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1 Operations

A universal algebra is a set X with some operations ∗ : Xn → X and
relations1  ⊆ Xm.

For example, there may be specific constants c (n = 0), functions x 7→ x∗

(n = 1), and binary operations (x, y) 7→ x ∗ y (n = 2), etc. An n-ary operation
is sometimes written as x ∗ y ∗ . . . instead of ∗(x, y, . . .), and an m-ary relation
as x y  . . . instead of  (x, y, . . .).

Elements are indistinguishable when

∗(. . . , x, . . .) = ∗(. . . , y, . . .),  (. . . , x, . . .) ⇔ (. . . , y, . . .).

A subalgebra is a subset closed under all the operations

x, y, . . . ∈ Y ⇒ x ∗ y ∗ . . . ∈ Y

(The relations are obviously inherited.)

If Ai are subalgebras, then
⋂
iAi is a subalgebra.

[[A]], the subalgebra generated by A, is the smallest subalgebra containing
A,

[[A]] :=
⋂
{Y ⊆ X : A ⊆ Y, Y is a subalgebra }

Hence A ⊆ Y ⇔ [[A]] ⊆ Y (for any subalgebra Y ).
A ∩B is the largest subalgebra contained in the algebras A and B; [[A ∪B]]

is the smallest containing them. The collection of subalgebras form a complete
lattice.

For any subsets,

A ⊆ [[A]], [[[[A]]]] = [[A]]

A ⊆ B ⇒ [[A]] ⊆ [[B]],

[[A]] ∨ [[B]] = [[A ∪B]], [[A ∩B]] ⊆ [[A]] ∩ [[B]]

The map A 7→ [[A]] is thus a ‘closure’ map on the lattice of subsets of X, with
the ‘closed sets’ being the subalgebras.

1Relations are not usually included in the definition of universal algebras.
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Proof: Let x, y, . . . ∈ [[A]], then for any sub-algebra Y ⊇ A, x ∗ y ∗ · · · ∈ Y ,
so x ∗ y ∗ · · · ∈ [[A]]. Hence A ⊆ B ⊆ [[B]] gives [[A]] ⊆ [[B]]. In particular,
[[A]] ⊆ [[A]], so [[[[A]]]] ⊆ [[A]] ⊆ [[[[A]]]]. A,B ⊆ A ∪ B so [[A]] ∨ [[B]] ⊆ [[A ∪ B]];
A,B ⊆ [[A]] ∨ [[B]], so [[A ∪B]] ⊆ [[A]] ∨ [[B]].

�

When the number of operations is finite, the generated subalgebra can be
constructed recursively as [[A]] =

⋃
n∈NBn where

B0 := A, Bn+ := Bn ∪
⋃
∗
∗(Bn).

Proof: that Bn ⊆ [[A]] and A = B0 ⊆ Bn are obvious (by induction);
if x, . . . , y ∈

⋃
nBn then x ∈ Bn1

, . . . , y ∈ Bnk
, so ∃r, x, . . . , y ∈ Br and

∗(x, . . . , y) ∈ Br+ ⊆
⋃
nBn; so [[A]] =

⋃
nBn.

�

Hence if A is countable, so is [[A]].
The free algebra generated by A is that algebra in which x∗y∗. . . are distinct

from each other, for any x, y, . . . ∈ A, and there are no relations.

2 Morphisms

The morphisms (also called homomorphisms) between compatible universal
algebras (i.e., with the same type of operations and relations) are those functions
φ : X → Y which preserve all the operations and relations

φ(x ∗ y ∗ . . .) = φ(x) ∗ φ(y) ∗ . . .

x y  . . . ⇒ φ(x) φ(y) . . .

For the special constants, functions, and binary operations, this means

φ(cX) = cY , φ(x∗) = φ(x)∗, φ(x ∗ y) = φ(x) ∗ φ(y).

An algebra with its morphisms forms a category. When φ(x)  · · · ⇔
x  · · · , a morphism is an isomorphism when it is bijective (since φ(φ−1(x) ∗
φ−1(y) ∗ . . .) = x ∗ y ∗ . . ., so φ−1 is a morphism). The monomorphisms are the
1-1 morphisms; the epimorphisms are the onto morphisms.

Proposition 1
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For a morphism φ : X → Y ,

• If A is a subalgebra of X, then so is φA

• For any subset S ⊆ X, φ[[S]] = [[φS]]

• If B is a subalgebra of Y , then so is φ−1B

Proof: If φ(x), φ(y), . . . ∈ φA, then

φ(x) ∗ φ(y) ∗ · · · = φ(x ∗ y ∗ · · · ) ∈ φA

since A is a subalgebra. Let x, y, . . . ∈ φ−1B, i.e., φ(x), φ(y), . . . ∈ B, then
φ(x∗y ∗ · · · ) = φ(x)∗φ(y)∗ · · · ∈ B, hence x∗y ∗ · · · ∈ φ−1B. Finally, if φA ⊆ C
(a subalgebra of Y ), then A ⊆ [[A]] ⊆ φ−1C, so [[φA]] = φ[[A]].

