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1 Topological Groups

A topological monoid is a topological space with a continuous monoid oper-
ation, (x,y) — zy (in particular z — ax, z — xa),

lim(x;y;) = lim a; lim y;.
(3 (2 K3

A topological group is a (Tp) topological monoid with continuous inversion

x =zt

1imx;1 = (limz;) "t
1 1
(Note: there are groups in which multiplication, but not inversion, is continu-
ous, e.g. ordered groups with Alexandroff topology; other groups have topologies

with multiplication that is continuous in each variable, but not jointly.)

The topology depends only on the neighborhood base of 1, since by trans-
lation, N, = zN; = MNjz. In fact, N presents a uniform structure with
By(z) = 2U for any U € N (ie., 1 € U, U™t € Np, 3V € N, VV C U
by continuity of %) (or By (x) := Uz or zU NUx or UzU).

Morphisms are the continuous group-morphisms; it is enough to check conti-
nuity at 1. Examples of morphisms are n — a”, Z — G; conjugation z — o~ 'za
is an inmner automorphism.

Examples:

 RX x R with (i) (2)(2) = (w7%0); (i) (2)(8) = (u£%,) (2 Affine(R)).
+ Sequences of integers with pointwise convergence.

« Z with the ‘evenly spaced topology’ of arithmetic sequences a + bZ.

« Any group with topology generated from a family N of normal subgroups
such that (YN = {1} and their cosets; e.g. the discrete topology.

« Free topological groups: The free group A* on any topological space A,
with topology generated by multiplication and inversion.

+ The permutations S(A) of a discrete topological space A, with composition
and pointwise convergence (induced by A#). Every topological group can
be embedded in some such group.
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« The isometries of a metric space, with composition and pointwise con-
vergence. Every topological group can be embedded in Iso(X) for some
Banach space X.

+ The automorphisms Aut(K) of a compact T3 topological space, with com-
position and the compact-open topology of C(K, K). Every topological
group can be embedded in some such group.

Top. Finitely
Finite gi?)e réi?itv;g;llz 2°d Countable | Separable

Base
Topological n 7N N 42 R mR 72" g0
Groups /1]]/ ZLa+or, Q™ Z", RV, ¢ Z®, R®, C[0,1] )
Locally Compact Z"™, R"™ GL(n), i
Group}; ’ /1111 H3(R), {a b}*( ) Q. 20 2 X2, T xR | Diserete R

R

Compact Groups Sn SO(n) SN SR Sy
é]f;llis: Compact | ¢, ", T 2N 2R TR 22", T

Subgroups, products X x Y, sums ) . X; (a subgroup of [[, X;), functions
XA its subgroup of continuous functions C'(A, X) when A4 is a topological space,
and X x4 Y are also topological groups.

1. Translations L, : © — ax, Ry : * — za~ ', and inversion = + 7!

are homeomorphisms (hence preserve closed, open, connected, compact,
...subsets), and Lo, = LoLp, Rapy = Ry Ry.

If U is open in X, and A C X, then AU(= J,c4 aU = By(4)), UA, and
U~ are also open. N is closed under products and inversion of its sets.
2. (a) YU € Ty, IV € Ty, 2U =V, (similarly) zyU D zVyV.
(In particular, VaV C zU, VV CU; V~lz C 22U, V=12V C 2U).
(b) Every U € T; contains a “symmetric” open set, i.e., V=1 = V,
eg. UNUL.
(c) AB Q_E7 A7l = A1 zA = 2A, (zA)° = 2A°; A = Nuer, AU
(= U CUU).
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4.

5.

(d) If A, B are connected/compact/totally bounded, then so is AB.
(But Z x 0+ {(n, ) :n € Z} is not closed in Q2.)

(e) If K is compact and F closed then KF is closed.
Proof: Ifz ¢ KF,then UKNzF~! = & (since T3),so U 'z C (KF)°
(since ANBC =9 & AC™'NB=92).

(f) Disjoint compact and closed subsets can be separated using the same
open set: KUNCU = 2.
Proof: For x € K, 3V, 2V NC = @; let WWW C V, so 2WW N
CW=gand K C xyW1U---Uz,,Wy; U := ), W;; then KUNCU C

(a) A subgroup is either clopen (no boundary), or has no interior.
Proof: If a,b € H and aU C H (U € N;), then bU C ba~'H = H;
its complement of cosets is also open.

For example, 27 is clopen in Z; Q is neither closed nor open in R; R
is a boundary set in C.

(b) The closure of a (normal/abelian) subgroup is a (normal/abelian)
subgroup.

Proof: If z,,y, € H, 2, — x, yo — v, then z,y, — zy € H,
;' >zt eH.

(c) H~H is either & or dense in H (since if y € HNH and z € H, then

yU contains some a € H; so xy~la € xUNH).

Denote the subgroup generated by A by [A] = U,,cy(AUA™)™. Every set

(‘topologically’) generates a closed subgroup [A]. A ‘basis’ is a minimal
topologically generating set of G.

The subgroup generated by

(a) a non-empty open set is clopen

(b) a compact set is o-compact

(¢) a connected set containing 1 is connected
)

(d) a finite set is separable, and [aq,...,a,] is second countable.

[A] has a (non-compatible) left-invariant metric d(z,y) := min{n : z €
y(AU A~1)" 1. Note that if 1,a € A, then [a—*A] = [A].

(a) The kernel of a morphism is a closed normal subgroup. Closed normal
subgroups give quotients that are topological groups.

(b) Stabilizers of some group action, e.g. the centralizer and normalizer
of any subset, are closed subgroups.

(c¢) Discrete subgroups are closed.
Proof: There is U € T; such that U7'UNH = {1}; if h; — =,
then = 'h; € U eventually; but x_lhi,x_lhj € U implies h;lhj S
U~'UNH, so h; is eventually constant; hence x € H.
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6. The topology is homogeneous T3 5; so a topological group with an isolated
point is discrete (e.g. finite groups); the connected components are either
uncountable or points, so the only countably infinite groups are discrete
or have the topology of Q. Note that ZF is not T}.

(Markov) Every T35 topological space is embedded in some topological
group.

7. A filter is Cauchy when

VUeT, JAe F, z,yc A = z lyelU.

If F is Cauchy and F C G — = then F — x.
Proof: Let U € Ty, VV C U, then zV € G and there is A € F with

AA~

1CVisoace AnazV € G, and A C aV C 2VV C 2U, so 2U € F,

ie., N, CF.

8. A function is uniformly continuous when VU € 71,3V € Ty, f(zV) C
f(z)U, e.g. morphisms; preserve Cauchy filters, total boundedness.

Proof: By continuity at 1, for any U € 71, thereis V € 71, ¢V C U; hence
o(xV) C ¢(z)U.

9. The following are closed characteristic subgroups (hence normal):

(a)
(b)

(f)

The center Z(G)

(i1, the connected component of 1; the other components are its
homeomorphic cosets; contains the connected subgroup [G, G;]. For
any clopen set U, UG, = U. The component of [[, G; is []; Gi1.

