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A review on filters of subsets and nets is found as an appendix.

1 Convergence Spaces

A filter of subsets captures the idea of a refinement process, or gathering of
information; The filter sets may represent imperfect knowledge or a fuzzy ‘mea-
surement’. Which set of points remains in the ‘limit’ of taking smaller sets of
the filter? It need not only consist of the points common to all the filter sets
(which may be empty), but may include other ‘cluster’ points.

A cluster space is a set X with a cluster function mapping proper filters
F of X to subsets of X, such that

cl(F ∩ G) = cl(F) ∪ cl(G),⋂
F ⊆ cl(F)

Some notation: F 99K A means A = cl(F); a cluster point of F is an element
x ∈ cl(F), here denoted by F 99K x. The cluster set of the improper filter 2X

can be taken to be ∅. The set of cluster points of a subset is cl(A) := clF(A).
The morphisms, called continuous maps, preserve clustering,

F 99K x ⇒ f(F) 99K f(x)

i.e., fcl(F) ⊆ clf(F) and clf−1F ⊆ f−1cl(F), e.g. constant maps. An isomor-
phism is called a homeomorphism, and the set of morphisms X → Y is denoted
C(X,Y ).

Examples: A trivial space has cl(F) := X; a discrete space has cl(F) :=
⋂
F ,

so that F 99K x ⇔ F ⊆ F(x). The standard clustering of N is taken to
be discrete. A finite cluster space is determined by cl(x); Sierpinski space is
2 := { 0, 1 } with F(0) 99K { 0 }, F(1) 99K { 0, 1 }; any finite (pre-)ordered space
with cl(x) = ↓x.

A cluster structure1 on X is finer than another2 (on X) when cl1(F) ⊆
cl2(F), i.e., F 99K1 x ⇒ F 99K2 x.

A net clusters at x when its filter does,

xi 99K x ⇔ F(xi) 99K x
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Two points x and y are indistinguishable when F 99K x ⇔ F 99K y for
all F . By identifying indistinguishable points, one can take all points to be
distinguishable (called the T0 axiom, henceforth assumed),

x 6= y ⇒ ∃F , F 99K x xor F 99K y.

1. F ⊆ G ⇒ cl(G) ⊆ cl(F), i.e., F ⊆ G 99K x ⇒ F 99K x.

Hence,
⋃
i cl(Fi) ⊆ cl(

⋂
i Fi); in particular, for F(A) ⊆ F ⊆M maximal,⋃

F⊆M
M maximal

cl(M) ⊆ cl(F) ⊆
⋂
A∈F

cl(A).

2. An equivalent formulation of the axioms is

F(x) 99K x

F ∩ G 99K x ⇔ F 99K x or G 99K x

Proof: If x ∈
⋂
F then F ⊆ F(x), so x ∈ clF(x) ⊆ cl(F).

3. Clustering is a ‘pre-closure’ operation

(a) A ⊆ cl(A); A ⊆ B ⇒ cl(A) ⊆ cl(B),

In particular, cl(
⋂
iAi) ⊆

⋂
i cl(Ai),

⋃
i cl(Ai) ⊆ cl(

⋃
iAi).

(b) cl(A ∪B) = cl(A) ∪ cl(B).

(c) cl(∅) = ∅, cl(X) = X.

Proof: A =
⋂
F(A) ⊆ clF(A) = cl(A). A ⊆ B ⇒ F(B) ⊆ F(A).

F(A ∪B) = F(A) ∩ F(B). cl(
⋂
iAi) ⊆ cl(Ai).

4. For any set, one can form the increasing sequence A ⊆ cl(A) ⊆ clcl(A) ⊆
· · · , which only terminates when it reaches a closed set, i.e., when cl(F ) =
F , i.e., F(F ) 99K F .

(a) The intersection of closed sets is closed; the finite union of closed sets
is closed.

Proof:
⋂
i Fi ⊆ cl(

⋂
i Fi) ⊆

⋂
i cl(Fi); cl(F ∪ G) = cl(F ) ∪ cl(G) =

F ∪G.

(b) There is a smallest closed set containing A, called its closure Ā. Then,

A ⊆ Ā = ¯̄A, A ∪B = Ā ∪ B̄

Hence A ⊆ B ⇒ Ā ⊆ B̄ and
⋂
iAi ⊆

⋂
i Āi.

Proof: Ā :=
⋂
{F : closed, A ⊆ F }. If A ∪ B ⊆ F closed, then

Ā, B̄ ⊆ F so Ā ∪ B̄ ⊆ F is the smallest closed set containing A ∪B.

(c) ∅ and X are closed.



Joseph Muscat 2015 3

5. The dual concept of clustering is that of “internal” points,

int(A) := cl(Ac)c = {x : F(Ac) 699K x }

An internal point of A cannot be “reached” from outside A; we say that A
is a neighborhood of x when x ∈ int(A). It satisfies properties dual to clus-
tering. One can form the decreasing sequence A ⊇ int(A) ⊇ int int(A) ⊇
· · · , which terminates when it reaches an open set, int(U) = U .

(a) A set is open iff its complement is closed. Hence the open sets form
a topology T : the union, and the finite intersection, of open sets are
open.

(b) The interior A◦ := (Ac)c is the largest open set inside A.

A◦◦ = A◦ ⊆ A, A ⊆ B ⇒ A◦ ⊆ B◦,

(A ∩B)◦ = A◦ ∩B◦,
⋃
i

A◦i ⊆ (
⋃
i

Ai)
◦

(c) The neighborhood filter of a point is Nx := {A : x ∈ int(A) }, which
contains Tx := {A ∈ T : x ∈ A }, i.e.,

Tx ⊆ Nx ⊆ F(x)

6. cl(A) = {x ∈ X : x ∈ int(B) ⇒ A ∩B 6= ∅ }
int(A) = {x ∈ X : x ∈ cl(B) ⇒ A ∩B 6= ∅ }
F 99K x ⇒ F ∨Nx is proper

Proof: If A ∩ B = ∅ then F(Bc) ⊆ F(A) as well as F(B) ⊆ F(Ac). If
x ∈ int(B) ⇒ A ∩ B 6= ∅, then A ∩ Ac = ∅ ⇒ F(A) 99K x. Hence
A ∈ F 99K x ∈ int(B) ⇒ A ∩B 6= ∅.

7. For any set A, the points of X partition into the interior A◦, the exterior
Āc = Ac◦, and the remaining boundary ∂A. Then Ā = A◦ ∪ ∂A.

∂(Ac) = ∂A, ∂∂A ⊆ ∂A,
∂(A ∪B) ⊆ ∂A ∪ ∂B, ∂(A ∩B) ⊆ ∂A ∪ ∂B

A is closed ⇔ ∂A ⊆ A,
A is open ⇔ ∂A ⊆ Ac.

Proof: A◦∩Āc = (Ac∪Ā)c = (Ac ∪A)c = ∅. ∂∂A ⊆ ∂A∩∂Ac ⊆ ¯̄A∩Ac =
∂A. After removing the interior and exterior of A ∪ B, what remains is
part of (∂ArB◦) ∪ (∂BrA◦). ∂(A ∩B) = ∂(Ac ∪Bc) ⊆ ∂Ac ∪ ∂Bc.

8. For the topology T of open sets, A∩B = ∅ ⇔ A ⊆ B̄c ⇔ B ⊆ Āc. So the

exterior is a pseudo-complement (see Ordered Spaces) and A 7→ Āc
c

= Ā◦

is a ‘closure’ map, with the open sets satisfying A = Ā◦ called regular open
(equivalently, an open subset that is the exterior of an open set), e.g. the

clopen subsets; they form a Boolean lattice, with A ∨ B = (A ∪B)
◦

and
A′ = Āc.
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9. For continuous functions f ,

fĀ ⊆ fA, f−1A ⊆ f−1Ā, f−1A◦ ⊆ (f−1A)◦

A closed ⇒ f−1A closed, A open ⇒ f−1A open

Tf(x) ⊆ f(Tx), Nf(x) ⊆ f(Nx)

Proof: If A is closed, cl(f−1A) ⊆ f−1cl(A) = f−1A. f−1A ⊆ f−1Ā
closed, so f−1A ⊆ f−1Ā. Ā ⊆ f−1fA ⊆ f−1fA, so fĀ ⊆ fA. f−1A◦ =

f−1Acc = (f−1Ac)c ⊆ f−1Ac
c

= (f−1A)c
c

= (f−1A)◦; so if A is open,
f−1A ⊆ (f−1A)◦. In fact, these statements are equivalent.

A function is open when fT (X) ⊆ T (Y ).

10. A subset is dense in X when Ā = X (⇔ ∀V 6= ∅ open, A ∩ V 6= ∅).

A subset is nowhere dense in X when A is not dense in any neighborhood,
i.e., Ā◦ = ∅. Subsets, closure, and finite unions are also nowhere dense
(since if C := A∪B, then C̄ ∩ Āc ⊆ B̄, so C̄◦∩ Āc ⊆ B̄◦ = ∅ and C̄◦ ⊆ Ā,
C̄◦ ⊆ Ā◦ = ∅).

More generally, a subset is meagre when it is the countable union of
nowhere dense sets; subsets and countable unions are meagre.

11. For a dense subset A, U is regular open iff U = (A ∩ U)
◦
.

Proof: A ∩ U ∩ (A ∩ U)
◦

= ∅, so U ⊆ A ∩ U .

Convergence

As a filter is refined, its cluster points are reduced. When x is a cluster point
of F and all its refinements, then we say that F converges to x,

F → x ⇔ ∀G proper (F ⊆ G ⇒ G 99K x)

Convergence is obviously stronger than clustering. For example, the sequence
0, 1, 0, 2, 0, 3, . . . in the discrete space N, with filter generated by the subsets
{ 0, n, n + 1, . . . }n∈N, clusters at 0, but does not converge to 0 because of its
“tail” at infinity; it contains the refined filter generated by {n, n + 1, . . . }n∈N
that does not cluster at 0. Similarly, F(A) does not normally converge to any
x ∈ A.

Convergence has the following characteristic properties, that can be taken
as its axioms

F(x)→ x,

G ⊇ F → x ⇒ G → x

F → x and G → x ⇒ F ∩ G → x

(If F ∩ G ⊆ H proper, then F ∨H or G ∨H is proper, so H ⊆ F ∨H 99K x)
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A convergence space is a set X with a limit function on filters such that

lim(F ∩ G) = lim(F) ∩ lim(G), x ∈ limF(x).

We write F → x when x ∈ lim(F), and x is then called a limit of F . The
improper filter can be taken to converge to all points. The morphisms preserve
convergence of filters (or nets)

F → x ⇒ f(F)→ f(x).

Examples: For a trivial space, F → x for all x and F ; for a discrete space,
the only convergent filters are F(x)→ x.

A net converges to x when its filter converges to x,

xi → x ⇔ F(xi)→ x.