�

Thus if morphisms agree on a set S, then they are equal on [[S]].

Products: X × Y can be given an algebra structure by defining the opera-
tions

(x1, y1) ∗ (x2, y2) ∗ . . . := (x1 ∗ x2 ∗ . . . , y1 ∗ y2 ∗ . . .)

(x1, y1) (x2, y2) . . . := (x1  x2  . . .) and (y1  y2  . . .)

More generally, XA is an algebra with

(f ∗ g ∗ . . .)(a) := f(a) ∗ g(a) ∗ . . . ,

f  g  . . . := f(a) g(a) . . . ∀a ∈ A.

There is also a coproduct (or free product). An algebra is said to be decom-
posable when X ∼= Y × Z with Y,Z 6∼= X.

Quotients: An equivalence relation on X which is invariant under the op-
erations and relations is called a congruence (or stable relation), i.e.,

x1 ≈ x2, y1 ≈ y2, . . . ⇒ (x1 ∗ y1 ∗ . . .) ≈ (x2 ∗ y2 ∗ . . .)
and x1  y1  . . . ⇒ x2  y2  . . .

The operations and relations can then be extended to act on the set X/≈ of
equivalence classes

[x] ∗ [y] ∗ . . . := [x ∗ y ∗ . . .]

[x] [y] . . . := x y  . . .

i.e., the mapping π : x 7→ [x] is a morphism X → X/≈.
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For example, indistinguishable elements form a congruent relation, that can
be factored away.

An algebra X can be analyzed by looking for its congruence relations and
then simplifying to get X/≈; this process can be continued until perhaps an
algebra is reached that has only trivial congruent relations (x ≈ y ⇔ x = y or
x ≈ y ⇔ True), called simple: it has only trivial quotients. Simple algebras
are the ‘building blocks’ of ‘finitary-type’ algebras.

Any morphism φ : X → Y which preserves a congruence relation x ≈ y ⇒
φ(x) ≈ φ(y), induces a morphism X/≈ → Y , [x] 7→ φ(x).

The following five “Isomorphism” theorems apply when the relations satisfy
x y  . . . ⇔ φ(x) φ(y) . . .:

First isomorphism theorem: For any morphism φ : X → Y , the relation
φ(x) = φ(y) is a congruence (called the kernel of φ), such that the associated
quotient space

(X/ kerφ) ∼= φX.

Proof: That kerφ is a congruence is trivial; so it induces a 1-1 morphism
X/ kerφ→ φX, thus an isomorphism.

Third isomorphism theorem: If a congruence ≈1 is finer than another ≈2,
then ≈1 induces a congruence (≈2 /≈1) on X/≈2, and

X/≈2
∼= (X/≈1)/(≈2 /≈1).

Proof: The map X/ ≈1→ X/≈2, [x] 7→ [[x]] is a well-defined onto morphism,
with kernel (≈2 /≈1).

Second isomorphism theorem: If Y is a subalgebra of X, and ≈ is a con-
gruence on X, then ≈ is a congruence on Y , and Y/ ≈ is isomorphic to the
subalgebra Y ′ ⊆ X/≈, consisting of all the equivalence classes that contain an
element of Y .

Proof: The map Y → X/ ≈, y 7→ [y], is a morphism with image Y ′ and
kernel ≈.

Fourth isomorphism theorem: Given a congruence relation ≈, the subalge-
bras Y ⊆ X that satisfy y ∈ Y ⇒ [y] ⊆ Y , are in correspondence with the
subalgebras of X/≈.

Proof: Clearly, Y ⊆ Z ⇒ Y ′ ⊆ Z ′. Conversely, if Y ′ ⊆ Z ′ and y ∈ Y , then
[y] ∈ Z ′, so [y] = [z] for some z ∈ Z, thus y ≈ z ∈ Z.

‘Fifth’ isomorphism theorem: Given congruences ≈1, ≈2 on X1,X2, the re-
lation (x1, x2)(≈1 × ≈2)(y1, y2) := (x1 ≈1 y1) and (x2 ≈2 y2) on X1 ×X2 is a
congruence, and

X1 ×X2

≈1 × ≈2

∼=
X1

≈1
× X2

≈2
.

Proof: Let φ : X1×X2 → X1

≈1
×X2

≈2
, (x1, x2) 7→ ([x1], [x2]). This is a morphism

with kernel given by ([x1], [x2]) = ([y1], [y2]) ⇔ x1 ≈1 y1 and x2 ≈2 y2.
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There are two senses in which a space X is ‘contained’ in a larger space Y :

1. Externally, by embedding X in Y , i.e., there is an isomorphism ι : X →
B ⊆ Y , denoted X ⊂∼ Y because X is, effectively, a subspace of Y ;

2. Internally, by covering X by Y , i.e., there is an onto morphism π : Y → X,
so X ∼= Y/ kerπ; each element of X is refined into several in Y .