Q(G):=N{A:1¢€ Aclopen in G}, the quasi-connected component
of 1

Core(G) := ({ H < G : clopen }, here called the “core”; any neigh-
borhood of 1 generates a subgroup that covers it. The clopen sub-
groups form a filter in the lattice of subgroups.

NCore(G) := ({H < G : clopen }, the “normal core”; any normal
neighborhood of 1 eventually covers it; the clopen normal subgroups
form a monoid with NCore(G) as identity.

G1 C Q(G) C Core(G@) € NCore(Q)

In alocally connected group, GG1 is normal clopen, so NCore(G) = G.
The polycompact radical, PRad(G) :=J{ H < G : compact }

Proof: G1Gq, Gfl, ¢~ 'G1 are connected and contain 1. The map x —
[y, z] is continuous, so [y, G1] are connected and generate the connected
subgroup [G, G4]. For u € U clopen, uG; is connected, so uGy C U.
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For any clopen subset F and a € @, then Fa™!', F~!, and ¢~ ' F are clopen
and contain 1, so QQ (since Q@ C Fa™1), @1, and ¢Q are subsets of F.

Similarly, for any (normal) clopen subgroup H, the (n)core C' C ¢~ 1H, so
¢C C H; for any neighborhood of 1, [U] is clopen, so contains Core(G).
If H< K and x € H then K C H is open, so H is open.

10. A normal subgroup that is totally disconnected, 0-D, or discrete, com-
mutes with G1, Q(G), or Core(G), respectively.

Proof: f : x ~ [a,] is continuous, and G — H when a € H; f~'1 is
the centralizer c¢(a); fG1 is connected in H, hence fG; = {1}. For any
b € H~1, there is U, clopen on 1 not containing b, so Q C f~'U, and
Q C N, f'U, = f7'1. If H discrete, f~'1 is a clopen subgroup, so
Core(G) C ¢(a).

A discrete normal subgroup is called a lattice of G.

11. Series or products: By [ ], ; is meant the net of finite products ( H x;).

i€EA
A finite

So a product is Cauchy when for any U € T, there is a finite set I such
that for any finite set J, [[,. ;2 € U.

For sequences, [[,,cy #n is Cauchy when [1} z; € U for n, m large enough.

(In additive notation, products are written as ) _.)
For abelian groups, [;(z;v:) = (IT; z:)([1; %) and [T, z; " = ([]; z:) "

Topological groups can act on topological spaces (where the action (g, z) —
g - x is required to be continuous), and on measure spaces (where the action
must preserve measurable (and null) sets). For example, G acts on the cosets
of a closed subgroup by = -yH := xyH. A function on X is left-invariant when
flxr, ... zn) = f(g-21,...,9 ) for any g € G. For example, a measure is
left-invariant when p(zE) = u(E).

A local group is a topological space with a partial group structure, i.e., there
is a 1, left/right translations by a neighborhood of 1 are defined, as well as
inverses, and continuity and associativity hold whenever possible; local groups
are locally isomorphic when a neighborhood of 1 in X is homeomorphic to a
neighborhood of 1 in Y and ¢(zy) = ¢(z)d(y), ¢ *(zy) = ¢~ (x)¢~(y) hold
whenever possible.

Structure of G

1. For H a closed normal subgroup, G/H is a topological group and the
morphism 7 : G — G/H is an open map (since 7U = UH).

For an open morphism, the map z ker ¢ — ¢(x) is an isomorphism
G/ker ¢ 2 im¢

Also, (G/K)/(H/K) &2 G/H, but HK/K = H/H N K may be false,
e.g. for a € Q% aZ/(aZ NZ) = Z but (aZ + Z)/Z is not discrete.
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[1,(Gi/H;) = (I, G:)/(11; Hi) via the open morphism (x;) — (x;H;).

2. If H is clopen then G/H is discrete.
If H is compact, then 7 : G — G/H is a closed (and open) map (F' closed
in G is compact, so F'H is closed).

3. If H and G/H are both connected/compact/separable, then so is G.

Proof: xH is connected, so if F' is clopen, then tH C F or ztH C F¢;
so nF = G/H as it is clopen. Given an open cover U, of G, each xH is
covered by a finite number of them; of these, 7U, cover G/H.

4. Recall from topology, that G/G; is totally disconnected and G/Q(G) is
completely disconnected. The clopen subsets of G/Q(G) correspond to
those in G.

G /NCore(G) has trivial NCore, so it is embedded in a product of discrete
groups.

For G locally connected, G/G1 is discrete.
Proof: If H is a normal clopen subgroup, then G/H is discrete; so = —
(zH) for all such H is a 1-1 open morphism.

5. The simple topological groups are either connected or totally disconnected,
have no clopen subgroups or are discrete, are abelian or have trivial center,
etc.

1.0.1 Normed Groups

Given a left-invariant metric, define the norm ||z| := d(1,z), G — R*, so that
d(z,y) = d(1,2~'y) = ||l#~1y||; then the metric properties become:

eyl < llll + Iyl d(a, c) < d(a,b) + d(b, )
2= = [l d(b,a) = d(a,b)
|z]| =0 & z=1 d(a,b) =0 a=1b
Then [[z]| > llzz™"| =0, [z1 - -au] < [lzall+ - +llzall, [zl = [yl < 27yl
(so the norm is continuous); B, (z) = B, (where B, := B,(1)), ByBs C Byjs,

B! =B,.
The metric is compatible with the topology of G if B, are open and form a
base (“V C B, C U”); the boundary of B, need not be S, :={x: |z|| =1}
A metric is left-right invariant < ||lyz| = ||lay| & Brx = zB, < the
topology is ‘balanced’, i.e., there is a base of normal open sets.

Proposition 1

(G is normable < it is first countable.



https://staff.um.edu.mt/jmus1/topology.pdf

JOSEPH MUSCAT 2015 7

PRrOOF: Given any bounded f : G — R (can assume f(1) = 0), a semi-norm
can be created by |a| := sup, |f(za)— f(z)| = |f(a)|. For first countable spaces,
there exist compatible norms: Let Vj,5» be a nested sequence of symmetric 1-
neighborhoods such that V12/2n+1 C Vi /on; for any dyadic rational p = 0-71 ... 7,
(ri = 0,1), let V,, ==V, j5---V,. san, so that V,V;, C Vi 4; let f(a) := inf{t :
a € V; } (extended by 1 in Vf); hence f(a) <t < a € Voo By CV; C By,
since for any a € Vi, € > 0, x € G, there is a dyadic p such that p < f(z) < p+¢;
so za,x " a € Vyi Vi € Vigpie, s0 |a] = sup, | f(za) — f(z)| < t+e.

O

Examples:

1.

2.

Linearly ordered groups with the interval topology, since |2’z < 4,
ly=| <6 = d Y ay) 16! <2’y < Sxys. Examples: Z+, Q+, R*-.

