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1 Operations

A universal algebra is a set X with some operations * : X™ — X and
relations' ~C X™.

For example, there may be specific constants ¢ (n = 0), functions © — z*
(n =1), and binary operations (z,y) — x xy (n = 2), etc. An n-ary operation
is sometimes written as x * y * ... instead of x(x,y,...), and an m-ary relation
as x ~» y ~> ... instead of ~ (z,y,...).

Elements are indistinguishable when

x(cooxy) =%y, (o) S (o y, ).
A subalgebra is a subset closed under all the operations
z,y,... €Y = zxyx...€Y

(The relations are obviously inherited.)

If A; are subalgebras, then (1), A; is a subalgebra.

[A], the subalgebra generated by A, is the smallest subalgebra containing
A

)

[4] := ﬂ{Y C X :ACY,Y is a subalgebra }

Hence ACY & [A] CY (for any subalgebra Y').

AN B is the largest subalgebra contained in the algebras A and B; [A U B]
is the smallest containing them. The collection of subalgebras form a complete
lattice.

For any subsets,
AcC 4],  [[AIl=[A]
ACB = [A] C[B],
[AlvIB]=[AuB], [AnB]<[A]N[B]

The map A — [A] is thus a ‘closure’ map on the lattice of subsets of X, with
the ‘closed sets’ being the subalgebras.

1Relations are not usually included in the definition of universal algebras.
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PRrROOF: Let z,y,... € [A], then for any sub-algebra Y D A, xxy*--- €Y,
so xxyx*--- € [A]. Hence A C B C [B] gives [A] C [B]. In particular,
[A] C [A], so [[A]] € [4] C [[A]]- A,B € AUB so [A] v [B] C [AU BJ;
A, B C[A]V[B],so [AUB] C[A]V [B].

O

When the number of operations is finite, the generated subalgebra can be

constructed recursively as [A] = (J,,cn Bn where

By:=A,  Bus:i=B,U[Jx(Bn).

Proof: that B, C [A] and A = By C B, are obvious (by induction);
if ,...,y € U, Bn then x € B,,,...,y € By,, so Ir,z,...,y € B, and
*(x,...,y) € B,+ C,, Bn; so [A] =U,, Bn-

k>

O

Hence if A is countable, so is [A].
The free algebra generated by A is that algebra in which x*yx*. .. are distinct
from each other, for any x,y,... € A, and there are no relations.

2 Morphisms

The morphisms (also called homomorphisms) between compatible universal
algebras (i.e., with the same type of operations and relations) are those functions
¢ : X — Y which preserve all the operations and relations

Plrxy*...)=d(x)xp(y) *...
Ty~ = dx) ~ oly) ~ ...
For the special constants, functions, and binary operations, this means
dlex) =cy, o) =¢(x)",  dlxxy)=o(x)*d(y).

An algebra with its morphisms forms a category. When ¢(z) ~ -+ &
x ~» ---, a morphism is an isomorphism when it is bijective (since ¢(¢p~1(x) *
¢ Yy)*...)=x*xy*..., 80 ¢~ !is a morphism). The monomorphisms are the
1-1 morphisms; the epimorphisms are the onto morphisms.

Proposition 1
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For a morphism ¢: X — Y,

o If A is a subalgebra of X, then so is ¢A
« For any subset S C X, ¢[S] = [¢5]
« If B is a subalgebra of Y, then so is ¢~ 'B

ProOF: If ¢(z), d(y),... € A, then
P(x)x p(y) * -+ =Pz xyx---) € 9A

since A is a subalgebra. Let x,y,... € ¢~ 1B, ie., ¢(z),¢(y),... € B, then
dlaxy*--)=¢(x)*P(y)*--- € B, hence xxyx*--- € ¢~ B. Finally, if pA C C
(a subalgebra of Y), then A C [A] C ¢~ 1C, so [pA] = ¢[A].

(]

Thus if morphisms agree on a set S, then they are equal on [S].

Products: X x Y can be given an algebra structure by defining the opera-
tions
(X1,91) * (X2, y2) * ... ;= (Ty *Ta* ..., Y1 * Y2 %...)

