q + 2 Cℓ0,2 ⊗ Y

Proof: Use the maps J : ei 7→
{
e′i ⊗ e′′1 ⊗ e′′2 i 6 p

1⊗ e′′i−q i > q
for a basis e′i of

Cℓp,q(R) and e′′i of Cℓ2,0(R) = M2(R); or J : ei 7→
{
e′i ⊗ e′′1 ⊗ e′′2 i 6 p

1⊗ e′′i−p i > p
; or

J : ei 7→





e′i ⊗ e′′1e′′2 i 6 p or p+ 1 < i 6 p+ q + 1

1⊗ e′′1 i = p+ 1

1⊗ e′′2 i = p+ q + 2

.

It follows that Cℓp+1,q
∼= Cℓq+1,p, Cℓp,q+4

∼= Cℓp+4,q, Cℓp+8,q
∼= M16(Cℓp,q); if

p− q = 1 (mod 4) then Cℓp+i,q ∼= Cℓp,q+i.
Hence the first few geometric algebras over R are (note that Mn(R) ⊗ F ∼=

Mn(F), C⊗H ∼=M2(C), H⊗H ∼=M4(R))
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p− q − 1 (mod 8) 0 ±1 ±2 ±3 4
Cℓp,q(R) R(m)2 R(m) C(m) H(m) H(m)2

where F(n) :=M2n(F).
Similarly, Cℓn(C) ∼= C(n) or C(n)2, Cℓn+2

∼=M2(Cℓn).

Proposition 1

The finite-dimensional real division algebras are R, C, and H.

The only complex finite dimensional division algebra is C.
Proof: Any x ∈ X satisfies a polynomial 0 = (x − α) · · · (x2 − 2βx + γ);

hence x ∈ R or it satisfies x2− 2βx+ γ = 0. For x /∈ R, x has only two complex
eigenvalues λ, λ̄, so x2 ∈ R ⇔ λ + λ̄ = 2β = 0 ⇔ tr(x) = 0. Hence X is a
geometric algebra.

For a geometric division algebra, e2 = 0 ⇒ e = 0, e2 = 1 ⇒ (e+1)(e−1) =
0 ⇒ e ∈ R; if e2i = −1, then (1 − e1e2e3)(1 + e1e2e3) = 0. So the only
possibilities are Cℓ0 = R, Cℓ0,1 = C, Cℓ0,2 = H.

�

(There is also the octonion algebra O which is weakly associative, x2y =
x(xy), yx2 = (yx)x).

8.3.3 Finite-dimensional Complex Lie algebras

Example: The skew-adjoint matrices u(n), satisfying A∗Q = −QA, where
Q(x, y) is linear in y and anti-linear in x.

Solvable Lie algebras are embedded in the upper-triangular matrices b(n).
Semi-simple Lie algebras are products of simple Lie algebras. These are

Simple Lie algebra sl(n) so(2n+ 1) so(2n) sp(2n) g2 f4 e6 e7 e8
Corresp. Weyl group An−1 Bn Dn Cn G2 F4 E6 E7 E8

(They are classified because the Weyl group of reflections along the root
vectors form certain Coxeter groups). so(3) ∼= R3 (with cross-product).

8.3.4 Finite-dimensional Jordan algebras

The formally real Jordan algebras (i.e.,
∑

i x
2
i = 0 ⇒ xi = 0) are classified -

they are the product of the simple ones, i.e.,

1. “Real”, the self-adjoint operators on RN ;

2. “Complex”, the self-adjoint operators on CN ;

3. “Quaternionic”, the self-adjoint operators on HN ;
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4. “Octonion”, the self-adjoint operators on O3 (exceptional case);

5. “Spin factor”, R× RN with (s,x) ∗ (t,y) = (st+ x · y, sy + tx).

The first 4 examples all have x∗y = (xy+yx)/2. Their projections are RPN−1,
CPN−1, HPN−1, OP 2.

9 Examples

Finite Dimensional Spaces

1. Euclidean space with inner product 〈x,y〉 := ∑n
i=1 āibi. Euclidean theo-

rems apply.

2. Taxicab metric ‖(a, b)‖ := |a| + |b|. Although its topological properties
are the same as the Euclidean case, its metric properties are different.
There are many shortest paths between two points; the angle between
two unit vectors can be taken to be the length of arc on the unit circle;
equilateral triangles need not be equiangular, SAS triangles need not be
congruent; ‘conics’ as d(x, a) = ed(x, b), as sum/difference of distances
from two points being constant, or as distance from line d(x, L) = ed(x, a);
circles may touch at a whole line.