Subgroups; open images using

In(@)ll = int

= inf || =d(z, 7711
it ol ly~"ell = d(ar, 7 1)

m(y)=1
hence quotients (||zH|| = d(z, H))
Countable products of normed groups (since first countability is preserved).

(>(G) with (an)(bn) := (anbn), [[(an)| := sup,, [lan |-

A morphism is Lipschitz when || f(z)| < ¢||z]|.

A subset is bounded iff Vx € A, ||z| < ¢, i.e., A C B.. If A, B bounded
then so is AB.

I TL, znll <32, llznll; so in a complete normed group, if ) [|#, || con-
verges (‘absolutely’), then so does [], .y 2n; moreover sub-‘series’ (even
rearrangements, and inverses) converge as well.

Proof: || I || < Ziv:M [l l;

N max{ oc(M),...,o0(N
S 75 | < el e L el = 0.

However ) % converges but Y, 1 doesn’t.
Root test: If r := lim,, oo Hanl/n < 1 then [], x, is Cauchy (e.g. when
|zn]| < 5%); if 7 > 1 then it diverges.

llzn 1]l
[EM]

Ratio test: v = lim,,— o if it converges.

Proof: d(z1-- 2p, 21 &m) = [|[Tnt1 - Tl < (r 4+ €)™ else ||z,| =
(r — €)™ > 1 for infinitely many n. For n large enough, (r —¢€)" " <
[z ll/ ol < (r 4 €)"7m.



JOSEPH MUSCAT 2015 8

. Separable first countable groups and o-compact metric groups are second
countable (from topology).

. The norm induced on an open image of a complete group is complete. So
quotients are complete if G is complete.

Proof: Let ¢(z,) be absolutely convergent in im ¢, so ) ||¢(z,)| con-
verges. For each n, there is a vy, [|vn|] < ||@(zn)]| 4277, d(n) = ¢(vn), sO
> llvn]| converges as does y_, v, = v. Hence ) é(z,) =, d(v,) =
P2 vn) = &(v).

. If ¢: X - Y is a morphism with X is complete, and ||¢(x)| > ¢|z| then
¢ is 1-1 and has a closed image.

. Proposition 2

Open Mapping Theorem

An onto morphism from a complete separable
normed group to a non-meagre group is open.

Examples of non-meagre groups are complete metric groups and locally
compact groups.

PROOF: ¢B, is not nowhere dense since H is not meagre:

H = ¢G = ¢A = $(AB,) U¢an

¢ B, form a base for H: there is an interior point aV' C ¢B,. /3, so

le WT = V_lv - ¢B7’/2¢)Br/2 - ¢Br
VYU € Ti(H),3V C U,3r, ¢B, CV by continuity of ¢, so ¢B, CV C U.

W,3 C ¢B,/3 € ¢B,: Let y € ¢B,3; then there is an z; € B,/3 with
B(r1) € yp B, 9; SO d(xy) Ly € #B,/9; continuing by induction

Jz, € Br/3"7 (b(xn) € (b(xn—l)_l T ¢(x1)_1y¢Br/3"+1

Thus ¢(x1 -+ zn) € Yy¢B,gn+1, and [[,, ¥, is a Cauchy sequence in G so
[I,zn = & € B, g since ||x1 -~ 2y < [|21]] + -+ + |2, < /2, and

y= lim ¢(x1---2n) = §(z) € 6B, 2 C 6B,

Finally, ¢B,(z) is open since ¢(x)W, /3 C ¢(x)pB, = ¢B.(x), enough to
show ¢ is an open mapping.

O
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9. Closed Graph Theorem: A group-morphism between complete separable
normed groups with a graph Graph(¢) = {(z,¢(z)) : © € G} that is
closed in G x H, is continuous.

Proof: Graph(¢) is a complete separable normed group and 7 : Graph —
G is a bijective morphism, hence an isomorphism; thus ¢ = 7y o wél is
continuous.

10. Every balanced topological group can be embedded in a product of normed
groups.

Proof: For normal U € 77, can form a semi-norm | - |; hence a norm on
the metric group G/Zy where Zy = {x : ||y = 0}; consider ¢ : X —
I, G/Zu, v — (vZy)ver;, a 1-1 morphism.

11. The completion of a normed abelian group has a product [a,][bs] := [anbx]
and a norm ||[a,]|| := lim,— o ||an||, where [a,] is an equivalence class of
the Cauchy sequence (a,). Any morphism (being uniformly continuous)
can be extended to the completions.

1.1 Locally Compact Groups
Examples
o« C4, C*-, H*.

« The Heisenberg group (

oo
or =
or =
= =5

R 1
R) ; the Weil-Heisenberg group (0
1 0

) |

« Lie groups, i.e., topological groups that are locally isomorphic to R™.

Closed subgroups, quotients, and finite products are again locally compact
groups.

Proposition 3

Haar measure

There is a positive left-invariant Radon measure
on Borel sets, which is unique up to a constant.

Proor: For K compact and U € N, let

my(K) :=min{n e N: K C UaiU,ai €K}

=1

then my (@) = 0, my is increasing, my (K1 U K2) < my (K1) + my(Kz), with
equality if K1U N KU = @; my (2 K) = my (K).
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Let Ky be a compact neighborhood of 1, and
pu (K) = my (K) /my (Ko),

then my(Ko) = 1; 0 < py(K) < mg,(K) for all U since K is covered by
m,(K) translates of Ky, which in turn are covered by my (Kjy) translates of
U. Hence py € [[;[0,mk, (K)], a compact T, space; but as N7 — 1, the filter
wn, — o uniquely. By continuity of f — f(K), u(@) = 0, u(Ko) = 1, p is
increasing and finitely sub-additive, translation-invariant, and K1 N Ky =@ =
W eT, KiUNKYU =@ = p(K1 UKsy) = p(Ky) + p(Ksz). It can thus be
extended to a translation invariant Borel measure.

O

Each left-Haar measure has an associated right measure ju,.(E) := u(E~1);
the left and right-Haar measures need not be the same.

1. Any compact neighborhood K of 1 generates a clopen o-compact sub-
group that is finitely generated modulo K: [K] = Klay,...,a,]. So,
topologically, G is the countable sum of o-compact cosets (including G1),
hence paracompact T5.

Proof: Let L := K UK~ !; then LL C Kay U---U Ka, (a; € LL);
F :=ai,...,ay]; then LLF C KF C LF, so [K] =[L] = LF = KF.
Every coset H has a locally finite refinement of a given open cover.

Note that picking a nested sequence of open subsets U,, C K, and V2 1 €
U, NV, withVz € K, 271V, 1o C V,, gives a compact normal subgroup
H =, Vn, so [K]/H is a o-compact normed group (hence separable).

2. Core(G) = G; (compactly generated).

Proof: From 7, G/G; is 0-D; for any = ¢ Gy, there is K C G/G; compact
open subgroup not containing 2G4, so G; € 7K C {z}° (a clopen
subgroup).

(Hence groups such that G/G; is compact are compactly generated.)