Constant nets converge, xi := x → x, (since F(xi) = F(x)) and subnets of
converging nets converge, (since F(xi) ⊆ F(xij )).

1. F ⊆ G ⇒ lim(F) ⊆ lim(G).

2. A convergence space has a cluster function, where F 99K x is defined by

∃G proper, F ⊆ G → x.

The morphisms are the continuous functions.

(a) Proper F → x ⇒ F 99K x (iff for maximal filters).

(b) cl(F) =
⋃
F⊆M cl(M) (so convergence spaces are special cluster

ones).

(c) A sequence (resp. net) clusters at x if it has a sub-sequence that
converges to x.

Proof: If F ∩ G ⊆ H → x proper, then F ∨ H is proper (say), so F ⊆
F ∨H → x; conversely, F ∩ G ⊆ F ⊆ H → x.

3. (a) cl(A) = {x ∈ X : ∃F → x proper, A ∈ F } =
⋃
A∈F limF

cl(x) = { y ∈ X : F(x)→ y } = limF(x)

(b) int(A) = {x ∈ X : ∀F → x proper, A ∈ F }.
(c) Nx =

⋂
F→x F , so Nx 99K x.

Proof: A ∈ F → x ⇔ F(A) ⊆ F → x ⇔ F(A) 99K x. x /∈ cl(Ac) ⇔ for
every proper F → x, Ac /∈ F , hence Ac ∈ F ∨F(Ac)→ x, so F ∨F(Ac) is
improper, thus A ∈ F . A ∈ Nx ⇔ (F → x ⇒ A ∈ F).

4. A is open iff F → x ∈ A ⇒ A ∈ F iff xi → x ∈ A ⇒ xi →� A.

A is closed iff A ∈ F → x ⇒ x ∈ A iff A 3 xi → x ⇒ x ∈ A.
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Given functions πi : Y → Xi, then one can make Y an initial convergence
space by defining

F → y ⇔ ∀i, πi(F)→ πi(y) in Xi

then πi are continuous by construction; and f : X → Y is continuous when
πi ◦ f are continuous for all i. Dually, given πi : Xi → Y , then can define a final
convergence space by

F → y ⇔ ∀i, (πi(xi) = y ⇒ π−1i (F)→ xi).

As special cases of such convergence spaces:

Subspaces: Y ⊆ X induced by the embedding Y → X, i.e., F → y in
Y when the generated filter ↑F in X converges to y.
Then clY (A) = cl(A) ∩ Y , but intY (A) need not be
int(A) ∩ Y (e.g. Q,N, 0)

Images: fX F → y ⇔ ∀x ∈ f−1(y), f−1(F)→ x.
Quotients: X/∼ induced by π : x 7→ [x], i.e., F → [a] iff x ∼ a ⇒

π−1(F)→ x.
Products:

∏
iXi induced by the projections πi0 : (xi) 7→ xi0 ; then

F → (xi)i∈I ⇔ ∀i, πi(F) → xi; and (xj)j∈J →
y ⇔ ∀i, (xij)j∈J → xi in Xi (pointwise conver-
gence); f : X →

∏
iXi is continuous iff πi ◦ f

is continuous on Xi. Also, (A × B)◦ = A◦ × B◦,∏
iAi =

∏
i Āi.

Coproducts:
∐
iXi induced by πi : Xi → Y .

Functions: XY = C(Y,X) F → f in XY when for any filter in Y , G → y ⇒
ε(F × G) → f(y) in X (where ε(f, y) = f(y) is the
evaluation map on XY ×Y ). Then, (XY )Z ∼= XY×Z

(i.e., f(x)(y) continuous ⇔ f(x, y) continuous).

Cauchy Filters

The problem with F → x is that in Xr{x }, the filter F need not converge
anymore. What distinguishes filters that truly diverge from those that could
converge in a larger space? A set of proper filters that can possibly converge in
a larger space are called Cauchy filters and satisfy the following axioms:

F(x) ∈ Cauchy,

G ⊇ F ∈ Cauchy ⇒ G ∈ Cauchy,

F ,G ∈ Cauchy and F ∨ G proper ⇒ F ∩ G ∈ Cauchy

The morphisms are those maps that preserve Cauchiness: F ∈ Cauchy ⇒
f(F) ∈ Cauchy. Subspaces have induced Cauchy filters, F is Cauchy in Y
⇔ ↑F is Cauchy in X; for products, F is Cauchy in

∏
iXi when πiF are

Cauchy.
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Filters are said to be asymptotic, F ∼ G when F ∩ G is Cauchy. This
equivalence relation on Cauchy filters is congruent with respect to subsets and
intersections,

F ∼ G ⊆ H ⇒ F ∼ H,
F ∼ G ⇒ F ∩H ∼ G ∩H,
G ⊇ F ∈ Cauchy ⇒ F ∼ G.

A Cauchy structure induces a convergence structure: F → x, when F ∼
F(x). Hence convergent filters are Cauchy since F ∼ F(x) ∼ F , so F ∼ F . If
F ∼ G then F → x ⇔ G → x. A Cauchy space is said to be complete when all
its Cauchy filters converge. A closed subspace of a complete space is complete.

Cauchy maps preserve completeness and asymptoticity (F ∼ G ⇒ f(F) ∼
f(G)), hence are continuous.

Finite
(2nd) Count-
able Base
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1st Countable

Separable

Convergence Spaces
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Topological Spaces T Ordered
Graphs
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2 Topological Spaces

A topological space is a set X with convergence defined by

F → x ⇔ Sx ⊆ F

where Sx = {U ∈ S : x ∈ U } and S is some collection of subsets that cover X.
(S is called a sub-base of X, but need not be unique. The larger S is, the finer
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is the convergence. These basic sets represent the possible outcomes of fuzzy
‘measurements’.)

Examples:

A trivial topological space has S = {X } (not T0); a discrete topological space
has S = { {x } : x ∈ X }.

R with S consisting of the intervals ]a, b[.

Any ordered space with the sub-base of (complements of) the closed sets ↓ a =
{x : x 6 a }. For example, 0 < 1 gives 2; N6 has open sets {n, n+1, . . . }.

A set (of data) with S consisting of semi-computable subsets (form a topology).

Every cluster space gives rise to a weaker topological space generated by the

open sets S := T ; then F 99K x 6⇐⇒ F 99KT x and F → x ⇒ F →T x.

For points to be distinguishable, x 6= y ⇒ Sx 6= Sy, i.e.,

∃U ∈ S, x ∈ U xor y ∈ U.

Topological spaces satisfy stronger properties than convergence spaces:

1. If Fi → x for all i then
⋂
i Fi → x. Hence if every maximal filter that

extends F converges to x then F → x. (Thus the convergence of maximal
filters determines the convergence space.)

2. Nx → x since S ⊆ T , so Sx ⊆ Tx ⊆ Nx ⊆ F(x).

Proof: If A ∈ S and F → x ∈ A then A ∈ Sx ⊆ F , so A is open.

3. Nx = F(Sx) = F(Tx) = ↑ Tx, the smallest filter converging to x,

F → x ⇔ Nx ⊆ F ⇔ Tx ⊆ F

Proof: For A ∈ Nx, x ∈ int(A), so Sx ⊆ F ⇒ A ∈ F , hence A ∈ F(Sx).

4. T is the (smallest) topology generated by S.

Proof: If x ∈ U ∈ T , then U ∈ Nx, so there are Vi ∈ Sx, Vx := V1 ∩ · · · ∩
Vn ⊆ U ; U =

⋃
x∈U{x } ⊆

⋃
x∈U Vx ⊆ U , forcing U =

⋃
x Vx ∈ T (S).

5. F 99K x ⇔ F ∨Nx is proper. Hence Nx 99K y ⇔ Ny 99K x;

6. (a) clcl(A) = cl(A), so

Ā = cl(A) = {x ∈ X : ∀U ∈ Tx, A ∩ U 6= ∅ },
A◦ = int(A) = {x ∈ X : ∃U ∈ Tx, U ⊆ A }.

For example, {x } = { y ∈ X : F(x) → y }. Closure in Y ⊆ X is
Ā ∩ Y .
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(b) A point x is an interior, exterior, or boundary point of a set A when
A ∈ Nx, Ac ∈ Nx, or A,Ac /∈ Nx respectively.

Proof: x ∈ int(A) ⇔ A ∈ Nx ⇔ A◦ ∈ Tx ⇔ x ∈ A◦. Hence cl(A) =
int(Ac)c = Ac◦c = Ā.

Note that Nx = {A ⊆ X : x ∈ A◦ }, so ◦ or closure can be taken as
fundamental.

The initial topological space induced by πi : Y → Xi has the sub-base

SY := {π−1i U : U ∈ SXi
}.

The final topological space induced by πi : Xi → Y is generated from

SY := {U : π−1i U ∈ SXi
}.

Some examples are

Subspace Y ⊆ X SY = {U ∩ Y : U ∈ S },
Quotient X/∼ SX/∼ = {U : π−1U ∈ S },
Products X × Y SX×Y = {U × V : U ∈ SX , V ∈ SY },
Coproducts X t Y SXtY = SX ∪ SY .

[The monomorphisms are the 1-1 continuous maps; the epimorphisms are
the onto continuous maps; the initial object is ∅, the terminal object is 1; there
are no zero morphisms; category is concrete, complete and co-complete, but not
cartesian closed (so not a topos); a 2-morphism is a homotopy map.]

1. A net converges when

xi → x ⇔ ∀U ∈ Tx, xi →� U,

⇔ ∀U ∈ Tx,∃j, i > j ⇒ xi ∈ U

2. To write “f(x)→ y as x→ a” is another way of stating fNa → y, i.e.,

∀V ∈ Ty,∃U ∈ Tx, fU ⊆ V.

Thus f : X → Y is continuous when ∀a ∈ X, f(x)→ f(a) as x→ a.

3. The open sets form a complete Heyting algebra (‘locale’) with (A→ B) =
(Ac ∪B)◦. Its “regular” elements are the clopen subsets, which thus form
a Boolean subalgebra.

Conversely, a complete Heyting algebra T gives a topological space (called
its spectrum) X := {x : T → 2 frame morphisms } with topology Ua :=
{x ∈ X : x(a) = 1 } for each a ∈ T ; these operations are adjoints not
inverses: X 6 Spec(T ) ⇔ T 6 Top(X).
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4. Every topological space is embedded in some 2A.

Proof: Let J := Spec ◦ Top : X → 2T , x 7→ (1U (x))U∈T . Each 1U is
continuous since 1−1U (1) = U , so J is continuous. J is open: let U ∈ T ,
y = J(x) ∈ JU , so x ∈ f−1W V ⊆ U for some open sets V ⊆ 2, W ⊆
X. Now πW (y) = fW (x) ∈ V ; for any z ∈ π−1W V ∩ JX, z = J(x′), so
fW (x′) = πW (z) ∈ V , so x′ ∈ f−1W V ⊆ U , and z ∈ JU . Finally, J is 1-1
since fU (x) = fU (y) for all U ∈ T contradicts T0.