(z1,y1) ~ (x2,y2) ~ ...:= (T ~> Tg ~> ...) AND (Y1 ~> Y2 ~> ...)

More generally, X is an algebra with
(fxg*..)(a):= f(a)xg(a) *...,

f~g~...:=f(a) »gla) ~ ... VaeA.

There is also a coproduct (or free product). An algebra is said to be decom-
posable when X =Y x Z with Y, Z ¢ X.

Quotients: An equivalence relation on X which is invariant under the op-

erations and relations is called a congruence (or stable relation), i.e.,

T1 R T, Y1 Y2, .. = (Trkyprx...) = (Taxya*...)

AND 1 ~ Y1~ ... = T~ Y~ ...

The operations and relations can then be extended to act on the set X/ = of
equivalence classes

[Z] ~ [y] ~ .=y e

i.e., the mapping 7 : « — [z] is a morphism X — X/ .
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For example, indistinguishable elements form a congruent relation, that can
be factored away.

An algebra X can be analyzed by looking for its congruence relations and
then simplifying to get X/ =s; this process can be continued until perhaps an
algebra is reached that has only trivial congruent relations (zx ~y < x =y or
x ~y < TRUE), called simple: it has only trivial quotients. Simple algebras
are the ‘building blocks’ of ‘finitary-type’ algebras.

Any morphism ¢ : X — Y which preserves a congruence relation x ~y =
¢(z) = ¢(y), induces a morphism X/~ — Y, [z] — ¢(x).

The following five “Isomorphism” theorems apply when the relations satisfy
Ty S Pa) > Ply) ~ ..

First isomorphism theorem: For any morphism ¢ : X — Y, the relation
o(x) = ¢(y) is a congruence (called the kernel of ¢), such that the associated
quotient space

(X/ker ¢) = ¢ X.

Proof: That ker ¢ is a congruence is trivial; so it induces a 1-1 morphism
X/ker ¢ — ¢X, thus an isomorphism.

Third isomorphism theorem: If a congruence = is finer than another =,
then ~ induces a congruence (=g /=) on X/~9, and

X/ 2 (X)) /(2 [ =1).

Proof: The map X/ ~1— X/ s, [z] — [[z]] is a well-defined onto morphism,
with kernel (=5 /=21).

Second isomorphism theorem: If Y is a subalgebra of X, and = is a con-
gruence on X, then =~ is a congruence on Y, and Y/ =~ is isomorphic to the
subalgebra Y/ C X/ =2, consisting of all the equivalence classes that contain an
element of Y.

Proof: The map Y — X/ =, y — [y], is a morphism with image Y’ and
kernel ~.

Fourth isomorphism theorem: Given a congruence relation =, the subalge-
bras Y C X that satisfy y € Y = [y] C Y, are in correspondence with the
subalgebras of X/=.

Proof: Clearly, Y C Z = Y’ C Z’'. Conversely, if Y/ C Z' and y € Y, then
[y] € Z’, so [y] = [#] for some z € Z, thus y ~ z € Z.

‘Fifth’ isomorphism theorem: Given congruences /%1, g on X1,Xo, the re-
lation (Il,xz)(%1 X %2)(y17y2) = (1’1 1 yl) AND (I’Q o yg) on Xl X X2 is a
congruence, and

X1><X2NX1XX2

N X R 1 9

Proof: Let ¢ : X1 x Xy — 22 x X2, (1,22) — ([x1], [x2]). This is a morphism

~1

with kernel given by ([z1], [x2]) :nyl], [y2]) & =1 &1 Y1 AND x2 R Yo.
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There are two senses in which a space X is ‘contained’ in a larger space Y':

1.

Externally, by embedding X in Y, i.e., there is an isomorphism ¢ : X —
B CY, denoted X €Y because X is, effectively, a subspace of Y;

2. Internally, by covering X by Y, i.e., there is an onto morphism 7 : ¥ — X,

so X 2 Y/kerm; each element of X is refined into several in Y.

Then every morphism ¢ : X — Y splits up into three parts with an inner
core bijective morphism: X = X/ker¢ — im¢ - Y. For example, X x Y 5
X5 XxY.