3. The abelian subgroup [a] is either discrete (22 Z) or compact.

Proof: If not discrete, then any neighborhood of 1 contains infinitely many
a*™; so for any compact neighborhood, a"K (n > 0) cover K (since
a™ € K~ for arbitrarily large n); hence K C aK U---Ua’V K. For any
n, pick the first m > 0 with ¢”*t™ € K; then a"t™ € o*K; for i := k—m,
0<i< N anda®=a™t™ R+ ¢ ¢'K; so a'K cover [a], which is thus
totally bounded.

4. Every automorphism has a modular form, §(7) := pu(tE)/u(E) € R*;

0to = 0(1)d(0)
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In particular, the modular function A(a) is the determinant of the inner
automorphism = — ¢~ 'za; then

p(Ezx) = p(z~ ' Ex) = A(z)u(E)
A(zy) = A(z)A(y)

Thus A is a morphism, so A(z~lyz) = A(y), [G,G] C ker A.

Proof: Let w(EU) < u(E) + € and p(EzU) < p(Ez) + ¢; then for z €
UNUY, w(Ex) —e < u(E) < u(Ex) + ¢ so |u(Ex) — u(E)| < e and A is
continuous at 1.

For a closed normal subgroup, Ay = A.

. Proposition 4

Gleason-Yamabe

There is a clopen subgroup H containing a
compact normal subgroup K, such that H/K
is locally Euclidean.

. (Cartan-Iwasawa-Malcev) A connected locally compact group has a max-
imal compact normal subgroup K, all such subgroups are conjugates, and
G/K is topologically R™; the intersection of these maximal compact sub-
groups is the (poly)compact radical. G is thus a ‘projective limit’ of Lie
groups limg_,1 G1 /K.

A general locally compact group contains a compact subgroup such that
G/K is topologically D x R™ with D a discrete space.

. Totally disconnected locally compact groups have a base of compact open
subgroups; hence are 0-dimensional.

Any image G/H is again totally disconnected. There is no classification of
them, although the characteristically simple ones are nearly so (Caprace).
Proof: G is 0-D (see Topology), with a base of compact open subsets
K. For each z € K, there is V, C K such that V2V, C K; so K C
zViU--- Uz, Vo Vi=Vin---NVy; then VK C |, Va;V; C K; hence
[V] C K is a clopen subgroup.

. A locally compact normed group is complete.
Proof: If (z,,) is Cauchy, then |z;.'z,| — 0, so z,, € 2, K for m,n large

enough; thus =, = = € x,, K.

. A morphism from a o-compact to a locally compact group is an embed-
ding. (The image of X is o-compact, hence locally compact, hence there
is a compact subset with non-empty interior.)
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1.1.1
1.

o-Compact Locally Compact Groups

Open mapping theorem: An onto morphism ¢ : G — H from a oclc group
to a non-meagre group is open (so G/ker ¢ = H).

Proof: Let VVV C U, V compact; then G = |,y 2V (since o-compact);
so oG = U, ¢(2,V) = U,, ¢(2,)9V; hence ¢V has a non-empty interior
W,solew W C ¢(v1)pV C V'V C oU.

The closed graph theorem follows since the closed Graph of a group mor-
phism is o-compact locally compact.

. If H, K are commuting normal subgroups of a oclc group, with HNK =1,

then HK 2 H x K.
Any clopen subgroup has a countable number of cosets.

There is a compact normal subgroup whose quotient is a separable normed
group.

Proof: G = Un K, with K, C K,11; start with Uy an open subset of
a compact neighborhood. Let f(a,z) := a~'za; by continuity at 1, for
any a € K,, there are V,W open with f(aV,W) C U,_;. Then K, C
aViU---UapVi; let W, :=WiN---NWy € Tq, reduced to U,, C W,, such
that U2, U, ' C Up—1; so f(Ky,Up) CUp—1. Thus K :=(, U, =, Un
is a closed subgroup; it is normal since for any a € Ky, n > N,

ailKa g f(KNaUn) g f(Kna Un) g Un—l
Moreover, G/K is first countable (by U, ) and o-compact.

Compactly generated locally compact groups: so are open images; if H,
G/H are compactly generated l.c. groups and G is l.c. then G is compactly
generated (by KgyKg, F where I finite set, Kq/ g C mKgl).

G =J,, K", so K™ has non-empty interior for some n.

An amenable group is a locally compact group that has a left-invariant
finitely-additive measure on 2¢ with u(G) = 1. Examples include locally com-
pact abelian groups and compact groups. Closed subgroups, finite products,
quotients are again amenable.

1.2

Unimodular Groups

are locally compact groups whose left and right Haar measures are the same,
thus A = 1:

p(Ex) = p(zE) = p(B~) = u(B)

equivalently, when there is a normal compact neighborhood of 1 (since u(K) =
ule Ka) = Alz)u(K)).

Examples:
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+ Discrete groups (with counting measure). Countable locally compact
groups are discrete (since homogeneous T3 5 spaces are discrete or Q).
« Compact groups (since AG is a compact subgroup of R)

+ Topologically simple locally compact groups, since [G, G] = G or 1 (abelian).

+ GL(R™), the invertible n x n matrices, with the induced metric from R"’,
and measure u(T)/|det T|™.

1. The space of compact open normal (con) subgroups form a metric group.
f(H,K) := |H/H n K| satisfies the multiplicative triangle inequality, so

d(H,K) :=In f(H,K)+In f(K, H) is a metric on the set of con subgroups.
1.2.1 Locally Compact Abelian Groups
Examples:

« R™ with translations (the Haar measure is called Lebesgue measure dx,
generated from Ky = [0, 1]")

« R* with scalings (measure dz/z)
+ S with rotations (measure df)
« ZM) | the finite integer sequences

» Groups topologically generated by one element (‘monothetic’)

1. They are unimodular.

2. Topologically finitely generated subgroups are the product of a discrete
subgroup and a compact one, since [ay,...,a,] = [a1] - - - [an], with each
subgroup either discrete or totally bounded.

3. Hence a compactly generated abelian group contains a subgroup H = Z"
such that G/H is compact.
Proof: [K] = Klay,...,a,] = K[ai]---[a,]; distinguish between [a,]
that are compact or discrete (& Z), hence [K]/H = Klam+1] - [an]
compact.

4. NCore(G) = Core(G) = Gy; so when totally disconnected, can be embed-
ded in a product of discrete abelian groups.

5. Dual space of Characters: G* := Hom(G,S) is a locally compact abelian
group with the compact-open topology generated by the base ®.(K) :=
{¢p € G* : pK € e*™=%¢l} where K is any compact neighborhood of
1 (uniform convergence on compact sets). (Note: for non-abelian locally
compact T groups, G* need not be a group.)