Connected Sets

A space may decompose as a sum of non-trivial (clopen) subspaces X = AtB;
otherwise, when ‘irreducible’ (no open partition), it is said to be connected.
However, a space may continue to decompose indefinitely without being the
(infinite) sum of connected subspaces, e.g. Q, N + 1.

1. X is connected iff the only clopen subsets are X,∅ ⇔ every non-trivial
subset has a boundary ⇔ the only continuous functions f : X → { 0, 1 }
are constant. (A clopen set cannot intersect a connected set properly.)

For example, the connected subsets of R are the intervals (since every
proper subset has a boundary point).

2. The connected subsets of a topological space form a connective space. So
the union of overlapping connected subsets is connected. Connectedness is
preserved by continuous functions (hence quotients). X decomposes into
maximal connected subsets called components.

Proof: If
⋃
i Ci = A t B then each Ci ⊆ A or Ci ⊆ B; so

⋂
i Ci ⊆

A∩B = ∅. If fX = AtB then X = f−1At f−1B. The components are
C(x) :=

⋃
{C : connected, x ∈ C }.

Note that the components and their quotient do not determine the topo-
logical space, e.g. take [0, 1] × { 1/n : n ∈ N } and slide [0, 1] × { 0 } hori-
zontally.

3. The addition of any number of boundary points to a connected set leaves
it connected; so components are closed (but not necessarily open).

Proof: Let D ⊆ ∂C; if C ∪D = AtB then C ⊆ A say; if D∩B 6= ∅ then
C ∩B 6= ∅, a contradiction.

4. Some components stick together into (closed) quasi-components: In any
decomposition X = AtB, a quasi-component lies wholly in A or in B, i.e.,
C1 ⊆ A clopen ⇔ C2 ⊆ A. Thus it equalsQ(C) =

⋂
{A : C ⊆ A clopen }.

An example of this is N with two points at infinity a, b; if a ∈ A open,
then A contains an infinite subset of N, so if A is also closed b ∈ A.

5. The number of components is an invariant of the space. When there are
a finite number, the components are clopen (so are equal to the quasi-
components), and the space is equal to the sum of them. But for an
infinite number of components this may be false (e.g. Q 6∼= N).
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6. When X = A t {x }, then x is said to be an isolated point, i.e., {x }
is clopen (a non-isolated point is called a limit point). The number of
isolated points, more precisely the supremum of the cardinality of I where
X = A t

∐
i∈I{xi }, is called the extent of X. (Thus any subset with

more points than the extent has a limit point.) A discrete space consists
only of isolated points

∐
x∈X{x }. At the other extreme, a space without

isolated points is called perfect.

7. A totally disconnected space is one in which the components are single
points (must be T1); a completely disconnected space has singleton quasi-
components (must be T2).

The quotient of a topological space by its components is totally discon-
nected (any distinct [x], [y] are disconnected by [x]c, [y]c); the clopen
subsets of the quotient correspond to those of the space. The quotient by
its quasi-components is completely disconnected (distinct Q(x), Q(y) are
separated by a clopen set U which must contain whole quasi-components;
hence πU is clopen and separates Q(x), Q(y) in X/Q).

Distance and Order Relation

Cluster spaces have a specialization order relation in which any filter that clus-
ters or converges to one point is forced to do so at other points that are ‘hidden
under’ it, so to speak:

x 6 y ⇔ (F 99K y ⇒ F 99K x)

⇔ {x } ⊆ { y }, i.e., (F(y) 99K x)

⇔ F(y)→ x

⇔ (F → y ⇒ F → x)

⇔ Tx ⊆ Ty

(since F(y)→ x ∈ A open implies A ∈ F(y), so y ∈ A and A ∈ Ty.)

1. With respect to this order, continuous functions are monotone, {x } =
↓{x }, closed sets are lower closed, open sets are upper closed.

Proof: If x ∈ { y } then f(x) ∈ f{ y } ⊆ { f(y) }. If x 6 y ∈ Ā then
x ∈ { y } ⊆ Ā. If y > x ∈ A◦ then A◦ ∈ Tx ⊆ Ty, so y ∈ A◦.

2. {x, y } is connected ⇔ x 6 y or y 6 x.

3. An ordered space may have several compatible topologies. The coarsest is
the one defined previously. The finest is the Alexandrov topology, gener-
ated by the open sets {x : a < x } (every intersection of open sets is open;
the continuous maps are the monotone ones). (These agree for finite sets.)

More generally, take a distance function d : X2 → R, where R is a complete
distributive lattice and monoid, with a filter of “positive elements” P , such that
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∀r ∈ P,∃s ∈ P, s+ s 6 r; a+ 0 = a;
∧

(a+A) = a+
∧
A, and

d(x, x) = 0

d(x, y) 6 d(x, z) + d(z, y)

P can be taken to be the set P := { r ∈ R : 0 ≺ r }, where s ≺ r when∧
A 6 s ⇒ ∃a ∈ A, a 6 r (implies s 6 r).
The ball about x of radius r ∈ P is

Br(x) := { y ∈ X : d(x, y) ≺ r }

(also Br(A) := { y ∈ X : ∃x ∈ A, d(x, y) ≺ r }). Because Br∧s(x) = Br(x) ∩
Bs(x), these balls generate a topology.

1. Given a topological space X, T , let R := 2T with reverse order, i.e., A 6
B ⇔ B ⊆ A, 0 = T , A ∧ B = A ∪ B; let A + B := A ∩ B; and let P be
the finite subsets of T (a filter); let

d(x, y) := {U ∈ T : x ∈ U ⇒ y ∈ U }

then d is a distance because d(x, x) = T and if U ∈ d(x, z) ∩ d(z, y), then
x ∈ U ⇒ z ∈ U ⇒ y ∈ U , so U ∈ d(x, y).

(a) Balls are open in T :

B{V }(x) = { y ∈ X : d(x, y) 6 {V } } = { y : x ∈ V ⇒ y ∈ V } =

{
V x ∈ V
X x /∈ V

B{V1,...,Vn }(x) = B{V1 }(x) ∩ · · · ∩B{Vn }(x)

Hence every open set is a a union of balls: V ⊆
⋃
x∈V Br(x)(x) ⊆ V .

(b) Every topology is generated by a distance.

Proof: If V is an open set, then for any x ∈ V , B{V }(x) = V , so V is
open wrt d. Conversely, if V is open wrt d, then for any x ∈ V , there
is Ax ∈ P , BAx(x) ⊆ V , so V ⊆

⋃
x∈V BAx(x) ⊆ V , i.e., V =

⋃
Ax

(x)
is open in T .

2. Given any ε ∈ P , one can find ε/2n such that 2(ε/2n+1) ≺ (ε/2n), and
2n+1ε := 2(2nε); furthermore, can extend to positive dyadic fractions
pε :=

∑
n an(ε/2n) when p =

∑
n an/2

n (binary decomposition of p) (then
pε+ qε 6 (p+ q)ε). This induces a morphism φ : R→ R+, φ(r) :=

∧
{ pε :

a 6 p } (if r 6 s then φ(r) 6 φ(s) and φ(r+s) =
∧
{ p ∈ D : r+s 6 pε } 6∧

{ p+ q : r 6 pε and s 6 qε } = φ(r) + φ(s). Hence φε ◦ d : X2 → R+ is
a non-symmetric pseudo-metric.

3. x 6 y ⇔ d(x, y) = 0. Thus, if d(x, y) = 0 = d(y, x) then x = y.

4. x ∈ A◦ ⇔ ∃r ∈ P,Br(x) ⊆ A.
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x ∈ Ā ⇔ ∀r ∈ P, x ∈ Br(A).

x ∈ ∂A ⇔ ∀r ∈ P, x ∈ Br(A) ∩Br(Ac).

5. A function f : X → Y is continuous iff

∀ε ∈ PY ,∃δ ∈ PX , dX(x, y) ≺ δ ⇒ dY (f(x), f(y)) ≺ ε

6. A filter F is Cauchy when ∀ε ∈ P,∃A ∈ F , x, y ∈ A ⇒ d(x, y) ≺ ε.
Nets are asymptotic when ∀ε ∈ P,∃n ∈ I, i, j > n ⇒ d(xi, yj) ≺ ε. A
net is Cauchy when every subnet is asymptotic to it, i.e., d(xi, xj)→ 0.

Compactness

A compact space is one in which every proper filter clusters.

1. Equivalently, when every maximal filter converges; or when every open
cover has a finite subcover.

Proof: If Vi are open sets without a finite subcover, then ∅ 6= clF(V c
i )i ⊆⋂

i V
c
i , so

⋃
i Vi 6= X. Conversely, if F is proper, then for A ∈ F , Āc

has no finite subcover, Āc
1 ∪ · · · ∪ Āc

n = (A1 ∩ · · · ∩ An)c 6= X; hence
cl(F) =

⋂
A∈F Ā = (

⋃
A∈F Ā

c)c 6= ∅.

2. Points, closed subspaces, finite unions, products, and continuous images
(quotients) of compact spaces are compact.

Proof: If F ∈ F 99K x then x ∈ F̄ = F . The finite sub-covers of F and G
cover F ∪G. Given a proper filter F on

∏
iXi, then πiF is proper in Xi,

so πiF 99K xi and F 99K (xi)i∈I . Let F be a proper filter in fX; then
f−1F is proper in X, so f−1F 99K x and F 99K f(x).

3. Compactness can be split in two weaker conditions:

Lindelöf : Every open cover has a countable subcover.
⇒ Every uncountable subset has a limit point.

Countably compact : Every countable open cover has a finite subcover,
⇔ Every sequence clusters,⇐ Every sequence has a convergent sub-
sequence,
⇒ Bolzano-Weierstraß property : Every infinite subset has a limit
point.

Proof: If X is countably compact and xn a sequence without a cluster
point, then each x ∈ X is in an open set Ux with only finitely many
xn ∈ Ux; let Un :=

⋃
{U ∈ T : xi ∈ U ⇒ i 6 n }, an increasing

countable cover of X. Its finite subcover is some UN , hence xN+1 ∈ UN
a contradiction. Conversely, if Un is a countable cover, then pick xn+1 /∈
U1 ∪ · · · ∪ Un; this sequence has a convergent subsequence xni

→ a. If
a ∈ Un then xni

→� Un, a contradiction for large ni. Let A be an infinite
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subset; create a sequence of distinct points from it, which has a convergent
subsequence; the limit is a limit point of A.

(All these properties are preserved by continuous functions.)

Lindelöf spaces have countable extent (since X = A t
∐
i{xi } has a

countable sub-cover).

4. Any topological space can be embedded in a compact space by the addition
of one point (∞).

Proof: Consider X∪{∞} where T∞ := {A : Ac is closed compact in X }.
But not all continuous functions need extend to the one-point compacti-
fication: e.g. a sequence x : N→ A can be extended to x : N ∪ {∞} → A
only if the sequence converges.