Theorem 2

Every finitely-generated algebra is a quotient of the
finitely-generated free algebra.

(the same is true if the operations have intrinsic properties, i.e., subalgebras,
quotients and products have the same properties)

An endomorphism ¢ : X — X induces a sequence of embeddings and parti-

tions:

1.

A descending sequence of embedded spaces

X Dim¢ Dim¢?* 2+ D[ |img"

An ascending sequence of partitions, where x ~,, y < ¢"(z) = ¢"(y),

0 Cker¢ C ker¢? C --- QUkerd)"

¢ is said to be of finite descent down to n when im¢" = im¢"t!l (=
im¢"t? = ...), ie., ¢ is onto im ¢™. In this case, every element can be
represented, modulo ~,,, by some element in im ¢™.

Proof: ¢"(z) = ¢" 1 (y), s0 &~y G(Y) ~p -+ ~on 0" (2).

. ¢ is of finite ascent up to n when ker ¢" = ker ¢p"*! (= ker ¢p"*? = ...),

i.e., ¢ is 1-1 on im ¢™. Then each n-equivalence class contains at most one
element of im ¢™.

Proof: ¢™(x) ~, ¢™(y) implies © ~p4n Y, S0 T ~y, y, 1€, " () = ¢"(y).

If ¢ has finite ascent and descent, then the two sequences have the same
length. Thus every element can be represented modulo ~,, by a unique
element in im ¢", and ¢ is bijective on im ¢"

Proof: The ascent cannot be longer than the descent else ¢™(x1) =

" (y1) = ¢" " (y2) and ¢ (x1) = ¢" T (y1), 50 1 by, Y1 but 21 ~pp1 Y1,
and T pt1 Y2 but 9 ~pi2 Yo, etc. The descent cannot be longer than

the ascent else if ¢ (z) = ¢™H1(y) then x ~,,, ¢(y), 50 T ~y, B(y).
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3 Compatibility

An operation is associative when *(z,y,...) exists for every finite number of
terms, such that

w(oo k(T Yy, ) Uy ) =k T Y Uy )

For example, x *y % z = (z * y) * 2z; so the operation reduces to three basic ones

0:= *()a *(l’), *(:C’y)

such that
0z = x*(x), (xxy)*xz=x*(yx*z).

Note that x(z) = *(y) is a stable equivalence relation (with respect to *), with
related elements being indistinguishable algebraically; but can assume *(z) = x
by taking the quotient space and renaming; in this case, 0 x z = z.

An operation is distributive over another when

*(oo,0(my, o), 2y ) =o(k(ce 2y ) k(e Yy 2y ),

For 0-,1-,2-operations, this means

| (0) 1 2
(0) | (0=1) (0=0%) (Oxx=0=xx0)
1 (1021) r*° = g°* (x*y)ozxo*y:x*yo

(z4+y)*=a*+y* zxz+yxz=(rx+y)xz
zxxtzxy=zx*(x+y)

Two operations commute when
*(o(z1, Y1, .- .),0(T2, Y25 -+ )y -0 ) = o((z1, @2, .. ), *(y1, Y2, - - )

For 1-,2-operations, this means

)
—
\}

= 2" () ="+
(1 +y1) * (v2 +y2) = T1 % T2 + Y1 * Y2

N = O
8

Commuting 2-operations with identities must actually be the same, and must
be commutative z * y = y * £ and associative.

Proof: The identities are the same: 1 =11 = (14+0)(0+1) = 10+ 01 =
0+0=0. ab=(a+0)(0+b) = a0+ 0b = a+ b so the operations are the
same, and (ab)(cd) = (ac)(bd). Hence ab = (1la)(bl) = (1b)(al) = ba and
a(be) = (al)(be) = (ab)e.

O

In particular if an operation with identity commutes with itself, it must be
associative and commutative x xy = y * x.
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3.1 Examples

1. The simplest example is a set with a single constant 0, sometimes called
the field with one element.

2. A set with a constant and a 1-operation; properties may be 0* = 0, ** =
T.

3. A set with a constant, a l-operation, and a 2-operation: e.g. 0 x z = x,
(zxy)* =y**z*.
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