‘Proof”: ®(K™) C &/, (K); ®(K) is totally bounded.
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(a) G* separates points of G (i.e., Va # 1, 3¢ € G*, p(x) # 1);

(b) (G x H)* = G* x H*, via J(¢,¢)(x,y) = ¢(x)¢¥(y) (onto since
x(#,y) = x(z,1)x(1,y), continuous since J(Pe /o (7 K) X e /2 (mr K)) C
o (K)C (G x H)*);

(¢) The dual of a morphism ¢ : G — H is ¢* : H* — G*, ¢*(¢) := ¢ o ¢;
The annihilator and pre-annihilator of subsets of G, G* are the closed
subgroups

At ={pc G :pA=1}
Ld={zecG:dx=1}
AL = (G/[A])* via ¢ +— ¢o.

(d) If H is a clopen subgroup, then G* — H* is an open map and
H*=G*/H*.

(e) H :=[Nyeq- ker¢ =[G, GJ; hence G* = (G/H)*.

6. Pontryagin duality: G** = G via x**(¢) := ¢(x).

Proof: For continuity, take K compact in G*, L compact in G, K C
A® (L) with A = {¢1,...,0, }; by continuity, ¢; € ®(V;); let V :=
L° N[, Vi; then for any ¢ € K, x € V, ¢ = ¢31), so ¢V C ¢; VYV C Use.

7. There is therefore a correspondence between LCA groups and their duals:

G is compact <+  G* is discrete
normed o-compact
connected compact torsion free
compact totally disconnected torsion discrete

(So even compact abelian groups cannot be classified.)

Proof: If G discrete, then G* = ®.(1) is compact; if G is compact then
{1} = ®.(G) is open. If G is first countable with compact base K,

then any ¢ € ®.(K,,) for some n by continuity, so G* = |JP(Ky); if
G=U, Kn, K, C Kpt1, then ®(K,,) O ®(K,41) is a countable base.

8. Every locally Euclidean abelian group is of the type R™ x T™ x D where
D is a discrete abelian group.

9. Every compactly generated LCA group is isomorphic to R™ x K, with K
compact. In particular, G; = R™ x K where K is a connected compact
abelian group.

Proof: Any compact neighborhood generates H with H/Z™ = K; dually,
H*/K* =2 T™. As K* is discrete, H* is locally isomorphic to T™, hence
isomorphic to R™* x T™2 x D with D discrete. Thus H** =2 R™ xZ™ x K.
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1.3 Compact Groups
Examples:
« S, the complex numbers of unit length
+ S3, the quaternions of unit length
« Finite groups. Countable compact groups are finite.

« The Cantor set 2V (embedded in R) with addition of binary sequences.
More generally, Boolean groups 2.

Products, closed subgroups and images are again compact groups.

Slightly more general are the totally bounded groups: images and products
are again totally bounded. Every totally bounded group can be completed
(embedded in) to a compact group.

1. Clopen subgroups have a finite number of cosets.

2. There is a neighborhood base of normal open sets. So any norm is bi-
invariant.

Proof: Let U € 7y and VVV C U; then G = a1V U --- U a,V; let
W:=aVa;'n---Na,Va,* € Ti; then for any x = av € aV, 27 ' Wz =
v e T Wav C oW CVVV C U; soW C ﬂr 2Ux~1 C U a normal
open subset.

3. NCore(G) = Gy, since any clopen set on 1 contains a compact open normal
subgroup.

Proof: In G/G1, any clopen U contains a compact open subgroup H; then
N,z 'Hx =, z; 'Hz; is a con subgroup of H.

4. Every onto morphism between compact groups is open; every bijective
morphism is an isomorphism.

5. Connected compact groups: Every neighborhood of 1 contains a con sub-
group H such that G/H G GL(R™). Therefore, by taking a base, G is
embedded in a product of GL(R™) as an inverse limit.

6. Totally disconnected compact groups (called profinite) have bases of con
subgroups; hence they can be embedded in a product of (discrete) finite
groups via the map G — [[x G/K, v — (2K)rgen. (From topology, a
totally disconnected compact group is either finite or has the Cantor set
topology.)

7. Every connected compact abelian group can be embedded in some T4.

Every locally connected compact abelian group is of the type G; x F' (F
finite group).
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Every connected compact separable group is monothetic; more generally,
every compact separable group such that G/G; is monothetic, is mono-
thetic.

Every compact second countable group is topologically generated by at
most 2 elements.

1.4 Examples

Finite Groups

Z..: the characters are k — e2™ik/n

Euclidean Groups

Integers Z: discrete, abelian, linearly ordered; the characters are n +— e

(0<t<2m),s0Z*=S.

ZM) is second countable, abelian, not locally compact.

Rationals Q: abelian, totally disconnected, linearly ordered, not locally com-
pact. The norms on Q are either the Euclidean one |z — y| or a p-adic norm
for p prime. The p-adic field Q, is totally disconnected locally compact
containing the compact open subgroup of the p-adic integers.

Reals R: abelian, connected, locally connected, locally compact, linearly or-
dered. The morphisms R — C* are t — e** (z € C); in particular, the
characters R — S are z € iR, i.e., z — €'Y (since ker ¢ = 0,yZ, or R).
The Haar measure on R is called Lebesgue measure. The closed subgroups
are R and aZ (discrete).

R* = 2 x R (via t — e?); abelian, disconnected; its Haar measure is
dt/|t|; contains the discrete subgroup { |z|,:z € Q}.

Measures come from increasing functions u(a,b] = f(b)— f(a) (the number
of discontinuities of an increasing function is countable, so f = feons +
fdiscrete; ¢ 18 continuous since A, — & open sets = pu(A, — K,) = 0
for f right-continuous, so (), K, = @ and ﬂfj K, = @, so u(An) =
w0,z x>0
—pu(z,0] <0’
then p is continuous implies f is right-continuous, and p > 0 implies f is
increasing; so p(a, bl = p(0, b]—w(0, a] or p(a, 0]— (b, 0] or (0, b]+wu(a, 0]).

1(An — N Kn) < p(An — Kn) — 0; now let f(z) :=

R™: The only morphisms R” — C* are a — e*'® (since ¢(a) = ¢1(a1) - - dnlan)),
so R™ =2 R™. Its closed subgroups are isomorphic to R™ x Z¥ (the former
are the only connected ones, the latter the only totally disconnected ones);
every quotient of R” is isomorphic to R™ x T*.
Complex C = R2.
C* =S xR (via (0,a) — e**%); the morphisms C* — R* are z + |2]®.
H* =~ S3 x R.
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Torus S = R/Z: compact, connected, abelian group; the morphisms S — C*
are the characters e i € (n € Z) (since ¢(1) = 1 = €2™"), so0 S* = Z;
the only morphism S — R is trivial.

TN: 1-top-generated, locally Euclidean; T? contains the dense additive
subgroup (1, @)R (modulo 1, a € Q°), which is second countable, but not
isomorphic to R (isomorphic only as algebraic groups).

TR: 1-top-generated by (e27i"«),cr where r, are independent irrationals.

Torus solenoid T),: compact connected abelian.

Unit Quaternions S3: compact, connected group; its center is the only normal
subgroup { %1 }; the cosets of the subgroup S form the Hopf fibration.