Local and Global Properties

A topological space has both local and global properties: take an open cover of
X, each Ui is a topological space in its own right, while the way they connect
to each other determine the global properties of X.

A local morphism is a map which is a morphism on some neighborhoods of
any x, f(x). Local morphisms are in fact the morphisms, but local isomorphisms
are more general. A local property is one that is enjoyed by all/none of a class
of locally isomorphic topological spaces. A continuous map need not preserve
local properties, but open subspaces usually do.

A fiber bundle is a topological space E that is locally isomorphic to a product
B × F such that the local projections π : E → B are continuous; equivalently
it is two maps F → E → B; e.g. the 3-sphere is a fiber bundle S1 → S3 → S2.

A locally connected space has neighborhood bases of connected sets; iff there
are neighborhoods of connected open sets; the quasi-components are then the
components and are open (proof: every x has an open connected neighborhood
U which lies in the component C(x), so C(x) is clopen); so cannot be totally
disconnected except for discrete spaces.

A locally compact space has neighborhood bases of compact sets; preserved
by open continuous functions (e.g. quotients); the finite product of locally com-
pact spaces is locally compact (the infinite product is not, unless the spaces are
compact).

The global properties of an open cover Ui are captured by its nerve: the
finite subsets of indices j such that

⋂
j Uj 6= ∅. For example, compact spaces

are ‘finite’ in the global sense.
Homogeneous Spaces are those for which the automorphism group has one

orbit; they ‘appear’ the same at all points; they are locally isomorphic. A
homogeneous space is either discrete (all points are isolated) or perfect T1.
Products are again homogeneous.
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3 Size

There are several ways to measure the size of a topological space, apart from
its cardinality.

1. The weight is the smallest cardinality of a base.

2. The density is the smallest cardinality of a dense subset.

3. The spread is the largest (sup) cardinality of a discrete subset (hence
spread > extent).

The density and spread are less than the weight: the former because a set
of points taken one from each basic open set gives a dense subset; the latter
because a discrete set is covered by disjoint open (basic) sets.

If X ⊂∼ Y then the weight and spread of X are at most those of Y .
The number of open disjoint subsets is at most equal to the spread s.

3.1 Separable Spaces

A separable space is one that has a countable dense subset, i.e., its density is N;
so every point can be approximated to any accuracy by one of these points.

1. Open subspaces, images, and countable sums or products are separable.

Proof: Given A countable dense; if Y is open, and U open, then there
is a point a ∈ A ∩ U ∩ Y , so A ∩ Y is dense in Y . fA ⊇ fĀ = fX.∏
iAi =

∏
iAi =

∏
iXi; (an)n∈N, with an ∈ An for n 6 N , is dense in∏

iAi.

2. Every disjoint collection of open sets is countable.

3. The number of regular open subsets is at most 2N (more generally 2density(X))
(since U is determined by A ∩ U ∈ 2A for a dense subset A).

3.2 First Countable Spaces

have countable local weight, i.e., for each x, there are countable sub-bases Sx.

1. Subspaces, open images (quotients) and countable products are first count-
able.

Proof: If f is open, then fUn is a sub-base at f(x). If Xn has countable
sub-base Un,m, then

∏
nXn has a sub-base π−1n Un,m (n,m ∈ N).

2. Every point has a sequence converging to it (take points from U1, U1∩U2,
. . . of the countable base.)

So many convergence properties of filters reduce to properties of sequences,
e.g. a set is countably compact iff every sequence has a convergent subse-
quence; a function is continuous ⇔ sequentially continuous.

Proof: If f is not continuous at x, then ∃U ∈ Tx, ∀n, Vn 6⊆ f−1U , so
∃an ∈ Vnrf−1U , so f(an) 6∈ U , so limn an = x but limn f(an) 6= f(x).
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3.3 Second Countable Spaces

Have a countable base, i.e., S is countable.

1. They are separable, first countable, and Lindelöf.

Proof: Pick one point from each basic open set for a dense subset. Given
an open cover Ui, then for each x ∈ X, x ∈ Vn ⊆ Ui, so can choose a
countable subcover.

2. Subspaces, open images, and countable products are again second count-
able.

3. A countable first countable space is second countable, but there are count-
able spaces that are not first countable (e.g. Arens-Fort space).

4 T1 Spaces

are 6-symmetric T0 spaces, i.e., x 6 y ⇔ y 6 x(⇔ x = y), equivalently,

⇔ d(x, y) = 0 ⇒ x = y,

⇔ F(x) clusters only at x

⇔ Points are closed sets,

⇔ Nx converges only to x

⇔ ∀x 6= y, ∃F → x, F 6→ y

⇔ Any two points can be separated by open sets

⇔ A =
⋂
{V ∈ T : A ⊆ V }

Proof: The first four equivalences are trivial. If x 6= y, then F(x) 6→ y.
If F 6→ y then Ty 6⊆ F so ∃U ∈ Ty, U /∈ Tx ⊆ F . A =

(⋃
x/∈A{x }

)c
=⋂

x/∈A{x }c ⊇
⋂
A⊆V ∈T V ⊇ A. y /∈ {x } =

⋂
x∈V ∈T V ⇒ ∃V ∈ T , x ∈ V, y /∈

V . If x < y then x ∈ U, y ∈ U c, so ȳ ⊆ U c, hence x 66 y, a contradiction.

Example: Cofinite topology on X (generated by the cofinite sets, i.e., sets
whose complements are finite).

1. Subspaces, images, products, and the one-point compactification are also
T1.

Proof: For products, let (xi) 6= (yi), so xj 6= yj for some j. Then xj , yj
are separated by open sets Uj , Vj , so π−1j Uj and π−1j Vj separate (xi), (yi).

2. For first countable T1 spaces, limit points are limits of convergent se-
quences. Hence BW-compact sets are countably compact.

3. Finite T1 spaces are discrete.
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4.1 T2 – Hausdorff Spaces

Proper filters have at most unique limits

F → x and F → y ⇒ x = y

⇔F → x and F 99K y ⇒ x = y

⇔Nx clusters only at x

⇔Any two points can be separated by disjoint open sets

Proof: The last statement, ∃A ∈ Tx, B ∈ Ty, A ∩ B = ∅, is equivalent to
Nx ∨Ny being improper. Nx ∨Ny converges to both x and y, so it can only be
proper when x = y. If Nx 99K y then Nx ∨ Ny is proper. F → x ⇒ Nx ⊆
F ⇒ cl(F) ⊆ cl(Nx) = {x }.

In particular, convergent nets/sequences have unique limits, denoted limn→∞ xn.
T2 spaces are T1.

1. Subspaces and products are also T2 (but not necessarily images or the
one-point compactification).

2. Every topological space can be reduced to a T2 space (take quotient by
the relation x ∼ y ⇔ ∀f : X → A(T2) onto, continuous, f(x) = f(y)).

3. Compact subsets are closed; disjoint compact sets can be separated by
disjoint open sets.

Proof: For any x ∈ K, y /∈ K, there are disjoint open sets x ∈ Ux and
y ∈ Vx; hence K ⊆ Uy :=

⋃n
i=1 Uxi disjoint from y ∈ Vy :=

⋂n
i=1 Vxi .

For a disjoint compact subset with elements y, V :=
⋃m
j=1 Vyj and U :=⋂m

j=1 Uyj separate the two.

4. If f : Y → X, g : Z → X are continuous, then the set { (y, z) ∈ Y × Z :
f(y) = g(z) } is closed; for example, the graph and kernel of f , and the
equalizer of f, g : Y → X in Y . So if f, g agree on a dense subspace of
Y , then they agree on all of Y : Continuous functions are determined on
dense subsets. The epimorphisms to T2 spaces are the dense continuous
functions.

Proof: If (y, z) /∈ A, then f(y) 6= g(z), so are separated by open sets U, V ;
then (y, z) ∈ f−1U × g−1V ⊆ Ac.

5. In a T2 space with a dense subset A, every point x is determined by Tx,

and every U ∈ Tx is determined by the points of A in it; thus |X| 6 22
d(X)

;
in particular, separable T2 spaces have cardinality at most 2R.

If the space is separable first countable, every point is determined by a
sequence taken from A, so its cardinality is at most NN ≡ R.

T2.5 Spaces

are stronger versions of Hausdorff spaces in which any two points can be sepa-
rated by disjoint closed neighborhoods.
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T3 Spaces (Regular)

are (T0) spaces in which any point and a disjoint closed set can be separated
by disjoint open sets; equivalently, there is a base of closed neighborhoods,
∀U ∈ Tx,∃V ∈ Tx, V ⊆ V̄ ⊆ U ; thus a base of regular open subsets.

1. T3 spaces are T2.5. (If x 66 y, then x ∈ V ⊆ V̄ ⊆ U , y ∈ U c ⊆ V̄ c, so T2,
hence T2.5).

2. Subspaces and products are T3.

3. Every compact subset can be separated from a disjoint closed set (separate
points of K from F , then take finite sub-cover).

4. If X is dense in X̃ and Y is T3 then any continuous function f : X → Y
extends uniquely to a continuous function f̃ : X̃ → Y , where f̃(x̃) :=
limx→x̃ f(x).

Proof: Well-defined because Y is T2; continuous because for any closed
neighborhood F of f̃(x̃), there is an open set V in X such that fV ⊆ F ;
so f̃V ⊆ f(V ∩X) ⊆ F .

5. Countable T3 spaces are Lindelöf (hence T3.5, see later), so connected T3
spaces are uncountable, except for singletons or ∅.

6. There are only two countably infinite homogeneous T3 spaces — N and Q.

7. For a countably compact T3 space, meagre subsets have empty interior.
Hence X is not meagre.

Proof: Let
⋃
nAn be closed nowhere dense sets with interior U 6= ∅.

Starting with V1 := U and continuing iteratively, ∅ 6= Vn 6⊆ An, so
∃xn ∈ VnrAn; hence xn ∈ Vn+1 ⊆ Vn+1 ⊆ VnrAn. Decreasing closed sets
in a countably compact space have non-empty intersection, x ∈

⋂
n>2 Vn ⊆

Ur⋃
nAn a contradiction.

A space is zero dimensional 0-D when every point has a neighborhood base
of clopen sets (i.e., without a boundary). 0-D spaces are (obviously) completely
disconnected T3 spaces. Subspaces are again 0-D. Can be embedded in 2C where
C are the clopen sets, via x 7→ { i : x ∈ Ui }. For example, the discrete spaces
and Q.

More generally, a space is called n-dimensional when every neighborhood
has a set with boundary of dimension n− 1.