3. Dual numbers: the exterior algebra on R: a+ bǫ with ǫ2 = 0. (a+ bǫ)∗ =

a − bǫ. Isomorphic to

(
a b
0 a

)
. It is a local ring. For any differentiable

function, f(a+ bǫ) = f(a) + f ′(a)bǫ.

4. Cℓ3(R) =M2(C), can be represented by the Pauli matrices
(
0 1

1 0

)
,
(
0 −i

i 0

)
,

(
1 0

0 −1

)
(they generate sl(2)). Contains the quaternions (as σi/i).

5. H = Cℓ0,2(R), can be represented by i =
(
σi 0

0 σi

)
where σi =

(
0 −1

1 0

)
, and

j, k =
(
0 −σ

σ 0

)
where σj =

(
1 0

0 −1

)
, σk =

(
0 1

1 0

)
.

Sequence Spaces

6. RN with pointwise convergence. Has quasi-norm
∑
n

1
2n

|an|
1+|an|

. Locally

convex, but not locally bounded.

7. ℓ∞ of bounded sequences with norm supn |an|, and involution (an)
∗ :=

(a∗n), hence a C
∗-algebra. Its dual is ba, so not reflexive; not separable. It

is injective, i.e., it is complemented in any larger Banach space (via pro-
jection x 7→ (πix) where πi are extensions of the coordinate projections).
Weak convergence implies pointwise iff weak* convergence.

c is the closed subspace of convergent sequences (not complemented in
ℓ∞); isomorphic to c0, the subspace of sequences that converge to 0, a Ba-
nach algebra; isomorphic to cs, the space of convergent series with norm
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‖(an)‖cs := supn |
∑

i>n ai| (cs∗ ∼= bv). ‖(an) + c0‖ = lim supn |an|. Its

dual is ℓ1, so not reflexive; Schauder basis en, so separable. Not weak com-
plete, e.g. (1, . . . , 1, 0, . . .) is weak Cauchy but does not converge weakly.
en ⇀ 0. It is the only separable injective Banach space. The closed unit
ball of c0 is not weak compact and has no extreme points; the closed unit
ball of c has extreme points ±1. The character space consists of δi.

8. ℓ1, the space of absolutely summable series with norm ‖(an)‖ :=
∑

n |an|,
a Banach algebra. Dual space is ℓ∞, so not reflexive; Schauder basis en,
so separable. Weak*-convergence iff pointwise convergence and bounded.
Weak convergence of sequences iff norm convergence, implies pointwise
convergence. The closed unit ball has extreme points eiθen. The charac-
ters are BC, with ψ(an) =

∑∞
n=0 anz

n ‘generating function’.

ℓ1(Z) has characters S1 and ψ(θ) =
∑
n∈Z

anz
n; σ(an) = im (̂an); (an)

has a ∗-inverse iff
∑

n ane
inθ 6= 0 for all θ. Can be made into a C∗-algebra

with (an)
∗ = (ān) and norm ‖x‖ = ‖Lx‖, embedded in B(ℓ2).

9. ℓp, p > 1, with norm ‖(an)‖ := p
√∑

n |an|p. I : ℓp → ℓq is continuous
for q 6 p; (Pitt) Every operator ℓp → ℓq is compact when q < p; hence
ℓp 6∼= ℓq. Dual space is ℓp

∗

where 1
p + 1

p∗ = 1, so reflexive; uniformly
convex; Schauder basis en, so separable. Weak convergence iff pointwise
convergence and bounded. The set { en : n ∈ N } is closed (discrete) but
en ⇀ 0; { en } ∪ { 0 } is weakly compact. n1/pen 6⇀ 0 (since unbounded)
but 0 is a weak limit point of the sequence (∀N, ∃n > N, n1/pen ∈ Vx,ǫ).
The compact operators form the only closed ideal (p > 1).

ℓ2 has inner product 〈(an), (bn)〉 :=
∑

n ānbn.

10. ℓp, 0 < p < 1, with quasi-norm ‖(an)‖ :=
∑
n |an|p. Locally bounded,

separable (via en), not locally convex. Dual space is isometric to ℓ∞ via
usual x 7→ x

∗. The set 1
n1−p en is totally bounded but its convex hull is

unbounded (e.g.
∑N
n=1

1
n1−p en/N).