Cantor group 2V: compact, totally disconnected, abelian.

Matrix Groups

a T a+x
Heisenberg group R?"* with (b ]| [y ] = [b+y+a- z) : connected, lo-
c z c+z

cally Euclidean; center is (0, x, 0); contains the discrete Heisenberg group
Hs(Z), which is 2-generated. There are various versions depending on the
interpretation of the dot product.

Affine(R): (a,v)(b,w) := (ab,v+aw), where a,b # 0; disconnected, locally Eu-
clidean but not unimodular; trivial center; contains the normal subgroup
(I, R).

p-adic Groups

The Prifer p>-group Z[1/p|/Z = Q,/Z,: countable, discrete, abelian sub-
group of Q/Z; contains a tower of subgroups p~"Z/Z; its dual is Z(p),
and conversely.
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2 Topological Rings and Modules

A topological ring is a ring with a topology such that addition and multipli-
cation are continuous. (Note that z — —1z is then continuous.)

A topological module is a topological ring acting continuously on a topo-
logical abelian group,

lima, 2, = (limay,)(lim,).
n n n

A topological algebra is a topological ring with a chosen subfield in its center.
The morphisms are the maps that preserve -+, -, —.

Examples:

+ Linearly ordered rings with the interval topology. (They are either discrete
or order-dense; if 0 < b < a < 1 then € := min(b,a — b) satisfies 2¢ < q;
similarly 4n < a, so (1+1)? <1+a.)

« Q with topology generated by the filter base of sets mZ (m # 0).

« Rings with an ideal I, and the natural I-adic topology generated by the
filter base consisting of I™ (n € N). If (), I" = 0 then the topology is
Tychonov.

« Products of modules and rings X4 are again topological (with pointwise
convergence).

+ Matrices M, (R) are again topological (with topology induced from R™).

« The endomorphisms of an abelian topological group, with the topology
generated by Uk := {¢: ¢K =0} for finite subsets K.

The (Cauchy) completion is still a topological ring with

[Tn] + [yn] = [0 + Yul,  [Ta]lyn] = [T0yn]-

An invertible morphism between complete modules is automatically an isomor-
phism. For example,  — a~'za is a ring automorphism.

1. Recall from topological groups that for any open set U about 0
By(z)=2+U=U+ux; -UeN
VeN, V4V CU
WVCU, -V=V
For any A C X, A+ U is open.
In addition,
IV eTy, VV CU (continuity of -)
IV €Ty, «V CU (continuity at (x,0))
2+ ax (or za) is a homeomorphism if a is invertible.
A, B compact/connected = A+ B, AB compact/connected.
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. The closure of a sub-module, sub-ring, or ideal is again the same. So a set
A generates the closed sub-module [A] and closed ideal (A).

Centralizers Z(A), such as the center, are closed subrings.

c D WnTm = (32, an) (X2, Tm); in particular ) az, =a)’, Ty,

. R connected = X connected (since X = J,.x Rx). For example, any
topological ring that contains a connected subring is connected.

. A subset B of a topological module is bounded when

YU € To(X),3V € To(R), VBCU.

A subset B of a topological ring is bounded when

YU € 79,3V €Ty, VBUBV CU.

Subsets, finite unions, closures, M + N, BM, are again bounded. For
example, compact subsets and Cauchy sequences. Morphisms preserve
bounded sets. X is bounded if R is discrete.

Proof: E:ﬂUe%(B—i—U) so VBCVB+VVCW+WCU. (V1N
Vo )(M+N)CVIM+4+VoN CW+W CU. Foreach x € K, Vo CU;
x+V, cover K; take V' := ﬂ?zl Vy,. ForanyW,n > N = (z,—ay) € W;
for each x;, Vix;, C W, V := ﬂf\ilvi NW; then Vz, C Vyxy + VW C
W4+WW CU. If VACT U then VTACU.

. An idempotent on X, P? = P, called a projection, has a closed image
im P = ker(1 — P).

(a) If {« : U, Tix bounded } is not meagre then T; are equicontinuous.

(b) If T,, are equicontinuous morphisms and T, & — Tz for all x, then T’
is a morphism.
Proof: Let A := {x : Vi,Tjx € W} = (), T, 'W closed; then {z :
\U; Tiz bdd } C |J,, nA, so nA contains an open set, i.e.,  +V C A; thus
T,VC-Tax+T,ACW4+W CU. YU,3W,V,¥n, T,V CW CW C U;
hence TV C U.

. If a,, = 0 and x,, bounded then a,z, — 0. If (a,), (z,) are Cauchy, then
S0 is (anxy).

Proof: anxn — amTm = an(Tn — ) + (an — am)Tm € B1Vi + VoBy C
W+WwWCU.

. If M is a clopen sub-module and B C X is bounded, then [M : B] :
{a€ R:aB C M} is a clopen left ideal of R.

Proof: If a € [M : Bl and VB C M, then (x+V)BCxzB+VBC M.
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10. A (left) topological divisor of zero satisfies ax; — 0 for some z; /4 0. Not
invertible.

A topological nilpotent satisfies a™ — 0.

An ideal is topologically nilpotent when I™ — 0, i.e., I™ C U for any
U< 7o.

An element is a (left) topological quasi-regular when for every U € Ty there
isabsuch that (1—a)bel1+U,ie, 1€ (1—a)R.

A topological quasi-nilpotent is such that za is a topological quasi-regular
for all x.

11. The kernel of a morphism is a closed submodule/ideal. Closed sub-
modules and closed ideals give quotients.

Isomorphism theorems: (R/I)/(J/I) = R/J. (II, R:)/(11; Li) = 11, Ri/1Li-
12. The following are closed sub-modules/ideals:

(a) The connected component of 0.

(b) The module core (\{ M : clopen sub-module}. The clopen sub-
modules form a filter Z in the lattice of sub-modules.
The ring core is ({1 : clopen ideal }.

Proof: aCy is connected and contains 0, so aCy C Cy.

13. Hence simple modules are either connected or totally disconnected. For
example, topological division rings.

14. If R is complete with Core — 0, and a™ — 0, then «a is quasi-regular,

(1—a)t= Za”
n=0

Proof: )", a™ converges to some s since for any U € 7o, 3V C U clopen
subgroup, and n > N = a™ € V,s0 ) a" is Cauchy; s =1+ as.

2.1 Normed Modules/Rings

A normed module is one that has a translation-invariant metric (1st countable),
acted upon by a normed ring, such that

e +yll <M=l +llyll, ==l = [,
x| 20,  [lz] =0 < = =0,
laz|| < [lallllz]-
Examples:

« R™ with product multiplication and ||(a;)|| = max; |a;]|.
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« R? with (§) (5) = ((ayt50)/2)> 00 3(5rip2), oF ((aytoriby)/3)-

i (1) (3) = (5 )
c z (az + cy)/2

« (*°(R) with addition, multiplication and ||(ay)| := sup,, ||lan|; if R is
complete, so is £*°(R); not separable unless R = 0. Contains the closed
subring of convergent sequences, and its closed maximal ideal ¢y of those
that converge to 0.