5 T3.5 Tychonoff Spaces - Uniform Spaces

are (T0) spaces such that an associated distance is symmetric,

d(y, x) = d(x, y).
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The induced pseudo-metric g := φ ◦ d : X2 → R+ is continuous, where
φ : R → R+. (Proof: for any δ > 0, let p < δ be a dyadic fraction; then
d(y, z) ≺ pε implies |g(x, y) − g(x, z)| 6 g(y, z) = φ ◦ d(y, z) 6 p < δ since
g(x, y) 6 g(x, z) + g(z, y)).

The distance generates a uniformity on X, namely the filter U generated
from the relations Ur := { (x, y) ∈ X2 : d(x, y) ≺ r } (r ∈ P ). The reflexive,
symmetric, transitive and the s+ s 6 r properties induce

Each r ∈ U is reflexive, since d(x, x) = 0
r ∈ U ⇒ r−1 ∈ U , d(y, x) = d(x, y)
∀r ∈ U ,∃s ∈ U , s ◦ s ⊆ r d(x, y) 6 d(x, z) + d(z, y) ≺ 2s 6 r

Moreover, assuming no indistinguishable points, it can be assumed that⋂
U = { (x, x) : x ∈ X }. Conversely, any uniform space gives rise to a sym-

metric distance. There is a unique finest uniformity that is compatible with the
topology (take union of all compatible uniformities).

A filter is Cauchy when ∀U ∈ U , ∃A ∈ F , A×A ⊆ U , i.e.,

∀r � 0, ∃A ∈ F , ∀x, y ∈ A, d(x, y) 6 r

Proof: F(x) is Cauchy since for any r � 0, take A := Br/2(x). Given r � 0,
A ∈ F , B ∈ G, d(A,A) 6 r, d(B,B) 6 r, then for any x, y ∈ A ∪ B ∈ F ∩ G
and z ∈ A ∩B, so d(x, y) 6 d(x, z) + d(z, y) 6 2r.

Every uniform space can be uniquely completed (by taking the set of minimal
Cauchy filters; then X is embedded in it via x 7→ F(x)).

A function f : X → Y is uniformly continuous when fUX refines UY , i.e.,

∀ε �Y 0,∃δ �X 0, d(x, y) ≺ δ ⇒ d(f(x), f(y)) ≺ ε

Hence they are Cauchy maps (and preserve asymptotic nets), so continuous.
Any uniformly continuous function extends uniquely to a uniformly continuous
function on the completion spaces, via f̃(x) := limn f(xn).

Examples: RA with pointwise topology.

1. Any point and a disjoint closed set can be separated by a real-valued
function. (Hence T3).

Proof: Given any x ∈ X and ε ∈ P such that Bε(x) ⊆ F c, let f(y) :=
1 ∧ g(x, y), where g is the pseudo-distance defined above; then f(x) = 0
and for y /∈ Bε(x), d(x, y) 6≺ ε, so g(x, y) > 1.

Incidentally, this shows that if X is connected then X → [0, 1] is onto, so
X is uncountable; unless the only closed sets are trivial, X = {x } or ∅.

2. Tychonoff spaces are those spaces that can be (densely) embedded in a
compact-T2 space (e.g. via the map J(x) := (f(x))f∈C ∈ [0, 1]C(X,[0,1])).

Proof: J is continuous because each component is, x 7→ f(x). J is 1-1
because C := C(X, [0, 1]) distinguishes points. It is an open map because
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C distinguishes points from closed sets: let x ∈ U open in X, then ∃f ∈ C,
f(x) = 0, fU c = 1; let V := π−1f [0, 1[ open in [0, 1]C . Then (f(y))f∈A =
J(y) ∈ V ⇒ f(y) < 1 ⇒ y ∈ U , so J(x) ∈ V ∩ J(X) ⊆ J(U).

There is a unique ‘Stone-Cech’ compactification or completion, βX, in
which every continuous function f : X → Y (Y compact T2) extends
to f̃ on βX. Each x ∈ βX corresponds to a maximal ideal of Cb(X),
Ix = ker δx = { f ∈ Cb(X) : f̃(x) = 0 }.

3. Subspaces and products are again Tychonoff (but not images or quotients).

Proof: The subspace distance remains symmetric.
∏
iXi

⊂∼
∏
i[0, 1]Ai =

[0, 1]
∑

i Ai .

4. A set is totally bounded when for any r ∈ P , there is a finite set F such
that A ⊆ Br(F ); preserved by uniformly continuous functions. Subspaces,
finite unions, and products of totally bounded are totally bounded.

(a) Every filter in a totally bounded subset has a Cauchy refinement; i.e.,
maximal filters are Cauchy.

(b) Any sequence in a totally bounded subset has a Cauchy subsequence
(since choose rn → 0; some set in Brn(Fn) must contain an infinite
number of terms).

5. A Tychonoff space has a proximity relationAδ B defined by ∀r ∈ P,Br(A)∩
Br(B) 6= ∅. Then

Aδ B ⇔ B δ A, x δ y ⇔ x = y, A 6 δ∅
A ∩B 6= ∅ ⇒ Aδ B, A δ B ∪ C ⇔ (Aδ B) or (Aδ C)

If for all E,A δ E or B δ Ec then Aδ B

5.0.1 Locally Compact T2 Spaces

When each neighborhood has a base of compact sets; equivalently, every point
has a compact neighborhood (since K is T3 so for x ∈ K◦, U ∈ Tx, U ∩ K◦
contains a closed (compact) neighborhood).

Closed subspaces, and open images, are again locally compact T2.

1. The one-point compactifications are T2, hence are Tychonoff. They are
the open subspaces of compact T2 spaces. Example: R compactifies to S.

2. They inherit several properties from compact T2 spaces:

(a) 0-D ⇔ Totally disconnected.

(b) Meagre subsets have empty interior.

Proof: Let Ū be a compact neighborhood of a (so completely discon-
nected); for any other x ∈ Ū , there is a clopen subset a ∈ Vx ⊆ {x }c;
ŪrU is compact, hence is covered by a finite number of these; thus
V1 ∩ · · · ∩ Vn ⊆ U ∩ Ū c; K := V1 ∩ · · · ∩ Vn ∩ Ū ⊆ U is a clopen sub-
set on a.
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3. Can define the categorical Y X when X is locally compact T2, as C(X,Y )
with the compact-open topology i.e., generated by the functions f such
that there are K ⊆ X compact and U ⊆ Y open with fK ⊆ U . If Y is
T0, T1, T2 or T3, then so is C(X,Y ).

5.1 T4 Spaces (Normal)

Any two disjoint closed sets or points can be separated by disjoint open sets.
Equivalently,

F ⊆ U (closed, open)⇒ F ⊆ V ⊆ V̄ ⊆ U ; hence can fill out with a continuum
of sets - first dyadic, then Vt :=

⋃
i/2n6t Vi,n such that s < t ⇒ Vs ⊆

V̄s ⊆ Vt;

⇔ Any two disjoint closed sets or points can be separated by continuous
functions (Urysohn: take f(x) := inf{ t : x ∈ Vt });

⇔ Continuous functions on a closed subspace f : F → R have a continuous
extension to X and X is T1 (Tietze).

1. Closed subspaces are T4.

2. Every locally finite open cover has a partition of unity
∑
i fi(x) = 1 sub-

ordinate to it. (Locally finite means that each point has a neighborhood
that intersects only finitely many sets in the cover.)

Proof: Given locally finite Ui; it has a locally finite refinement Vi such that
Vi ⊆ Ui; for each i, Vi can be separated from Ui by a continuous function
gi : X → [0, 1] with giU

c
i = 0. Let g :=

∑
i gi (well-defined by local

finiteness). Since each x is covered by some Vi, g > 0; hence fi := gi/g is
a locally finite partition of unity with supp fi ⊆ Ui.

5.1.1 T5 Spaces (Hereditarily normal)

when any two separated sets (A ∩ B̄ = ∅ = B ∩ Ā) or points can be separated
by disjoint open sets. Equivalently, every subspace is T4.

Important examples of T5 spaces are:

Linearly ordered (bounded) spaces with topology generated by the closed
sets ↑x = [x, 1] and ↓x = [0, x].

1. Limits are order-morphisms, xn 6 yn ⇒ limn xn 6 limn yn.

2. Linear Orders are T5.

Proof: Given A ∩ B̄ = ∅ = Ā ∩ B, let Aα be the convex components of
A in B̄c, and Bβ of B in Āc. If the upper end of Aα is not open, then it
has a maximum a; a /∈ B̄, so ∃x,Aα < x < Bβ for all Aα < Bβ . Similarly
for the lower end and for Bβ . So Aα ⊆ Uα, Bβ ⊆ Vβ open, Uα ∩ Vβ = ∅;
U :=

⋃
α Uα, V :=

⋃
β Vβ ; U ∩ V = ∅.
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3. A subset is topologically dense ⇔ order-dense outside gaps.

4. The order is compact ⇔ order-complete.

Proof: If X is incomplete, then there is a non-empty subset A without a
supremum; so the open sets [0, a[ (a ∈ A) and ]u, 1] (u ∈ UB(A)) cover X,
but no finite subcover exists. Conversely, if X is complete and Ui an open
cover, then the setA := {x ∈ X : [0, x[ is covered by a finite number of Ui }
is non-empty (0 ∈ A), so has a supremum y, which is covered ]a, b[ ⊆ U .
This contains some x ∈ A, so [0, b[ is covered by the finite number of Ii
and U ; thus y, b ∈ A. Hence the supremum is 1, i.e., there is a finite
subcover.

5. The order is connected ⇔ order-complete and dense (i.e., no ‘cuts’ or
gaps).

Proof: Any cut disconnects X: if a non-empty subset A has no supremum,
then U := Upperbounds(A) is both open and closed. If x < y is a gap, then
[0, y[ and ]x, 1] disconnectX. Conversely ifX is complete but disconnected
by disjoint clopen sets A,B with a ∈ A, b ∈ B, a < b; then let C := A∩↓ b
and c :=

∨
C; if c ∈ A, then it is exterior to B, so c ∈ ]x, y[ ⊆ A making

c < y a gap; else if it is in B, then c ∈ ]x, y[ ⊆ B, so x < c is a gap.

6. Cauchy-complete ⇔ paracompact T2.

7. The density is the spread s or s+.

5.1.2 T6 Spaces (Perfectly Normal)

when every two disjoint closed sets can be perfectly separated, i.e., there is a
continuous function f : X → [0, 1], f−10 = A, f−11 = B; equivalently when T4
and every closed set is the countable intersection of open sets.

5.2 Paracompact T2 Spaces

Open covers have open locally-finite refinements (i.e., the refinement sets are
covered by the cover sets, e.g. subcovers). Their (Lebesgue) dimension is n such
that every open cover has an (n+ 1)-locally finite refinement.

Example: CW-complexes

1. Closed subspaces and finite sums are paracompact T2, but not necessarily
products or images.

2. For a locally finite cover,
⋃
i Vi =

⋃
i V̄i.