Then every morphism φ : X → Y splits up into three parts with an inner
core bijective morphism: X

π→ X/ kerφ → imφ
ι→ Y . For example, X × Y π→

X
ι→ X × Y .

Theorem 2

Every finitely-generated algebra is a quotient of the
finitely-generated free algebra.

(the same is true if the operations have intrinsic properties, i.e., subalgebras,
quotients and products have the same properties)

An endomorphism φ : X → X induces a sequence of embeddings and parti-
tions:

• A descending sequence of embedded spaces

X ⊇ imφ ⊇ imφ2 ⊇ · · · ⊇
⋂
n

imφn

• An ascending sequence of partitions, where x ∼n y ⇔ φn(x) = φn(y),

0 ⊆ kerφ ⊆ kerφ2 ⊆ · · · ⊆
⋃
n

kerφn

1. φ is said to be of finite descent down to n when imφn = imφn+1 (=
imφn+2 = · · · ), i.e., φ is onto imφn. In this case, every element can be
represented, modulo ∼n, by some element in imφn.

Proof: φn(x) = φn+1(y), so x ∼n φ(y) ∼n · · · ∼n φn(z).

2. φ is of finite ascent up to n when kerφn = kerφn+1 (= kerφn+2 = · · · ),
i.e., φ is 1-1 on imφn. Then each n-equivalence class contains at most one
element of imφn.

Proof: φn(x) ∼n φn(y) implies x ∼n+n y, so x ∼n y, i.e., φn(x) = φn(y).

3. If φ has finite ascent and descent, then the two sequences have the same
length. Thus every element can be represented modulo ∼n by a unique
element in imφn, and φ is bijective on imφn

Proof: The ascent cannot be longer than the descent else φn(x1) =
φn(y1) = φn+1(y2) and φn+1(x1) = φn+1(y1), so x1 6∼n y1 but x1 ∼n+1 y1,
and x2 6∼n+1 y2 but x2 ∼n+2 y2, etc. The descent cannot be longer than
the ascent else if φm(x) = φm+1(y) then x ∼m φ(y), so x ∼n φ(y).
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3 Compatibility

An operation is associative when ∗(x, y, . . .) exists for every finite number of
terms, such that

∗(. . . , ∗(x, y, . . .), u, . . .) = ∗(. . . , x, y, . . . , u, . . .)

For example, x ∗ y ∗ z = (x ∗ y) ∗ z; so the operation reduces to three basic ones

0 := ∗(), ∗(x), ∗(x, y)

such that
0 ∗ x = ∗(x), (x ∗ y) ∗ z = x ∗ (y ∗ z).

Note that ∗(x) = ∗(y) is a stable equivalence relation (with respect to ∗), with
related elements being indistinguishable algebraically; but can assume ∗(x) = x
by taking the quotient space and renaming; in this case, 0 ∗ x = x.

An operation is distributive over another when

∗(. . . , ◦(x, y, . . .), z, . . .) = ◦(∗(. . . , x, z, . . .), ∗(. . . , y, z, . . .), . . .)

For 0-,1-,2-operations, this means

(0) 1 2
(0) (0 = 1) (0 = 0∗) (0 ∗ x = 0 = x ∗ 0)
1 (1◦ = 1) x∗◦ = x◦∗ (x ∗ y)◦ = x◦ ∗ y = x ∗ y◦
2 (x+ y)∗ = x∗ + y∗ x ∗ z + y ∗ z = (x+ y) ∗ z

z ∗ x+ z ∗ y = z ∗ (x+ y)

Two operations commute when

∗(◦(x1, y1, . . .), ◦(x2, y2, . . .), . . .) = ◦(∗(x1, x2, . . .), ∗(y1, y2, . . .))

For 1-,2-operations, this means

0 1 2
0 0 = 1
1 x∗◦ = x◦∗ (x+ y)∗ = x∗ + y∗

2 (x1 + y1) ∗ (x2 + y2) = x1 ∗ x2 + y1 ∗ y2

Commuting 2-operations with identities must actually be the same, and must
be commutative x ∗ y = y ∗ x and associative.

Proof: The identities are the same: 1 = 11 = (1 + 0)(0 + 1) = 10 + 01 =
0 + 0 = 0. ab = (a + 0)(0 + b) = a0 + 0b = a + b so the operations are the
same, and (ab)(cd) = (ac)(bd). Hence ab = (1a)(b1) = (1b)(a1) = ba and
a(bc) = (a1)(bc) = (ab)c.

�

In particular if an operation with identity commutes with itself, it must be
associative and commutative x ∗ y = y ∗ x.
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3.1 Examples

1. The simplest example is a set with a single constant 0, sometimes called
the field with one element.

2. A set with a constant and a 1-operation; properties may be 0∗ = 0, x∗∗ =
x.

3. A set with a constant, a 1-operation, and a 2-operation: e.g. 0 ∗ x = x,
(x ∗ y)∗ = y∗ ∗ x∗.
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