« The set of bounded functions A — R with the supremum norm; its subring
of continuous functions Cy(A4), when A is a topological space, and its closed
ideal Cy(A) when A is locally compact T5.

« (*(R) with addition, convolution and ||(a,)|| := Yo lan||. It is complete
if R is.

« (Y(G, R) for any (finite) group, with e, * e, := eg. For example, ¢!(Z).

» Products are again normed, ||(z,y)| := max(||z]|, ||ly|])-

The completion of a normed module is again normed, ||[z,]] := lim, 0 [|2n |,
so can assume complete. Any morphism between modules extends uniquely to
the completions (including the completion of the ring).

L 1<t and [ln] < nl[t]; la™[| < [la]"

2. B.Bs C By so a set is metrically bounded iff bounded; aB; C Bjqy-
A C X is balanced when B1[0]A C Aje., |la]| < L,z € A = ax € A,
e.g. B,.

3. For any a, ||a"||1/n — p(a) < ||a|| (from above).

(a) p(1) =1, p(ab) = p(ba), pla~'wa) = p(z).

(b) p(a™) = pla)”, p(a) = [lal| < [la"|| = [lal".

(¢) p(a) <1 = a™ — 0 (topological nilpotent)

pla) >1 = a™ — co.

(d) If ab = ba then p(ab) < p(a)p(b), so p(a=)~! < p(a).
Proof: Let p(a) := inf, [|a™||"/". The division n
fies rp/n — 0, go/n — n—lo, so p(a) < |la™|"™ <
lame """ < pla) +e

= qunno + 7, satis-

a9 |a]| " —

4. In a complete normed ring, the power series 220:0 anx™ converges abso-
lutely if p(z) < 1/limsup,, [|an||*/™ (by the root test).

5. (1—a)~! = 14+a+a?+- - for p(a) < 1, since (1—a) nyzo a" =1-aV*! —

1.
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6. « — axb = ¢ has the solution . =" ja™cb™ if p(a)p(b) < 1.

7. The invertible elements form an open topological group, since o +— 71 is

continuous and the 1distance between an invertible a and a non-invertible
bis at least [la= || .

Proof: lz=1 =y~ < [le~ly — @y~
(at+h) = +ah) ot =a7 o ha T 4

_1—1
when ||| < [la="] "

Example: Invertible Matrices GL(R™) := { A € M, (R) : det A invertible }.

8. The closure of a proper left-ideal is proper. So maximal ideals are closed.

2.1.1 Valued Rings

An absolute value is a norm with |az| = |al|z].
Then [1| =1 (unless R = 0); |—z| = |2| is redundant; |z~ =1/ |z].

Examples

« Euclidean value: Z, R, C with |z|_ := va*x.

1
x#Ol.

« Discrete rings with |z|g :=
& zlo {0 z=0

- Q(v2) with |a + bv/2| := abs(a — bV/2).
o R[z] with |p| := 2des(),
* R[[z]] with ‘anl“n + a1zt 4 ’ = 2%

1. There are no proper topological divisors of zero since |az,| — 0 = a =0.
Hence a commutative valued ring extends to its field of fractions.

The topological nilpotents are Bj.
The unit group is {z : |z| =1}.

2. The radius of convergence of a power series Y a,z™is R = 1/limsup,, ||a,||

i.e., it diverges if p(x) > R.

3. If there are |ab] = 1 with |a| > 1, then absolute values are equivalent
&z = |2[* (Sa > 0).
Proof: If non-discrete then ||z|]| < 1 & 2" — 0 < |z| < 1; similarly
lall > 1 &[] > 1. [l2]) = lall"® & || = ol since |l2]) S flal™" &
b < [lab]™ =1 < 2" S 1 < |2 S |a]™". But [la]l = |al®, so

2]l = la]**) = ]a]*™* = ||

)
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4. 1< sup [1 42| < sup |2 + ] < 2.
|z|<1 z,y#0 |£L’| \ |y|

supjy<1 |1+ 2| = 1iff [n[ <1 for all n € N (non-Archimedean).

Proof: If || < 1 then [14+z|" = |(1+2)"| = |1+nz+---+2" < (n+1),
so |1+ x| < (1+n)™ = 1. (Similarly, for commutative rings or division
rings, an absolute value is an ultrametric < non-Archimedean< N is
bounded.)

Proposition 5

Ostrowski

The absolute values on Z are the discrete, the Euclidean,
and the p-adic values (for each prime p).

They extend to Q by |a/b| = |al / |b].

PROOF: One type is discrete. Another is the Euclidean value |n|. Let
1 < ||a||(< |a]). Forany |z| > 1, |a|™ = ro+71 [&]+- - +rm 2™ < (m+1) [z
(base-|z| expansion) with 0 < r; < |z|. Then |[a||” < (m + 1)||lz]|™"; but ||a"
grows faster if ||z]| < 1; so ||z]| > 1. In fact, |la|| < (m + 1)% |2/ =

log|, lal . loglal . logllz]|
» 50 Toglal S Togla] -

ie., ||z] = |z|*.

Otherwise for all n, |n]] < 1 and there is ||a|| < 1. There must be a prime
factor of a with ||p|| < 1. If ¢ is another prime with |¢|| < 1 then Ja,,b, €
Z, anp" +bnq® =1,50 1= 1] < |p[|" + |l¢|I" — 0 as n — oo, a contradiction.
So p is unique with ||p|| < 1, the rest satisfy ||¢|| = 1. Hence ||n|| = ||p*q"...| =
Ip||" = |n|g where ||p|| = p~® for some a > 0.

log llzfl _
log|z|

|Ed] Hence o < 1 by symmetry of = and a,

O

2.1.2 Non-Archimedean Valued Division Rings
Examples:
« Q with the p-adic value.

+ Any division ring with finite characteristic, i.e., nl = 0 (since N is then
bounded).

» p-adic value: PID with |p|, := 3 for some fixed prime p, and lq|, =1 for
all other primes, extended to its field of fractions by |z/y| := |z|/ |y|. In
particular for Z and Q[z]. It is an ultrametric |z + y| < |z| V |y|-

o F(x) with |3, apa™| := max, |ay|.
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1. Recall that an ultrametric space is 0-D, hence totally disconnected (balls
are clopen).

2. (a) If |a|] > |z,| then |a + ), x| = |al.

Proof: |z| < |a| < la+z|V |z| = la+ x|, so |a] = |la+x1| =
la+ 21 + x| =+ -.
(b) >, an is Cauchy < a, — 0 (since |ap + -+ apm| < |an| V-V
|am| — 0.
3. F contains the valuation ring B1[0] := {x : |z| < 1}, which is a local ring

with its unique (clopen) maximal ideal By. Its ideals contain whole balls
{z : |z| < r}. When commutative, B1[0]/B; is called the residue class
field of F.