Proof: Any x has a neighborhood that intersects only V1, . . . , Vn say; so
x ∈

⋃
i Vi =

⋃
i>n Vi ∪ V̄1 ∪ · · · ∪ V̄n, hence x ∈

⋃
i6n V̄i ⊆

⋃
i V̄i.

3. Paracompact T2 are normal.

Proof: Given F,G closed sets, hence paracompact. For each x ∈ F , y ∈ G,
there are open sets Ux,y such that x ∈ Ux,y, y ∈ Ux,y

c
since T2. For fixed
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x, Ux,y have a locally finite refinement Vi on G; Vx :=
⋃
i Vi ⊇ G. So

x ∈
⋂
i V̄

c
i = (

⋃
i V̄i)

c = Vx
c
. V̄ c

x have a locally finite refinement Wj on F ;
W :=

⋃
jWj ⊇ F . Then G ⊆

⋂
x V̄

c
x = (

⋃
x V̄x)c ⊆ (

⋃
j W̄j)

c = W̄ c.

Important examples of paracompact T2 spaces are:

5.2.1 Metric Spaces

have a distance or metric d : X2 → R+.
A morphism may be required to be Lipschitz: d(f(x), f(y)) 6 c d(x, y);

hence uniformly continuous.

1. Metric spaces are first countable paracompact T6.

Proof: B1/n(x) form a countable base at x. Disjoint closed subsets are
perfectly separated by d(x,A)/(d(x,A) + d(x,B)). Given an open cover
Uα, for each α, pick a largest ball Bα := B1/2n(xα) ⊆ Uα ∩ Uβ for some

β < α (B0 ⊆ U0); let Vα := Uαr
⋃
β<α

1
2Bα. Then Vα is a locally point-

finite refinement of Uα. For each x, let mx := 1
2 sup{ r : ∃α, Br(x) ⊆

Vα }, Wα :=
⋃
{Bmx/2(x) : Vα is first to contain Bmx(x) } is the required

locally finite cover.

2. A space is metrizable ⇔ paracompact T2 locally metrizable (Smirnov)
⇔ T6 with a σ-discrete basis (Bing).

3. There are no coproducts. The image by a 1-1 function is metrizable by
d(f(x), f(y)) := d(x, y). The pre-image by a countable number of func-
tions (that separate points) is metrizable by d(x, y) :=

∑
n andn(fn(x), fn(y)),

where
∑
n an <∞. In particular the countable product of metric spaces is

again a metric space: take fn := πn so d((xn), (yn)) :=
∑
n andn(xn, yn).

4. The completion of a metric space is a metric space.

Proof: Take X̃ to be the space of Cauchy sequences, with d((xn), (yn)) :=
limn→∞ d(xn, yn), identifying asymptotic sequences (indistinguishable by
d).

5. A set is bounded when for x, y ∈ A, d(x, y) 6 c. Bounded sets are preserved
by Lipschitz maps.

6. Every complete metric space is either σ-compact or contains NN (Hurewicz).

7. For complete metric spaces, a meagre subset has empty interior.

Proof: Let
⋃
nAn be closed nowhere dense sets with interior U 6= ∅. Let,

iteratively, Brn+1(xn+1) ⊆ Brn(xn)rAn (with Br1(x1) ⊆ UrA1); xn is a
Cauchy sequence which converges to x ∈ Ur⋃

nAn.

8. For Lipschitz maps, let cf := supx 6=y
d(f(x),f(y))

d(x,y) . Then cf◦g 6 cfcg.
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9. (Banach) A Lipschitz map with c < 1 has a unique fixed point f(x) = x,
that can be reached via xn+1 := f(xn).

10. The set of distances on X is closed under addition and multiplication by
positive real numbers. Any function f : X2 → R+ can be turned into
a metric by taking the shortest paths: replace f by g(x, y) := f(x, y) +

f(y, x), let d(x, y) := inf{
∑n−1
i=1 g(xi, xi+1) : x1 = x, xn = y }, identify

pairs d(x, y) = 0.

11. The image of a metric space need not be a metric space (with the same
induced metric). For example, the identity map on R from Euclidean to
cofinite topology; or consider the subsets Ar := { (x, y) ∈ R2 : xy = r },
then X/A = {Ar : r ∈ R } is homeomorphic to R, but not using the metric
of R2 (because any two Ar are arbitrarily close to each other).

12. A metric space is self-similar by f when d(f(x), f(y)) = λd(x, y) (λ 6= 1);
i.e., fBr(x) = Bλr(f(x)). If f is invertible, cannot be bounded. For
example, fractals.

13. An ultrametric satisfies the stronger triangle inequality d(x, y) 6 max(d(x, z), d(z, y))
(e.g. discrete metric). Every triangle is isosceles; so any two balls are ei-
ther disjoint or concentric; so Br(x) partition X for any fixed r; hence
balls (and their “surface”) are clopen; hence 0-D. Conversely, a p-‘metric’
satisfies d(x, y) 6 p

√
d(x, z)p + d(z, y)p (0 < p).

5.3 Lindelöf T3 Spaces

They are paracompact T2.
Proof: Given an open cover, each x is in some Ux, so there are open sets

x ∈ Vx ⊆ Vx ⊆ Ux. Hence there is a countable sub-cover Vn; let Wn :=
UnrV1 ∪ · · · ∪ Vn−1. For any x ∈ X, let n be the minimum such that x ∈ Vn;
then x ∈Wn (and x ∈Wi ⇒ i 6 n), so these form a locally finite sub-cover.

Examples:

1. Separable paracompact T2 spaces.

Proof: Given countable dense set A and open cover Ui; for x ∈ Ux, there
is an open set x ∈Wx ⊆ W̄x ⊆ Ux; the open cover Wx has a locally finite
refinement V ; hence choose the countable Vx for x ∈ A; since V is locally
finite,

⋃
i Ui ⊇

⋃
n V̄n =

⋃
n Vn ⊇ Ā = X.

2. Second countable T3 spaces ⇔ separable metric spaces ⇔ Lindelöf metric
spaces; they are embedded in [0, 1]N (Urysohn metrization theorem).

Proof: A metric space with dense subset xn, has countable base B1/m(xn).
For each n, the open cover B1/n(x) of a Lindelöf metric space has a
countable subcover. Second countable T3 are Lindelöf paracompact, hence
there is a locally finite partition of unity fn subordinate to the base Un.
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Let J : x 7→ (fn(x))n∈N ∈ [0, 1]N (a metric space); J is obviously 1-
1 and continuous; J−1 is continuous: if x ∈ U is open in X, there is
x ∈ Un ⊆ Un ⊆ U , so

∑
i6n fi(x) = 1; but y /∈ U ⇒ fi(y) = 0, so

d(J(x), J(y)) =
∑
i 2−i|fi(x)− fi(y)| > 1

2n .

Complete separable metric spaces are covered by (i.e., are a quotient of)
NN; compact metric spaces embed as closed subsets of [0, 1]N; 0-D separa-
ble metric spaces are embedded in 2N.

Examples: Totally bounded metric spaces (and subspaces such as locally
compact metric spaces).

3. σ-compact T3 spaces (i.e., admit a countable cover of compact sets);
e.g. second countable locally compact T2 (metric) spaces; connected lo-
cally compact paracompact T2 spaces (since take a locally finite cover of
compact neighborhoods Ui; starting with U0, take a finite U1, . . . , Un that
intersect it, then finite others that intersect these, etc. ; then

⋃
n Un =⋃

n Ūn =
⋃
n Un = X).

(Arhangel’skii) When first countable, |X| 6 2N.

5.4 Compact T2 Spaces

Equivalently, totally bounded complete Tychonoff spaces.
Proof: Br(x), x ∈ K, has a finite sub-cover. If F 6→ x, then ∃A ∈ T , x ∈

A,A /∈ F , so a finite sub-cover, yet ∃Bi, y ∈ Bi ⇒ Bi ⊆ BAi(y). If Vj cover
K totally bounded then K ⊆ Br(F ), so some Br(x1) needs an infinite number
of Vj for cover; continue with r → 0 to get a Cauchy sequence xn → x; but
Br(xn) ⊆ Bs(x) ⊆ V is a finite cover.

1. Quasi-components are components. (Hence totally disconnected compact
spaces are 0-D.)

Proof: Suppose Q = A∪B, A ⊆ U , B ⊆ V , A∩B = ∅; let C := (U ∪V )c

compact, and let Ci be the clopen sets containing Q; then Cc
i cover C, so

the clopen set F c := Cc
1∪ · · ·∪Cc

n covers C, and Q ⊆ F ; but U ∩F , V ∩F
are clopen (U ∩ F ⊆ Ū ∩ F ∩ (U ∪ V ) = U ∩ F ), so A,B are separated by
a clopen set, B = ∅ and Q is connected.

2. Any 1-1 continuous map from a compact T2 space to a T2 space is an
embedding (since it preserves closed/compact sets).

Hence the topology of a compact T2 space is rigid (since if X ′ is weaker,
then the identity map X → X ′ is an embedding; if finer, use X ′ → X).

3. Any continuous map between compact T2 spaces is uniformly continuous.

Proof: For any V ⊆ Y , there is a W such that W ◦W ⊆ V ; for each y there
is BWy (y) ⊆ BW−1(y); as f is continuous, f−1BWx

(f(x)) is an open cover
of X, so it has a refinement U ; i.e., for any x ∈ X, there is an a ∈ X,
BU (x) ⊆ f−1BWa

(f(a)), so fBU (x) ⊆ BWa
(f(a)) ⊆ BW−1◦W (f(x)) ⊆

BV (f(x)).



Joseph Muscat 2015 26

4. C(X) ∼= C(Y ) (isometric) ⇔ X ∼= Y .

5. A Boolean space (or Stone space) is a 0-D compact T2 space. The topo-
logical space associated with a Boolean algebra is a Boolean space, and
the (clopen) topology of a Boolean space is a Boolean algebra.

6. Stone-Cech compactification of a set: given any set A, let βA := {F :
maximal filter } with S being Ua = {F : a ∈ F } for any a ⊆ A. βA is a
Boolean space.

7. For Y T3.5 and X compact, C(X,Y ) is the space of uniform convergence.

8. Every compact metric space is the continuous image of the Cantor set.

For example, there is a space-filling path C → [0, 1], x 7→
∑
n

xn

2n+1 , ex-
tended to C ∼= CN → [0, 1]N, extended to [0, 1] → [0, 1]N by Tietze’s
theorem.

Space-filling paths: Connected locally connected second countable com-
pact T2 spaces are the images of [0, 1] (Hahn-Mazurkiewicz).

9. A countable compact T2 space is a second countable metric space. More
generally, the weight is at most |X|.
Proof: For m,n ∈ X and base U , m ∈ Un ⊆ nc, so X is first countable;
hence second countable T3 and metrizable.