11. James’ space: subspace of c0 with norm

sup
(ni)∈O

‖(an2
− an1

, · · · , ank
− ank−1

, ank+1
, 0, . . .)‖

ℓ2
,

where O is any odd sequence of (increasing) integers. Complete, separable
with en as a conditional Schauder basis. Not reflexive even though X ∼=
X∗∗.

12. ba, the space of finitely additive signed measures on N, with norm ‖µ‖ :=
supE⊆N µ(E) − infE⊆N µ(E). Not separable. Although the unit ball is
weak*-compact it is not sequentially compact, e.g. e∗n acting on ℓ∞ has no
weak*-convergent subsequence.
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Contains the closed subspace bv, of sequences of bounded variation with
norm ‖(an)‖bv := |a1| +

∑
n |an+1 − an|; isomorphic to ℓ1 via (an) 7→

(a1, . . . , an+1 − an, . . .). en 6⇀ 0.

Function Spaces

13. L1[0, 1], space of functions with norm ‖f‖1 :=
∫ 1

0 |f |. Dual space is
L∞[0, 1], so not reflexive; separable by polynomials. Weakly sequentially
complete: every weakly Cauchy sequence converges weakly. The closed
unit ball has no extreme points.

L1(S1) has character space Z, ψn(an) =
∫ 2π

0
einθf(θ) dθ; the Gelfand map

are the Fourier coefficients.

L1(R) has character space R, ψξ(f) =
∫
eixξf(x) dx; the Gelfand map is

the Fourier transform.

L1(R+) has character space R+×iR, ψz(f) =
∫∞

0
e−zxf(x) dx; the Gelfand

map is the Laplace transform.

14. Lp[0, 1], 1 < p, with norm ‖f‖p := p

√∫ 1

0 |f |p. Dual space is Lp
∗

where
1
p + 1

p∗ = 1, so reflexive; uniformly convex since

2(‖f‖p
∗

+ ‖g‖p
∗

)p−1 6 ‖f + g‖p + ‖f − g‖p 6 2(‖f‖p + ‖g‖p), (p 6 2)

(reversed inequalities for p > 2); separable. I : Lp[0, 1] → Lq[0, 1] is con-
tinuous for q 6 p, with meagre image (unit ball has no interior in Lq).
The closed unit ball has its boundary as extreme points.

L2[0, 1] has inner product 〈f, g〉 :=
∫ 1

0 f̄ g; isomorphic to ℓ2. The Hilbert-
Schmidt operators are the integral operators with kernel in L2[0, 1]2.

15. Lp[0, 1], 0 < p < 1. Locally bounded, but there are no non-trivial open
convex subsets; hence trivial dual space (no morphisms into a locally con-
vex space); the only weakly closed subspaces are 0 and X . No Schauder
basis.

16. L∞[0, 1], space of bounded (ae) functions with norm ‖f‖∞ := supx a.e. |f(x)|.
Isomorphic to ℓ∞; not separable. The closed unit ball has extreme points
|f | = 1 a.e..

17. L0[0, 1], the space of measurable functions with fn → 0 when ∀ǫ >
0, µ{ x : |fn(x)| > ǫ } → 0 as n→∞.

18. C(Ω), the space of continuous functions with complete quasi-norm: if (fn)
is Cauchy, then (fn) is Cauchy in each C(Ki), so fn → f in Ki; take f as

patch of all these f ’s; then |fn − f | =
∑
i

1
2i

|fn−f |i
1+|fn−f |i

< 1
m , i.e., fn → f

in C(Ω).
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C(K) is separable iff K is metrizable (similarly C0(X)). Dual space con-
sists of regular Borel measures of bounded variation (not separable: un-
countable δt). Weak-convergence iff pointwise and bounded. The closed
unit ball has extreme points δx, x ∈ K.

C[0, 1] with involution f∗(t) = f(t), a C∗-algebra; has character space
[0, 1], δt; its Gelfand map is the identity, σ(f) = im f . The closed ideals
correspond to closed subsets of [0, 1] as IA = { f : fA = 0 }. σ(f) = im(f).

C(RN ). Locally convex but not locally bounded; not separable (contains
ℓ∞). The closed unit ball has extreme points ±1 (or |f | = 1 if over C).

Matrix Algebras

19. B(ℓ2), not separable (contains ℓ∞).

20. B(c0). Each eigenvalue belongs to a closed disk about Tii of radius∑
j 6=i |Tji|.
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