Proof: If # € I and |y| < |2/, then |z~ 'y| < 150y = av € I. In particular,
I CBjelsel el

4. The valuation ring is Noetherian < ideals are principal < values of
elements are discrete.

Proof: If R is Noetherian, then I = (ay,...,a,) with a; of maximum
value; then a; € (a;). If values are o™, then an ascending chain of ideals
would have a maximum value o'.

5. The only valuations of a PID (and its field of fractions) which are bounded
by 1 are the discrete and the p-adic ones.
Proof: The values on N are bounded by 1, so RN Bj is an ideal in R, hence

(py with p prime; as |z| < 1 < |a:|p < 1, the two values are equivalent.

6. The non-Archimedean valuations of F'[t] which become discrete on F' are
the discrete, 298(@) and the p-adic ones (for some irreducible polynomial
p). For example, Fyn[t].

Proof: If neither discrete nor p-adic, then |t| = a > 1, so |at"| = |a| [t|" =
a™ and |a,t" + - | = Q™.

7. An algebraic field extension of F' has a non-Archimedean value that ex-
tends that of F.

2.2 Locally Compact Rings
Closed sub-rings, quotients and finite products are again so.

1. The connected component of 0 is the intersection of the clopen subrings.

Proof: Consider G/Cy; there is a base of compact open subgroups K; as
Kisbounded, U C K, UK CK,soU---U CUUK CUK C K, so the
subring [U] C K is clopen hence compact.

2. (Kaplansky) The Jacobson radical is closed.
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3.

4.

Recall from topological groups that locally compact normed rings are com-
plete.

Connected locally compact rings are of the type R x P where R is a
finite-dimensional algebra over R and P is a compact abelian group.

2.2.1 Locally Compact Division Rings

also require that inversion x — z~

1 is continuous, so it is a topological group

for multiplication. A locally compact field is called a local field.

1.

There is a compatible valuation |a| = 6(a) = ‘L((a EE)) from the automorphism

T — ax.

B.la] :={x:|x —a| <r} is compact.

Proof: Vr,3s, Bs[0] C K C B,[0], pick zy € B;[0], yo € B,[0]; then the
homeomorphism z — yozg 'z takes the compact set B,[0] to B,.[0].

The only connected locally compact division rings are 0, R, C, H.

Proof: If 0 # 1 then @ C R, so it has one of three types of values.
The discrete and p-adic values give totally disconnected completions of Q,
hence R is embedded in R. As a locally compact vector space on R it
is finite dimensional. From Frobenius’ theorem, it is one of R, C, H (see
Topological Vector Spaces).

. (van Dantzig, Hasse, Jacobson) The disconnected ones are discrete or

(ultrametric) division ring extensions of Q, or Fy» ((z)).
GL(F"™) is a locally compact group if F' is a locally compact field.
The roots of unity of a locally compact non-Archimedean field form a finite

group.

Compact Rings

. Compact rings are totally disconnected, since the only connected compact

ring is 0.

. Topological quasi-nilpotents are quasi-nilpotents.

Proof: (1 — )R is compact and 1 € (1 —x)R,s0 1 = (1 —z)(1 — y).

The Jacobson radical is topologically nilpotent. They are a J-adic ring,
i.e., there is a base of clopen ideals J, so R C lim. R/J (with R/.J discrete
rings).

Proof: The open compact subgroups K form a base; 3U C K, UR C K,
so IV CU,VRCU and RVR C K, so (V) is an open ideal in K.

Compact semi-simple rings are products of finite simple rings.
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2.4 Examples

1. Q/Z = Zp Z(p™>): totally disconnected, abelian, not locally compact;
every element has finite order, the torsion subgroup of S.

2. p-adic Numbers Q,: the Cauchy-completion of Q with the p-value |m/n| :=
1/p* where m/n = pFr/s, an ultrametric; uncountable; topologically
28\0, so perfect, locally compact T, totally disconnected; has charac-
teristic 0; it is a (non-ordered) field; (2 Z(p)[%]); has many distinct al-
gebraic closures. For any z € Q\0, write z = *p", so can find na = m
(mod p); take x1 := x — ap” and continue to get a sequence of a’s with
T = ZZOZT anp™. Qp is its own dual as a topological group. Equivalently,
it is the field of quotients of the inverse limit of Z/(p™).

For z € Q, z # 0, then [ [z|, = 1/|z[ (over primes), i.e., [[, 4 [2|o =1
(where v = 1, p, 0o are the discrete, p-adic, and Euclidean valuations.)

3. p-adic Integers Z(p): the Cauchy-completion of Z with the p-adic topology
generated by the ideal [p]; topologically 2; it is the closed unit ball of Qp,
a compact subring of Q,, which contains Z, not locally connected. pZ(p)
is a maximal ideal in Z(p), and Z(p)/pZ(p) = Z,. Z(p) contains a copy of
Z as (m + p™)nen, S0 it is a compactification of it.

4. Z[1/p] with the p-adic metric: locally compact, not locally connected;
Z[:] CR x Q.

1
P

5. Real Numbers R: completion of Q.

min(a,b,...) < (g—i—%—i—. )< a L < aat bt . < (P +B0P+. . )YP < max(a,b, .. )
a

(the middle means are called harmonic, geometric, arithmetic and p-root

mean square means) (proofs: Young - geometric < arithmetic since z® —

1 < a(x—1) so take x = a/b, equivalently written as (ab)"/r < o /p+b?/q

where 1/r = 1/p + 1/¢; includes Cauchy’s inequality ab < (a? + b?)/2)

Every real number has a decimal expansion (essentially unique); every
real number has a continued fraction expansion ag + 1/(a; + ...) with
positive a;, this expansion terminates for rational numbers and recurs for
quadratic surds.

6. Complex Numbers C := R @ iR with i = —1, conjugate (a +ib)* = a — ib
(ie., j* = —j), value |2|? = 2%z = z2*.
Contains the topological sub-field of definable numbers (those complex
numbers which are characterized by some statement ie., y =z < ®(y)),
its sub-field of computable numbers (which can be generated by some
algorithm), which contains the algebraic numbers; they are all countable
and algebraically closed.
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7. Quaternions H := CjC with x+yj = (a+bi)+(c+di)j = a+bi+cj+dk
where k = ij, (z +yj)* = 2" — jy* (e, j* = —j), yj = —jy (ji = —k);
2 : 2 " " X . . .
j? = —1; it has a value |z|” = z*z = 2z*, (zw)* = w*z*; a division ring
with center R.

8. Octonions O := H® kH with (a + bk)(c + dk) = (ac — d*b) + (da + bc*)k
(a(bk) = (ba)k, (ak)b = (ab*)k, (ak)(bk) = —b*a) and (a + kb)* = a* — kb;
(ijk)* = —ijk; not associative but alternative (i.e., associative on any two
elements), has inverses.

9. Sedonians: S := O @ eO (using a(eb) = e(a*b), (ea)b = e(ba), (ea)(eb) =
—ba*,e* = —e); it is power-associative (z™z" = x™*") only; has zero-
divisors.
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