6 Measurable Spaces

A generalized measure is a pseudo-metric on subsets, d : 2X → [0,∞], which
is invariant under symmetric differences d(A4C,B4C) = d(A,B) (i.e., adding
or removing the same points from A,B does not change their distance); hence
d(A,B) = d(A4B,∅) =: µ(A4B). Equivalently, it is a mapping µ : 2X →
[0,∞] such that

µ(A4B) 6 µ(A) + µ(B), µ(∅) = 0.

It follows that

1. µ(A tB) 6 µ(A) + µ(B), |µ(A)− µ(B)| 6 µ(A4B)

2. µ is continuous on sets of finite measure, An → A ⇒ µ(An)→ µ(A).

Proof: µ(A) = µ(A4B4B) 6 µ(B) + µ(A4B). |µ(An) − µ(A)| 6
µ(A4An)→ 0

3. If An → A then An4B → A4B.

Sets are measure-indistinguishable when µ(A4B) = d(A,B) = 0, denoted
A = B a.e. (equal almost everywhere). Sets with µ(A) = 0 are called null, when
A = ∅ a.e..
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Example: The Boolean algebra generated from a given partition Ai (atoms),
and weights µ(Ai) := wi.

A measure is the special case where

µ(E1 t E2 t · · · ) = µ(E1) + µ(E2) + · · ·

It follows that

1. E ⊆ F ⇒ µ(E) 6 µ(F )

2. µ(E4F ) = µ(ErF ) + µ(FrE)

3. µ(E) + µ(F ) = µ(E ∪ F ) + µ(E ∩ F )

4. µ(
⋃
nEn) 6

∑
n µ(En)

5. En ⊆ En+1 ⇒ µ(
⋃
nEn) = supn µ(En)

6. En ⊇ En+1 ⇒ µ(
⋂
nEn) = infn µ(En) or infn µ(En) =∞

7. En → E pointwise ⇒ E is measurable and µ(En) → µ(E) if En ⊆ F ,
µ(F ) <∞.

8. The countable sum of measures is another measure.

Proof: Pointwise convergence of sets means ∀x ∈ E,∃N,n > N ⇒ x ∈ En
AND ∀x /∈ E,∃N,n > N ⇒ x /∈ En. Let AN := {x : n > N ⇒ x ∈ En } =⋂
n>N En, BN := {x : n > N ⇒ x /∈ En } =

⋂
n>N E

c
n, both increasing. Then

E =
⋃
N AN is measurable and µ(E) = supN µ(AN ).

Not all subsets need be measurable; the measurable sets form a σ-subalgebra
σ[µ] ⊆ 2X , closed under countable unions and complements.

A measurable space can be ‘completed’ by adding the sets that are indistin-
guishable from measurable sets with µ(F ) := µ(E) when F = E a.e., i.e., by
adding the null sets; (note there may be many more indistinguishable subsets
than measurable ones e.g. the Borel sets in R are 2N in number, but the number
of null sets, such as the subsets of the Cantor set, is 2R).

Examples: The discrete (counting) measure where δA(E) := #(E ∩ A) for
any subset E ⊆ X. The ‘Lebesgue’ σ-algebra of a topological space σ[T ]: the
completion of the Borel σ-algebra (generated by the open sets). Products of
measure spaces have a measure ξ(E × F ) = µ(E)ν(F ).

Any generalized measure m∗ : 2X → [0,∞] with the properties

m∗(∅) = 0, A ⊆ B ⇒ m∗(A) 6 m∗(B),

m∗(A ∪B) 6 m∗(A) +m∗(B), An → A ⇒ m∗(An)→ m∗(A)

gives rise to a complete measure: Let a set E be measurable when for any subset
A,

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec),
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and let µ(E) := m∗(E). It follows that if E, F are measurable then so are Ec

and E ∪ F , since

m∗(A ∩ (E ∪ F )) +m∗(A ∩ (E ∪ F )c)

= m∗(A ∩ (E ∪ F )) +m∗(A ∩ Ec ∩ F c)

= m∗(A ∩ (E ∪ F ) ∩ E) +m∗(A ∩ (E ∪ F ) ∩ Ec) +m∗(A ∩ Ec ∩ F c)

= m∗(A ∩ E) +m∗(A ∩ F ∩ Ec) +m∗(A ∩ Ec ∩ F c)

= m∗(A ∩ E) +m∗(A ∩ Ec) = m∗(A).

Indistinguishable sets (m∗(E4F ) = 0) are measurable

m∗(A) 6 m∗(A ∩ (E ∪ F )) +m∗(A ∩ (Ec ∩ F c))

6 m∗(A ∩ E) +m∗(A ∩ (FrE)) +m∗(A ∩ Ec)

6 m∗(A) +m∗(E4F ) = m∗(A).

Proposition 1

Radon

A finitely additive measure on compact sub-
sets extends to a regular Borel measure.

Proof: For U open, let m(U) := sup{m(K) : K ⊆ U, compact } (well-defined
and increasing); m(U1 ∪ U2) 6 m(U1) + m(U2) since K ⊆ U1 ∪ U2 ⇒ K =
K1 ∪K2, Ki ⊆ Ui.

m(
⋃
n

Un) 6
∑
n

m(Un)

since K ⊆
⋃
n Un ⇒ K ⊆

⋃N
n=1 Un ⇒ m(K) 6

∑N
n=1m(Un).

For any subset A, let m(A) := {m(U) : A ⊆ U, open } (well-defined and
increasing); m(

⋃
nAn) 6

∑
nm(An) since pick An ⊆ Un open, m(Un) 6

m(An) + ε/2n; then m(
⋃
nAn) 6 m(

⋃
n Un) 6

∑
nm(Un) 6

∑
nm(An) + ε.

Thus m is an outer measure that can be extended to a measure µ. This is a
Borel measure since for any open U and any subset A, pick

V ⊇ A open,m(V ) 6 m(A) + ε

K1 ⊆ U ∩ V compact,m(K1) > m(U ∩ V )− ε
K2 ⊆ VrK1 compact,m(K2) > m(VrK1)− ε,

m(A ∩ U) 6 m(V ∩ U) 6 m(K1) + ε

m(A ∩ U c) 6 m(V ∩Kc
1) 6 m(K2) + ε

∴ m(A ∩ U) +m(A ∩ U c) 6 m(K1 ∪K2) + 2ε

6 m(V ) + 2ε 6 m(A) + 3ε
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Thus U is measurable.
�

1. Contains the measure space generated by the finite-measure setsMf (with
µ(E) = limn µ(En) for En → E; this is well-defined since En → E and
Fn → F ⇒ En ∪ Fn → E ∪ F and EnrFn → ErF ; so

µ(E ∪ F ) = lim
n
µ(En ∪ Fn) = lim

n
µ(En) + µ(Fn)− µ(En ∩ Fn)

6 µ(E) + µ(F )

An → ∅ ⇒ Enm → An → ∅
⇒ Enm → ∅ ⇒ µ(Enm)→ 0 ⇒ µ(An)→ 0

so

µ(A) = inf{µ(E) : A ⊆ E ∈M} = sup{µ(E) : E ⊆ A,E ∈M}

Proof:

µ(A) <∞ ⇔ A ∈Mf ⇔ En → A,En ∈M
⇔ En ↗ A and Ẽn ↘ A ⇒ µ(En)↗ µ(A) and µ(Ẽn)↘ µ(A),

and µ(A) =∞ ⇒ ∀E ⊇ A,µ(E) =∞ and µ(En)↗∞,

2. Can be extended to the locally measurable sets i.e., ∀E measurable, A∩E
is measurable, with measure

µ(A) = sup
E⊆A,E∈M

µ(E) = inf
A⊆V,V open

µ(V )

In this sense the measure is finite only when the set is measurable (since
µ(A∩En)→ µ(A) <∞ ⇒ A∩En → A ⇒ A∩E = Aa.e ⇒ A ∈M)

Proof: The locally measurable sets are closed under complements since
for A locally measurable and E measurable Ac ∩E = Er(A∩E) ∈M so
Ac is locally measurable; if An are locally measurable, then

⋃
nAn ∩E =⋃

n(An∩E) is measurable; µ(AtB) = supE µ(AtB∩E) = supE µ(A∩E)+
µ(B ∩E) = µ(A) + µ(B); An → ∅ ⇒ An ∩E → ∅, so if ∀n, µ(An) =∞
then ∃En, µ(An ∩ En) > n, so N 6 µ(An ∩

⋃
nEn) → 0 a contradiction,

so for large N , µ(AN ) <∞, so µ(AN )→ 0.

3. Note that when X is covered by a countable number of measurable sets,
then the locally measurable sets are the measurable sets.

4. If a measurable space is generated by a countable number of sets An of
finite measure that together cover X, and E is of finite measure, then
∀ε > 0,∃B measurable, d(A,B) < ε.
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5. In a second countable locally compact T2 space, the compact sets generate
the Borel sets.

Proof: V open ⇒ Kn ↗ V so µ(E) = sup{µ(K) : K ⊆ E } = inf{µ(U) :
E ⊆ U } since E ⊆

⋂
nKn ⇒ µ(KnrE) = inf{µ(U) : KnrE ⊆ U }, so

µ(Kn∩E) = µ(Kn)−µ(KnrE) = sup(µ(Kn)−µ(U)) 6 supµ(KnrU) =
supµ(K) = sup{µ(K) : K ⊆ E }.

6. Subspaces: µ(E|A) = µ(E ∩ A) (for probability, normalize to µ(E|A) =
µ(E ∩A)/µ(A)).

Products: X × Y the measurable sets are generated from E × F , with
µ(E × F ) = µ(E)µ(F ).

E and F are said to be independent when µ(E ∩ F ) = µ(E)µ(F ) (so
µ(E|F ) = µ(E)). For a partition into subsets F , µ(E) =

∑
F µ(E|F )µ(F ).

7. Hausdorff measure for metric spaces: µα(E) := sup{
∑
i r
α
i : E ⊆

⋃
iBri(xi), ri <

δ/2 }.

8. Measurable Functions: ∀V measurable, f−1V is measurable; similarly
locally measurable functions; (f is called Baire measurable when for V
open, f−1V is Borel); e.g. the constants, 1A for A locally measurable,
continuous functions are Borel measurable; we write f = ga.e. when
f(x) = g(x) a.e.x; the composition of measurable functions is measurable;
(f, g) is measurable ⇔ f, g are measurable.

For a Borel measure space, f is measurable when f−1V is measurable for
V Borel; continuous functions are therefore measurable.

The information of a set E wrt X is log2
µ(X)
µ(E) (measured in ‘bits’); the

entropy of a partition of X is H = −
∑
i µ(Ei) log2 µ(Ei). The entropy is maxi-

mum when the partition sets have equal measure; it is additive and continuous.
H(E,F ) = H(E|F ) +H(F ); H(f(E)) 6 H(E) with equality when f is invert-
ible (since H(f(E)|E) = 0, so H(E) = H(E, f(E)) = H(f(E)) +H(E|f(E)));
If E,F are independent then H(E|F ) = H(E); H(E × F ) 6 H(E) +H(F ).

Radon measures also satisfy (i) finiteness: compact subsets have finite
measure, and (ii) regularity: for measurable E, open U ,

µ(U) = sup{µ(K) : K compact,K ⊆ U }, µ(E) = inf{µ(U) : E ⊆ U open }

7 Examples

Finite spaces have a unique base of open sets Ux :=
⋂
{U ∈ T : x ∈ U }. The

space is determined by its specialization order, with F → x ⇔ ↓x ∈ F ; they
are in 1-1 correspondence with finite ordered spaces.

The number of finite (T0) topologies (up to isomorphism) are:

Points 0 1 2 3 4 5 6 7 8 9 10
Topologies 1 1 2 5 16 63 318 2045 16999 183231 2567284
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For example, two-point topologies are either discrete or Sierpinski space 2.

Discrete spaces ΣA are the finest possible:) the only convergent filters are
F(x), all functions from ΣA are continuous. It is a metric space d(x, y) = 1−δxy;
every subset is clopen, so 0-D, locally compact and locally connected (in fact,
ΣA are the only locally connected totally disconnected spaces). The separable
discrete spaces are ΣN = N and Σn; only the latter are compact.

The one-point compactification of ΣA is called a Fort space – a compact T2
space that is not first countable except for A ⊆ N when it is second countable.

The ‘extension’ X#Y of two topological spaces is XtY with open sets being
X ∪ V and U ∈ T (X).

Excluded point topology: ΣA#{ 0 } (every open set excludes 0, except X);
the closed sets contain 0, except ∅; every proper filter converges to 0. So
compact, connected, and not T1. First countable and locally connected but
separable (and second countable) iff A ⊆ N.

Particular point topology: { 0 }#ΣA (every open set contains 0, except ∅);
the closed sets do not contain 0, except X. So connected, locally connected and
not T1; separable since { 0 } = X, but Lindelöf iff A ⊆ N.

Evenly spaced topology on Z: with the basic open sets a + bZ (arithmetic
sequences); these are clopen, so X is 0-D, second countable; has a metric |n| =
1
2k

where k is the largest power of the prime decomposition of n; every open
set, except ∅, is infinite; not compact or complete (e.g. the sequence of primes
does not converge) and not locally compact. (

⋃
p prime pZ = {±1 }c not closed,

so the primes cannot be finite.)
p-adic Z: basic open sets a+ pkZ; metric |m| = |pk · · · | := 1

2k
, clopen balls,

so 0-D; countable; not locally compact.

Euclidean spaces
Q: topology generated by open intervals ]p, q[, hence second countable; has

an incomplete metric |p − q| (e.g. 1 − 1
2 + 1

3 −
1
4 + · · · is divergent Cauchy); it

is the unique countable perfect T3 space; ]a, b[ with a, b irrational form a clopen
base, so it is 0-D. Bounded sets are totally bounded. The compact subsets can
be complicated. The one-point compactification of Q is connected, T1 (but not
T2 or first countable at ∞); but removing ∞ gives a totally disconnected space.

R is the completion of Q. The intervals are the only separable connected lin-
early ordered spaces; [0, 1] is the unique compact metric space that is connected
and locally connected with two non-cut points. Qc is 0-D but not meagre. The
one-point compactification of RN is SN ; S2 every automorphism has a fixed
point. Every 1-1 continuous function f : U → RN where U ⊆ RN is open, is an
embedding, and fU is open.

R/N, the infinite rose with stalk; connected, and locally connected; σ-
compact but not locally compact or first countable at 0; separable by Q.

Hawaiian earring, the one-point compactification of RrZ; connected but
not locally connected, has no universal cover.

Long Line consists of |R| intervals [0, 1[ joined together with the order topol-
ogy (ω1 × [0, 1[ in each direction); it is first countable T5 but not separable,
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Lindelöf, or paracompact.
[0, ω1[ is the linear order of countable ordinals; its extent is |N| but its spread

is |R|.

Baire Spaces are infinite products of Euclidean spaces (with pointwise
convergence). They are all T2.

NN (Baire space) has a complete metric d(xn, yn) = inf{ 1
n : i 6 n ⇒

xi = yi }; embedded in R as the irrational numbers (via continued fractions).
The set of sequences Nx that agree with a finite sequence x form a countable
clopen base; so 0-D and second countable; homogeneous, so perfect. Ā can be
obtained by forming the tree of finite initial sequences of A, and then taking
all sequences that are generated by this tree. A closed set is compact when the
tree it generates has finite branching at nodes; hence not σ- or locally compact.

2N (Cantor space): (or any countable product of finite discrete spaces such
as 3×5×2×8×· · · ); a homogeneous, compact subspace of Baire space; can be
embedded in R as a nowhere dense set via ternary expansion; separable by the
‘finite’ 0− 1 sequences (endpoints). It is the only perfect, totally disconnected,
compact metric space. Any perfect complete metric space contains a copy of
the Cantor set (in the construction of the usual Cantor set, replace the intervals
by nested closed balls of radii 1/3n).

Proof: Let X be perfect, totally disconnected, compact metric space; then
x = Q(x) quasi-component. Hence the clopen sets of diameter 1 cover X; of the
finite sub-covers, there are covers of clopen sets of diameter 1/2n; hence there
is a homeomorphism 2N → X.

NR basic open sets are clopen, so 0-D; is T3.5 but not T4; separable but
not first countable; contains NN, so not σ-compact or locally compact. 2R

is compact but not sequentially compact: the sequence fn(x) := nth digit in
binary expansion of x, has no convergent subsequence.

RN is second countable (separable using finite rational sequences); connected;
not locally compact (e.g. (δin)n has no convergent subsequence at 0; then scale
and translate).

RR is separable (using rational step functions) but not first countable.
[0, 1][0,1] is a connected compact T2 space; not first countable. Contains the

closed separable first countable subspace, called Helly space: { f ∈ [0, 1][0,1] :
increasing }.

C[0, 1] with uniform topology is a complete metric space; separable (by ra-
tional polynomials); not locally compact or σ-compact (every neighborhood has
a sequence which does not converge); connected and locally connected (balls are
convex). RA with uniform topology is separable iff second countable iff A finite.

Exotic Lines
Sorgenfrey line - generated by [a, b[; e.g. − 1

n 6→ 0 but 1
n → 0; [a, b[ is clopen,

so finer than R; hence 0-D; T6; the only compact subsets are countable (hence
not σ-compact or locally compact); Lindelöf, separable (by Q), first countable
(by [a, r[, r ∈ Q), but not second countable or metrizable.

Michael’s line - generated by open intervals and irrational singletons; hence
finer than R; Q is closed and [a, b] with a, b ∈ Qc are clopen; first countable and
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0-D, but not separable (irrationals are uncountable); paracompact T2, but not
metrizable, Lindelöf or locally compact.

Moore plane - R × R+ with neighborhoods Bε(x, y) (ε 6 y) and By(x, y) ∪
{ (x, y) }. Sequences can only converge to R× { 0 } from above. Is T3.5 but not
T4; separable (by Q2) but not second countable (contains the discrete subspace
R); connected.

Deleted Radius: R2 with open sets generated from disks with right horizontal
radius deleted.

See π-Base for many more examples.

Review on filters and nets in 2X

A filter F is a collection of subsets of X that is upper-closed and lower-directed;
a net (xi)i∈I is a map I → X from a directed set (i.e., any two elements have an
upper-bound); a sequence is the special case of a mapping from N (see Ordered
Sets):

1. ∀A,B ∈ F , A ∩B ∈ F , and A ⊆ C ⇒ C ∈ F .

2. The intersection of filters is a filter, so a filter can be generated from
any collection of sets via F(S) := ↑{A1 ∩ · · · ∩ An : Ai ∈ S, n ∈ N },
e.g. F(A) := {B ⊆ X : A ⊆ B }, F(∅) = 2X (the improper filter).

A filter on a finite set must be of this form, F = F(A) where A =
⋂
F . But

infinite sets may have ‘free’ filters with
⋂
F = ∅, e.g. F = ↑{n, n+1, . . . }

in N, or F = ↑{ ]0, 1/n[ : n ∈ N } in Q.

3. A ⊆ B ⇔ F(B) ⊆ F(A).

4. A proper filter can be thought of informally as generated by some nested
collection of subsets: well-order F and take A1 ⊇ A1∩A2 ⊇ A1∩A2∩Aω ⊇
· · · .

5. The set of filters form a complete distributive lattice

F ∧ G = F ∩ G,
F ∨ G = F(F ∪ G) = ↑{A ∩B : A ∈ F , B ∈ G },∨
i Fi = F(

⋃
i Fi)

For example, if F ∩G ⊆ H proper, then F ∨H, or G ∨H, is proper (since
H = H ∨ (F ∩ G) = (H ∨ F) ∩ (H ∨ G)). F(A) ∩ F(B) = F(A ∪ B),
F(A) ∨ F(B) = F(A ∩B).

6. Every proper filter F can be extended (refined) to a maximal filterM: its
complement is an ideal, A ∪B ∈M ⇔ A ∈M or B ∈M, in particular
∀A ⊆ X,A ∈M or Ac ∈M.

http://topology.jdabbs.com
http://staff.um.edu.mt/jmus1/order.pdf
http://staff.um.edu.mt/jmus1/order.pdf
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7. F =
⋂
{M : maximal,F ⊆ M} =

∨
{F(A) : A ∈ F }. If F ∩ G ⊆ M

maximal, then F ⊆M or G ⊆M.

8. Given a filter F on X and a function f : X → Y , f(F) is defined to be that
filter generated by fF = { fA : A ∈ F }, namely {B ⊆ Y : f−1B ∈ F }.
Similarly, f−1(F) is the filter generated by { f−1A : A ∈ F }; it is proper
iff for all A ∈ F , A ∩ im f 6= ∅.

f(F(A)) = F(fA), F(f−1A) = f−1F(A), F ⊆ ff−1F , f−1fF ⊆ F .

9. Maximal filters are mapped to maximal filters when f is onto (since fM⊂
F ⇒ M ⊆ f−1F).

10. A net (xi)i∈I is said to be eventually in A, xi →� A when

∃j ∈ I, i > j ⇒ xi ∈ A.

11. A net is the point version of a filter: every net generates a filter

F(xi) := {A ⊆ X : xi →� A } = ↑{ {xi : i > j } : j ∈ I }

conversely, pick a point from each set in a filter, xi ∈ Ai, to form a net
when ordered by i > j ⇔ Ai ⊆ Aj . For example, the filter corresponding
to a constant net xi = x is F(x).

12. A subnet is a composition J → I → X such that J → I is increasing and
∀a ∈ I, ∃j ∈ J, ij > a.

13. A sequence N→ X is an example of a net, and a subsequence N→ N→ X
(with N → N strictly increasing) an example of a subnet. But not every
subnet of a sequence, J → N→ X is a subsequence, e.g. (a1, a1, a4, a3, . . .).


